JP2003190940A - Freeze-concentration and separation method and apparatus - Google Patents

Freeze-concentration and separation method and apparatus

Info

Publication number
JP2003190940A
JP2003190940A JP2001392498A JP2001392498A JP2003190940A JP 2003190940 A JP2003190940 A JP 2003190940A JP 2001392498 A JP2001392498 A JP 2001392498A JP 2001392498 A JP2001392498 A JP 2001392498A JP 2003190940 A JP2003190940 A JP 2003190940A
Authority
JP
Japan
Prior art keywords
solvent
water
ice
concentration
absorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001392498A
Other languages
Japanese (ja)
Inventor
Kenji Hayashi
賢二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001392498A priority Critical patent/JP2003190940A/en
Publication of JP2003190940A publication Critical patent/JP2003190940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently obtain ice in which little amount of solvent is contained. <P>SOLUTION: Dissolved air in water having absorbed the solvent is removed by a degassing device 96 and the generation of air bubbles becoming a cause taking in the solvent when the water having absorbed the solvent is frozen by a freezer 21 is suppressed. Therefore, clean ice is obtained because air bubbles (the solvent is take in air bubbles) are not contained in ice frozen by the freezer 21. Separation efficiency can be enhanced by separating unfrozen concentrated water and ice. Further, the concentration of the solvent in the concentrated water separated from ice becomes high and concentrated water containing the solvent in a high concentration can be also used as a washing agent, fuel and a coating solution applied to a planographic printing plate. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶剤を含まない氷
と溶剤を含有する濃縮水とに分離する凍結濃縮分離方法
及び凍結濃縮分離装置に関する。
TECHNICAL FIELD The present invention relates to a freeze concentration separation method and a freeze concentration separation apparatus for separating ice containing no solvent and concentrated water containing a solvent.

【0002】[0002]

【従来の技術】図5に示すように、プラント等より大気
へ排出されるVOCガスGを吸収処理する散水型気液接
触装置158で使用される水は、処理塔160、16
2、164内において、ガスと接触することで溶剤濃度
が徐々に上昇してくる。この溶剤を吸収した水(以下
「溶液」という)がそのまま処理槽166、168、1
70へ還流されると、処理槽全体の水中の溶剤濃度が上
昇し、この溶液を処理塔へ供給しても、連続的に良好な
状態で溶剤を吸収できない(溶剤の捕集効率が低下す
る)。
2. Description of the Related Art As shown in FIG. 5, the water used in a sprinkler type gas-liquid contactor 158 for absorbing VOC gas G discharged from a plant or the like into the atmosphere is treated in treatment towers 160, 16.
In 2, 164, the solvent concentration gradually increases due to contact with the gas. The water that has absorbed this solvent (hereinafter referred to as “solution”) is used as it is in the processing tanks 166, 168, 1
When it is refluxed to 70, the solvent concentration in the water in the entire treatment tank increases, and even if this solution is supplied to the treatment tower, the solvent cannot be continuously absorbed in a good state (solvent collection efficiency decreases. ).

【0003】このため、溶剤吸収効率を維持するために
は、新鮮水Wを導水管172から処理槽170へ連続的
に給水する必要があり、補給水量の削減を図ることがで
きない。
Therefore, in order to maintain the solvent absorption efficiency, it is necessary to continuously supply fresh water W from the water conduit 172 to the treatment tank 170, and it is not possible to reduce the amount of makeup water.

【0004】また、散水型気液接触装置158の処理槽
166の排水管174から最終的に排出される水W1が
含有する溶剤の濃度を如何に高濃度とし、蒸留して再利
用するかがランニングコストを削減する上で大きなポイ
ントとなる。
In addition, how high the concentration of the solvent contained in the water W1 finally discharged from the drain pipe 174 of the treatment tank 166 of the sprinkler type gas-liquid contactor 158 and how to distill it and reuse it is determined. This is a major point in reducing running costs.

【0005】そこで、本出願人は、凍結濃縮分離装置に
よって、溶液を氷と溶剤含有水する濃縮水とに分離する
気液接触装置を提案している(特願2000−0747
83号参照)。
Therefore, the present applicant has proposed a gas-liquid contactor for separating a solution into ice and concentrated water containing solvent-containing water by a freeze concentration / separation device (Japanese Patent Application No. 2000-0747).
No. 83).

【0006】この気液接触装置を使用することで、補給
水量を削減でき、溶剤吸収効率を維持すると共に、最終
的に排出される濃縮水の溶剤濃度を高濃度とすることが
できる。しかし、凍結濃縮分離時に、氷に溶剤が含有し
ないようにするためには、もう少し工夫する必要があ
る。
By using this gas-liquid contactor, the amount of make-up water can be reduced, the efficiency of solvent absorption can be maintained, and the concentration of the concentrated water finally discharged can be increased. However, in order to prevent the solvent from being contained in ice during freeze-concentration separation, some more work needs to be done.

【0007】すなわち、溶液が高濃度である場合、冷却
力を強めて氷結晶(氷粒)を短時間で形成・成長させる
と、溶剤と取り込んだ氷ができるため、冷却力を弱めて
長時間をかけて氷粒を形成・成長させる必要がある。し
かし、氷結に時間を掛けると、溶剤の濃縮分離効率が低
下するため、短時間で純水に近い氷を生成する技術が求
められている。
That is, when the solution has a high concentration, if the cooling power is strengthened to form and grow ice crystals (ice particles) in a short time, ice taken in with the solvent is formed, so the cooling power is weakened for a long time. It is necessary to form and grow ice particles over time. However, if the freezing takes a long time, the concentration and separation efficiency of the solvent decreases, so that there is a demand for a technique for producing ice close to pure water in a short time.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記事実を考
慮して、溶剤が可能な限り含まれない氷を効率よく得る
ことを課題とする。
In consideration of the above facts, the present invention has an object to efficiently obtain ice containing as little solvent as possible.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、溶剤を吸収した水を凍結し、溶剤を含まない氷と溶
剤を含有する濃縮水とに分離する凍結濃縮分離方法にお
いて、前記溶剤を吸収した水を脱気処理する工程と、脱
気された溶剤を吸収した水を凍結装置で凍結し氷を製氷
する工程と、前記氷と溶剤を含有する濃縮水とに分離す
る工程と、を有することを特徴としている。
According to the first aspect of the present invention, there is provided a freeze-concentration separation method in which water having absorbed a solvent is frozen and separated into ice containing no solvent and concentrated water containing the solvent. A step of degassing the water that has absorbed the solvent, a step of freezing the water that has absorbed the degassed solvent with a freezing device to make ice, and a step of separating the ice and concentrated water containing the solvent. Is characterized by having.

【0010】上記構成では、脱気装置が、溶剤を吸収し
た水の溶存空気を除去し、凍結装置で溶剤を吸収した水
を凍結するときに溶剤を取り込む要因となる気泡の発生
を抑制する。このように、溶存空気が除去された溶剤を
吸収した水は凍結装置で凍結され、凝固点の違いから溶
剤は凍結せず、水は凍結して、氷と濃縮水となる。この
氷には気泡(気泡が溶剤を取り込んでいる)が取り込ま
れていないので綺麗な氷となっている。そして、未凍結
の濃縮水と氷と分離することで、分離効率を高めること
ができる。
In the above structure, the deaerator removes the dissolved air of the water that has absorbed the solvent, and suppresses the generation of bubbles that cause the solvent to be taken in when the water that has absorbed the solvent is frozen by the freezer. In this way, the water that has absorbed the solvent from which the dissolved air has been removed is frozen by the freezing device, the solvent does not freeze due to the difference in freezing point, and the water freezes to become ice and concentrated water. This ice is clean because no air bubbles (the air bubbles take in the solvent) are taken in. Then, the separation efficiency can be improved by separating the unfrozen concentrated water and the ice.

【0011】このため、氷は純水に近いものとなり、溶
剤を余り含まない綺麗な氷を融解し水として再利用する
ことができ、例えば、この融解水を排ガス回収装置の処
理槽へ補給した場合、新鮮水の補給水量を削減すること
ができる。
For this reason, the ice becomes close to pure water, and clean ice that does not contain much solvent can be melted and reused as water. For example, this melted water was supplied to the treatment tank of the exhaust gas recovery apparatus. In this case, the amount of fresh water supplied can be reduced.

【0012】また、氷と分離された濃縮水の溶剤の濃度
は高くなっており、この高濃度の溶剤を含有する濃縮水
を洗浄剤、燃料、平版印刷版に塗布する塗布液として使
用することも可能となる。
Further, the concentration of the concentrated water solvent separated from the ice is high, and the concentrated water containing this high concentration solvent should be used as a cleaning agent, a fuel, and a coating liquid for coating lithographic printing plates. Will also be possible.

【0013】請求項2に記載の発明は、溶剤を吸収した
水を凍結し、溶剤を含まない氷と溶剤を含有する濃縮水
とに分離する凍結濃縮分離装置において、前記溶剤を吸
収した水を脱気処理する脱気装置と、前記脱気された溶
剤を吸収した水を凍結する凍結装置と、前記氷と溶剤を
含有する濃縮水とに分離する分離手段と、を有すること
を特徴としている。
According to a second aspect of the present invention, in a freeze-concentration separation apparatus that freezes water that has absorbed a solvent and separates it into solvent-free ice and concentrated water that contains the solvent, A degassing device for degassing, a freezing device for freezing the water that has absorbed the degassed solvent, and a separation means for separating the ice and concentrated water containing the solvent, .

【0014】上記構成の発明では、脱気装置で、溶剤を
吸収した水の溶存空気を除去し、凍結装置で溶剤を吸収
した水を凍結するときに溶剤を取り込む要因となる気泡
の発生を抑制する。従って、製氷される氷には殆ど気泡
が取り込まれないため、綺麗な氷となる。この氷と未凍
結の濃縮水を分離手段で分離して、それぞれの用途に利
用する。
In the invention of the above structure, the deaerator removes the dissolved air of the water that has absorbed the solvent, and suppresses the generation of bubbles that cause the solvent to be taken in when the water that has absorbed the solvent is frozen by the freezer. To do. Therefore, almost no bubbles are taken into the ice made, and the ice becomes clean. The ice and unfrozen concentrated water are separated by a separating means and used for each purpose.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1及び図2に示すように、本形態に係る
凍結濃縮分離装置22は、排ガスを回収する気液接触装
置10に処理ラインに組み込まれている。
As shown in FIGS. 1 and 2, the freeze concentration / separation device 22 according to the present embodiment is incorporated in a gas / liquid contact device 10 for collecting exhaust gas in a processing line.

【0017】気液接触装置10の処理槽14には、補給
管24が接続されている。この補給管24には、ポンプ
20が設けられており、ポンプ20を作動させること
で、貯留タンク52から処理水として新鮮な水及び後述
するリサクル水が補給される。また、処理槽14の側壁
に接続された給水管26には送液ポンプ28が設けられ
ており処理塔12の頂部へ水が揚水される。処理塔12
の頂部へ揚水された水は散水装置32によって、下方へ
向けて散水される。
A replenishment pipe 24 is connected to the processing tank 14 of the gas-liquid contactor 10. The supply pipe 24 is provided with the pump 20, and by operating the pump 20, fresh water and recycle water described later are supplied from the storage tank 52 as treated water. Further, the water supply pipe 26 connected to the side wall of the treatment tank 14 is provided with a liquid feed pump 28, and water is pumped to the top of the treatment tower 12. Processing tower 12
The water that has been pumped to the top of the is sprinkled downward by the sprinkler 32.

【0018】一方の処理塔12の外周壁には、プラント
Pから排出された揮発性有機化合物(VOC)ガスが取
り込まれるガス管34が接続されており、連続して処理
塔12内へVOCガスが送られてくる。
A gas pipe 34 for taking in the volatile organic compound (VOC) gas discharged from the plant P is connected to the outer peripheral wall of one of the processing towers 12, and the VOC gas is continuously introduced into the processing tower 12. Will be sent.

【0019】このガス管34から処理塔12へ取り込ま
れたVOCガスは上昇しながら散水装置32で散水され
た水と接触してバッチ処理され、含有する溶剤の濃度が
低下される。そして、水と接触したVOCガスは、処理
塔12の頂部に接続された排気管40を通じて環境に影
響を与えないガスとして大気に放出される。
The VOC gas taken from the gas pipe 34 into the treatment tower 12 is brought into contact with the water sprinkled by the sprinkler 32 while being subjected to batch treatment, and the concentration of the contained solvent is lowered. Then, the VOC gas that has come into contact with water is released to the atmosphere as a gas that does not affect the environment through the exhaust pipe 40 connected to the top of the processing tower 12.

【0020】また、処理槽14には、排水管44が接続
されている。排水管44には、電磁弁78が設けられて
おり、この電磁弁78を操作することで、処理槽14の
水が中間タンク16へ排水される。
A drain pipe 44 is connected to the processing tank 14. The drain pipe 44 is provided with an electromagnetic valve 78, and by operating this electromagnetic valve 78, the water in the processing tank 14 is drained to the intermediate tank 16.

【0021】そして、処理槽14に補給管24から補給
される水量と処理槽14から排水される水量は、ほぼ同
じとされており、バッチ処理でVOCガスを止めること
なく、溶剤を回収できる構成となっている。
The amount of water replenished from the replenishment pipe 24 to the treatment tank 14 and the amount of water drained from the treatment tank 14 are substantially the same, and the solvent can be recovered in batch processing without stopping the VOC gas. Has become.

【0022】一方、処理槽14には、濃度センサ80が
設けられており、処理槽14の溶剤濃度を検出して、制
御部84へ信号を送る。制御部84は、電磁弁78及び
ポンプ20と接続されており、濃度センサ80の検出結
果に基づき、処理槽14内の水を入れ替えるようになっ
ている。
On the other hand, the processing tank 14 is provided with a concentration sensor 80, which detects the solvent concentration of the processing tank 14 and sends a signal to the control unit 84. The control unit 84 is connected to the solenoid valve 78 and the pump 20, and switches the water in the processing tank 14 based on the detection result of the concentration sensor 80.

【0023】ここで、濃度センサ80が検出した処理槽
14内の水の溶剤濃度が所定値以上になると、ポンプ2
0を作動させ、補給管24を通じて新鮮な水を処理槽1
4へ送ると共に、電磁弁78を開き排水管44から溶剤
濃度が高い水を排水して、処理槽14の中を新鮮水に置
き換える。
When the solvent concentration of the water in the processing tank 14 detected by the concentration sensor 80 exceeds a predetermined value, the pump 2
0 to activate fresh water through the supply pipe 24
4, the solenoid valve 78 is opened and the water having a high solvent concentration is drained from the drainage pipe 44 to replace the inside of the treatment tank 14 with fresh water.

【0024】以上のような操作を繰り返すことにより、
VOCガス中の溶剤を高効率で捕集することができ、ま
た、排水される水の溶剤濃度も高濃度となる。このた
め、次工程の回収効率が上がり、設備コスト及びランニ
ングコストが削減できる。
By repeating the above operation,
The solvent in the VOC gas can be collected with high efficiency, and the solvent concentration of the drained water also becomes high. For this reason, the recovery efficiency of the next process is improved, and the equipment cost and running cost can be reduced.

【0025】なお、気液接触方式としては、散水方式、
充填方式が知られているが、方式についてば特定されな
い。また、気液接触のユニットの数は、本形態のように
1つに特定されるものでなく、複数あってもよい。
As the gas-liquid contact method, a water spray method,
Filling schemes are known but not specified. Further, the number of gas-liquid contact units is not limited to one as in the present embodiment, and may be plural.

【0026】さらに、処理対象となる揮発性有機化合物
ガス濃度は、100ppm以上が好ましく、1000p
pm以上が顕著な効果が現れる。また、溶剤ガスの種類
として、水との溶解度パラメータの差が19(cal・
cm-31/2以内が好ましく、15(cal・cm-3
1/2以内がより好ましい(溶解度パラメータ:Hild
ebrandの溶解パラメータ)。
Further, the concentration of the volatile organic compound gas to be treated is preferably 100 ppm or more, and 1000 p
A remarkable effect appears when pm or more. Also, as the type of solvent gas, the difference in solubility parameter with water is 19 (cal.
cm -3 ) 1/2 or less is preferable, and 15 (cal · cm -3 ).
Less than 1/2 is more preferable (Solubility parameter: Hild
solubility parameter of ebrand).

【0027】さらに、揮発性有機化合物の溶剤は水溶性
であればよく、メチルエチルケトンに限定されず、メタ
ノール、エタノール、及びn−プロパノール等のアルコ
ール類、エチレングリコール等の多価アルコール類、ア
セトン、メチルアセトン、及びシクロヘキサン等のケト
ン類、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチ
ル、及び乳酸エチル等のエステル類でもよい。さらに、
混合溶剤ガスでも処理可能である。
Further, the solvent of the volatile organic compound is not limited to methyl ethyl ketone as long as it is water-soluble, and alcohols such as methanol, ethanol and n-propanol, polyhydric alcohols such as ethylene glycol, acetone and methyl are used. Ketones such as acetone and cyclohexane, and esters such as methyl formate, ethyl formate, methyl acetate, ethyl acetate, and ethyl lactate may be used. further,
It can also be treated with mixed solvent gas.

【0028】さらに、補給される水の温度は30℃以下
が好ましく、15℃以下がより好ましい。また、補給さ
れる水の溶剤濃度は2000ppm以下が好ましい。さ
らに、本例では、VOCガス中の溶剤を回収する処理水
として水を使用したが、汚泥水や微生物を含む活性汚泥
でも同様な効果を得ることができる。
The temperature of the replenished water is preferably 30 ° C. or lower, more preferably 15 ° C. or lower. The solvent concentration of the water to be replenished is preferably 2000 ppm or less. Further, in this example, water was used as the treated water for recovering the solvent in the VOC gas, but the same effect can be obtained with sludge water or activated sludge containing microorganisms.

【0029】次に、中間タンク16に貯留された1バッ
チ分の排水をどのようにリサイクル水とするかを説明す
る。
Next, how to use the wastewater for one batch stored in the intermediate tank 16 as recycled water will be described.

【0030】中間タンク16の溶剤を吸収した水(以下
「溶液」という)は送水ポンプ18を制御部84で駆動
することで、供給管38を通じて脱気装置96の底部へ
送水される。脱気装置96に送液された溶液は、脱気膜
25の表側に送られる。
The water that has absorbed the solvent in the intermediate tank 16 (hereinafter referred to as "solution") is supplied to the bottom of the deaerator 96 through the supply pipe 38 by driving the water supply pump 18 by the control unit 84. The solution sent to the degassing device 96 is sent to the front side of the degassing film 25.

【0031】脱気膜25は、テトラフルオロエチレン−
ヘキサフルオロプロピレン共重合体で製造されたシート
状或は袋状の薄膜(サイズ:8000×350mm)が
使用されているが、他の脱気膜としては、フッ素樹脂フ
ィルムが使用でき、四弗化エチレン−六弗化プロピレン
共重合体樹脂フィルム、四弗化エチレン−パーフルオロ
アルコキシエチレン共重合樹脂フィルム、四弗化エチレ
ン−エチレン共重合樹脂フィルムを用いることができ
る。フッ素樹脂フィルム膜厚として、100μm以下が
好ましく、50μm以下がより好ましい。
The degassing film 25 is made of tetrafluoroethylene-
A sheet-like or bag-like thin film (size: 8000 x 350 mm) made of hexafluoropropylene copolymer is used, but as another degassing film, a fluororesin film can be used. An ethylene-hexafluoropropylene copolymer resin film, a tetrafluoroethylene-perfluoroalkoxyethylene copolymer resin film, or a tetrafluoroethylene-ethylene copolymer resin film can be used. The thickness of the fluororesin film is preferably 100 μm or less, more preferably 50 μm or less.

【0032】脱気膜25の裏面側には、吸引管94が接
続されている。この吸引管94を通じて真空ポンプ98
により脱気膜25の裏面側が吸引され、圧力が30×
1.33322×102Paまで落とされる。そして、
この脱気膜25により、溶存酸素の残存率が下がった溶
液は、送水管100を通り、凍結装置21へ送られる。
A suction pipe 94 is connected to the back side of the degassing film 25. Vacuum pump 98 through the suction pipe 94
The back side of the degassing film 25 is sucked by the pressure of 30 ×
It is dropped to 1.33322 × 10 2 Pa. And
The solution in which the residual rate of dissolved oxygen is reduced by the degassing film 25 is sent to the freezing device 21 through the water supply pipe 100.

【0033】なお、脱気装置96の圧力に関しては、2
00×1.33322×102Pa以下が好ましく、3
0×1.33322×102Pa以下がより好ましい。
Regarding the pressure of the deaerator 96, 2
00 × 1.33322 × 10 2 Pa or less is preferable and 3
It is more preferably 0 × 1.33322 × 10 2 Pa or less.

【0034】また、脱気装置96を構成するハウジング
の材質、形状は特に限定されず、さらに、脱気膜も非多
孔質であるか多孔質であるかは関係なく、形態もシート
状でも、袋状でもよく、中空糸の中の圧力を下げてその
周りへ溶液を通すようにしてもよい。
Further, the material and shape of the housing constituting the deaerator 96 are not particularly limited, and further, regardless of whether the deaerator is non-porous or porous, it may be in the form or sheet, The bag may be in the form of a bag, or the pressure in the hollow fiber may be lowered to pass the solution around it.

【0035】また、脱気方法は特に限定しないが、本実
施例では、溶剤が揮発する可能性を回避するために、膜
脱気法を使用した。
Although the degassing method is not particularly limited, in this example, the membrane degassing method was used in order to avoid the possibility of the solvent volatilizing.

【0036】一方、凍結装置21は、環状につながった
管状の冷却管36を備えている。この冷却管36には、
送水管100を通じて脱気された溶液が給水される。そ
して、冷却管36内の水は、制御部84で駆動力が制御
された循環ポンプ42によって、設定された流速(例え
ば、1.0m/sec)で冷却面36A(図3参照)に
沿って循環する。
On the other hand, the freezing device 21 is provided with a tubular cooling pipe 36 connected in an annular shape. In this cooling pipe 36,
The degassed solution is supplied through the water supply pipe 100. Then, the water in the cooling pipe 36 flows along the cooling surface 36A (see FIG. 3) at a set flow velocity (for example, 1.0 m / sec) by the circulation pump 42 whose driving force is controlled by the controller 84. Circulate.

【0037】冷却管36の鉛直部は、冷媒が循環する冷
却コイル46によって冷却され、図3(A)及び図3
(B)に示すように、冷却面36Aに氷板Cが形成され
る。また、冷却管36の下方には、開閉扉48が設けら
れており、下方から氷板Cを取り出せるようになってい
る。なお、冷却管36内の未凍結の濃縮水は、電磁弁5
1を開くと、排水管50を通じて蒸留器64へ送られ
る。
The vertical portion of the cooling pipe 36 is cooled by the cooling coil 46 in which the refrigerant circulates, and the cooling coil 46 shown in FIGS.
As shown in (B), the ice plate C is formed on the cooling surface 36A. An opening / closing door 48 is provided below the cooling pipe 36 so that the ice plate C can be taken out from below. In addition, the unfrozen concentrated water in the cooling pipe 36 is
When 1 is opened, it is sent to the distiller 64 through the drain pipe 50.

【0038】一方、凍結装置21から取り出された氷板
Cは、投入管54を通じて蓄氷タンク56へ一旦蓄氷さ
れ、冷水(或は氷粒の混じった水)としてポンプ58で
冷水管62を通じて熱交換器60へ送られる。このよう
に、氷を蓄氷して冷水として供給することで、熱交換器
60へ安定した冷媒の供給が可能となる。この熱交換器
60は、冷水の冷熱を利用するもので、工場内の空調等
に使用されている。
On the other hand, the ice plate C taken out from the freezing device 21 is temporarily stored in the ice storage tank 56 through the input pipe 54, and is supplied as cold water (or water containing ice particles) by the pump 58 through the cold water pipe 62. It is sent to the heat exchanger 60. As described above, by storing ice and supplying it as cold water, it is possible to stably supply the refrigerant to the heat exchanger 60. The heat exchanger 60 uses cold heat of cold water and is used for air conditioning in a factory.

【0039】さらに、熱交換器60で熱交換された冷水
(溶剤を殆ど含有しない水)は、リサイクル水として貯
留タンク52へ送られ、処理槽14へ再び送水される。
Further, the cold water (water containing almost no solvent) that has undergone heat exchange in the heat exchanger 60 is sent to the storage tank 52 as recycled water, and is again sent to the processing tank 14.

【0040】一方、凍結装置21から排出された高濃度
の溶剤を含有する濃縮水は、蒸留器64へ送られる。蒸
留器64は、溶剤と水との沸点の差を利用して気化によ
って溶剤と水を分離するもので、蒸留塔66へ高濃度の
溶剤を含有する水が供給口68から投入される。蒸留塔
66内では、蒸気と液とが接触し、低沸成分の溶剤が蒸
気の方に集まり、高沸成分の水が液の方に多く集まる。
On the other hand, the concentrated water containing the high-concentration solvent discharged from the freezing device 21 is sent to the distiller 64. The distiller 64 separates the solvent and water by vaporization by utilizing the difference in boiling points between the solvent and water, and water containing a high-concentration solvent is introduced into the distillation column 66 from the supply port 68. In the distillation column 66, the vapor and the liquid come into contact with each other, the solvent having a low boiling point component is collected in the vapor, and the water having a high boiling point component is concentrated in the liquid.

【0041】これにより、溶剤が蒸発蒸気として排気管
70を通じて凝縮器72へ送られ、凝縮器72で凝縮さ
れることにより、高濃度の溶剤を含む溶液として回収タ
ンク74へ回収される。また、溶剤と分離された水は、
排水口76から排水され、送水ポンプ86を備えた送水
管82を通じて、貯留タンク52へ送られる。
As a result, the solvent is sent as vaporized vapor to the condenser 72 through the exhaust pipe 70, and is condensed in the condenser 72 to be recovered in the recovery tank 74 as a solution containing a high-concentration solvent. Also, the water separated from the solvent is
It is drained from the drainage port 76 and sent to the storage tank 52 through the water supply pipe 82 equipped with the water supply pump 86.

【0042】ここで、凍結装置21で溶剤を含む水を凍
結分離して、溶剤を殆ど含まない氷と高濃度の溶剤を含
む水に分離する手順を説明する。
Here, a procedure for freezing and separating water containing a solvent by the freezing device 21 into ice containing almost no solvent and water containing a high concentration of solvent will be described.

【0043】先ず、送水ポンプ18によって、中間タン
ク16から溶液が脱気装置96へ送られ、溶液中の溶存
空気が除去される。これにより、凍結装置21で溶液を
製氷するときに溶剤を取り込む要因となる気泡の発生が
抑制される。脱気された溶液は、冷却管36へ給水さ
れ、図3(A)及び図3(B)に示すように、所定の流
速(1.0m/sec)を与えることで、冷却面36a
の表面に溶剤含有量が低減された氷板Cが製氷される。
このように、溶剤を含有する水に流速を与えることによ
り、溶剤の含有量が少ない氷板Cを製氷することができ
る。また、溶存空気が除去された溶液は気泡を取り込ま
ない綺麗な氷となる。
First, the solution is sent from the intermediate tank 16 to the deaerator 96 by the water feed pump 18, and the dissolved air in the solution is removed. This suppresses the generation of bubbles that become a factor for taking in the solvent when the freezing device 21 makes the solution ice. The degassed solution is supplied to the cooling pipe 36, and a predetermined flow velocity (1.0 m / sec) is applied to the cooling surface 36a as shown in FIGS. 3 (A) and 3 (B).
An ice plate C having a reduced solvent content is made on the surface of the ice plate.
In this way, by applying a flow rate to the water containing the solvent, the ice plate C having a small content of the solvent can be produced. In addition, the solution from which dissolved air has been removed becomes clean ice that does not entrap air bubbles.

【0044】次に、本発明の効果を実証するために、図
4に示す表のように、異なる条件で製氷テストを行って
見た。なお、本発明はこの実験の数値に限定されるもの
ではなく、本発明の趣旨を逸脱しない限り本発明に包含
される。
Next, in order to demonstrate the effect of the present invention, an ice making test was conducted under different conditions as shown in the table of FIG. The present invention is not limited to the numerical values of this experiment and is included in the present invention as long as it does not depart from the gist of the present invention.

【0045】プラントPから排出されたメタノールを含
有する排ガスから、気液接触装置としてスクラバーにて
メタノールを回収した。
From the exhaust gas containing methanol discharged from the plant P, methanol was recovered by a scrubber as a gas-liquid contactor.

【0046】メタノールを含有する排ガスを1.0Nm
3/minの割合で処理搭12に導入した。排ガス中の
メタノールの含有量は3000ppmであった。処理槽
14から汲み上げた水を処理塔12の散水装置32から
散水し、排ガスを導入してバッチ処理したところ、処理
槽14から排出された水中のメタノール濃度は1000
0ppmとなった。
Exhaust gas containing methanol is 1.0 Nm
It was introduced into the processing tower 12 at a rate of 3 / min. The content of methanol in the exhaust gas was 3000 ppm. When water drawn up from the treatment tank 14 was sprinkled from the sprinkler 32 of the treatment tower 12 and exhaust gas was introduced to perform batch treatment, the concentration of methanol in the water discharged from the treatment tank 14 was 1000.
It became 0 ppm.

【0047】この溶剤としてのメタノール濃度1000
0ppmの溶液を凍結濃縮分離装置22の中間タンク1
6へ貯溜し、80kgの溶液を凍結濃縮分離処理した。
Concentration of methanol as this solvent 1000
Intermediate tank 1 of freeze concentration and separation device 22
The solution was stored in No. 6 and 80 kg of the solution was freeze-concentrated and separated.

【0048】実験では、凍結装置で60kgの氷を製
氷した。製氷量60kgとは、凍結装置から取り出した
氷量をいう。凍結装置へ送る前の溶液を脱気処理しない
実験では(溶液の溶存空気の残存率は100%)、製
氷された氷の溶剤含有濃度は3500ppmであり、氷
を取り除いた後の濃縮水の溶剤濃度は29500ppm
であった。
In the experiment, 60 kg of ice was made with a freezing device. The 60 kg of ice making means the amount of ice taken out from the freezing device. In the experiment in which the solution was not degassed before being sent to the freezing device (the residual ratio of the dissolved air in the solution was 100%), the concentration of the solvent in the ice made was 3500 ppm, and the solvent of the concentrated water after removing the ice The concentration is 29500ppm
Met.

【0049】実験では、溶存空気の残存率が80%の
溶液を凍結装置で60kgの氷に製氷した。製氷された
氷の溶剤含有濃度は2000ppmであり、氷を取り除
いた後の濃縮水の溶剤濃度は34000ppmであっ
た。
In the experiment, a solution having a residual ratio of dissolved air of 80% was made into 60 kg of ice with a freezing device. The solvent content concentration of the ice making was 2000 ppm, and the solvent concentration of the concentrated water after removing the ice was 34000 ppm.

【0050】実験では、溶存空気の残存率が50%の
溶液を凍結装置で60kgの氷に製氷した。製氷された
氷の溶剤含有濃度は1000ppmであり、氷を取り除
いた後の濃縮水の溶剤濃度は37000ppmであっ
た。
In the experiment, a solution having a residual ratio of dissolved air of 50% was made into 60 kg of ice with a freezing device. The solvent-containing concentration of the ice-made ice was 1000 ppm, and the solvent concentration of the concentrated water after removing the ice was 37000 ppm.

【0051】実験では、溶存空気の残存率が30%の
溶液を凍結装置で60kgの氷に製氷した。製氷された
氷の溶剤含有濃度は800ppmであり、氷を取り除い
た後の濃縮水の溶剤濃度は37600ppmであった。
In the experiment, a solution having a residual ratio of dissolved air of 30% was made into 60 kg of ice with a freezing device. The solvent content concentration of ice-making was 800 ppm, and the solvent concentration of the concentrated water after removing the ice was 37600 ppm.

【0052】このように、実験と実験〜を比較す
れば判るように、凍結する溶液の溶存空気残存率を下げ
ることで、溶剤を取り込まない綺麗な氷を生成でき、濃
縮水の濃縮度も高まる。
Thus, as can be seen by comparing experiments with each other, by reducing the residual ratio of dissolved air in the solution to be frozen, it is possible to produce clean ice without taking in the solvent and to enhance the concentration of concentrated water. .

【0053】また、凍結濃縮分離装置22で濃縮した濃
縮水をそのまま洗浄液や重油等の代替燃料として再利用
してもよい。また、この濃縮水を蒸留器64へ送る場
合、水中に含まれる溶剤成分濃度として、1%以上が好
ましく、10%以上がより好ましい。
Further, the concentrated water concentrated by the freeze concentration / separation device 22 may be reused as it is as an alternative fuel such as a cleaning liquid or heavy oil. When the concentrated water is sent to the distiller 64, the concentration of the solvent component contained in the water is preferably 1% or more, more preferably 10% or more.

【0054】さらに、熱交換された冷水は、活性汚泥等
を用いた廃水処理設備で分解処理してもよく、含有する
溶剤成分の濃度によっては(COD値、BOD値が許容
値内であれば)、そのまま放流しても構わない。
Further, the heat-exchanged cold water may be decomposed in a wastewater treatment facility using activated sludge or the like, and depending on the concentration of the solvent component contained (if the COD value and the BOD value are within the allowable values). ), It may be discharged as it is.

【0055】また、水スクラバーは、スプレー式、充填
式等、その方式は限定されず、水にガスを吸収させる方
式はスクラバーでなくてもよい。さらに、凍結装置21
で濃縮された溶剤を含有する水を溶剤と水に分離する手
段として、蒸留器64を使用したが、膜分離装置、遠心
分離装置等を用いても良い。
The method of the water scrubber is not limited to the spray type, the filling type and the like, and the method of absorbing gas in water need not be the scrubber. Furthermore, the freezing device 21
Although the distiller 64 was used as a means for separating the water containing the solvent concentrated in 1. into the solvent and the water, a membrane separator, a centrifugal separator, or the like may be used.

【0056】ここで、VOCガスを発生する製造工程の
1つであるPS版の製造工程を簡単に説明しておく。
Here, the PS plate manufacturing process, which is one of the manufacturing processes for generating the VOC gas, will be briefly described.

【0057】PS版は、99.5重量%アルミニウム
に、銅を0.01重量%、チタンを0.03重量%、鉄
を0.3重量%、ケイ素を0.1重量%含有するJIS
―A1050アルミニウム材の厚み0.30mm圧延板
を、400メッシュのパミストン(共立窯業製)の20
重量%水性懸濁液と、回転ナイロンブラシ(6,10−
ナイロン)とを用いてその表面を砂目立てした後、よく
水で洗浄した。
The PS plate is a JIS plate containing aluminum of 99.5% by weight, 0.01% by weight of copper, 0.03% by weight of titanium, 0.3% by weight of iron and 0.1% by weight of silicon.
-A1050 aluminum material with a thickness of 0.30 mm and rolled with 400 mesh pumice stone (manufactured by Kyoritsu Kiln)
Wt% aqueous suspension and rotating nylon brush (6,10-
Nylon) and the surface thereof was grained and then thoroughly washed with water.

【0058】これを15重量%水酸化ナトリウム水溶液
(アルミニウム4.5重量%含有)に浸漬してアルミニ
ウムの溶解量が5g/m2 になるようにエッチングした
後、流水で水洗した。さらに、1重量%硝酸で中和し、
次に0.7重量%硝酸水溶液(アルミニウム0.5重量
%含有)中で、陽極時電圧10.5ボルト、陰極時電圧
9.3ボルトの矩形波交番波形電圧(電流比r=0.9
0、特公昭58−5796号公報実施例に記載されてい
る電流波形)を用いて160クーロン/dm2の陽極時
電気量で電解粗面化処理を行った。水洗後、35℃の1
0重量%水酸化ナトリウム水溶液中に浸漬して、アルミ
ニウム溶解量が1g/m2 になるようにエッチングした
後、水洗した。次に、50℃30重量%の硫酸水溶液中
に浸漬し、デスマットした後、水洗した。
This was immersed in a 15% by weight sodium hydroxide aqueous solution (containing 4.5% by weight of aluminum) to perform etching so that the amount of aluminum dissolved was 5 g / m 2 , and then washed with running water. Furthermore, neutralize with 1 wt% nitric acid,
Next, in a 0.7% by weight nitric acid aqueous solution (containing 0.5% by weight of aluminum), a rectangular wave alternating waveform voltage (current ratio r = 0.9, voltage at anode: 10.5 V, voltage at cathode: 9.3 V).
0, the current waveform described in JP-B-58-5796) was used to perform electrolytic surface roughening treatment at an anode hour electricity of 160 coulomb / dm 2 . After washing with water, 1 at 35 ℃
It was immersed in a 0 wt% sodium hydroxide aqueous solution, etched so that the amount of aluminum dissolved was 1 g / m 2 , and then washed with water. Next, it was immersed in a 30% by weight sulfuric acid aqueous solution at 50 ° C., desmutted, and washed with water.

【0059】さらに、35℃の硫酸20重量%水溶液
(アルミニウム0.8重量%含有)中で直流電流を用い
て、多孔性陽極酸化皮膜形成処理を行った。すなわち電
流密度13A/dm2 で電解を行い、電解時間の調節に
より陽極酸化皮膜重量2.7g/m2 とした。ジアゾ樹
脂と結合剤を用いたネガ型感光性平版印刷版を作成する
為に、この支持体を水洗後、70℃のケイ酸ナトリウム
の3重量%水溶液に30秒間浸漬処理し、水洗乾燥し
た。
Further, a porous anodic oxide film forming treatment was carried out by using a direct current in a 20% by weight sulfuric acid aqueous solution (containing 0.8% by weight of aluminum) at 35 ° C. That is, electrolysis was performed at a current density of 13 A / dm 2 , and the anodic oxide film weight was set to 2.7 g / m 2 by adjusting the electrolysis time. In order to prepare a negative photosensitive lithographic printing plate using a diazo resin and a binder, this support was washed with water, immersed in a 3% by weight aqueous solution of sodium silicate at 70 ° C. for 30 seconds, washed with water and dried.

【0060】以上のようにして得られたアルミニウム支
持体は、マクベスRD920反射濃度計で測定した反射
濃度は0.30で、JIS B00601に規定する中
心線平均粗さRaは0.58μmであった。
[0060] The thus-obtained aluminum support, reflection density was measured with Macbeth RD920 reflection densitometer 0.30, the center line average roughness R a as defined in JIS B00601 is 0.58μm met It was

【0061】次に上記支持体にメチルメタクリレート/
エチルアクリレート/2−アクリルアミド−2−メチル
プロパンスルホン酸ナトリウム共重合体(平均分子量約
6万)(モル比50/30/20)の1.0重量%水溶
液をロールコーターにより乾燥後の塗布量が0.05g
/m2 になるように塗布した。
Next, methylmethacrylate /
The coating amount of a 1.0 wt% aqueous solution of ethyl acrylate / 2-acrylamido-2-methylpropanesulfonate copolymer (average molecular weight of about 60,000) (molar ratio 50/30/20) was dried by a roll coater. 0.05 g
It was applied so as to be / m 2 .

【0062】さらに、塗布液として下記感光液−1を、
本形態で用いたバーコーターを用いて塗布し、110℃
で45秒間乾燥させた。乾燥塗布量は2.0g/m2
あった。 感光液−1 ジアゾ樹脂−1 0.50g 結合剤−1 5.00g スチライトHS−2(大同工業(株)製) 0.10g ビクトリアピュアブルーBOH 0.15g トリクレジルホスフェート 0.50g ジピコリン酸 0.20g FC−430(3M社製界面活性剤) 0.05g 溶剤 1−メトキシ−2−プロパノール 25.00g 乳酸メチル 12.00g メタノール 30.00g メチルエチルケトン 30.00g 水 3.00g 上記のジアゾ樹脂―1は、次ぎのようにして得たもので
ある。まず、4−ジアゾジフェニルアミン硫酸塩(純度
99.5%)29.4gを25℃にて、96%硫酸70
mlに徐々に添加し、かつ20分間攪拌した。これに、
パラホルムアルデヒド(純度92%)3.26gを約1
0分かけて徐々に添加し、該混合物を30℃にて、4時
間攪拌し、縮合反応を進行させた。なお、上記ジアゾ化
合物とホルムアルデヒドとの縮合モル比は1:1であ
る。この反応生成物を攪拌しつつ氷水2リットル中に注
ぎ込み、塩化ナトリウム130gを溶解した冷濃厚水溶
液で処理した。この沈澱物を吸引濾過により回収し、部
分的に乾燥した固体を1リットルの水に溶解し、濾過
し、氷で冷却し、かつ、ヘキサフルオロリン酸カリ23
gを溶解した水溶液で処理した。最後に、この沈澱物を
濾過して回収し、かつ風乾して、ジアゾ樹脂−1gを得
た。
Further, the following photosensitive solution-1 was used as a coating solution.
Apply using the bar coater used in the present embodiment, 110 ℃
And dried for 45 seconds. The dry coating amount was 2.0 g / m 2 . Photosensitive solution-1 Diazo resin-1 0.50 g Binder-1 5.00 g Stilite HS-2 (manufactured by Daido Industry Co., Ltd.) 0.10 g Victoria Pure Blue BOH 0.15 g Tricresyl phosphate 0.50 g Dipicolinic acid 0 20 g FC-430 (surfactant manufactured by 3M Co.) 0.05 g Solvent 1-methoxy-2-propanol 25.00 g Methyl lactate 12.00 g Methanol 30.00 g Methyl ethyl ketone 30.00 g Water 3.00 g The above diazo resin-1 Is obtained as follows. First, 29.4 g of 4-diazodiphenylamine sulfate (purity 99.5%) was added to 96% sulfuric acid 70% at 25 ° C.
Slowly added to ml and stirred for 20 minutes. to this,
About 1 part of 3.26 g of paraformaldehyde (purity 92%)
The mixture was gradually added over 0 minutes, and the mixture was stirred at 30 ° C. for 4 hours to allow the condensation reaction to proceed. The condensation molar ratio between the diazo compound and formaldehyde is 1: 1. The reaction product was poured into 2 liters of ice water with stirring and treated with a cold concentrated aqueous solution in which 130 g of sodium chloride was dissolved. The precipitate is collected by suction filtration, the partially dried solid is dissolved in 1 liter of water, filtered, cooled with ice and washed with potassium hexafluorophosphate.
It was treated with an aqueous solution in which g was dissolved. Finally, the precipitate was collected by filtration and air dried to give 1 g of diazo resin-1.

【0063】結合剤−1は、2−ヒドロキシエチルメタ
クリレート/アクリロニトリル/メチルメタクリレート
/メタクリル酸共重合体(重量比50/20/26/
4、平均分子量75,000、酸含量0.4meq/
g)の水不溶性、アルカリ水可溶性の皮膜形成性高分子
である。
Binder-1 is a 2-hydroxyethyl methacrylate / acrylonitrile / methyl methacrylate / methacrylic acid copolymer (weight ratio 50/20/26 /
4, average molecular weight 75,000, acid content 0.4 meq /
g) Water-insoluble, alkaline water-soluble film-forming polymer.

【0064】スチライトHS−2(大同工業(株)製)
は、結合剤よりも感脂性の高い高分子化合物であって、
スチレン/マレイン酸モノ−4−メチル−2−ペンチル
エステル=50/50(モル比)の共重合体であり、平
均分子量は約100,000であった。このようにして
作成した感光層の表面に下記の様にしてマット層形成用
樹脂液を吹き付けてマット層を設けた。
Stilite HS-2 (manufactured by Daido Industry Co., Ltd.)
Is a polymer compound having a higher oil sensitivity than the binder,
It was a copolymer of styrene / maleic acid mono-4-methyl-2-pentyl ester = 50/50 (molar ratio) and had an average molecular weight of about 100,000. The matte layer was formed by spraying the matte layer forming resin liquid on the surface of the photosensitive layer thus prepared as described below.

【0065】マット層形成用樹脂液としてメチルメタク
リレート/エチルアクリレート/2−アクリルアミド−
2−メチルプロパンスルホン酸(仕込重量比65:2
0:15)共重合体の一部をナトリウム塩とした12%
水溶液を準備し、回転霧化静電塗装機で霧化頭回転数2
5,000rpm、樹脂液の送液量は4.0ml/分、
霧化頭への印加電圧は−90kV、塗布時の周囲温度は
25℃、相対湿度は50%とし、塗布液2.5秒で塗布
面に蒸気を吹き付けて湿潤させ、ついで湿潤した3秒後
に温度60℃、湿度10%の温風を5秒間吹き付けて乾
燥させた。マットの高さは平均約6μm、大きさは平均
約30μm、塗布量は150mg/m2 であった。
Methyl methacrylate / ethyl acrylate / 2-acrylamide-as a mat layer forming resin liquid
2-Methylpropanesulfonic acid (charge ratio 65: 2)
0:15) 12% with part of the copolymer as sodium salt
Prepare an aqueous solution, and rotate the atomizing head with a rotary atomizing electrostatic coating machine to a rotation speed of 2
5,000 rpm, the amount of resin liquid to be sent is 4.0 ml / min,
The applied voltage to the atomizing head was -90 kV, the ambient temperature during coating was 25 ° C, and the relative humidity was 50%. The coating solution was sprayed with steam for 2.5 seconds to wet it, and then 3 seconds after wetting. Warm air having a temperature of 60 ° C. and a humidity of 10% was blown for 5 seconds to dry. The height of the mat was about 6 μm on average, the size was about 30 μm on average, and the coating amount was 150 mg / m 2 .

【0066】[0066]

【発明の効果】本発明は上記構成としたので、溶剤が可
能な限り含まれない氷を効率よく得ることができる。
Since the present invention has the above-mentioned constitution, it is possible to efficiently obtain ice containing as little solvent as possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本形態に係る凍結濃縮分離装置が使用された気
液接触装置を示す斜視図である。
FIG. 1 is a perspective view showing a gas-liquid contact device in which a freeze concentration / separation device according to the present embodiment is used.

【図2】本形態に係る凍結濃縮分離装置が使用された気
液接触装置を示すブロック図である。
FIG. 2 is a block diagram showing a gas-liquid contactor in which the freeze concentration / separation device according to the present embodiment is used.

【図3】氷板が製氷される様子を表した模式図である。FIG. 3 is a schematic diagram showing how an ice plate is made into ice.

【図4】製氷実験結果を示す表である。FIG. 4 is a table showing results of ice making experiments.

【図5】従来の気液接触装置を示す側面図である。FIG. 5 is a side view showing a conventional gas-liquid contact device.

【符号の説明】[Explanation of symbols]

21 凍結装置 48 開閉扉(分離手段) 50 排水管(分離手段) 96 脱気装置 21 Freezing device 48 Open / close door (separation means) 50 Drain pipe (separation means) 96 deaerator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶剤を吸収した水を凍結し、溶剤を含ま
ない氷と溶剤を含有する濃縮水とに分離する凍結濃縮分
離方法において、 前記溶剤を吸収した水を脱気処理する工程と、脱気され
た溶剤を吸収した水を凍結装置で凍結し氷を製氷する工
程と、前記氷と溶剤を含有する濃縮水とに分離する工程
と、を有することを特徴とする凍結濃縮分離方法。
1. A freeze-concentration separation method in which water that has absorbed a solvent is frozen and separated into ice that does not contain a solvent and concentrated water that contains the solvent, a step of degassing the water that has absorbed the solvent, A freeze-concentration separation method comprising: a step of freezing the degassed solvent-absorbed water in a freezing device to make ice; and a step of separating the ice into concentrated water containing the solvent.
【請求項2】 溶剤を吸収した水を凍結し、溶剤を含ま
ない氷と溶剤を含有する濃縮水とに分離する凍結濃縮分
離装置において、 前記溶剤を吸収した水を脱気処理する脱気装置と、前記
脱気された溶剤を吸収した水を凍結する凍結装置と、前
記氷と溶剤を含有する濃縮水とに分離する分離手段と、
を有することを特徴とする凍結濃縮分離装置。
2. A freezing and concentrating separation apparatus for freezing solvent-absorbed water and separating it into solvent-free ice and solvent-containing concentrated water, wherein the solvent-absorbed water is deaerated. A freezing device that freezes the water that has absorbed the degassed solvent, and a separation means that separates the ice and concentrated water containing the solvent,
A freeze concentration / separation device comprising:
JP2001392498A 2001-12-25 2001-12-25 Freeze-concentration and separation method and apparatus Pending JP2003190940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392498A JP2003190940A (en) 2001-12-25 2001-12-25 Freeze-concentration and separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392498A JP2003190940A (en) 2001-12-25 2001-12-25 Freeze-concentration and separation method and apparatus

Publications (1)

Publication Number Publication Date
JP2003190940A true JP2003190940A (en) 2003-07-08

Family

ID=27599797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392498A Pending JP2003190940A (en) 2001-12-25 2001-12-25 Freeze-concentration and separation method and apparatus

Country Status (1)

Country Link
JP (1) JP2003190940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085946A (en) * 2014-07-08 2014-10-08 国家海洋局天津海水淡化与综合利用研究所 Freezing method based seawater desalinization and ice-water separation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085946A (en) * 2014-07-08 2014-10-08 国家海洋局天津海水淡化与综合利用研究所 Freezing method based seawater desalinization and ice-water separation device

Similar Documents

Publication Publication Date Title
JP2005508243A (en) Apparatus and method for thermal desalination based on pressure formation and evaporation of droplets
JP2001259356A (en) Method for recovering exhaust gas and device therefor
JP4264950B2 (en) Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same
JP2003190940A (en) Freeze-concentration and separation method and apparatus
JP2003190938A (en) Freeze-concentration and separation method and apparatus
JP4005317B2 (en) Gas-liquid contact device
JP2003024736A (en) Gas-liquid contact apparatus and freezing, concentration, and separation method
JP2002136828A (en) Gas-liquid contact device and gas-liquid contact method
JP2002253917A (en) Gas-liquid contacting device
JP2003145137A (en) Freeze concentration separation method and freeze concentration separation apparatus
JP2003190937A (en) Freeze-concentration and separation method and apparatus
JP2002336681A (en) Gas-liquid contact apparatus and freezing concentration separation method
JP2003190939A (en) Freeze-concentration and separation method and apparatus
JP2003245657A (en) Method and device for freezing, concentrating and separating
JP2002136827A (en) Gas-liquid contact device and gas-liquid contact method
JP2003019417A (en) Gas liquid contact apparatus and concentrating and separating method by freezing
JP2002191932A (en) Method and apparatus for gas-liquid contact
JP2002136829A (en) Gas-liquid contact device and gas-liquid contact method
CN210915714U (en) Landfill leachate treatment system based on MVR technology and RO device
JP4138473B2 (en) Method and apparatus for evaporating and concentrating foaming liquid
JP2006341181A (en) Fluoric acid waste liquid treating device and its method
JP2002126446A (en) Gas-liquid contact equipment and method
JP3071321B2 (en) Phosphoric acid fuel cell power generator
JP2002370060A (en) Deaeration system of coating liquid and deaeration method for coating liquid
JP3164487B2 (en) Waste liquid treatment device and condensed water utilization device generated by waste liquid treatment device