JP2003190715A - Water treatment method utilizing capillary phenomenon and apparatus therefor - Google Patents

Water treatment method utilizing capillary phenomenon and apparatus therefor

Info

Publication number
JP2003190715A
JP2003190715A JP2001392922A JP2001392922A JP2003190715A JP 2003190715 A JP2003190715 A JP 2003190715A JP 2001392922 A JP2001392922 A JP 2001392922A JP 2001392922 A JP2001392922 A JP 2001392922A JP 2003190715 A JP2003190715 A JP 2003190715A
Authority
JP
Japan
Prior art keywords
water
filtered
filtered water
filtering member
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001392922A
Other languages
Japanese (ja)
Other versions
JP3985945B2 (en
Inventor
Katsuo Nakayama
勝夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAYAMA KANKYO ENJI KK
Original Assignee
NAKAYAMA KANKYO ENJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAYAMA KANKYO ENJI KK filed Critical NAKAYAMA KANKYO ENJI KK
Priority to JP2001392922A priority Critical patent/JP3985945B2/en
Publication of JP2003190715A publication Critical patent/JP2003190715A/en
Application granted granted Critical
Publication of JP3985945B2 publication Critical patent/JP3985945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method hard to generate the clogging of a filter member and capable of easily washing the filter member to restore water treatment capacity. <P>SOLUTION: Water 11 to be filtered is stored in an aeration tank 82 and the filter member 40 constituted by gathering string-like fiber aggregates is dipped in the water to be filtered. The water to be filtered is filtered at a place where it enters the gaps between fibers from the whole surface dipped in water of the filter member and small groups of microorganisms incapable of entering the gaps between fibers adhere to the surfaces of fibers and the water to be filtered flows through the gaps between fibers naturally by a capillary phenomenon. Thereafter, the small groups of microorganisms adhering to the surfaces of fibers become large gradually as filtering advances to form microorganism colonies. Subsequently, the water to be filtered is filtered at a place where it enters the minute gaps in the microorganism colonies and naturally flows through the minute gaps by a capillary phenomenon to subsequently flow through the gaps between fibers by a capillary phenomenon. The filtered water 25 is discharged to the outside of the aeration tank from the filter member. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ひも状繊維集合体
からなるろ過部材を使用し、毛管現象を利用した水処理
方法およびその装置にかかり、たとえば、下水処理法の
うち代表的な活性汚泥法における曝気槽内部の高濃度微
生物群の水処理、および、湖水や河川水など原水を処理
して清浄な処理水を得る水処理の方法およびその装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method and an apparatus for the same, which uses a filter member composed of a string-shaped fiber aggregate and utilizes capillary action. TECHNICAL FIELD The present invention relates to a method and an apparatus for water treatment of high-concentration microorganisms inside an aeration tank in the method, and treatment of raw water such as lake water and river water to obtain clean treated water.

【0002】[0002]

【従来の技術】原水にはいろいろな種類があるが、この
原水に応じて各種の方法で水処理が行われる。本発明者
は、本発明の関連技術として、毛管現象を利用した水処
理方法およびその装置を提案している(特開平11−3
47313号公報)。この関連技術では、図11に示す
ように、被ろ過水貯留部1に被ろ過水(原水)2を貯留
している。そして、被ろ過水貯留部1の上縁部3を覆っ
ているろ過部材4の一端を被ろ過水2に浸し、他端を被
ろ過水貯留部1の外部に位置させている。これにより、
被ろ過水2は、被ろ過水貯留部1からろ過部材4を毛管
現象により通って上昇したのち重力により下降し、被ろ
過水貯留部1の外部に流れる間に処理されるようになっ
ている。
2. Description of the Related Art There are various types of raw water, and water treatment is performed by various methods according to the raw water. The inventor of the present invention has proposed a water treatment method and an apparatus thereof utilizing the capillarity as a technique related to the present invention (JP-A-11-3.
47313). In this related technique, as shown in FIG. 11, filtered water (raw water) 2 is stored in a filtered water storage part 1. Then, one end of the filtering member 4 covering the upper edge portion 3 of the filtered water storage part 1 is immersed in the filtered water 2, and the other end is positioned outside the filtered water storage part 1. This allows
The filtered water 2 passes through the filtering member 4 from the filtered water storage portion 1 by a capillary phenomenon and then rises, then falls by gravity, and is processed while flowing to the outside of the filtered water storage portion 1. .

【0003】[0003]

【発明が解決しようとする課題】この関連技術では、ろ
過部材4としてたとえば繊維織布が使用されている。こ
の繊維織布は、たて糸とよこ糸を交錯して織り込んだ布
状をなしている。原水に含まれる浮遊固形物は、繊維織
布に付着するが、付着量が増加すると繊維織布の目詰ま
りが生じて流量も次第に減少する。なお、この繊維織布
の代わりに布状のフィレドン不織布など不織布を使用す
る場合もあった。この繊維織布や不織布など布状のろ過
部材に目詰まりが生じると、付着している固形物を洗浄
により除去して水処理能力を回復する必要がある。しか
し、高圧洗浄を行なっても、ろ過部材の内部に付着した
固形物まで十分に除去するのは困難であった。
In this related art, for example, a fiber woven cloth is used as the filter member 4. This fiber woven fabric is in the form of a cloth in which warp yarns and weft yarns are interlaced and woven. The suspended solids contained in the raw water adhere to the fiber woven cloth, but if the adhered amount increases, the fiber woven cloth is clogged and the flow rate also gradually decreases. In some cases, a nonwoven fabric such as a cloth-like filedone nonwoven fabric is used instead of the fiber woven fabric. When the cloth-like filter member such as the fiber woven cloth or the non-woven cloth is clogged, it is necessary to remove the attached solid matter by washing to recover the water treatment capacity. However, even with high-pressure washing, it was difficult to sufficiently remove even the solid matter adhering to the inside of the filtration member.

【0004】繊維織布の場合には、被ろ過水の流れ方向
に交差する繊維があるので、この繊維が毛管現象による
水の上昇を妨げる。そのため、毛管現象が起こりにくく
なって、処理後のろ過水の流量は少なくなるので、あま
り経済性がなく実用的ではなかった。また、繊維織布の
たて糸とよこ糸の間の隙間の内方に浮遊固形物が付着す
ると、これを洗浄で除去するのは困難であった。しか
も、布状のろ過部材の場合は、時間が経過すると次第に
乾く傾向があるので、時々ろ過部材に水をかけて濡らす
必要があった。また、不織繊維の場合には、毛管現象の
他にサイホン現象も起こっていた。そのため、このサイ
ホン現象で被ろ過水がろ過部材の表面を流れると、浮遊
固形物がろ過部材の繊維に十分に付着せずに通り抜けて
しまう傾向がある。その結果、ろ過水の水質があまり良
好ではない場合もあった。
In the case of a fiber woven fabric, there are fibers that intersect in the flow direction of the water to be filtered, and these fibers prevent the rise of water due to capillary action. Therefore, the capillarity is less likely to occur, and the flow rate of the filtered water after the treatment is small, which is not economical and practical. Further, if floating solid matter adheres to the inside of the gap between the warp yarn and the weft yarn of the fiber woven fabric, it is difficult to remove it by washing. Moreover, in the case of a cloth-shaped filter member, it tends to dry gradually with the passage of time, so it was necessary to occasionally wet the filter member with water. In addition, in the case of non-woven fibers, a siphon phenomenon has occurred in addition to the capillary phenomenon. Therefore, when the water to be filtered flows on the surface of the filtration member due to this siphon phenomenon, the suspended solids tend to pass through without being sufficiently attached to the fibers of the filtration member. As a result, the quality of the filtered water may not be so good in some cases.

【0005】他の水処理方法としては、上水場におい
て、取水時に原水に薬品を注入した後、加圧浮上法また
は凝集沈殿法などで水処理を行う場合がある。しかし、
これらの水処理方法は、上水に含まれる薬品の安全性に
ついて注意を払う必要があり、ランニングコストも高か
った。なお、一般的に水処理方法では、原水のCOD
(化学的酸素要求量)を低減するのは非常に困難であ
る。そのため、従来は、高価な活性炭を使用してCOD
を除去する場合が多かったので、新たな技術の開発が求
められていた。また、活性汚泥法では、曝気槽における
活性汚泥の濃度としては、たとえば約5,000ppmない
し約10,000ppmが上限であり、それ以上の濃度で運
転することは困難であった。また、沈殿槽で活性汚泥が
浮いてしまわないように、設備の維持管理に細心の注意
を払う必要があった。
As another water treatment method, there is a case in which a water treatment is carried out by a pressure floating method or a coagulating sedimentation method after injecting a chemical into raw water at the time of water intake at a water supply site. But,
In these water treatment methods, it is necessary to pay attention to the safety of chemicals contained in clean water, and the running cost is high. Generally, in the water treatment method, COD of raw water
It is very difficult to reduce (chemical oxygen demand). Therefore, in the past, expensive activated carbon was used for COD.
Since there were many cases to remove, the development of new technology was required. Further, in the activated sludge method, the maximum concentration of activated sludge in the aeration tank is, for example, about 5,000 ppm to about 10,000 ppm, and it has been difficult to operate at a higher concentration. In addition, it was necessary to pay close attention to the maintenance of the equipment so that the activated sludge did not float in the settling tank.

【0006】本発明は、このような課題を解決するため
になされたもので、ひも状繊維集合体からなるろ過部材
が目詰まりを起こしにくく、また、前記ろ過部材を容易
に洗浄して水処理能力を回復させることができる、毛管
現象を利用した水処理方法およびその装置を提供するこ
とを目的とする。
The present invention has been made in order to solve the above problems, and the filter member made of a string-shaped fiber aggregate is less likely to be clogged, and the filter member is easily washed to treat water. An object of the present invention is to provide a water treatment method utilizing capillarity and an apparatus thereof capable of recovering the ability.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
め、本発明にかかる毛管現象を利用した水処理方法は、
被ろ過水貯留部に被ろ過水を貯留し、この被ろ過水貯留
部に設けられ細長い複数のひも状繊維集合体の集合によ
り構成されたろ過部材の一部またはほぼ全部を前記被ろ
過水に浸すことにより、この被ろ過水が前記ろ過部材の
水に浸った表面全体から繊維の間の隙間に入るところで
前記被ろ過水はろ過され、前記繊維間隙間に入れない微
生物の小集団は前記繊維の表面に付着し、前記被ろ過水
は前記繊維間隙間を毛管現象により自然に流れていき、
その後、前記繊維の表面に付着した前記微生物の小集団
は、ろ過が進むにつれて次第に大きくなって、内部に微
小な隙間を有してろ過機能を発揮する微生物コロニーを
形成し、その後は、前記被ろ過水の全部または一部は、
この微生物コロニーの内部の前記微小な隙間に入るとこ
ろでろ過された後、この微小な隙間を毛管現象により自
然に流れ、次いで前記繊維間隙間を毛管現象により自然
に流れていき、ろ過水は、前記ろ過部材から流出して前
記被ろ過水貯留部の外部に排出されるようにした。前記
方法を実施する上で好適な毛管現象を利用した水処理装
置は、被ろ過水が貯留される被ろ過水貯留部と、この被
ろ過水貯留部に設けられ、一部またはほぼ全部が前記被
ろ過水に浸され、細長い複数のひも状繊維集合体の集合
により構成されたろ過部材と、このろ過部材から流出す
るろ過水を排出させるためのろ過水排出手段と、前記ろ
過部材を洗浄するための洗浄手段とを備え、前記被ろ過
水は、前記ろ過部材の水に浸った表面全体から繊維の間
の隙間に入るところでろ過され、前記繊維間隙間に入れ
ない微生物の小集団は前記繊維の表面に付着し、前記被
ろ過水は前記繊維間隙間を毛管現象により自然に流れて
いき、その後、前記繊維の表面に付着した前記微生物の
小集団は、ろ過が進むにつれて次第に大きくなって、内
部に微小な隙間を有してろ過機能を発揮する微生物コロ
ニーを形成し、その後は、前記被ろ過水の全部または一
部は、この微生物コロニーの内部の前記微小な隙間に入
るところでろ過された後、この微小な隙間を毛管現象に
より自然に流れ、次いで前記繊維間隙間を毛管現象によ
り自然に流れていき、前記ろ過水は、前記ろ過部材から
流出して前記ろ過水排出手段により前記被ろ過水貯留部
の外部に排出されるようにした。
In order to achieve the above-mentioned object, a water treatment method utilizing capillary action according to the present invention is
The filtered water is stored in the filtered water storage portion, and a part or almost all of a filtering member provided in the filtered water storage portion and configured by a plurality of elongated string-like fiber aggregates is used as the filtered water. By soaking, the water to be filtered is filtered where the water to be filtered enters the gaps between the fibers from the entire surface of the filtering member that has been soaked in water, and the small population of microorganisms that cannot enter between the fiber gaps is the fibers. Attached to the surface of, the water to be filtered naturally flows through the interfiber gap by capillary action,
Thereafter, the small population of the microorganisms attached to the surface of the fiber gradually increases as the filtration progresses to form a microbial colony that has a minute gap inside and exhibits a filtering function, and thereafter All or part of the filtered water
After being filtered where it enters the minute gaps inside the microbial colony, it naturally flows through the minute gaps by capillary action, then naturally flows through the interfiber gaps by capillary action, and the filtered water is It was made to flow out from the filtering member and be discharged to the outside of the filtered water storage part. A water treatment device utilizing a capillary phenomenon suitable for carrying out the method is provided in the filtered water storage part in which the filtered water is stored, and the filtered water storage part, and part or almost all of the above is provided. A filtering member that is immersed in water to be filtered and is composed of an assembly of a plurality of long and narrow string-like fiber aggregates, a filtered water discharging unit for discharging filtered water flowing out from the filtering member, and the filtering member is washed. And a cleaning means for the said filtered water, wherein the water to be filtered is filtered from the entire surface immersed in water of the filtration member where it enters the gaps between the fibers, and a small population of microorganisms that do not enter between the fiber gaps are said fibers. Attached to the surface of, the water to be filtered naturally flows through the interfiber gap by capillarity, then the small population of the microorganisms attached to the surface of the fibers gradually increases as the filtration proceeds, A small gap inside To form a microbial colony exhibiting a filtration function, and thereafter, all or part of the water to be filtered is filtered at a place where it enters the minute gap inside the microbial colony, and The filtered water naturally flows through the gaps by the capillarity, and then naturally flows through the interfiber gaps by the capillarity, and the filtered water flows out of the filtering member and is discharged from the filtered water storage unit by the filtered water discharging means. To be discharged to.

【0008】前記ろ過部材は、そのほぼ全部が前記被ろ
過水に浸されており、前記ろ過水排出手段は、前記被ろ
過水貯留部の内部に設けられ前記被ろ過水との間を仕切
る仕切り壁を有するとともにこの仕切り壁で前記ろ過部
材を支持するろ過部材支持部と、このろ過部材支持部に
連通し、前記ろ過部材から流出する前記ろ過水を前記被
ろ過水貯留部の外部に流すための導水部と、前記ろ過水
の下流側水位が前記被ろ過水の水位より低くなるように
水位差を設定するための水位差設定手段とを備えている
のが好ましい。前記洗浄手段は、前記ろ過部材より下方
で空気を前記被ろ過水中に分散して供給可能なように前
記被ろ過水貯留部に設けられた空気供給装置と、前記ろ
過水排出手段の流路を介して前記ろ過部材に逆洗用の流
体を供給可能な構造とし、大きくなりすぎた前記微生物
コロニーを小さくするかまたは除去するための逆洗装置
とを備えているのが好ましい。また、前記逆洗装置は、
前記ろ過部材に逆洗用の空気または水を供給するのが好
ましい。好ましくは、前記水位差設定手段は、前記水位
差を約10cmないし約100cmの範囲で調整可能であ
る。
Almost all of the filtering member is immersed in the filtered water, and the filtered water discharging means is a partition provided inside the filtered water storing section for partitioning the filtered water. A filtering member support part having a wall and supporting the filtering member with this partition wall, and communicating with the filtering member support part, for flowing the filtered water flowing out from the filtering member to the outside of the filtered water storage part And a water level difference setting means for setting a water level difference so that the downstream side water level of the filtered water is lower than the water level of the filtered water. The cleaning means comprises an air supply device provided in the filtered water storage part so that air can be dispersed and supplied into the filtered water below the filtering member, and a flow path of the filtered water discharging means. It is preferable that the filtration member has a structure capable of supplying a backwashing fluid via the backwashing device and a backwashing device for reducing or removing the excessively large microbial colonies. In addition, the backwash device,
It is preferable to supply air or water for backwashing to the filter member. Preferably, the water level difference setting means is capable of adjusting the water level difference within a range of about 10 cm to about 100 cm.

【0009】[0009]

【発明の実施の形態】以下、本発明にかかる実施の形態
の一例を、図1ないし図10を参照して説明する。本発
明の水処理方法およびその装置は、下水処理法のうち代
表的な活性汚泥法における曝気槽内部の高濃度微生物群
の水処理に適用される。また、本発明の方法および装置
は、浮遊固形物の濃度(SS)が比較的低い原水(水処
理装置に供給された処理前の水)を処理して、清浄な処
理水(処理済みの水)を得るのにも使用される。たとえ
ば、河川や湖から取水した河川水や湖水(原水)を上水
場で処理して上水(飲料水)にする場合、井戸水(原
水)を処理して上水にする場合、プールの水(原水)を
処理して循環使用する場合、極細繊維を使用して精密処
理を行う場合、および、廃水処理設備の沈殿槽と砂ろ過
装置での処理に相当する処理を行う場合などがある。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment according to the present invention will be described below with reference to FIGS. INDUSTRIAL APPLICABILITY The water treatment method and its apparatus of the present invention are applied to the water treatment of highly concentrated microorganisms in the aeration tank in a typical activated sludge method among sewage treatment methods. Further, the method and apparatus of the present invention treats raw water having a relatively low concentration of suspended solids (SS) (water before treatment supplied to the water treatment apparatus) to obtain clean treated water (treated water). ) Is also used to get. For example, when treating river water or lake water (raw water) taken from a river or lake at a water supply plant to obtain clean water (drinking water), when treating well water (raw water) to clean water, or pool water There are cases in which (raw water) is treated and reused, precision treatment is performed using ultrafine fibers, and treatment equivalent to treatment in the settling tank and sand filter of wastewater treatment equipment is performed.

【0010】(第1の実施形態)ひも状繊維集合体から
なるろ過部材を使用して水処理を行う第1の実施形態に
ついて、図1ないし図3を参照して説明する。なお、以
下の各実施形態において、他の実施形態と同一または相
当部分には同一符号を付してその説明を省略する。図1
は毛管現象を説明するための図、図2は第1の実施形態
を示す図で、図2(A)は水処理装置の概略構成図、図
2(B)はろ過部材の平面図、図2(C)は、このろ過
部材を構成するひも状繊維集合体の拡大断面図である。
(First Embodiment) A first embodiment in which water treatment is carried out using a filter member made of a string-shaped fiber aggregate will be described with reference to FIGS. 1 to 3. In each of the following embodiments, the same or corresponding parts as those in the other embodiments are designated by the same reference numerals and the description thereof will be omitted. Figure 1
2 is a diagram for explaining the capillarity, FIG. 2 is a diagram showing the first embodiment, FIG. 2 (A) is a schematic configuration diagram of a water treatment device, and FIG. 2 (B) is a plan view of a filtering member. 2 (C) is an enlarged cross-sectional view of the string-shaped fiber assembly that constitutes this filtration member.

【0011】まず最初に、毛管現象について説明する。
水面に細い管を垂直に立てると、管の内部に水が上昇し
て、管の中の水面が管の外の水面より高い位置になる。
このような現象を毛管現象という。木や草花などが地中
から水分を吸い上げるのも、この毛管現象によるもので
ある。毛管現象により管の中を上昇した水の水面の高さ
は、水の分子間の凝集力と、水と管壁の間の付着力との
大小関係により定まる。図1に示すように、ひも状のろ
過部材10を構成する複数のひも状繊維集合体12は、
多数の繊維13からなっている。このひも状繊維集合体
12は、繊維13どうしが絡み合って、繊維13と繊維
13との間が細い隙間になっている。また、ひも状繊維
集合体12の繊維13と、他のひも状繊維集合体12の
繊維13との間も、細い隙間になっている。これらの隙
間が、あたかも微細な管と同じような擬似微細管14,
15を構成している。したがって、ろ過部材10を、被
ろ過水11にほぼ垂直に(または、傾斜させて)立てた
ときに毛管現象が生じる。
First, the capillary phenomenon will be described.
When a thin tube is erected vertically on the water surface, water rises inside the tube and the water level inside the tube is higher than the water level outside the tube.
Such a phenomenon is called a capillary phenomenon. It is this capillary phenomenon that causes trees and flowers to absorb water from the ground. The height of the water surface rising in the tube due to the capillarity is determined by the magnitude relationship between the cohesive force between water molecules and the adhesive force between the water and the tube wall. As shown in FIG. 1, the plurality of string-shaped fiber aggregates 12 constituting the string-shaped filter member 10 are
It consists of many fibers 13. In the string-shaped fiber assembly 12, the fibers 13 are entangled with each other, and a narrow gap is formed between the fibers 13. Further, a narrow gap is also formed between the fiber 13 of the string-shaped fiber assembly 12 and the fiber 13 of another string-shaped fiber assembly 12. These gaps are pseudo fine tubes 14, which are similar to fine tubes.
Make up 15. Therefore, when the filtering member 10 stands upright (or inclined) to the filtered water 11, a capillary phenomenon occurs.

【0012】被ろ過水11は、繊維13の面を濡らし、
この面に薄い膜となって拡がろうとするが、表面張力の
ため表面積を小さくしようとする。その結果、被ろ過水
11は、毛管現象により擬似微細管14,15内を上昇
することになる。これにより、擬似微細管14,15に
は、膜厚d,d1の水膜17,18が形成される。一つ
の擬似微細管14を例にとると、この擬似微細管14の
内部の水は、重力によって外部の水面16と同じ高さま
で引き下げられようとするから、表面張力と重力の釣り
合いによって、擬似微細管14内の水の高さhが定ま
る。擬似微細管14が直径dの円形状をなしているとす
れば、水膜17の液面の上昇した高さhは次式で表され
る。この式から、膜厚dが小さいほど、液面の上昇高さ
hは高くなることが分かる。 h=4Tcosθ÷(dρg) h :液面の上昇高さ d :膜厚 ρ :水の密度 g :重力の加速度 T :表面張力 θ :接触角
The filtered water 11 wets the surface of the fiber 13,
Although it tries to spread as a thin film on this surface, it tries to reduce the surface area due to surface tension. As a result, the filtered water 11 rises in the pseudo fine tubes 14 and 15 due to the capillary phenomenon. As a result, water films 17 and 18 having film thicknesses d and d1 are formed on the pseudo fine tubes 14 and 15. Taking one pseudo fine tube 14 as an example, the water inside the pseudo fine tube 14 tends to be pulled down to the same height as the external water surface 16 by gravity, so that the pseudo fine tube 14 is balanced by surface tension and gravity. The height h of the water in the pipe 14 is determined. Assuming that the pseudo fine tube 14 has a circular shape with a diameter d, the height h of the liquid surface of the water film 17 raised is expressed by the following equation. From this equation, it can be seen that the smaller the film thickness d, the higher the rising height h of the liquid surface. h = 4T cos θ / (dρg) h: height of rise of liquid surface d: film thickness ρ: density of water g: acceleration of gravity T: surface tension θ: contact angle

【0013】本発明者は、毛管現象の原因となる水の分
子間の凝集力に着目し、ひも状のろ過部材10を使用し
て原水のろ過を行うことができる水処理方法およびその
装置を実現した。図1および図2(A)において、水処
理装置20は、被ろ過水11が貯留される被ろ過水貯留
部21と、被ろ過水貯留部21に設けられ、一部が被ろ
過水11に浸されたひも状のろ過部材10と、ろ過部材
10から流出するろ過水(ろ過部材でろ過された後の
水)25を排出させるためのろ過水排出手段19と、ろ
過部材10を洗浄するための洗浄手段33とを備えてい
る。被ろ過水11がろ過部材10の水に浸った表面全体
から繊維13の間の隙間に入るところで被ろ過水11は
ろ過され、繊維13の間の隙間に入れない微生物の小集
団(フロック:微生物の集合体)は繊維13の表面に付
着し、被ろ過水11は繊維13の間の隙間を毛管現象に
より自然に流れていく。その後、繊維13の表面に付着
した前記微生物の小集団は、ろ過が進むにつれて次第に
大きくなって、内部に微小な隙間を有してろ過機能を発
揮する微生物コロニー(微生物の可視的な集塊)を形成
する。その後は、被ろ過水11の全部または一部は、ろ
過機能を有するこの微生物コロニーの内部の微小な隙間
に入るところでろ過された後、この微小な隙間を毛管現
象により自然に流れ、次いで、前記繊維間隙間を毛管現
象により自然に流れていく。ろ過水25は、ろ過部材1
0から流出して、ろ過水排出手段19により被ろ過水貯
留部21の外部に排出される。ろ過部材10は、細長い
複数のひも状繊維集合体12の集合により構成されてい
る。ろ過部材10は、被ろ過水貯留部21の上縁部22
をまたぐように覆って取付けられている。ろ過部材10
の一方(たとえば、一端23)が被ろ過水11に浸さ
れ、他方(たとえば、他端24)が被ろ過水貯留部21
の外部に位置している。
The present inventor has focused on the cohesive force between water molecules, which causes capillarity, and provides a water treatment method and apparatus capable of filtering raw water using a string-shaped filter member 10. It was realized. 1 and 2 (A), the water treatment device 20 is provided in the filtered water storage part 21 in which the filtered water 11 is stored and in the filtered water storage part 21, and a part of the water treatment device 20 is in the filtered water 11. In order to wash the filter member 10, a string-shaped filter member 10 soaked, a filtered water discharge means 19 for discharging the filtered water (water after being filtered by the filter member) 25 flowing out from the filter member 10. And cleaning means 33. The water 11 to be filtered is filtered where the water 11 to be filtered enters the gaps between the fibers 13 from the entire surface of the filtering member 10 that has been soaked in water, and a small group of microorganisms (flock: microorganisms) that cannot enter the gaps between the fibers 13 Aggregates) adheres to the surfaces of the fibers 13, and the filtered water 11 naturally flows through the gaps between the fibers 13 by a capillary phenomenon. After that, the small group of the microorganisms attached to the surface of the fiber 13 gradually increases as the filtration progresses, and has a minute gap inside to exhibit a filtering function. A microbial colony (visible aggregate of microorganisms). To form. After that, all or part of the water to be filtered 11 is filtered at a place where it enters a minute gap inside the microbial colony having a filtering function, and then naturally flows through the minute gap by a capillary phenomenon, and then, It flows naturally through the gaps between fibers due to the capillary phenomenon. The filtered water 25 is the filtering member 1
0, and is discharged to the outside of the filtered water storage part 21 by the filtered water discharging means 19. The filtering member 10 is composed of a set of a plurality of elongated fiber-shaped fiber assemblies 12. The filtering member 10 includes an upper edge portion 22 of the filtered water storage portion 21.
It is installed so as to cover the. Filtration member 10
One (for example, one end 23) is immersed in the filtered water 11, and the other (for example, the other end 24) is filtered water storage part 21.
Located outside of.

【0014】被ろ過水11は、被ろ過水貯留部21から
ろ過部材10を毛管現象により通って上昇(矢印B)し
たのち重力により下降し(矢印C)、被ろ過水貯留部2
1の外部に流れる。被ろ過水貯留部21内の被ろ過水1
1の水位Lbは、ポンプ36で被ろ過水11を供給する
ことにより、常時一定に維持されている。被ろ過水貯留
部21より下方には、ろ過水25を貯留するためのろ過
水貯留部26が配設されている。ろ過水貯留部26内の
ろ過水25の水位Lcは、被ろ過水11の水位Lbより
下方に位置している。ろ過水貯留部26は、ろ過部材1
0から流下するろ過水25を受けて貯留する。ろ過部材
10の他端24が、ろ過水貯留部26の水面より離れて
上方にある場合には(図2(A))、他端24は、被ろ
過水11の水位Lbより下方に位置している。この場合
の水位差Haは、ろ過水25の下流側水位La(すなわ
ち、ろ過部材10の他端24の高さ位置)から、被ろ過
水11の水位Lbまでの高さ寸法である。すなわち、水
位差Ha=水位Lb−下流側水位Laである。これとは
別に、ろ過部材10の他端24が、ろ過水貯留部26の
ろ過水25に浸されている場合がある(図示せず)。こ
の場合の水位差Haは、ろ過水25の下流側水位La
(すなわち、ろ過水25の水位Lc)から、被ろ過水1
1の水位Lbまでの高さ寸法である。
The filtered water 11 passes through the filtering member 10 from the filtered water storage portion 21 by a capillary action to rise (arrow B) and then descends due to gravity (arrow C), and the filtered water storage portion 2
It flows to the outside of 1. Filtered Water 1 in Filtered Water Reservoir 21
The water level Lb of 1 is always maintained constant by supplying the filtered water 11 with the pump 36. A filtered water storage portion 26 for storing filtered water 25 is disposed below the filtered water storage portion 21. The water level Lc of the filtered water 25 in the filtered water storage unit 26 is located below the water level Lb of the filtered water 11. The filtered water storage part 26 is the filtering member 1.
The filtered water 25 flowing down from 0 is received and stored. When the other end 24 of the filtering member 10 is located above and above the water surface of the filtered water storage portion 26 (FIG. 2A), the other end 24 is located below the water level Lb of the filtered water 11. ing. The water level difference Ha in this case is a height dimension from the downstream water level La of the filtered water 25 (that is, the height position of the other end 24 of the filtering member 10) to the water level Lb of the filtered water 11. That is, the water level difference Ha = water level Lb−downstream water level La. Separately from this, the other end 24 of the filtration member 10 may be immersed in the filtered water 25 in the filtered water reservoir 26 (not shown). The water level difference Ha in this case is the downstream water level La of the filtered water 25.
(That is, from the water level Lc of the filtered water 25), the filtered water 1
It is the height dimension up to the water level Lb of 1.

【0015】被ろ過水11は、水位差Haに基づく重力
による位置のエネルギーと、水の分子間の凝集力とによ
り自然に流れて、被ろ過水貯留部21からろ過水貯留部
26に移動する。すなわち、ろ過部材10は擬似微細管
14,15を有しているので、擬似微細管14,15で
毛管現象が生じる。この毛管現象により、被ろ過水貯留
部21内の被ろ過水11は、水膜17,18となって擬
似微細管14,15内を矢印Bに示すように上昇し、上
縁部22の高さ位置(または、これより高い位置)まで
到達する。ろ過部材10のうち、被ろ過水11が毛管現
象により上昇している部分を、上昇部30とする。被ろ
過水11には、擬似微細管14,15のところで形成さ
れる水膜17,18の膜厚d,d1より大きい浮遊固形
物が多く含まれている。そのため、被ろ過水11に含ま
れている浮遊固形物のうち、膜厚d,d1より大きい浮
遊固形物は、擬似微細管14,15を通り抜けることが
できない。したがって、浮遊固形物は、ろ過部材10に
付着して除去される。このろ過は、主として、被ろ過水
貯留部21に貯留されている被ろ過水11の水中で行わ
れる。このように、膜厚d,d1の寸法により、除去さ
れる浮遊固形物の大きさが決まることになる。したがっ
て、被ろ過水11に含まれる浮遊固形物の種類,サイ
ズ,粒度分布などに応じて、最適なろ過部材10の材質
や、ひも状繊維集合体12および繊維13のサイズ,密
度などの選定を行えばよい。
The filtered water 11 naturally flows due to the position energy due to gravity based on the water level difference Ha and the cohesive force between water molecules, and moves from the filtered water storage part 21 to the filtered water storage part 26. . That is, since the filtering member 10 has the pseudo fine tubes 14 and 15, the capillary phenomenon occurs in the pseudo fine tubes 14 and 15. Due to this capillary phenomenon, the filtered water 11 in the filtered water storage portion 21 becomes water films 17 and 18 and rises in the pseudo fine tubes 14 and 15 as shown by an arrow B, and the height of the upper edge portion 22 is increased. Reach position (or higher position). A portion of the filtering member 10 in which the filtered water 11 is rising due to the capillary phenomenon is referred to as a rising portion 30. The filtered water 11 contains a large amount of suspended solids larger than the film thickness d, d1 of the water films 17, 18 formed at the pseudo fine tubes 14, 15. Therefore, among the suspended solids contained in the filtered water 11, suspended solids having a thickness greater than d and d1 cannot pass through the pseudo fine tubes 14 and 15. Therefore, the suspended solid matter is attached to and removed from the filtration member 10. This filtration is mainly performed in the water of the filtered water 11 stored in the filtered water storage part 21. In this way, the size of the suspended solids to be removed is determined by the dimensions of the film thicknesses d and d1. Therefore, depending on the type, size, particle size distribution, etc. of suspended solids contained in the water to be filtered 11, the optimum material for the filtering member 10 and the size, density, etc. of the string-shaped fiber aggregate 12 and the fiber 13 should be selected. Just go.

【0016】被ろ過水11は、上昇部30を上昇して上
縁部22の高さ位置(または、これより高い位置)まで
到達する。その後、被ろ過水11は、矢印Cに示すよう
に、ろ過部材10を通って重力により下降し、被ろ過水
貯留部21の外部に流れる。ろ過部材10のうち水が下
降する部分を、下降部31とする。下降部31では、水
は水膜17,18となって擬似微細管14,15を重力
により下方に流れて、ろ過水貯留部26に流れ落ちる。
上昇部30と下降部31により、ろ過部材10から流出
するろ過水25を排出させるためのろ過水排出手段19
が構成されている。被ろ過水11は、ろ過部材10内に
入って、上昇部30と下降部31を自然に流れる間に、
空気と接触する。ろ過部材10の表面全体は凸凹してい
るので表面積が大きい。しかも、被ろ過水11は、水位
差Haに基づく重力による位置のエネルギーと、水の分
子間の凝集力とにより、低速で自然に移動する。したが
って、被ろ過水11は、ろ過部材10で十分な面積で且
つ十分な時間をかけて空気と接触する。これにより、水
中の有機物は好気性微生物により酸化分解される。被ろ
過水11は、上述のろ過による処理がなされるととも
に、好気性微生物による酸化分解処理もなされる。これ
により、被ろ過水11は、清浄なろ過水(処理水)25
となって、ろ過水貯留部26に貯留される。
The filtered water 11 rises in the rising portion 30 and reaches the height position of the upper edge portion 22 (or a position higher than this). After that, the filtered water 11 flows through the filtering member 10 by gravity as shown by an arrow C, and flows to the outside of the filtered water storage part 21. A portion of the filtering member 10 where water descends is referred to as a descending portion 31. In the descending portion 31, water becomes water films 17 and 18 and flows downward in the pseudo fine tubes 14 and 15 by gravity, and then flows down to the filtered water storage portion 26.
Filtered water discharge means 19 for discharging the filtered water 25 flowing out from the filtering member 10 by the rising part 30 and the descending part 31.
Is configured. While the filtered water 11 enters the filtering member 10 and naturally flows through the rising part 30 and the descending part 31,
Contact with air. Since the entire surface of the filtering member 10 is uneven, the surface area is large. Moreover, the filtered water 11 naturally moves at a low speed due to the position energy due to gravity based on the water level difference Ha and the cohesive force between water molecules. Therefore, the filtered water 11 has a sufficient area in the filtering member 10 and contacts the air for a sufficient time. As a result, organic matter in water is oxidatively decomposed by aerobic microorganisms. The water to be filtered 11 is subjected to the above-mentioned filtration treatment as well as oxidative decomposition treatment with aerobic microorganisms. As a result, the filtered water 11 becomes clean filtered water (treated water) 25.
And is stored in the filtered water storage unit 26.

【0017】洗浄手段33は、被ろ過水貯留部21でろ
過部材10に水(たとえば、原水,被ろ過水,ろ過水な
ど)35を噴射してろ過部材10を洗浄する。被ろ過水
貯留部21における水面より若干上部と水中には、洗浄
用管路34が設けられている。洗浄手段33は、洗浄用
管路34から水35や空気35aを噴射することによ
り、ろ過部材10を洗浄している。ろ過部材10では、
水面との境界近傍に浮遊固形物が多く付着する。したが
って、水35を水面との境界近傍のろ過部材10の面に
噴射し、水中のろ過部材10には空気35aを散気する
のが好ましい。
The cleaning means 33 sprays water (for example, raw water, filtered water, filtered water, etc.) 35 onto the filtering member 10 in the filtered water storage section 21 to clean the filtering member 10. A washing conduit 34 is provided slightly above the water surface in the filtered water storage portion 21 and in the water. The cleaning means 33 cleans the filter member 10 by injecting water 35 or air 35a from the cleaning pipeline 34. In the filtering member 10,
A lot of suspended solids adhere to the vicinity of the boundary with the water surface. Therefore, it is preferable to inject the water 35 onto the surface of the filtering member 10 near the boundary with the water surface and diffuse the air 35a into the underwater filtering member 10.

【0018】図2(A),(B)に示すように、ろ過部
材10は、被ろ過水11の流れ方向(矢印B,C方向)
に細長い複数のひも状繊維集合体12により構成されて
いる。すなわち、ろ過部材10は、たて糸のみからなる
ひも状繊維集合体12により「すだれ状」に構成されて
いる。ろ過部材10は、複数のひも状繊維集合体12を
平たい束状にするための縫い合わせ部32を有してい
る。縫い合わせ部32では、ひも状繊維集合体12どう
しを圧縮せずにほぐした状態にしているので、被ろ過水
11は、縫い合わせ部32の内部を容易に通ることがで
きる。縫い合わせ部32が上縁部22に掛けられている
ので、ひも状繊維集合体12内を流れる被ろ過水11
は、上縁部22には直接接触しない。縫い合わせ部32
の一方側32aおよび他方側32bが、それぞれ被ろ過
水貯留部21の内部側および外部側にそれぞれ位置して
いる。ひも状繊維集合体12の直径e(図2(C))
は、被ろ過水11に含まれる浮遊固形物の種類,サイ
ズ,粒度分布などに応じて適宜選定される。図2に示す
ろ過部材10では、一方側32aおよび他方側32bの
ひも状繊維集合体12の直径eが同じ場合(たとえば、
直径e=約3mm)を示している。
As shown in FIGS. 2 (A) and 2 (B), the filtering member 10 has a flow direction of the filtered water 11 (directions of arrows B and C).
It is composed of a plurality of long and narrow cord-shaped fiber aggregates 12. That is, the filter member 10 is configured in a "comb shape" by the string-shaped fiber aggregate 12 made of only warp threads. The filtering member 10 has a sewn portion 32 for making the plurality of cord-shaped fiber aggregates 12 into a flat bundle. In the sewn-together portion 32, since the string-shaped fiber aggregates 12 are in a state of being uncompressed and not compressed, the filtered water 11 can easily pass through the inside of the sewn-together portion 32. Since the sewn portion 32 is hung on the upper edge portion 22, the filtered water 11 flowing in the string-shaped fiber assembly 12 is
Does not directly contact the upper edge portion 22. Stitching part 32
One side 32a and the other side 32b are respectively located inside and outside the filtered water storage part 21. Diameter e of the string-shaped fiber assembly 12 (FIG. 2 (C))
Is appropriately selected according to the type, size, particle size distribution, etc. of suspended solids contained in the filtered water 11. In the filtering member 10 shown in FIG. 2, when the diameter e of the string-shaped fiber aggregates 12 on the one side 32a and the other side 32b is the same (for example,
The diameter e is about 3 mm).

【0019】ろ過部材10の組成は、ポリエステル系合
成繊維,レーヨン,アクリル繊維,木綿,麻,羊毛およ
び絹からなる群から少なくとも一つ選択されるのが好ま
しい。たとえば、ろ過部材10は、約40重量%のポリ
エステル系合成繊維と、約40重量%のレーヨンと、約
20重量%のアクリル繊維により構成されている。な
お、ろ過部材10の素材として、次の高分子化合物を使
用してもよい。たとえば、エチルセルロース,酢酸セル
ロース,ナイロン,ビニロン,アセテート,キュプラ,
アクリルニトリル,ポリエチレン,ポリ塩化ビニル,ポ
リ塩化ビニリデン,ポリ酢酸ビニル,ポリスチレン,ポ
リテトラフルオロエチレン,ポリテレフタル酸エチレ
ン,ポリトリフルオロエチレン,ポリクロロトリフルオ
ロエチレン,ポリビニルアルコール,ポリプロピレン,
ポリメタクリル酸メチル等が挙げられる。
The composition of the filter member 10 is preferably selected from at least one selected from the group consisting of polyester synthetic fibers, rayon, acrylic fibers, cotton, hemp, wool and silk. For example, the filtering member 10 is composed of about 40% by weight of polyester synthetic fiber, about 40% by weight of rayon, and about 20% by weight of acrylic fiber. The following polymer compounds may be used as the material of the filtering member 10. For example, ethyl cellulose, cellulose acetate, nylon, vinylon, acetate, cupra,
Acrylonitrile, polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polystyrene, polytetrafluoroethylene, ethylene polyterephthalate, polytrifluoroethylene, polychlorotrifluoroethylene, polyvinyl alcohol, polypropylene,
Examples thereof include polymethylmethacrylate.

【0020】次に、本発明者の行なった実験について説
明する。実験条件は下記のとおりである。 ・ろ過部材4(従来品):フィレドン不織布 ・ろ過部材10(本発明品):ポリエステル系合成繊維
40重量%,レーヨン40重量%, アクリル繊維20重量% ・ろ過部材4,10の寸法:約13cm(幅D)×約30
cm(長さL) ・被ろ過水貯留部21の寸法:20cm(縦)×30cm
(横)×24cm(高さ) ・被ろ過水11:霞ヶ浦(湖)で採取した湖水 従来の布状のろ過部材4(図11)として、フィレドン
不織布を使用した。本発明のろ過部材10として、縫い
合わせ部で束状に縫い合わされた市販のモップ用替糸を
使用した。ろ過部材10のひも状繊維集合体12は、直
径eが約3mmである。
Next, the experiment conducted by the present inventor will be described. The experimental conditions are as follows.・ Filtration member 4 (conventional product): Firedone non-woven fabric ・ Filtration member 10 (product of the present invention): 40% by weight of polyester synthetic fiber, 40% by weight of rayon, 20% by weight of acrylic fiber ・ Dimensions of filtering member 4, 10: about 13 cm (Width D) x approx. 30
cm (length L) -Dimensions of filtered water storage part 21: 20 cm (length) x 30 cm
(Horizontal) × 24 cm (height) -Water to be filtered 11: Lake water collected in Kasumigaura (lake) As a conventional cloth-shaped filtering member 4 (FIG. 11), a non-woven firedone was used. As the filter member 10 of the present invention, a commercially available replacement yarn for mop sewn in a bundle at the sewn portion was used. The string-like fiber assembly 12 of the filtration member 10 has a diameter e of about 3 mm.

【0021】被ろ過水貯留部21に所定量の被ろ過水1
1を貯留し、従来のろ過部材4と本発明のろ過部材10
について、それぞれ、ろ過部材によりろ過されてろ過水
貯留部26に貯留していくろ過水25を測定した。ろ過
部材4,10の他端部24は、ろ過水貯留部26内のろ
過水25の水面から離れている。表1は、ろ過部材10
を使用して水処理装置20で水処理を行なった場合の、
被ろ過水の水質と、ろ過部材10を流れたろ過水25の
流量と水質を示している。水処理の開始(通水開始)か
ら2時間後におけるろ過水25の流量と水質を測定し
た。
A predetermined amount of filtered water 1 is stored in the filtered water storage section 21.
1 to store the conventional filtration member 4 and the filtration member 10 of the present invention.
For each of the above, the filtered water 25 filtered by the filtering member and stored in the filtered water storage unit 26 was measured. The other ends 24 of the filtering members 4 and 10 are separated from the water surface of the filtered water 25 in the filtered water storage section 26. Table 1 shows the filtration member 10
When water treatment is performed by the water treatment device 20 using
The water quality of the filtered water and the flow rate and water quality of the filtered water 25 flowing through the filtering member 10 are shown. The flow rate and the water quality of the filtered water 25 were measured 2 hours after the start of water treatment (start of water flow).

【0022】[0022]

【表1】 [Table 1]

【0023】表1から分かるように、ろ過部材10によ
れば、被ろ過水11中のCOD(化学的酸素要求量),
浮遊固形物の濃度(SS),色度および濁度をそれぞれ
十分に低下させるとともに、所望の流量を得ることがで
きた。すなわち、ろ過部材10は十分な水処理能力を有
しており、ろ過水25の水質も良好であることが確認で
きた。洗浄手段33で洗浄を行なったところ、ろ過部材
10を良好に洗浄して、付着している固形物を容易に除
去することができた。
As can be seen from Table 1, according to the filtering member 10, COD (chemical oxygen demand) in the water 11 to be filtered,
The concentration (SS), chromaticity and turbidity of the suspended solids were sufficiently reduced, and a desired flow rate could be obtained. That is, it was confirmed that the filtration member 10 has a sufficient water treatment capacity and the quality of the filtered water 25 is also good. When the cleaning means 33 was used for cleaning, the filtering member 10 was cleaned well, and the attached solid matter could be easily removed.

【0024】表2は、フィレドン不織布とろ過部材10
の場合の、水処理能力の経時的変化を示している。前記
実験と同じ被ろ過水11を使用し、同じ実験条件で測定
した。水処理開始時には、フィレドン不織布は水で濡ら
した状態で、ろ過部材10は乾いた状態で、それぞれ被
ろ過水貯留部21の上縁部22にセットした。そして、
通水しながら36時間連続運転して、2時間後、12時
間後の時点で水処理能力を測定した。その後、洗浄手段
33でろ過部材10を洗浄し、次いで、洗浄後2時間経
過した時点で、水処理能力の回復の程度を測定した。
Table 2 shows the firedone non-woven fabric and the filtration member 10.
In the case of, the change in water treatment capacity with time is shown. The same filtered water 11 as in the above experiment was used, and the measurement was performed under the same experimental conditions. At the start of the water treatment, the firedone nonwoven fabric was set in the upper edge portion 22 of the filtered water storage portion 21 in a wet state with water and the filtering member 10 in a dry state. And
Continuous operation was carried out for 36 hours while passing water, and the water treatment capacity was measured after 2 hours and 12 hours. After that, the filtering member 10 was washed with the washing means 33, and at the time when 2 hours had passed after washing, the degree of recovery of the water treatment capacity was measured.

【0025】[0025]

【表2】 [Table 2]

【0026】表2から分かるように、フィレドン不織布
の場合には、浮遊固形物の付着およびフィレドン不織布
自体の乾きなどにより、流量が次第に減少する。また、
フィレドン不織布を初めに水で濡らさないと、被ろ過水
11は毛管現象で途中までしか上昇せず、水処理が開始
しない。そのため、当初、フィレドン不織布を水で濡ら
す作業が必要であった。また、フィレドン不織布の場合
には、ろ過水25のCOD,色度および濁度はそれほど
改善されていない。フィレドン不織布を洗浄したのち2
時間経過した時点で、流量は回復しているが、浮遊固形
物の濃度(SS)および濁度の回復の程度は低い。
As can be seen from Table 2, in the case of the firedone non-woven fabric, the flow rate gradually decreases due to the adherence of suspended solids and the drying of the firedone non-woven fabric. Also,
If the firedone nonwoven fabric is not wet with water first, the filtered water 11 will rise only partway due to the capillary phenomenon, and the water treatment will not start. Therefore, at the beginning, it was necessary to wet the firedone nonwoven fabric with water. Further, in the case of the firedone nonwoven fabric, the COD, chromaticity and turbidity of the filtered water 25 are not so improved. After cleaning the firedone nonwoven fabric 2
At the end of the time, the flow rate has recovered, but the suspended solids concentration (SS) and turbidity recovery is low.

【0027】これに対して、本発明のろ過部材10の場
合には、通水開始時(水処理開始時)にろ過部材10を
水で濡らさなくても、毛管現象が自然に開始された。そ
の後も毛管現象は継続するので、途中でろ過部材10が
乾くこともなかった。また、時間が経過しても、ろ過水
25の水質は良好な状態に維持されており、清浄なろ過
水25を得ることができた。また、被ろ過水11がろ過
部材10の水に浸った表面全体から繊維の間の隙間に入
るところで被ろ過水11はろ過され、前記繊維間隙間に
入れない微生物の小集団(たとえば、生成当初は数mm)
は前記繊維の表面に付着し、被ろ過水11は前記繊維間
隙間を毛管現象により自然に流れていく。その後、前記
繊維の表面に付着した前記微生物の小集団は、ろ過が進
むにつれて次第に大きくなって、内部に微小な隙間を有
してろ過機能を発揮する微生物コロニーを形成してい
く。その後は、被ろ過水11の全部または一部は、この
微生物コロニーの内部の前記微小な隙間に入るところで
ろ過された後、この微小な隙間を毛管現象により自然に
流れ、次いで、前記繊維間隙間を毛管現象により自然に
流れていく。すなわち、この時点でろ過を行うのは、主
として微生物コロニー内の微小な隙間であり、ろ過部材
10の繊維間隙間は、毛管現象によって主として水を導
水する機能を発揮していることが分かる。繊維の間の隙
間の寸法(たとえば、内径が約20〜30μm)と、微
生物の粒子の寸法(たとえば、約1〜2μm)と、微生
物コロニーの内部の前記微小な隙間の寸法(たとえば、
内径が約1μm以下)などは、顕微鏡写真により確認す
ることができた。ろ過水25の流量は、ろ過部材10に
浮遊固形物が付着することにより次第に低下するが、途
中でろ過部材10を洗浄すれば、元の水量まで容易に回
復する。また、この洗浄により、ろ過水25の水質も回
復することが確認できた。このように、ろ過部材10の
方が、フィレドン不織布よりも洗浄が容易で、洗浄効果
も良好であった。
On the other hand, in the case of the filter member 10 of the present invention, the capillarity spontaneously started without having to wet the filter member 10 with water at the start of water flow (at the start of water treatment). Since the capillarity continued after that, the filtering member 10 did not dry in the middle. Moreover, the quality of the filtered water 25 was maintained in a good state even after a lapse of time, and clean filtered water 25 could be obtained. Further, the filtered water 11 is filtered where the filtered water 11 enters the gaps between the fibers from the entire surface of the filtering member 10 that has been soaked in water, and a small group of microorganisms (for example, at the beginning of generation) that cannot enter the gaps between the fibers. Is a few mm)
Adheres to the surface of the fibers, and the filtered water 11 naturally flows through the interfiber gaps by a capillary phenomenon. After that, the small population of the microorganisms attached to the surface of the fibers gradually increases as the filtration progresses, and forms a microbial colony that has a minute gap inside and exhibits a filtering function. After that, all or part of the water to be filtered 11 is filtered where it enters the minute gaps inside the microbial colony, and then naturally flows through the minute gaps by capillary action, and then the interfiber gaps. Flow naturally through the capillarity. That is, it is understood that what is filtered at this time is mainly the minute gaps in the microbial colony, and the inter-fiber gaps of the filtration member 10 mainly exert the function of introducing water by the capillary phenomenon. The size of the interstices between the fibers (for example, the inner diameter is about 20 to 30 μm), the size of the microbe particles (for example, about 1 to 2 μm), and the size of the minute interstices inside the microbial colony (for example,
The inner diameter was about 1 μm or less) and the like could be confirmed by a micrograph. The flow rate of the filtered water 25 gradually decreases due to the adherence of suspended solids to the filtering member 10, but if the filtering member 10 is washed during the process, the original amount of water can be easily recovered. It was also confirmed that the quality of the filtered water 25 was recovered by this washing. As described above, the filtering member 10 was easier to clean and the cleaning effect was better than that of the firedone nonwoven fabric.

【0028】図3はろ過部材の部分拡大図である。図3
(A)は本発明のろ過部材10を示し、図3(B)は従
来の布状のフィレドン不織布37を示している。図3
(A)に示すろ過部材10では、ろ過により固形物38
が付着していても、洗浄時に、ひも状繊維集合体12ど
うしが簡単にほぐれて離れることができる。したがっ
て、ろ過部材10の内部まで十分に洗浄することができ
るので、付着していた固形物38は容易に除去される。
これに対して、図3(B)に示す布状フィレドン不織布
37では、固形物38が繊維の間の隙間に入って付着し
ている場合には、洗浄しても固形物38を除去するのは
困難である。表2に示す実験では、ろ過部材を従来のフ
ィレドン不織布に代えて、水への「ぬれ」の大きなろ過
部材10を使用した。ろ過部材10の組成は、たとえ
ば、約40重量%のポリエステル系合成繊維,約40重
量%のレーヨンおよび約20重量%のアクリル繊維であ
る。この場合には、水量が多く清浄で水質の良好なろ過
水25を得ることができた。
FIG. 3 is a partially enlarged view of the filter member. Figure 3
(A) shows the filtration member 10 of the present invention, and FIG. 3 (B) shows a conventional cloth-like filedone nonwoven fabric 37. Figure 3
In the filtering member 10 shown in FIG.
Even if adhered, the string-shaped fiber aggregates 12 can be easily loosened and separated during cleaning. Therefore, since the inside of the filtration member 10 can be sufficiently washed, the attached solid matter 38 is easily removed.
On the other hand, in the cloth-like filedone non-woven fabric 37 shown in FIG. 3 (B), when the solid matter 38 is adhered in the gaps between the fibers, the solid matter 38 is removed even by washing. It is difficult. In the experiment shown in Table 2, the filtration member was replaced with a conventional firedone non-woven fabric, and the filtration member 10 having a large "wet" to water was used. The composition of the filter member 10 is, for example, about 40% by weight of polyester-based synthetic fiber, about 40% by weight of rayon and about 20% by weight of acrylic fiber. In this case, filtered water 25 with a large amount of water and good quality could be obtained.

【0029】(第2の実施形態)図4ないし図8は、本
発明の第2の実施形態を示す図である。図4は、ろ過部
材40を使用した場合の概略構成図、図5は、より具体
的な水処理装置46を示す概略構成図、図6は図5のVI
−VI線断面図、図7は、一つのひも状繊維集合体43の
経時変化を示す概略構成図である。図4に示すように、
水処理装置41は、被ろ過水貯留部45と、ひも状のろ
過部材40と、ろ過部材40から流出するろ過水25を
排出させるためのろ過水排出手段47と、ろ過部材40
を洗浄するための洗浄手段48とを備えている。被ろ過
水貯留部45には被ろ過水11を貯留している。被ろ過
水貯留部45に設けられたろ過部材40の全部を、被ろ
過水11に浸している。これにより、被ろ過水11がろ
過部材40の水に浸った表面全体から繊維間隙間に入る
ところで被ろ過水11はろ過され、前記繊維間隙間に入
れない微生物の小集団は前記繊維の表面に付着し、被ろ
過水11は前記繊維間隙間を毛管現象により自然に流れ
ていく。その後、前記繊維の表面に付着した前記微生物
の小集団は、ろ過が進むにつれて次第に大きくなって、
内部に微小な隙間を有してろ過機能を発揮する微生物コ
ロニーを形成する。その後は、被ろ過水11の全部また
は一部は、この微生物コロニーの内部の微小な隙間に入
るところでろ過された後、この微小な隙間を毛管現象に
より自然に流れ、次いで、前記繊維間隙間を毛管現象に
より自然に流れていく。ろ過水25は、ろ過部材40か
ら流出して、ろ過水排出手段47により被ろ過水貯留部
45の外部に排出される。
(Second Embodiment) FIGS. 4 to 8 are views showing a second embodiment of the present invention. 4 is a schematic configuration diagram when the filtering member 40 is used, FIG. 5 is a schematic configuration diagram showing a more specific water treatment device 46, and FIG. 6 is a VI of FIG.
-VI line sectional drawing, FIG. 7 is a schematic block diagram which shows the time-dependent change of one string-shaped fiber assembly 43. As shown in FIG. As shown in FIG.
The water treatment device 41 includes a filtered water storage part 45, a string-shaped filtering member 40, a filtered water discharging means 47 for discharging the filtered water 25 flowing out from the filtering member 40, and a filtering member 40.
And a cleaning means 48 for cleaning. The filtered water 11 is stored in the filtered water storage section 45. The entire filtering member 40 provided in the filtered water storage portion 45 is immersed in the filtered water 11. As a result, the filtered water 11 is filtered where the filtered water 11 enters the interfiber gap from the entire surface of the filtering member 40 that has been immersed in the water, and a small group of microorganisms that cannot enter the interfiber gap is deposited on the surface of the fiber. The adhered water 11 to be filtered naturally flows through the inter-fiber gaps by a capillary phenomenon. After that, the small population of the microorganisms attached to the surface of the fiber gradually increases as the filtration proceeds,
It forms a microbial colony that has a minute gap inside and exhibits a filtering function. After that, all or part of the water to be filtered 11 is filtered at a place where it enters a minute gap inside the microbial colony, and then naturally flows through the minute gap by a capillary phenomenon, and then the interfiber gap. It flows naturally due to the capillary phenomenon. The filtered water 25 flows out from the filtering member 40 and is discharged to the outside of the filtered water storage part 45 by the filtered water discharging means 47.

【0030】被ろ過水貯留部45の外部には、ろ過水2
5を貯留するためのろ過水貯留部49が設けられてい
る。ろ過部材40は、細長い複数のひも状繊維集合体4
3の集合により構成されている。ひも状繊維集合体43
は、たて糸のみにより「すだれ状」に構成されている。
ろ過部材40は、導水部としてのパイプ50に、被ろ過
水11の水中で接続されている。パイプ50は、被ろ過
水11の水中から、被ろ過水貯留部45の外部で且つろ
過水貯留部49の上方まで延びている。パイプ50の内
部には、常にろ過水25が満たされている。パイプ50
は、ろ過部材40から流出するろ過水25を被ろ過水貯
留部45の外部に排出させるためのろ過水排出手段47
を構成している。
Outside the filtered water storage portion 45, the filtered water 2
A filtered water storage part 49 for storing 5 is provided. The filtering member 40 includes a plurality of long and narrow string-like fiber assemblies 4
It is composed of 3 sets. String-like fiber assembly 43
Is formed into a "comb-like shape" with only warp threads.
The filtering member 40 is connected to a pipe 50 serving as a water guiding section in the water 11 to be filtered. The pipe 50 extends from the water under the filtered water 11 to the outside of the filtered water storage part 45 and above the filtered water storage part 49. The inside of the pipe 50 is always filled with the filtered water 25. Pipe 50
Is a filtered water discharge means 47 for discharging the filtered water 25 flowing out of the filtering member 40 to the outside of the filtered water storage part 45.
Are configured.

【0031】被ろ過水11が、ろ過部材40の水に浸っ
た表面全体から繊維の間の隙間に入って、この繊維間隙
間を自然に流れるようにするために、ろ過水25の下流
側水位Laを、被ろ過水貯留部45内の被ろ過水11の
水位Lbより低く設定している。被ろ過水11の水位L
bと、ろ過水25の下流側水位Laとの差が、水位差H
aである。この場合、パイプ50の下流側端部51の高
さ位置が、下流側水位Laに相当している。なお、下流
側端部51が、ろ過水貯留部49内のろ過水25に浸さ
れている場合には、ろ過水貯留部49内のろ過水25の
水位Lcが、ろ過水25の下流側水位Laに相当するこ
とになる。ろ過水25を被ろ過水貯留部45の外部に流
すための導水部は、パイプ50のほか、ひも状のろ過部
材40と同じかまたは類似したものであってもよい。こ
の場合には、ろ過水25は導水部を毛管現象などで流れ
ることになる。洗浄手段48は、被ろ過水貯留部45に
設けられた空気供給装置55により構成されている。空
気供給装置55は、ろ過部材40より下方で、空気54
を被ろ過水11中に分散して供給可能である。空気供給
装置55で空気54を供給し、多数の気泡54aでろ過
部材40を動かすことにより、ろ過部材40に付着して
大きくなっている微生物コロニー(たとえば、活性汚泥
からなる固形物)を小さくするかまたは除去する。これ
により、ろ過部材40が洗浄されるので、水処理装置4
1を連続運転することができる。
In order to allow the filtered water 11 to enter the interstices between the fibers from the entire surface of the filtering member 40 which is immersed in water, and to allow the interstices between the fibers to flow naturally, the downstream water level of the filtered water 25. La is set to be lower than the water level Lb of the filtered water 11 in the filtered water storage portion 45. Water level L of filtered water 11
The difference between b and the downstream water level La of the filtered water 25 is the water level difference H.
a. In this case, the height position of the downstream end portion 51 of the pipe 50 corresponds to the downstream water level La. When the downstream end 51 is immersed in the filtered water 25 in the filtered water reservoir 49, the water level Lc of the filtered water 25 in the filtered water reservoir 49 is the downstream water level of the filtered water 25. This corresponds to La. The water guide portion for flowing the filtered water 25 to the outside of the filtered water storage portion 45 may be the same as or similar to the string-shaped filtering member 40 in addition to the pipe 50. In this case, the filtered water 25 will flow through the water guiding portion due to a capillary phenomenon or the like. The cleaning means 48 is composed of an air supply device 55 provided in the filtered water storage part 45. The air supply device 55 is arranged below the filtering member 40 and is provided with the air 54.
Can be supplied dispersed in the filtered water 11. By supplying the air 54 with the air supply device 55 and moving the filter member 40 with a large number of bubbles 54a, the microbial colonies (for example, solid matter made of activated sludge) that are attached to the filter member 40 and become large are reduced. Or remove. As a result, the filtering member 40 is washed, so that the water treatment device 4
1 can be continuously operated.

【0032】この水処理装置41において、ろ過水25
が、パイプ50の下流側端部51から離れて落下する
と、パイプ50内のろ過水25の量は減少する。する
と、パイプ50の内部に残っているろ過水25は、水位
差Haに基づく重力による位置のエネルギーと、水の分
子間の凝集力とにより、下流側に自然に流れる。ろ過水
25が流れることにより、被ろ過水11も、水位差Ha
に基づく重力による位置のエネルギーと、水の分子間の
凝集力とにより、微生物コロニーの内部の微小な隙間に
入って、この微小な隙間を下流側に自然に流れ、次い
で、ろ過部材40の表面から繊維の間の隙間に入って、
この繊維間隙間を下流側に自然に流れる。この水処理装
置41は、ひも状のろ過部材40を使用しているので、
ろ過部材40が目詰まりを起こしにくい。また、ろ過部
材40を空気供給装置55により容易に洗浄して、水処
理能力を回復させることができる。
In this water treatment device 41, filtered water 25
However, when it falls apart from the downstream end portion 51 of the pipe 50, the amount of the filtered water 25 in the pipe 50 decreases. Then, the filtered water 25 remaining inside the pipe 50 naturally flows to the downstream side due to the energy of the position due to gravity based on the water level difference Ha and the cohesive force between water molecules. Since the filtered water 25 flows, the filtered water 11 also has a water level difference Ha.
Based on the energy of the position due to gravity and the cohesive force between water molecules, it enters a minute gap inside the microbial colony and naturally flows to the downstream side through the minute gap, and then the surface of the filtering member 40. Into the gap between the fibers,
The inter-fiber gap naturally flows downstream. Since this water treatment device 41 uses the string-shaped filter member 40,
The filtering member 40 is unlikely to be clogged. Further, the filtering member 40 can be easily washed by the air supply device 55 to recover the water treatment capacity.

【0033】図5および図6に示すように、水処理装置
46は、活性汚泥法による水処理を行なっており、被ろ
過水貯留部45は曝気槽の機能を有している。水処理装
置46は、被ろ過水貯留部45と、ひも状のろ過部材4
0とを備えている。また、水処理装置46は、ろ過部材
40から流出するろ過水25を排出させるためのろ過水
排出手段57と、ろ過部材40を洗浄するための洗浄手
段56とを備えている。被ろ過水貯留部45には、被ろ
過水11を貯留している。被ろ過水貯留部45に設けら
れたろ過部材40の全部を、被ろ過水11に浸してい
る。これにより、被ろ過水11がろ過部材40の水に浸
った表面全体から繊維の間の隙間に入るところで被ろ過
水11はろ過され、前記繊維間隙間に入れない微生物の
小集団は前記繊維の表面に付着し、被ろ過水11は前記
繊維間隙間を毛管現象により自然に流れていく。その
後、前記繊維の表面に付着した前記微生物の小集団は、
ろ過が進むにつれて次第に大きくなって、内部に微小な
隙間を有してろ過機能を発揮する微生物コロニーを形成
する。その後は、被ろ過水11の全部または一部は、こ
の微生物コロニーの内部の微小な隙間に入るところでろ
過された後、この微小な隙間を毛管現象により自然に流
れ、次いで、前記繊維間隙間を毛管現象により自然に流
れていく。ろ過水25は、ろ過部材40から流出して、
ろ過水排出手段57により被ろ過水貯留部45の外部に
排出される。
As shown in FIGS. 5 and 6, the water treatment device 46 carries out water treatment by the activated sludge method, and the filtered water storage portion 45 has a function of an aeration tank. The water treatment device 46 includes a filtered water storage part 45 and a string-shaped filtering member 4
It has 0 and. Further, the water treatment device 46 includes a filtered water discharging means 57 for discharging the filtered water 25 flowing out from the filtering member 40, and a cleaning means 56 for cleaning the filtering member 40. The filtered water storage part 45 stores the filtered water 11. The entire filtering member 40 provided in the filtered water storage portion 45 is immersed in the filtered water 11. As a result, the filtered water 11 is filtered where the filtered water 11 enters the gaps between the fibers from the entire surface of the filtering member 40 immersed in the water, and the small population of microorganisms that cannot enter the fiber gaps is The water 11 to be filtered adheres to the surface and naturally flows through the interfiber gaps by a capillary phenomenon. Then, a small population of the microorganisms attached to the surface of the fiber,
As the filtration progresses, it gradually becomes larger and forms a microbial colony that has a minute gap inside and exhibits a filtering function. After that, all or part of the water to be filtered 11 is filtered at a place where it enters a minute gap inside the microbial colony, and then naturally flows through the minute gap by a capillary phenomenon, and then the interfiber gap. It flows naturally due to the capillary phenomenon. The filtered water 25 flows out from the filtering member 40,
The filtered water discharge means 57 discharges the filtered water to the outside of the storage part 45.

【0034】ろ過部材40は、細長い複数のひも状繊維
集合体43の集合により構成されている。被ろ過水貯留
部45内の被ろ過水11の水位Lbは、図示しない水位
調整手段により常時一定に維持されている。ろ過水排出
手段57は、ろ過部材支持部60,導水部61および水
位差設定手段62を備えている。ろ過部材支持部60
は、被ろ過水貯留部45の内部に設けられている。ろ過
部材支持部60は、被ろ過水11との間を仕切る仕切り
壁63を有するとともに、仕切り壁63でろ過部材40
を支持している。仕切り壁63は、両端が閉じられた中
空円筒状をなしている。仕切り壁63には、その中心軸
線と平行な方向に延びた複数(ここでは、四つ)のスリ
ット64が形成されている。スリット64には、ろ過部
材40が支持されている。円筒形の仕切り壁63の半径
方向外方が被ろ過水11の領域であり、半径方向内方は
下流側スペース65になっている。ろ過部材40は、ス
リット64を塞いで隙間がないように、スリット64に
係合している。これにより、被ろ過水11は、ろ過部材
40の内部を通らないで直接下流側スペース65にショ
ートパスすることはない。ろ過部材40の大部分が被ろ
過水11に接しているので、ろ過面積が大きい。ろ過部
材40の一端部は、下流側スペース65内に位置してい
る。被ろ過水11は、微生物コロニーの内部の微小な隙
間を毛管現象により自然に流れ、次いで、ろ過部材40
の表面から繊維の間の隙間に入り、この繊維間隙間を毛
管現象により自然に流れて下流側スペース65に移動す
る。
The filter member 40 is composed of a set of a plurality of elongated fiber-shaped fiber assemblies 43. The water level Lb of the filtered water 11 in the filtered water storage portion 45 is always kept constant by a water level adjusting means (not shown). The filtered water discharging means 57 includes a filtering member supporting portion 60, a water guiding portion 61, and a water level difference setting means 62. Filtering member support 60
Is provided inside the filtered water storage portion 45. The filtering member supporting portion 60 has a partition wall 63 that partitions the water to be filtered 11 and the filtering member 40 is separated by the partition wall 63.
I support you. The partition wall 63 has a hollow cylindrical shape with both ends closed. The partition wall 63 is formed with a plurality of (here, four) slits 64 extending in a direction parallel to the central axis thereof. The filtering member 40 is supported by the slit 64. The radially outer side of the cylindrical partition wall 63 is the region of the filtered water 11, and the radially inner side is the downstream space 65. The filtering member 40 is engaged with the slit 64 so that the slit 64 is closed and there is no gap. As a result, the filtered water 11 does not pass through the inside of the filtering member 40 and does not short-pass directly to the downstream space 65. Since most of the filtering member 40 is in contact with the water to be filtered 11, the filtering area is large. One end of the filtering member 40 is located inside the downstream space 65. The water to be filtered 11 naturally flows through a minute gap inside the microbial colony by a capillary phenomenon, and then the filtering member 40.
Enter the gaps between the fibers from the surface of, and naturally flow through the gaps between the fibers due to the capillary phenomenon to move to the downstream space 65.

【0035】導水部61は、ろ過部材支持部60に連通
している。導水部61は、ろ過部材40から流出するろ
過水25を被ろ過水貯留部45の外部に流すためのもの
であり、パイプ50などにより構成されている。パイプ
50の上流側端部は、下流側スペース65に連通した状
態で、ろ過部材支持部60に取付けられている。水位差
設定手段62は、ろ過水25の下流側水位Laが、被ろ
過水貯留部45内の被ろ過水11の水位Lbより低くな
るようにして、水位差Haを設定している。ろ過水25
の下流側水位Laは、パイプ50の下流側端部51を所
望の高さ位置に位置決めできるようになっている。これ
により、水位差設定手段62は、水位差Haを約10cm
ないし約100cmの範囲で調整可能である。設定された
水位差Haに基づく重力による位置のエネルギーと、水
の分子間の凝集力とにより、被ろ過水11がろ過部材4
0の水に浸った表面全体から繊維の間の隙間に入るとこ
ろで被ろ過水11はろ過され、前記繊維間隙間に入れな
い微生物の小集団は前記繊維の表面に付着し、被ろ過水
11は前記繊維間隙間を毛管現象により自然に流れてい
く。また、被ろ過水11は、微生物コロニーの内部の微
小な隙間に入って、この微小な隙間を自然に流れ、次い
で、ろ過部材40の表面から繊維の間の隙間に入って、
この繊維間隙間を自然に下流側に流れることになる。
The water guiding portion 61 communicates with the filtering member supporting portion 60. The water guiding section 61 is for flowing the filtered water 25 flowing out of the filtering member 40 to the outside of the filtered water storage section 45, and is configured by a pipe 50 or the like. The upstream end of the pipe 50 is attached to the filtering member support 60 in a state of communicating with the downstream space 65. The water level difference setting means 62 sets the water level difference Ha such that the downstream water level La of the filtered water 25 is lower than the water level Lb of the filtered water 11 in the filtered water storage part 45. Filtered water 25
The downstream water level La is such that the downstream end 51 of the pipe 50 can be positioned at a desired height position. Accordingly, the water level difference setting means 62 causes the water level difference Ha to be about 10 cm.
It can be adjusted within a range of from about 100 cm. Due to the energy of the position of gravity based on the set water level difference Ha and the cohesive force between the molecules of water, the filtered water 11 is filtered by the filtering member 4.
The filtered water 11 is filtered where it enters the gaps between the fibers from the entire surface soaked in 0 of water, and a small group of microorganisms that cannot enter the gaps between the fibers adheres to the surface of the fibers, and the filtered water 11 is The fibers naturally flow through the interstices between the fibers due to a capillary phenomenon. Further, the water to be filtered 11 enters a minute gap inside the microbial colony, naturally flows through the minute gap, and then enters a gap between the fibers from the surface of the filtering member 40,
The fibers will naturally flow to the downstream side.

【0036】洗浄手段56は、被ろ過水貯留部45に設
けられた空気供給装置67と、逆洗装置68を備えてい
る。空気供給装置67は、ろ過部材40より下方で、空
気66を被ろ過水11中に分散して供給可能である。空
気供給装置67は、ろ過部材40の下方に配置された複
数のノズル72を有している。空気66は、ノズル72
から被ろ過水11の内部に分散して供給される。気泡6
6aにより、被ろ過水11を曝気するとともに、ろ過部
材40の表面に付着して大きくなっている微生物コロニ
ー(活性汚泥(固形物))を、小さくするかまたは除去
している。逆洗装置68は、ろ過水排出手段57の流路
を介して、ろ過部材40に、逆洗用の流体としての空気
66を供給可能な構造を有している。そして、逆洗装置
68は、大きくなりすぎた微生物コロニーを小さくする
かまたは除去する機能を発揮する。逆洗用の空気66
は、必要に応じて(または、間欠的に)供給される。な
お、逆洗用の流体としては、空気の代わりに水(たとえ
ば、ろ過水25)を使用してもよい。空気供給装置67
と逆洗装置68には、送風機69または空気圧縮機(図
示せず)から、空気66が供給されるようになってい
る。空気66の流路に設けられたバルブ70と、パイプ
50に設けられたバルブ71とにより、空気66の供
給,停止および切り換えができるようになっている。導
水部61を流れたろ過水25は、ろ過水貯留部49に貯
留された後、ポンプ73により、矢印F4に示すように
処理水として排出される。なお、後述する実験の際に
は、ポンプ73で排出されたろ過水25を、被ろ過水貯
留部45に戻して循環流路を形成することにより、連続
運転を行なった。
The cleaning means 56 includes an air supply device 67 provided in the filtered water storage portion 45 and a backwash device 68. The air supply device 67 can disperse and supply the air 66 in the water 11 to be filtered below the filtering member 40. The air supply device 67 has a plurality of nozzles 72 arranged below the filtering member 40. Air 66 is the nozzle 72
Is dispersed and supplied into the filtered water 11. Bubbles 6
By 6a, the filtered water 11 is aerated, and the microbial colonies (activated sludge (solid matter)) attached to the surface of the filtration member 40 and growing are reduced or removed. The backwashing device 68 has a structure capable of supplying air 66 as a backwashing fluid to the filtering member 40 via the flow path of the filtered water discharging means 57. The backwash device 68 has a function of reducing or removing the microbial colonies that have grown too large. Backwash air 66
Are supplied as needed (or intermittently). Water (for example, filtered water 25) may be used instead of air as the fluid for backwashing. Air supply device 67
The backwash device 68 is supplied with air 66 from a blower 69 or an air compressor (not shown). A valve 70 provided in the flow path of the air 66 and a valve 71 provided in the pipe 50 can supply, stop, and switch the air 66. The filtered water 25 that has flowed through the water guiding section 61 is stored in the filtered water storage section 49, and is then discharged by the pump 73 as treated water as indicated by arrow F4. In the experiment described below, the continuous operation was performed by returning the filtered water 25 discharged by the pump 73 to the filtered water storage portion 45 to form a circulation flow path.

【0037】図5ないし図7に示すように、前記構成の
水処理装置46において、被ろ過水貯留部45内の被ろ
過水11は、水位差Haに基づく重力による位置のエネ
ルギーと、水の分子間の凝集力とにより、ひも状繊維集
合体43の水に浸った表面全体から繊維13の間の隙間
74に入って、繊維間隙間74を自然に流れる。そし
て、被ろ過水11は、ろ過部材40から流出して、仕切
り壁63の反対側の下流側スペース65に、ろ過水25
となって流れ込む。導水部61の下流側端部51から
は、ろ過水25が落下する。すると、水位差Haに基づ
く重力による位置のエネルギーと、水の分子間の凝集力
とにより、ろ過水25は、下流側スペース65から導水
部61を流れて被ろ過水貯留部45の外部に排出され
る。ろ過水25が流れると、被ろ過水貯留部45内の被
ろ過水11も、水位差Haに基づく重力による位置のエ
ネルギーと、水の分子間の凝集力とにより、ろ過部材4
0の表面から繊維13の間の隙間74に入って、繊維間
隙間74を自然に流れることになる。このような水の流
れの繰り返しにより、被ろ過水貯留部45内の被ろ過水
11は、この被ろ過水11がろ過部材40の水に浸った
表面全体から繊維13の間の隙間74に入るところでろ
過され、前記繊維間隙間に入れない微生物の小集団は前
記繊維の表面に付着し、被ろ過水11は前記繊維間隙間
を毛管現象により自然に流れていく。その後、前記繊維
の表面に付着した前記微生物の小集団は、ろ過が進むに
つれて次第に大きくなって、内部に微小な隙間を有して
ろ過機能を発揮する微生物コロニー(たとえば、活性汚
泥のコロニー)を形成する。すなわち、このろ過によ
り、被ろ過水11に含まれている浮遊固形物としての活
性汚泥は、ろ過部材40の表面に微生物コロニーとなっ
て付着する。その後は、被ろ過水11の全部または一部
は、微生物コロニーの内部の微小な隙間に入るところで
ろ過された後、この微小な隙間を毛管現象により自然に
流れ、次いで、繊維13間の隙間74を毛管現象により
自然に流れていく。
As shown in FIGS. 5 to 7, in the water treatment device 46 having the above-mentioned structure, the filtered water 11 in the filtered water storage portion 45 has the energy of the position due to gravity based on the water level difference Ha and the water. Due to the cohesive force between the molecules, the entire surface of the string-shaped fiber assembly 43 immersed in water enters the gaps 74 between the fibers 13 and naturally flows through the inter-fiber gaps 74. Then, the filtered water 11 flows out from the filtering member 40, and the filtered water 25 flows into the downstream space 65 on the opposite side of the partition wall 63.
It flows in. The filtered water 25 drops from the downstream end 51 of the water conduit 61. Then, the filtered water 25 flows from the downstream space 65 through the water guiding portion 61 and is discharged to the outside of the filtered water storage portion 45 due to the energy of the position based on the gravity based on the water level difference Ha and the cohesive force between the water molecules. To be done. When the filtered water 25 flows, the filtered water 11 in the filtered water storage portion 45 also has the energy of the position due to gravity based on the water level difference Ha and the cohesive force between the water molecules, so that the filtering member 4
It will enter the gaps 74 between the fibers 13 from the surface of 0 and naturally flow through the gaps 74 between fibers. By repeating such a flow of water, the filtered water 11 in the filtered water storage portion 45 enters the gaps 74 between the fibers 13 from the entire surface of the filtering member 40 in which the filtered water 11 is immersed in water. By the way, a small group of microorganisms that have been filtered and cannot enter the space between the fibers adheres to the surface of the fiber, and the filtered water 11 naturally flows through the space between the fibers due to a capillary phenomenon. Thereafter, the small population of the microorganisms attached to the surface of the fiber gradually increases as the filtration progresses, and has a microbial colony (for example, a colony of activated sludge) that exhibits a filtering function with a minute gap inside. Form. That is, by this filtration, the activated sludge as suspended solids contained in the filtered water 11 adheres to the surface of the filtration member 40 as a microbial colony. After that, all or part of the water to be filtered 11 is filtered at a place where it enters a minute gap inside the microbial colony, and then naturally flows through the minute gap by a capillary phenomenon, and then the gap 74 between the fibers 13 is formed. Flow naturally through the capillarity.

【0038】この実験では、ろ過水貯留部49に貯留さ
れたろ過水25は、ポンプ73で抜き出された後、被ろ
過水貯留部45に戻って循環する。送風機69からは、
空気66がノズル72に連続的に(または、必要に応じ
て、もしくは間欠的に)供給される。空気66が、ノズ
ル72から被ろ過水11中に分散して供給されると、ろ
過部材40は、多数の気泡66aにより動いて洗浄され
る。送風機69から逆洗装置68に逆洗用の空気66が
供給されると、この空気66は、導水部61を通ってろ
過部材40に供給される。これにより、逆洗用の空気6
6が、ろ過部材40の繊維間隙間74を水の流れとは逆
方向に流れて、ろ過部材40を逆洗することができる。
大きくなりすぎた微生物コロニーは、逆洗用の空気66
により小さくなるかまたは除去される。逆洗用の流体と
して空気66を使用したので、せっかく処理したろ過水
25を使用しないで済む。
In this experiment, the filtered water 25 stored in the filtered water storage section 49 is extracted by the pump 73 and then returned to the filtered water storage section 45 and circulated. From the blower 69,
Air 66 is continuously (or optionally or intermittently) supplied to the nozzle 72. When the air 66 is dispersed and supplied from the nozzle 72 into the water 11 to be filtered, the filter member 40 is moved and washed by the large number of bubbles 66a. When the backwashing air 68 is supplied from the blower 69 to the backwashing device 68, the air 66 is supplied to the filtering member 40 through the water guiding section 61. This allows for backwashing air 6
6 flows through the interfiber gaps 74 of the filter member 40 in the direction opposite to the flow of water, and the filter member 40 can be backwashed.
Microbial colonies that have grown too large are washed with air for backwashing 66
Will be smaller or eliminated. Since the air 66 is used as the fluid for backwashing, it is not necessary to use the filtered water 25 that has been treated with care.

【0039】図7は、複数のひも状繊維集合体のうちの
一つのひも状繊維集合体43を例にとって、その経時変
化を示している。図7(A)は、ひも状繊維集合体43
に固形物(微生物コロニー75)が付着していない状態
を示している。この状態のときには、被ろ過水11の大
部分は、ひも状繊維集合体43の根元部43aで、ひも
状繊維集合体43の水に浸った表面全体から繊維13の
間の隙間74に入るところでろ過される。繊維間隙間7
4に入れない微生物の小集団は繊維13の表面に付着
し、被ろ過水11は繊維間隙間74を毛管現象により自
然に流れる。ろ過水25は、ひも状繊維集合体43から
流出して、下流側スペース65に流れ込む。時間が経過
すると、図7(B)に示すように、ひも状繊維集合体4
3の根元部43aの表面に微生物の小集団が付着し、こ
の微生物の小集団は、ろ過が進むにつれて次第に大きく
なって、活性汚泥(付着固形物)からなる微生物コロニ
ー75を形成する。微生物コロニー75が付着して周囲
を囲まれたひも状繊維集合体43は、この微生物コロニ
ー75が付着した範囲では、あたかも複数の繊維間隙間
74で構成された擬似パイプ(または、ハニカム)のよ
うな構造をなしている。前記微生物コロニーの内部に
は、ろ過機能を発揮する微小な隙間が形成されている。
したがって、被ろ過水11は、水位差Haに基づく重力
による位置のエネルギーと、水の分子間の凝集力とによ
り、矢印F1に示すように、擬似パイプ内の隙間74を
自然に流れることになる。また、被ろ過水11は、ろ過
機能を発揮する微生物コロニーの内部の微小な隙間を毛
管現象により自然に流れる。
FIG. 7 shows the change with time of one string-shaped fiber assembly 43 of the plurality of string-shaped fiber assemblies as an example. FIG. 7A shows a string-shaped fiber assembly 43.
Shows a state in which no solid matter (microorganism colony 75) is attached. In this state, most of the filtered water 11 is at the root portion 43a of the string-shaped fiber assembly 43 and enters the gap 74 between the fibers 13 from the entire surface of the string-shaped fiber assembly 43 that is immersed in water. Filtered. Gap between fibers 7
A small group of microorganisms that cannot be put in 4 adheres to the surface of the fiber 13, and the filtered water 11 naturally flows through the interfiber gap 74 by the capillary phenomenon. The filtered water 25 flows out from the string-shaped fiber assembly 43 and flows into the downstream space 65. As time passes, as shown in FIG. 7B, the string-shaped fiber assembly 4
A small group of microorganisms adheres to the surface of the root portion 43a of No. 3, and this small group of microorganisms gradually increases as the filtration progresses to form a microbial colony 75 composed of activated sludge (adhered solid matter). The string-like fiber assembly 43 surrounded by the microbial colonies 75 is surrounded by the microbial colonies 75 as if it were a pseudo pipe (or honeycomb) composed of a plurality of inter-fiber gaps 74. It has a simple structure. Inside the microbial colony, minute gaps exhibiting a filtering function are formed.
Therefore, the filtered water 11 naturally flows through the gap 74 in the pseudo pipe as shown by the arrow F1 due to the energy of the position due to gravity based on the water level difference Ha and the cohesive force between water molecules. . Further, the water to be filtered 11 naturally flows through a minute gap inside the microbial colony that exhibits a filtering function by a capillary phenomenon.

【0040】すると、被ろ過水貯留部45内の被ろ過水
11は、付着した微生物コロニー75の先端の近傍の位
置であって、且つ微生物コロニー75が未だ付着してい
ない位置43bで、ひも状繊維集合体43に入る。ま
た、被ろ過水11は、ひも状繊維集合体43の水に浸っ
た表面全体から繊維13の間の隙間74に入るところで
ろ過され、繊維間隙間74に入れない微生物の小集団は
繊維13の表面に付着し、被ろ過水11は繊維間隙間7
4を毛管現象により自然に流れていく。また、被ろ過水
11は、ろ過機能を有する微生物コロニー75の内部の
微小な隙間に入るところでもろ過された後、この微小な
隙間を毛管現象により自然に流れ、次いで、繊維間隙間
74を毛管現象により自然に流れていく。このようにし
て、被ろ過水11のろ過が継続すると、付着した微生物
コロニー75は、図7(C)に示すように、ひも状繊維
集合体43の根元部43aから先端部43cの方向に次
第に成長して大きくなっていく。この状態のときには、
被ろ過水11は、付着した微生物コロニー75の先端7
5aの近傍の位置であって、且つ微生物コロニー75が
未だ付着していない位置43bで、ひも状繊維集合体4
3に入る。また、被ろ過水11は、ひも状繊維集合体4
3の水に浸った表面全体から繊維13の間の隙間74に
入るところでろ過されるとともに、繊維間隙間74に入
れない微生物の小集団は繊維13の表面に付着し、被ろ
過水11は繊維間隙間74を毛管現象により自然に流れ
ていく。また、被ろ過水11は、微生物コロニー75の
内部の微小な隙間に入るところでもろ過された後、この
微小な隙間を毛管現象により自然に流れ、次いで、繊維
間隙間74を毛管現象により自然に流れていく。
Then, the filtered water 11 in the filtered water storage portion 45 is in a string shape at a position near the tip of the attached microbial colony 75 and at a position 43b where the microbial colony 75 is not yet attached. Enter the fiber assembly 43. Further, the filtered water 11 is filtered where it enters the gaps 74 between the fibers 13 from the entire surface of the string-shaped fiber assembly 43 that has been soaked in water, and a small group of microorganisms that cannot enter the inter-fiber gaps 74 is the fibers 13. The water 11 to be filtered adheres to the surface and the interfiber spaces 7
4 flows naturally due to the capillarity. Further, the water to be filtered 11 is filtered even in a minute gap inside the microbial colony 75 having a filtering function, and then naturally flows through the minute gap by a capillary phenomenon, and then the interfiber gap 74 is capillared. It flows naturally by a phenomenon. In this way, when the filtration of the filtered water 11 is continued, the adhered microbial colonies 75 gradually move from the root 43a to the tip 43c of the string-shaped fiber assembly 43 as shown in FIG. 7C. It grows and grows. In this state,
The filtered water 11 is the tip 7 of the attached microbial colony 75.
At a position 43b in the vicinity of 5a and where the microbial colony 75 is not yet attached, the string-shaped fiber assembly 4
Enter 3. Further, the filtered water 11 is the string-shaped fiber assembly 4
3 is filtered where it enters the gaps 74 between the fibers 13 from the entire surface soaked in water, and a small group of microorganisms that do not enter the inter-fiber gaps 74 adhere to the surface of the fibers 13 and the filtered water 11 is It naturally flows through the interstices 74 due to the capillary phenomenon. Further, the water to be filtered 11 is filtered even in a small gap inside the microbial colony 75, then naturally flows through this minute gap by a capillary phenomenon, and then naturally flows through the interfiber gap 74 by a capillary phenomenon. It flows.

【0041】このようにして、微生物コロニー75がひ
も状繊維集合体43の周囲に順次付着することにより、
前記擬似パイプは、ひも状繊維集合体43の先端部43
cの方向に次第に長く延びていく。被ろ過水11は、付
着した微生物コロニー75で囲まれた前記擬似パイプ内
の隙間74を、矢印F2に示すように、水位差Haに基
づく重力による位置のエネルギーと、水の分子間の凝集
力とにより自然に流れる。これにより、被ろ過水11
は、ろ過水25となって下流側スペース65に流れ込
む。被ろ過水11は、繊維13の間の隙間74を毛管現
象により自然に流れるので、付着した微生物コロニー7
5の長さが長くなっても、ろ過を継続することができ
る。
In this way, the microbial colonies 75 are successively attached around the string-like fiber assembly 43,
The pseudo pipe is a tip portion 43 of the string-shaped fiber assembly 43.
It gradually extends in the direction of c. The filtered water 11 has a gap 74 in the pseudo pipe surrounded by the attached microbial colonies 75, as shown by an arrow F2, in the energy of the position due to gravity based on the water level difference Ha and the cohesive force between water molecules. And flow naturally. Thereby, the filtered water 11
Becomes filtered water 25 and flows into the downstream space 65. Since the filtered water 11 naturally flows through the gaps 74 between the fibers 13 by the capillarity, the adhered microbial colonies 7
The filtration can be continued even if the length of 5 becomes long.

【0042】やがて、図7(D)に示すように、微生物
コロニー75がひも状繊維集合体43の先端部43cま
で付着して、ひも状繊維集合体43の水に浸った表面全
体が微生物コロニー75で覆われる。すると、被ろ過水
11は、微生物コロニー75の内部の微小な隙間に入る
ところでろ過された後、この微小な隙間を毛管現象によ
り自然に流れ、次いで、繊維間隙間74を毛管現象によ
り自然に流れていく。やがて、ろ過の速度が低下する
と、空気供給装置67により、ろ過部材40の下方で、
空気66を被ろ過水11中に分散して供給する。する
と、図7(E)に示すように、上昇する多数の気泡66
aにより、ひも状繊維集合体43が動く。その結果、ひ
も状繊維集合体43に付着して大きくなっていた微生物
コロニー75が小さくなるかまたは除去されて、ろ過部
材40が洗浄される。なお、通常は、空気供給装置67
は、空気66を常時水中に供給して、被ろ過水11を曝
気している。したがって、付着した微生物コロニー75
がひも状繊維集合体43の先端部43cのところまで成
長する前に、ろ過部材40を洗浄していることになる。
この洗浄中でも、被ろ過水11は、ひも状繊維集合体4
3の水に浸った表面全体から繊維13の間の隙間74に
入るところでろ過されるとともに、繊維間隙間74に入
れない微生物の小集団は繊維13の表面に付着し、被ろ
過水11は繊維間隙間74を毛管現象により自然に流れ
ていく。したがって、ろ過水25の流量は低下せず、長
時間連続運転することができる。
As shown in FIG. 7D, the microbial colony 75 eventually adheres to the tip portion 43c of the string-like fiber assembly 43, and the entire surface of the string-like fiber assembly 43 immersed in water is a microbial colony. Covered with 75. Then, the filtered water 11 is filtered at a place where it enters a minute gap inside the microbial colony 75, then naturally flows through this minute gap by a capillary phenomenon, and then naturally flows through the interfiber gap 74 by a capillary phenomenon. To go. Eventually, when the speed of filtration decreases, the air supply device 67 causes
The air 66 is dispersed in the filtered water 11 and supplied. Then, as shown in FIG. 7E, a large number of rising bubbles 66 are generated.
The string-shaped fiber assembly 43 moves due to a. As a result, the microbial colony 75 that has adhered to the string-shaped fiber assembly 43 and has grown is reduced or removed, and the filtering member 40 is washed. In addition, normally, the air supply device 67
Constantly supplies air 66 into the water to aerate the filtered water 11. Therefore, the attached microbial colony 75
The filter member 40 has been washed before the diamond-shaped fiber aggregate 43 grows to the tip end portion 43c.
Even during this cleaning, the filtered water 11 causes the string-shaped fiber assembly 4 to
3 is filtered where it enters the gaps 74 between the fibers 13 from the entire surface soaked in water, and a small group of microorganisms that do not enter the inter-fiber gaps 74 adhere to the surface of the fibers 13 and the filtered water 11 is It naturally flows through the interstices 74 due to the capillary phenomenon. Therefore, the flow rate of the filtered water 25 does not decrease, and continuous operation can be performed for a long time.

【0043】ひも状繊維集合体43の根元部43aは、
洗浄したときの動きが少ないので、微生物コロニー75
が付着したまま残る傾向がある。そこで、図7(F)に
示すように、逆洗装置68で、逆洗用の空気66を、導
水部61を通して下流側スペース65に供給する。する
と、空気66は、矢印F3に示すように水の流れとは逆
方向に流れて、下流側スペース65から繊維13の間の
隙間74を通って、ひも状繊維集合体43の表面から外
方(ここでは、被ろ過水貯留部45内の水中)に噴出す
る。これにより、根元部43aに付着していた微生物コ
ロニー75を小さくするかまたは除去することができ
る。このように、空気供給装置67と逆洗装置68を使
用して、ひも状繊維集合体43の全体を洗浄することに
より、ひも状繊維集合体43に付着して大きくなってい
た微生物コロニー75を、全体的に小さくするかまたは
除去することができる。また、水位差Haと活性汚泥の
付着力との間には比例関係があり、水位差Haが小さい
ほど付着力は弱い。したがって、水位差Haの小さい方
が、付着している微生物コロニー75が気泡66aで落
ちやすい。
The root portion 43a of the string-shaped fiber assembly 43 is
Microbe colony 75 because there is little movement when washed
Tends to remain attached. Therefore, as shown in FIG. 7F, the backwashing device 68 supplies the backwashing air 66 to the downstream space 65 through the water guiding section 61. Then, the air 66 flows in the direction opposite to the flow of water as shown by the arrow F3, passes through the gap 74 between the downstream space 65 and the fiber 13, and moves outward from the surface of the string-shaped fiber assembly 43. (Here, it is jetted into the water in the filtered water storage portion 45). This makes it possible to reduce or remove the microbial colony 75 attached to the root portion 43a. In this manner, by cleaning the entire string-shaped fiber assembly 43 by using the air supply device 67 and the backwash device 68, the microbial colony 75 that has been attached to the string-shaped fiber assembly 43 and has grown is large. , Can be made smaller or eliminated altogether. Further, there is a proportional relationship between the water level difference Ha and the adhesive force of the activated sludge, and the smaller the water level difference Ha, the weaker the adhesive force. Therefore, as the water level difference Ha is smaller, the attached microbial colony 75 is more likely to drop by the bubbles 66a.

【0044】[0044]

【表3】 [Table 3]

【0045】表3は、水処理装置46による実験結果を
示している。表3に示すように、水位差Haが30cmと
60cmの場合について、浮遊固形物の濃度(SS)に関
する実験を行なった。その結果、浮遊固形物の濃度(S
S)が大きい原水(被ろ過水)に対して、浮遊固形物の
濃度(SS)が極めて小さい処理水(ろ過水)を得るこ
とができた。水位差Haに関しては、60cmより30cm
の水位差の方が水処理能力が高かった。
Table 3 shows the experimental results obtained with the water treatment device 46. As shown in Table 3, experiments on the concentration (SS) of suspended solids were carried out when the water level difference Ha was 30 cm and 60 cm. As a result, the concentration of suspended solids (S
It was possible to obtain treated water (filtered water) having a very low concentration of suspended solids (SS) with respect to raw water (water to be filtered) having a large S). Regarding the water level difference Ha, 30 cm from 60 cm
The difference in water level was higher in water treatment capacity.

【0046】[0046]

【表4】 [Table 4]

【0047】表4およびこのデータをグラフ化した図8
には、水処理装置46におけるろ過水25の流量の経時
変化を示している。図8の横軸は時間、縦軸はろ過水2
5の流量を示している。この実験では、水位差Haが1
0cm,20cm,30cmの場合と、導水部61にポンプを
接続して、強制的にろ過水25を吸引した場合のデータ
を示している。このポンプのヘッドHは、H=6.5m
である。表4および図8に示すように、水位差Haが2
0cmの場合には、13時間,37時間,61時間,86
時間後に、逆洗装置68でろ過部材40の逆洗を行なっ
た。その結果、付着して大きくなっていた微生物コロニ
ー75が、容易に小さくなるかまたは除去されて、ろ過
水25の流量が回復した。このように、適当な時期に逆
洗装置68でろ過部材40を逆洗すれば、連続運転が可
能であることを確認できた。導水部61にポンプを接続
して、強制的にろ過水25を吸引する実験も行なった。
しかし、この場合には、微生物コロニー75がろ過部材
40に大量に且つ硬く付着して、ろ過部材40が目詰ま
りを起こした。ろ過部材40を洗浄しても、付着した微
生物コロニー75の除去が困難で、水処理能力も回復し
なかった。
Table 4 and FIG. 8 which is a graph of this data.
In the figure, changes over time in the flow rate of the filtered water 25 in the water treatment device 46 are shown. The horizontal axis of FIG. 8 is time, and the vertical axis is filtered water 2
A flow rate of 5 is shown. In this experiment, the water level difference Ha is 1
The data is shown for the cases of 0 cm, 20 cm, and 30 cm, and for the case where a pump is connected to the water guiding section 61 and the filtered water 25 is forcibly sucked. The head H of this pump is H = 6.5m
Is. As shown in Table 4 and FIG. 8, the water level difference Ha is 2
In case of 0 cm, 13 hours, 37 hours, 61 hours, 86
After a lapse of time, the backwash device 68 backwashed the filtration member 40. As a result, the microbial colony 75 that had been attached and enlarged was easily reduced or removed, and the flow rate of the filtered water 25 was recovered. Thus, it was confirmed that continuous operation is possible by backwashing the filter member 40 with the backwash device 68 at an appropriate time. An experiment was also conducted in which a pump was connected to the water conduit 61 to forcibly suck the filtered water 25.
However, in this case, the microbial colony 75 adhered to the filter member 40 in a large amount and hard, and the filter member 40 was clogged. Even if the filtering member 40 was washed, it was difficult to remove the adhered microbial colonies 75, and the water treatment capacity was not recovered.

【0048】(第3の実施形態)図9および図10は、
本発明の第3の実施形態を示す図である。図9は水処理
装置80の構成図、図10は、水処理装置80に使用さ
れるろ過部材40とろ過部材支持部85を示す図であ
る。図10(A),(B)はそれぞれ平面図,正面図、
図10(C)は図10(B)のX−X線断面図である。
図9および図10に示すように、水処理装置80は、被
ろ過水貯留部としての曝気槽82と、ひも状のろ過部材
40と、ろ過部材40から流出するろ過水25を排出さ
せるためのろ過水排出手段83と、ろ過部材40を洗浄
するための洗浄手段84とを備えている。曝気槽82に
は被ろ過水11を貯留し、曝気槽82に設けられたろ過
部材40の全部を被ろ過水11に浸している。これによ
り、被ろ過水11がろ過部材40の水に浸った表面全体
から繊維13の間の隙間74(図7)に入るところで被
ろ過水11はろ過され、繊維間隙間74に入れない微生
物の小集団は繊維13の表面に付着し、被ろ過水11は
繊維間隙間74を毛管現象により自然に流れていく。そ
の後、繊維13の表面に付着した微生物の小集団は、ろ
過が進むにつれて次第に大きくなって、内部に微小な隙
間を有してろ過機能を発揮する微生物コロニー75(図
7)を形成する。その後は、被ろ過水11の全部または
一部は、ろ過機能を有するこの微生物コロニーの内部の
微小な隙間に入るところでろ過された後、この微小な隙
間を毛管現象により自然に流れ、次いで、繊維13間の
隙間74を毛管現象により自然に流れていく。ろ過水2
5は、ろ過部材40から流出して、ろ過水排出手段83
により曝気槽82の外部に排出される。
(Third Embodiment) FIGS. 9 and 10 show
It is a figure which shows the 3rd Embodiment of this invention. FIG. 9 is a configuration diagram of the water treatment device 80, and FIG. 10 is a diagram showing the filtration member 40 and the filtration member support portion 85 used in the water treatment device 80. 10A and 10B are a plan view, a front view, and
10C is a cross-sectional view taken along line XX of FIG.
As shown in FIG. 9 and FIG. 10, the water treatment device 80 is for discharging the aeration tank 82 as the filtered water storage part, the string-shaped filtering member 40, and the filtered water 25 flowing out from the filtering member 40. It comprises a filtered water discharge means 83 and a cleaning means 84 for cleaning the filtering member 40. The filtered water 11 is stored in the aeration tank 82, and the entire filtering member 40 provided in the aeration tank 82 is immersed in the filtered water 11. As a result, the filtered water 11 is filtered where the filtered water 11 enters the gaps 74 (FIG. 7) between the fibers 13 from the entire surface of the filtering member 40 immersed in the water, and the microorganisms that cannot enter the interfiber gaps 74 are filtered. The small group adheres to the surface of the fiber 13, and the filtered water 11 naturally flows through the interfiber gap 74 by a capillary phenomenon. After that, the small population of microorganisms attached to the surface of the fiber 13 gradually increases as the filtration proceeds, and forms a microbial colony 75 (FIG. 7) that has a minute gap inside and exhibits a filtering function. After that, all or part of the water to be filtered 11 is filtered where it enters a minute gap inside the microbial colony having a filtering function, and then naturally flows through the minute gap by capillary action, and then the fiber It naturally flows through the gap 74 between the layers 13 due to the capillary phenomenon. Filtered water 2
5 flows out from the filtering member 40, and the filtered water discharge means 83
Is discharged to the outside of the aeration tank 82.

【0049】ろ過部材40は、細長い複数のひも状繊維
集合体43の集合により構成されている。曝気槽82内
の被ろ過水11の水位Lbは、図示しない水位調整手段
により常時一定に維持されている。ろ過水排出手段83
は、ろ過部材支持部85,導水部86および水位差設定
手段87を備えている。ろ過部材支持部85は、曝気槽
82の内部に設けられている。導水部86は、ろ過部材
支持部85に連通し、ろ過部材40から流出するろ過水
25を曝気槽82の外部に流すためのものである。水位
差設定手段87は、ろ過水25の下流側水位Laが被ろ
過水11の水位Lbより低くなるように、水位差Haを
設定する機能を有している。
The filtering member 40 is composed of a collection of a plurality of elongated fiber-shaped fiber assemblies 43. The water level Lb of the filtered water 11 in the aeration tank 82 is always kept constant by a water level adjusting means (not shown). Filtered water discharge means 83
Is provided with a filtering member supporting portion 85, a water guiding portion 86 and a water level difference setting means 87. The filtering member support portion 85 is provided inside the aeration tank 82. The water guiding portion 86 communicates with the filtering member support portion 85 and flows the filtered water 25 flowing out of the filtering member 40 to the outside of the aeration tank 82. The water level difference setting means 87 has a function of setting the water level difference Ha so that the downstream water level La of the filtered water 25 becomes lower than the water level Lb of the filtered water 11.

【0050】ろ過部材支持部85は、被ろ過水11との
間を仕切るための仕切り壁88でろ過部材40を支持し
ている。ろ過部材支持部85は、断面円形の同径ソケッ
トからなる複数(または、1個)の円筒状の仕切り壁8
8と、仕切り壁88どうしを連結するための複数(また
は、1個)の円筒状の同径ソケット89とを有してい
る。また、ろ過部材支持部85は、先端に位置する一の
仕切り壁88の先端部に被せられた有底円筒状のキャッ
プ89aと、根元に位置する他の仕切り壁88の端部を
覆って嵌合し固着された断面円形の異径ソケット90と
を有している。各仕切り壁88には、中心軸線と平行な
方向に複数(ここでは、八つ)のスリット91が、仕切
り壁88の外部と内部を連通するように貫通形成されて
いる。仕切り壁88の外部は、被ろ過水11が曝気槽8
2に貯留されるスペースである。仕切り壁88の内部
は、ろ過水25が流れる下流側スペース65になってい
る。
The filtering member supporting portion 85 supports the filtering member 40 with a partition wall 88 for partitioning the water to be filtered 11. The filtering member support portion 85 includes a plurality of (or one) cylindrical partition walls 8 each having a socket having the same diameter and a circular cross section.
8 and a plurality of (or one) cylindrical sockets 89 of the same diameter for connecting the partition walls 88. Further, the filter member supporting portion 85 is fitted so as to cover the end portion of the partition wall 88 located at the tip end and the end portion of the other partition wall 88 located at the root, and the bottom end cylindrical cap 89a. It has a different-diameter socket 90 having a circular cross section that is fixed to each other. A plurality of (here, eight) slits 91 are formed in each partition wall 88 in a direction parallel to the central axis so as to communicate the outside and the inside of the partition wall 88. The filtered water 11 is aerated on the outside of the partition wall 88.
It is a space stored in 2. The inside of the partition wall 88 is a downstream space 65 through which the filtered water 25 flows.

【0051】スリット91には、ろ過部材40がスリッ
ト91を塞いで隙間がないように係合している。これに
より、被ろ過水11は、ろ過部材40の内部を通らない
で直接下流側スペース65にショートパスすることはな
い。スリット91で仕切り壁88に支持されたろ過部材
40は、仕切り壁88から外方に延びて全体的に被ろ過
水11に浸されている。異径ソケット90は、仕切り壁
88に嵌合する大径部92と、下流側に設けられた小径
の出口管93と、大径部92と出口管93を連結する円
錐状部94とを有している。出口管93は、曝気槽82
に取付けられた排出管95に接続されている。図示する
ように、出口管93を横方向に向けて、ろ過部材支持部
85を全体的にほぼ水平方向に配置することにより、ろ
過部材40を均一に逆洗することができる。
The filter member 40 is engaged with the slit 91 so as to close the slit 91 and leave no gap. As a result, the filtered water 11 does not pass through the inside of the filtering member 40 and does not short-pass directly to the downstream space 65. The filtering member 40 supported by the partition wall 88 by the slit 91 extends outward from the partition wall 88 and is totally immersed in the filtered water 11. The different-diameter socket 90 has a large-diameter portion 92 fitted to the partition wall 88, a small-diameter outlet pipe 93 provided on the downstream side, and a conical portion 94 connecting the large-diameter portion 92 and the outlet pipe 93. is doing. The outlet pipe 93 is the aeration tank 82.
Is connected to a discharge pipe 95 attached to the. As shown in the drawing, the filtering member 40 can be uniformly backwashed by arranging the outlet member 93 in the horizontal direction and arranging the filtering member supporting portion 85 in a substantially horizontal direction as a whole.

【0052】ろ過部材40から流出したろ過水25は、
下流側スペース65から出口管93を通って排出管95
に流れる。曝気槽82の外部には、ろ過水用配管96が
設けられている。排出管95とろ過水用配管96によ
り、導水部86が構成されている。ろ過水用配管96
は、排出管95と水位差設定手段87に接続されてお
り、排出管95を流れるろ過水25を水位差設定手段8
7に導いている。ろ過水用配管96には、逆洗作業時な
どに制御信号により開閉動作する電動弁97が設けられ
ている。洗浄手段84は、空気供給装置98と逆洗装置
99を備えている。空気供給装置98は、曝気槽82に
設けられており、ろ過部材40より下方で、空気66を
被ろ過水11中に分散して供給可能である。逆洗装置9
9は、ろ過水排出手段83の流路を介して、ろ過部材4
0に逆洗用の空気66を供給可能である。
The filtered water 25 flowing out from the filtering member 40 is
Outlet pipe 95 from downstream space 65 through outlet pipe 93
Flow to. A filtered water pipe 96 is provided outside the aeration tank 82. The discharge pipe 95 and the filtered water pipe 96 form a water conduit 86. Filtered water piping 96
Is connected to the discharge pipe 95 and the water level difference setting means 87, and the filtered water 25 flowing through the discharge pipe 95 is supplied to the water level difference setting means 8
Leading to 7. The filtered water pipe 96 is provided with an electric valve 97 that opens and closes in response to a control signal during backwashing work. The cleaning means 84 includes an air supply device 98 and a backwash device 99. The air supply device 98 is provided in the aeration tank 82, and can supply the air 66 dispersed in the filtered water 11 below the filtering member 40. Backwash device 9
9 is a filter member 4 via the flow path of the filtered water discharge means 83.
It is possible to supply backwash air 66 to 0.

【0053】空気供給装置98は、曝気用送風機100
により供給された空気66を、曝気槽82の下部に複数
設けられたノズル72に、曝気用配管101により供給
している。空気66は、ノズル72から被ろ過水11中
に分散して供給される。空気66の供給により、被ろ過
水11を曝気するとともに、多数の気泡66aでろ過部
材40の洗浄を行なっている。空気供給装置98による
空気66の供給は、連続的に行なっているが間欠的であ
ってもよい。逆洗装置99は、圧縮した空気66を供給
可能な逆洗用送風機110と、逆洗用送風機110とろ
過水用配管96を接続するための逆洗用配管111と、
ろ過水用配管96に設けられた電動弁97と、逆洗用配
管111に接続されて開閉動作を行う電動弁112と、
逆洗用配管111に接続された逆止弁112aと、制御
部113とを有している。逆洗用配管111は、下方の
排出管95用の供給位置114と上方の排出管95用の
供給位置114で、それぞれ過水用配管96に接続され
ている。空気66は、逆洗用送風機110から、逆洗用
配管111を介して必要に応じて(または、間欠的に)
供給される。電動弁97は、空気66の供給位置114
より下流側(ろ過水25が流れる下流側)に配置されて
いる。制御部113は、逆洗用送風機110,電動弁9
7,電動弁112にそれぞれ制御信号を出力する。
The air supply device 98 is an aeration blower 100.
The air 66 supplied by the above is supplied to the plurality of nozzles 72 provided in the lower portion of the aeration tank 82 by the aeration pipe 101. The air 66 is dispersed and supplied from the nozzle 72 into the filtered water 11. By supplying the air 66, the filtered water 11 is aerated, and the filter member 40 is cleaned by the large number of bubbles 66a. Although the air 66 is continuously supplied by the air supply device 98, it may be intermittently supplied. The backwash device 99 is capable of supplying the compressed air 66, and a backwash blower 110, and a backwash pipe 111 for connecting the backwash blower 110 and the filtered water pipe 96.
A motor-operated valve 97 provided in the filtered water pipe 96, a motor-operated valve 112 connected to the backwashing pipe 111 to open and close,
It has a check valve 112a connected to the backwash pipe 111 and a control unit 113. The backwash pipe 111 is connected to the overwater pipe 96 at a supply position 114 for the lower discharge pipe 95 and a supply position 114 for the upper discharge pipe 95, respectively. The air 66 is supplied from the backwash blower 110 through the backwash pipe 111 as needed (or intermittently).
Supplied. The motor-operated valve 97 has a supply position 114 for the air 66.
It is arranged on the more downstream side (downstream side through which the filtered water 25 flows). The control unit 113 includes a backwash blower 110 and an electric valve 9.
7. Control signals are output to the motor-operated valve 112.

【0054】水位差設定手段87は、水位差Haを約1
0cmないし約100cmの範囲で調整可能になっている。
水位差設定手段87は、ろ過水25を貯留するためのろ
過水貯留部49と、ろ過水貯留部49に設けられ、水位
差Haを調整するための調整部115とを備えている。
調整部115は、ろ過水貯留部49に固定されろ過水用
配管96に連通する固定筒116と、固定筒116に嵌
合して、上下方向に移動可能な移動筒117とを有して
いる。固定筒116は、有底筒状で上方が開放されてい
る。移動筒117は、固定筒116に対して上下方向の
所望の位置に位置決め調整できるようになっており、固
定筒116の内部と連通して上方が開放されている。移
動筒117を上下方向に移動させ、ろ過水25の下流側
水位Laの高さを調整することにより、水位差Haを設
定することができる。したがって、ろ過水用配管96を
流れたろ過水25は、固定筒116と移動筒117の内
部を上昇し、移動筒117の上端部でオーバーフローし
て、ろ過水貯留部49に貯留される。貯留されたろ過水
25は、矢印F4に示すように処理水として外部に排出
される。移動筒117の上端部でオーバーフローする位
置が、ろ過水25の下流側水位Laである。なお、調整
部115は、高さ調整可能な「せき」を設けて、ろ過水
25がせきでオーバーフローするようにしてもよい。
The water level difference setting means 87 sets the water level difference Ha to about 1
It is adjustable from 0 cm to about 100 cm.
The water level difference setting means 87 includes a filtered water storage section 49 for storing the filtered water 25, and an adjusting section 115 provided in the filtered water storage section 49 for adjusting the water level difference Ha.
The adjustment unit 115 includes a fixed cylinder 116 that is fixed to the filtered water storage unit 49 and communicates with the filtered water pipe 96, and a movable cylinder 117 that fits in the fixed cylinder 116 and is vertically movable. . The fixed cylinder 116 has a bottomed cylindrical shape and is open at the top. The movable cylinder 117 can be positioned and adjusted at a desired position in the vertical direction with respect to the fixed cylinder 116, and communicates with the inside of the fixed cylinder 116 to open the upper side. The water level difference Ha can be set by moving the moving cylinder 117 in the vertical direction and adjusting the height of the downstream water level La of the filtered water 25. Therefore, the filtered water 25 flowing through the filtered water pipe 96 rises in the fixed cylinder 116 and the movable cylinder 117, overflows at the upper end of the movable cylinder 117, and is stored in the filtered water reservoir 49. The stored filtered water 25 is discharged to the outside as treated water as shown by arrow F4. The position at which the upper end of the moving cylinder 117 overflows is the downstream water level La of the filtered water 25. The adjusting unit 115 may be provided with a height adjustable “cough” so that the filtered water 25 overflows due to the cough.

【0055】次に、水処理装置80の動作について説明
する。移動筒117の上端部の高さ位置(すなわち、ろ
過水の下流側水位La)は、曝気槽82内の被ろ過水1
1の水位Lbより低くなっている。その結果、ろ過部材
支持部85の内部の下流側スペース65,排出管95,
ろ過水用配管96,固定筒116および移動筒117
は、ろ過水25で満たされている。また、ろ過部材40
の全部が被ろ過水11に浸されている。初めに、調整部
115で、ろ過水25の下流側水位Laを高さ調整する
ことにより、水位差Haを最適の値に設定しておく。す
ると、被ろ過水11がろ過部材40の水に浸った表面全
体から繊維13の間の隙間74に入るところで被ろ過水
11はろ過され、繊維間隙間74に入れない微生物の小
集団は繊維13の表面に付着し、被ろ過水11は繊維間
隙間74を毛管現象により自然に流れていく。その後、
繊維13の表面に付着した微生物の小集団は、ろ過が進
むにつれて次第に大きくなって、内部に微小な隙間を有
してろ過機能を発揮する微生物コロニーを形成する。そ
の後は、被ろ過水11の全部または一部は、ろ過機能を
有するこの微生物コロニーの内部の微小な隙間に入ると
ころでろ過された後、この微小な隙間を毛管現象により
自然に流れ、次いで、繊維13間の隙間74を毛管現象
により自然に流れていく。曝気用送風機100から、曝
気用配管101を介してノズル72に空気66が常時供
給されると、空気66は被ろ過水11中に分散する。こ
れにより、曝気槽82中の被ろ過水11が曝気されると
ともに、気泡66aでろ過部材40の洗浄が行われる。
ろ過水25は、ろ過部材40から流出して下流側スペー
ス65に流れ込む。そして、ろ過水25は、下流側スペ
ース65から、排出管95とろ過水用配管96を流れ
る。次いで、ろ過水25は、調整部115で移動筒11
7の上端部からオーバーフローしてろ過水貯留部49に
貯留された後、矢印F4に示すように、処理水として排
出される。
Next, the operation of the water treatment device 80 will be described. The height position of the upper end of the moving cylinder 117 (that is, the downstream water level La of the filtered water) is the filtered water 1 in the aeration tank 82.
It is lower than the water level Lb of 1. As a result, the downstream space 65 inside the filter member supporting portion 85, the discharge pipe 95,
Filtered water pipe 96, fixed cylinder 116 and movable cylinder 117
Is filled with filtered water 25. In addition, the filtering member 40
Is immersed in the filtered water 11. First, the adjustment unit 115 adjusts the height of the downstream water level La of the filtered water 25 to set the water level difference Ha to an optimum value. Then, the filtered water 11 is filtered where the filtered water 11 enters the gaps 74 between the fibers 13 from the entire surface of the filtering member 40 soaked in water, and the small population of microorganisms that cannot enter the inter-fiber gaps 74 is the fibers 13. The water 11 to be filtered adheres to the surface of the fiber and naturally flows through the interfiber gap 74 by the capillary phenomenon. afterwards,
The small population of microorganisms attached to the surface of the fiber 13 gradually increases as the filtration progresses to form a microbial colony that has a minute gap inside and exhibits a filtering function. After that, all or part of the water to be filtered 11 is filtered where it enters a minute gap inside the microbial colony having a filtering function, and then naturally flows through the minute gap by capillary action, and then the fiber It naturally flows through the gap 74 between the layers 13 due to the capillary phenomenon. When the air 66 is constantly supplied from the aeration blower 100 to the nozzle 72 via the aeration pipe 101, the air 66 is dispersed in the filtered water 11. As a result, the filtered water 11 in the aeration tank 82 is aerated, and the filtering member 40 is washed with the bubbles 66a.
The filtered water 25 flows out of the filtering member 40 and flows into the downstream space 65. Then, the filtered water 25 flows from the downstream space 65 through the discharge pipe 95 and the filtered water pipe 96. Next, the filtered water 25 is transferred to the moving cylinder 11 by the adjusting unit 115.
After overflowing from the upper end of 7 and being stored in the filtered water storage part 49, it is discharged as treated water as shown by arrow F4.

【0056】ろ過部材40のひも状繊維集合体43の根
元部43aに、活性汚泥による微生物コロニー75(図
7)が付着して大きくなりすぎると、ろ過水25の流量
が低下するので、逆洗用の空気66が供給される。この
逆洗時には、制御部113から逆洗開始の制御信号が出
力される。この信号により、逆洗用送風機110をオン
し、ろ過水25の流路の電動弁97を動作させて流路を
閉じる。そして、空気66を供給するための逆洗用配管
111の電動弁112を動作させて、空気66の流路を
開く。これにより、逆洗用送風機110から供給される
空気66は、逆洗用配管111,排出管95,下流側ス
ペース65を通る。そして、空気66は、スリット91
に係合しているろ過部材40の繊維13の間の隙間74
に入った後、ろ過部材40の表面から被ろ過水11中に
噴出される。この空気66の噴出は、ろ過部材40の根
元部43aで最も激しく起こる。その結果、根元部43
aに付着していた微生物コロニー75(図7)が小さく
なるかまたは除去されて、ろ過部材40が全体的に洗浄
される。
When the microbial colony 75 (FIG. 7) due to activated sludge adheres to the root portion 43a of the string-shaped fiber assembly 43 of the filtration member 40 and becomes too large, the flow rate of the filtered water 25 decreases, so backwashing is performed. Air 66 is supplied. At the time of this backwashing, the control unit 113 outputs a control signal to start backwashing. With this signal, the backwash blower 110 is turned on, and the electric valve 97 in the flow path of the filtered water 25 is operated to close the flow path. Then, the electric valve 112 of the backwash pipe 111 for supplying the air 66 is operated to open the flow path of the air 66. Thereby, the air 66 supplied from the backwash blower 110 passes through the backwash pipe 111, the discharge pipe 95, and the downstream space 65. Then, the air 66 enters the slit 91.
74 between the fibers 13 of the filtration member 40 engaging the
After entering, the water is jetted from the surface of the filtering member 40 into the filtered water 11. The ejection of the air 66 occurs most intensely at the root portion 43a of the filtering member 40. As a result, the root portion 43
The microbial colony 75 (FIG. 7) attached to a is reduced or removed, and the filtration member 40 is entirely washed.

【0057】ろ過部材40の逆洗が完了すると、制御部
113から逆洗完了の制御信号が出力される。この信号
により、電動弁97を動作させてろ過水用配管96を開
き、電動弁112を動作させて逆洗用配管111を閉
じ、逆洗用送風機110をオフする。これにより、逆洗
前の状態に戻るので、再び被ろ過水11のろ過を行うこ
とができる。このようにして、空気供給装置98と逆洗
装置99でろ過部材40を洗浄しているので、水処理装
置80を長時間自動的に連続運転することができる。
When the backwashing of the filtering member 40 is completed, the control unit 113 outputs a backwashing completion control signal. By this signal, the motor-operated valve 97 is operated to open the filtered water pipe 96, the motor-operated valve 112 is operated to close the backwashing pipe 111, and the backwashing blower 110 is turned off. As a result, the state before backwashing is restored, and the filtered water 11 can be filtered again. In this way, since the filtering member 40 is cleaned by the air supply device 98 and the backwash device 99, the water treatment device 80 can be continuously and automatically operated for a long time.

【0058】第1ないし第3の実施形態では、被ろ過水
11とろ過水25を自然に流すために、水位差Haに基
づく重力による位置のエネルギーを利用している。な
お、水位差Haに代えて、この水位差Haに相当するヘ
ッドを有するポンプでろ過水25をゆっくりと吸引して
もよい。こうすることにより、被ろ過水11は、ポンプ
によるエネルギーと、水の分子間の凝集力とにより、ろ
過部材10,40の表面から繊維13の間の隙間74に
入って、繊維間隙間74を自然に下流側に流れることに
より、ろ過される。繊維13の表面に付着した微生物の
小集団は、ろ過が進むにつれて次第に大きくなって、内
部に微小な隙間を有してろ過機能を発揮する微生物コロ
ニーを形成する。その後は、被ろ過水11の全部または
一部は、微生物コロニーの内部の微小な隙間に入るとこ
ろでろ過された後、前記微小な隙間を毛管現象により自
然に流れる。なお、ろ過部材支持部60,85のスリッ
ト64,91を広くして、ろ過部材40の根元部を緩く
支持した状態でろ過を行うと、ひも状繊維集合体43の
主として根元部で水を吸ってろ過が行われる。また、ス
リット64,91を狭くして、ろ過部材40の根元部を
若干圧縮した状態で支持してろ過を行うと、ひも状繊維
集合体43の表面全体(外周面と先端面)で水を吸って
ろ過が行われる。これら二つの現象は、実験によって確
認されている。なお、本発明におけるひも状繊維集合体
12,43には、前記各実施形態で示すもののほか、直
径の細い糸状の繊維集合体や、たて糸と若干のよこ糸か
らなる繊維集合体なども含まれる。また、たとえば、布
状の不織布などを細く切って、若干幅が広くて細長い形
状のひも状繊維集合体を成形する場合であってもよい。
第2および第3の実施形態では、ろ過部材40の全部を
被ろ過水1に浸す場合を示したが、ろ過部材40の全部
ではなくて大部分を被ろ過水11に浸す場合であっても
よい。仕切り壁63,88が円筒形の場合を示したが、
被ろ過水と下流側スペースの間を仕切るものであれば、
平面状または多角形の筒状などであってもよい。また、
ろ過部材支持部60,85を全体的にほぼ水平方向(横
方向)に配置する場合を示したが、ろ過部材支持部6
0,85を、全体的にほぼ垂直方向(縦方向)、また
は、水平方向に対して傾斜した方向(斜め方向)に配置
する場合であってもよい。
In the first to third embodiments, in order to cause the filtered water 11 and the filtered water 25 to flow naturally, the energy of the position due to gravity based on the water level difference Ha is used. Instead of the water level difference Ha, the filtered water 25 may be slowly sucked by a pump having a head corresponding to the water level difference Ha. By doing so, the filtered water 11 enters the gap 74 between the fibers 13 from the surfaces of the filtering members 10 and 40 by the energy of the pump and the cohesive force between the molecules of the water, and the inter-fiber gap 74 is formed. It is filtered by naturally flowing to the downstream side. The small population of microorganisms attached to the surface of the fiber 13 gradually increases as the filtration progresses to form a microbial colony that has a minute gap inside and exhibits a filtering function. After that, all or part of the water to be filtered 11 is filtered where it enters a minute gap inside the microbial colony, and then naturally flows through the minute gap by a capillary phenomenon. In addition, when the filtration members 40, 85 are widened to have the slits 64, 91 and the root portion of the filtration member 40 is loosely supported, when the filtration is performed, water is mainly absorbed by the root portion of the string-shaped fiber assembly 43. Filtration is performed. Moreover, when the slits 64 and 91 are narrowed and the root portion of the filtration member 40 is supported in a slightly compressed state to perform filtration, water is collected on the entire surface (the outer peripheral surface and the tip surface) of the string-shaped fiber assembly 43. It is sucked and filtered. These two phenomena have been confirmed by experiments. The string-shaped fiber aggregates 12 and 43 in the present invention include, in addition to those shown in each of the above-described embodiments, thread-like fiber aggregates having a small diameter, fiber aggregates including warp yarns and some weft yarns, and the like. Alternatively, for example, a cloth-like non-woven fabric may be cut into small pieces to form a string-like fiber assembly having a slightly wider width and an elongated shape.
In the second and third embodiments, the case where the entire filtration member 40 is immersed in the water to be filtered 1 has been shown, but even when the majority of the filtration member 40 is immersed in the water to be filtered 11 instead of the whole. Good. Although the case where the partition walls 63 and 88 are cylindrical is shown,
If it is a partition between the filtered water and the downstream space,
It may be flat or polygonal tubular. Also,
Although the case where the filtering member supporting portions 60 and 85 are arranged in a substantially horizontal direction (lateral direction) as a whole is shown, the filtering member supporting portion 6 is shown.
0 and 85 may be arranged in a substantially vertical direction (longitudinal direction) or in a direction inclined with respect to the horizontal direction (oblique direction).

【0059】上述のように、本発明のひも状のろ過部材
10,40は、複数のひも状繊維集合体12,43が集
合してすだれ状になっているので、目詰まりを起こしに
くい。また、洗浄時にひも状繊維集合体12,43が簡
単にほぐれて、ろ過部材10,40の内部まで容易に且
つ十分に洗浄して、水処理能力を回復させることができ
る。しかも、ろ過部材10,40に対して、微生物コロ
ニー(固形物)は、強制的に付着したわけではなく自然
に付着しているので、ろ過部材10,40は目詰まりを
起こしにくい。したがって、洗浄手段33,48,5
6,84でろ過部材を洗浄すれば、弱い付着力で付着し
て大きくなっている微生物コロニーを、容易に小さくす
るかまたは除去することができる。
As described above, since the string-shaped filter members 10 and 40 of the present invention are formed into a comb-like shape by assembling a plurality of string-shaped fiber aggregates 12 and 43, clogging is less likely to occur. Further, the string-shaped fiber aggregates 12, 43 can be easily loosened at the time of washing, and the insides of the filtering members 10, 40 can be easily and sufficiently washed to restore the water treatment capacity. Moreover, since the microbial colonies (solid matter) are not forcibly attached to the filter members 10 and 40 but are naturally attached thereto, the filter members 10 and 40 are less likely to be clogged. Therefore, the cleaning means 33, 48, 5
By washing the filter member with 6,84, it is possible to easily reduce or remove the microbial colony that is attached with a weak adhesive force and is growing.

【0060】被ろ過水11は、ろ過部材10,40の水
に浸った表面全体から繊維の間の隙間に入るところでろ
過され、前記繊維間隙間に入れない微生物の小集団は前
記繊維の表面に付着し、被ろ過水11は前記繊維間隙間
を毛管現象により自然に流れていく。その後、前記繊維
の表面に付着した微生物の小集団は、ろ過が進むにつれ
て次第に大きくなって、内部に微小な隙間を有してろ過
機能を発揮する微生物コロニーを形成する。その後は、
被ろ過水11の全部または一部は、この微生物コロニー
の内部の前記微小な隙間に入るところでろ過された後、
この微小な隙間を毛管現象により自然に流れ、次いで前
記繊維間隙間を毛管現象により自然に流れていく。この
ようにして、被ろ過水11中の浮遊固形物(たとえば、
外径が数μm)は、ろ過機能を発揮する微生物コロニー
の内部の微小な隙間(たとえば、内径が約1μm以下)
でろ過されるので、浮遊固形物は、ろ過部材10,40
の内部を通り抜けることなく、ひも状繊維集合体12,
43に付着して除去される。これにより、ろ過水25は
清浄化されその水質が向上する。ひも状のろ過部材1
0,40によりろ過を行うので、ろ過面積を極めて大き
くすることができる。また、ひも状繊維集合体12,4
3は、これが絡まらない程度に長くしてろ過面積を大き
くすれば、水処理能力を自在に向上させることができ
る。
The water to be filtered 11 is filtered from the entire surface of the filtering members 10 and 40 immersed in water into the spaces between the fibers, and a small group of microorganisms that cannot enter the space between the fibers is collected on the surface of the fibers. The adhered water 11 to be filtered naturally flows through the inter-fiber gaps by a capillary phenomenon. After that, the small population of microorganisms attached to the surface of the fiber gradually increases as the filtration proceeds, and forms a microbial colony that has a minute gap inside and exhibits a filtering function. After that,
After the whole or part of the water to be filtered 11 is filtered while entering the minute gaps inside the microbial colony,
The minute gap naturally flows by the capillary phenomenon, and then the interfiber gap naturally flows by the capillary phenomenon. In this way, suspended solids in the filtered water 11 (for example,
(Outer diameter is several μm) is a minute gap inside a microbial colony that exhibits a filtering function (for example, inner diameter is about 1 μm or less)
The suspended solids are filtered by the filtration members 10, 40.
Without passing through the inside of the cord 12,
It adheres to 43 and is removed. As a result, the filtered water 25 is purified and the quality of the water is improved. String-shaped filter member 1
Since the filtration is performed with 0, 40, the filtration area can be made extremely large. In addition, the string-shaped fiber aggregate 12, 4
In No. 3, the water treatment capacity can be freely improved by increasing the filtration area by making it long enough not to be entangled.

【0061】ひも状のろ過部材10,40を使用してい
る本発明では、汚泥を沈殿させる必要がないので、活性
汚泥法や凝集沈殿法などで従来必要であった沈殿槽が不
要になる。したがって、活性汚泥などが浮いてしまわな
いように設備の維持管理に細心の注意を払う必要はな
い。また、曝気槽における活性汚泥の濃度を、従来の上
限値(たとえば、約5,000ppmないし約10,000p
pm)より大幅に高く(たとえば、約50%ないし約10
0%アップ)することも可能である。その結果、水処理
の能力を向上させることができる。
In the present invention using the string-shaped filter members 10 and 40, since it is not necessary to settle sludge, the settling tank which has been conventionally required in the activated sludge method or the coagulating sedimentation method is unnecessary. Therefore, it is not necessary to pay close attention to the maintenance of the equipment so that activated sludge does not float up. In addition, the concentration of activated sludge in the aeration tank can be set to the conventional upper limit value (for example, about 5,000 ppm to about 10,000 p
pm) (eg, about 50% to about 10)
It is also possible to increase it by 0%). As a result, the capacity of water treatment can be improved.

【0062】上水場において、従来は、原水に薬品を注
入して加圧浮上法などで水処理を行う場合があった。こ
れに対して、本発明では、薬品を使用しないので、ろ過
水を飲料水として使用しても安全でありランニングコス
トも低い。原水のCODを低減するのに従来は活性炭を
使用する場合があったが、本発明では、活性炭を使用せ
ずに、簡素な構成で且つ安価にCODを低減することが
できる。第1ないし第3の実施形態では、被ろ過水およ
びろ過水の移動は、水位差に基づく重力による位置のエ
ネルギーと水の分子間の凝集力によるものであり、この
間に動力は全く使われていない。また、水を循環する必
要もない。したがって、従来の水処理技術と比べて、動
力が小さくなるので、水処理装置の消費エネルギーを少
なくすることができる。騒音もほとんど発生しない。な
お、各図中同一符号は同一または相当部分を示す。
Conventionally, in the tap water field, there have been cases where chemicals are injected into raw water and water treatment is carried out by a pressure floating method or the like. On the other hand, in the present invention, since no chemicals are used, it is safe to use filtered water as drinking water and the running cost is low. Conventionally, activated carbon was sometimes used to reduce the COD of raw water, but in the present invention, COD can be reduced at a low cost with a simple configuration without using activated carbon. In the first to third embodiments, the water to be filtered and the filtered water are moved by the energy of the position due to the gravity based on the water level difference and the cohesive force between the water molecules, and no power is used during this period. Absent. Also, there is no need to circulate water. Therefore, compared with the conventional water treatment technology, the power consumption becomes smaller, and the energy consumption of the water treatment device can be reduced. Almost no noise is generated. In the drawings, the same reference numerals indicate the same or corresponding parts.

【0063】[0063]

【発明の効果】本発明は上述のように構成したので、ろ
過部材が目詰まりを起こしにくく、また、ろ過部材を容
易に洗浄して水処理能力を回復させることができる。
Since the present invention is configured as described above, the filter member is less likely to be clogged, and the filter member can be easily washed to restore the water treatment capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】毛管現象を説明するための図である。FIG. 1 is a diagram for explaining a capillary phenomenon.

【図2】第1の実施形態を示す図である。FIG. 2 is a diagram showing a first embodiment.

【図3】ろ過部材の部分拡大図である。FIG. 3 is a partially enlarged view of a filtering member.

【図4】図4ないし図8は本発明の第2の実施形態を示
す図で、図4はろ過部材を使用した場合の概略構成図で
ある。
4 to 8 are views showing a second embodiment of the present invention, and FIG. 4 is a schematic configuration diagram when a filtering member is used.

【図5】より具体的な水処理装置を示す概略構成図であ
る。
FIG. 5 is a schematic configuration diagram showing a more specific water treatment device.

【図6】図5のVI−VI線断面図である。6 is a sectional view taken along line VI-VI of FIG.

【図7】一つのひも状繊維集合体の経時変化を示す概略
構成図である。
FIG. 7 is a schematic configuration diagram showing a change with time of one string-shaped fiber assembly.

【図8】図5に示す水処理装置におけるろ過水の流量の
経時変化を示すグラフである。
8 is a graph showing a change over time in the flow rate of filtered water in the water treatment device shown in FIG.

【図9】図9および図10は本発明の第3の実施形態を
示す図で、図9は水処理装置の構成図である。
9 and 10 are views showing a third embodiment of the present invention, and FIG. 9 is a configuration diagram of a water treatment device.

【図10】図9に示す水処理装置に使用されるろ過部材
とろ過部材支持部を示す図である。
FIG. 10 is a view showing a filtering member and a filtering member supporting portion used in the water treatment device shown in FIG.

【図11】本発明の関連技術を説明するための図であ
る。
FIG. 11 is a diagram for explaining a related technique of the present invention.

【符号の説明】[Explanation of symbols]

10,40 ろ過部材 11 被ろ過水 12,43 ひも状繊維集合体 13 繊維 19,47,57,83 ろ過水排出手段 20,41,46,80 水処理装置 21,45 被ろ過水貯留部 25 ろ過水 33,48,56,84 洗浄手段 50 パイプ(導水部) 54,66 空気(流体) 55,67,98 空気供給装置 60,85 ろ過部材支持部 61,86 導水部 62,87 水位差設定手段 63,88 仕切り壁 68,99 逆洗装置 74 繊維の間の隙間 75 微生物コロニー 82 曝気槽(被ろ過水貯留部) Ha 水位差 La ろ過水の下流側水位 Lb 被ろ過水の水位 10,40 Filtration member 11 Filtered water 12,43 String-like fiber aggregate 13 fibers 19, 47, 57, 83 Filtered water discharge means 20,41,46,80 Water treatment equipment 21,45 Filtered water reservoir 25 filtered water 33,48,56,84 Cleaning means 50 pipes (water conduit) 54,66 Air (fluid) 55,67,98 Air supply device 60,85 Filter member support 61,86 Water transfer section 62,87 Water level difference setting means 63,88 Partition wall 68,99 Backwash device 74 Gap between fibers 75 Microbial colonies 82 Aeration tank (filtered water storage part) Ha water level difference La Downstream water level of filtered water Lb Water level of filtered water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/12 B01D 29/38 580A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 3/12 B01D 29/38 580A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被ろ過水貯留部に被ろ過水を貯留し、 この被ろ過水貯留部に設けられ細長い複数のひも状繊維
集合体の集合により構成されたろ過部材の一部またはほ
ぼ全部を前記被ろ過水に浸すことにより、 この被ろ過水が前記ろ過部材の水に浸った表面全体から
繊維の間の隙間に入るところで前記被ろ過水はろ過さ
れ、前記繊維間隙間に入れない微生物の小集団は前記繊
維の表面に付着し、前記被ろ過水は前記繊維間隙間を毛
管現象により自然に流れていき、 その後、前記繊維の表面に付着した前記微生物の小集団
は、ろ過が進むにつれて次第に大きくなって、内部に微
小な隙間を有してろ過機能を発揮する微生物コロニーを
形成し、 その後は、前記被ろ過水の全部または一部は、この微生
物コロニーの内部の前記微小な隙間に入るところでろ過
された後、この微小な隙間を毛管現象により自然に流
れ、次いで前記繊維間隙間を毛管現象により自然に流れ
ていき、 ろ過水は、前記ろ過部材から流出して前記被ろ過水貯留
部の外部に排出されるようにしたことを特徴とする毛管
現象を利用した水処理方法。
1. A filter member for storing filtered water in a filtered water storing part, wherein a part or almost all of a filtering member provided in the filtered water storing part and composed of a plurality of long and narrow string-like fiber aggregates is provided. By immersing in the water to be filtered, the water to be filtered is filtered where the water to be filtered enters the gaps between the fibers from the entire surface of the filtering member immersed in the water, and the water to be filtered of the microorganisms that cannot enter the gaps between the fibers. A small group adheres to the surface of the fibers, the water to be filtered naturally flows through the interfiber gaps by a capillary phenomenon, and then the small group of the microorganisms adhered to the surface of the fibers, as the filtration progresses. Gradually grow to form a microbial colony that has a minute gap inside and exhibits a filtering function, and thereafter, all or part of the water to be filtered is in the minute gap inside the microbial colony. Where to enter After being filtered by, the micro gap naturally flows through the capillarity, and then the inter-fiber gap naturally flows through the capillarity, and the filtered water flows out from the filtering member and the filtered water storage part. The water treatment method utilizing the capillarity, which is characterized in that the water is discharged to the outside.
【請求項2】 被ろ過水が貯留される被ろ過水貯留部
と、 この被ろ過水貯留部に設けられ、一部またはほぼ全部が
前記被ろ過水に浸され、細長い複数のひも状繊維集合体
の集合により構成されたろ過部材と、 このろ過部材から流出するろ過水を排出させるためのろ
過水排出手段と、 前記ろ過部材を洗浄するための洗浄手段とを備え、 前記被ろ過水は、前記ろ過部材の水に浸った表面全体か
ら繊維の間の隙間に入るところでろ過され、前記繊維間
隙間に入れない微生物の小集団は前記繊維の表面に付着
し、前記被ろ過水は前記繊維間隙間を毛管現象により自
然に流れていき、 その後、前記繊維の表面に付着した前記微生物の小集団
は、ろ過が進むにつれて次第に大きくなって、内部に微
小な隙間を有してろ過機能を発揮する微生物コロニーを
形成し、 その後は、前記被ろ過水の全部または一部は、この微生
物コロニーの内部の前記微小な隙間に入るところでろ過
された後、この微小な隙間を毛管現象により自然に流
れ、次いで前記繊維間隙間を毛管現象により自然に流れ
ていき、 前記ろ過水は、前記ろ過部材から流出して前記ろ過水排
出手段により前記被ろ過水貯留部の外部に排出されるよ
うにしたことを特徴とする毛管現象を利用した水処理装
置。
2. A filtered water storage part for storing filtered water, and a plurality of long and narrow cord-shaped fiber aggregates which are provided in the filtered water storage part and are partially or almost entirely immersed in the filtered water. A filtering member configured by a body assembly, a filtered water discharging unit for discharging filtered water flowing out from the filtering member, and a cleaning unit for cleaning the filtering member, the filtered water is A small group of microorganisms that are filtered from the entire water-immersed surface of the filtering member into the gaps between the fibers and do not enter between the fiber gaps adhere to the surface of the fibers, and the water to be filtered is It naturally flows through the gaps by capillarity, and then the small population of the microorganisms attached to the surface of the fibers gradually increases as the filtration progresses, and has a minute gap inside to exert a filtering function. Microbial colony After that, all or part of the water to be filtered is filtered where it enters the minute gap inside the microbial colony, and then naturally flows through the minute gap by capillarity, and then the fiber. The filtered water naturally flows through the interstices by a capillary phenomenon, and the filtered water flows out from the filtering member and is discharged to the outside of the filtered water storage part by the filtered water discharging means. A water treatment device that uses the capillary phenomenon.
【請求項3】 前記ろ過部材は、そのほぼ全部が前記被
ろ過水に浸されており、 前記ろ過水排出手段は、 前記被ろ過水貯留部の内部に設けられ前記被ろ過水との
間を仕切る仕切り壁を有するとともにこの仕切り壁で前
記ろ過部材を支持するろ過部材支持部と、 このろ過部材支持部に連通し、前記ろ過部材から流出す
る前記ろ過水を前記被ろ過水貯留部の外部に流すための
導水部と、 前記ろ過水の下流側水位が前記被ろ過水の水位より低く
なるように水位差を設定するための水位差設定手段とを
備えたことを特徴とする請求項2に記載の毛管現象を利
用した水処理装置。
3. The filtering member is substantially entirely immersed in the filtered water, and the filtered water discharging means is provided inside the filtered water storage section and is connected to the filtered water. A filtering member supporting part having a partition wall and supporting the filtering member with this partition wall, and the filtered water flowing out from the filtering member communicating with the filtering member supporting part to the outside of the filtered water storage part. The water guide part for flowing, and the water level difference setting means for setting the water level difference so that the downstream side water level of the filtered water is lower than the water level of the filtered water. A water treatment device utilizing the described capillarity.
【請求項4】 前記洗浄手段は、 前記ろ過部材より下方で空気を前記被ろ過水中に分散し
て供給可能なように前記被ろ過水貯留部に設けられた空
気供給装置と、 前記ろ過水排出手段の流路を介して前記ろ過部材に逆洗
用の流体を供給可能な構造とし、大きくなりすぎた前記
微生物コロニーを小さくするかまたは除去するための逆
洗装置とを備えたことを特徴とする請求項2または3に
記載の毛管現象を利用した水処理装置。
4. The air supply device provided in the filtered water storage part so that the cleaning means can disperse and supply air into the filtered water below the filtering member, and the filtered water discharge. A structure capable of supplying a fluid for backwashing to the filtering member via the flow path of the means, and a backwashing device for reducing or removing the microbial colonies that have become too large, The water treatment device utilizing the capillarity according to claim 2 or 3.
【請求項5】 前記逆洗装置は、前記ろ過部材に逆洗用
の空気または水を供給することを特徴とする請求項4に
記載の毛管現象を利用した水処理装置。
5. The water treatment apparatus utilizing capillary action according to claim 4, wherein the backwashing device supplies air or water for backwashing to the filtering member.
【請求項6】 前記水位差設定手段は、前記水位差を約
10cmないし約100cmの範囲で調整可能であることを
特徴とする請求項3,4または5に記載の毛管現象を利
用した水処理装置。
6. The water treatment utilizing capillary action according to claim 3, wherein the water level difference setting means can adjust the water level difference within a range of about 10 cm to about 100 cm. apparatus.
JP2001392922A 2001-12-25 2001-12-25 Water treatment method and apparatus using capillary phenomenon Expired - Fee Related JP3985945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392922A JP3985945B2 (en) 2001-12-25 2001-12-25 Water treatment method and apparatus using capillary phenomenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392922A JP3985945B2 (en) 2001-12-25 2001-12-25 Water treatment method and apparatus using capillary phenomenon

Publications (2)

Publication Number Publication Date
JP2003190715A true JP2003190715A (en) 2003-07-08
JP3985945B2 JP3985945B2 (en) 2007-10-03

Family

ID=27600042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392922A Expired - Fee Related JP3985945B2 (en) 2001-12-25 2001-12-25 Water treatment method and apparatus using capillary phenomenon

Country Status (1)

Country Link
JP (1) JP3985945B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152166A (en) * 2005-12-01 2007-06-21 Satoru Suzuki Filter unit and liquid treatment unit
CN107529521A (en) * 2017-08-26 2018-01-02 上海轩浦净化科技有限公司 A kind of waste water treating and reutilizing system and method
CN111543380A (en) * 2020-05-27 2020-08-18 广东环境保护工程职业学院 Filtering equipment for aquaculture water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152166A (en) * 2005-12-01 2007-06-21 Satoru Suzuki Filter unit and liquid treatment unit
CN107529521A (en) * 2017-08-26 2018-01-02 上海轩浦净化科技有限公司 A kind of waste water treating and reutilizing system and method
CN111543380A (en) * 2020-05-27 2020-08-18 广东环境保护工程职业学院 Filtering equipment for aquaculture water

Also Published As

Publication number Publication date
JP3985945B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
KR101592329B1 (en) Hybrid Type Fiber Filtering Apparatus
JP3107950B2 (en) Biological treatment apparatus and water treatment method using the same
US20040232076A1 (en) Scouring method
JP5844196B2 (en) Desalination apparatus and desalination method
JP2007307549A (en) Filtration device, and waste water treatment apparatus using this filtration device
US20190009221A1 (en) Method and System for Cleaning Membrane Filters
WO2009004612A2 (en) A method and a device for removing contaminents from a fluid-material
JP3985945B2 (en) Water treatment method and apparatus using capillary phenomenon
JP2001029751A (en) Separation apparatus and solid-liquid separation method
JP2001038177A (en) Solid-liquid separation process and separation membrane module for the same
JP2002263408A (en) Method and apparatus for treating water with filtering member consisting of string-like fiber assembly
JP2004105931A (en) Method and apparatus for treating water by using assembly of corded fiber assembly
JPH0975970A (en) Dipping type membrane separation device using hollow fiber membrane
KR20040076303A (en) Method for producing tubular filter and filter module for water filter apparatus and filtering system using thereof
JP2003225690A (en) Water cleaning method and apparatus using fine air bubble and carbon fiber
JPS6135886B2 (en)
DD297338A5 (en) METHOD FOR FILTRATION OF SOLID-CONTAINING FLUIDS
JP4502450B2 (en) Immersion membrane separator and water purification system equipped with the same
JPH02227189A (en) Biological treatment apparatus
JP2009024111A (en) Coal dressing system
JP2002126469A (en) Method of cleaning filter medium
JP3450877B2 (en) Aerobic filter bed processing device with membrane module
JP5722661B2 (en) Water retention body for watering purification device and watering purification device
JPH05123692A (en) Drainage disposal equipment of upward flow sludge blanket type
JP2004181274A (en) Method for removing nitrogen by using string-like fiber assembly and apparatus for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070310

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees