JP2004181274A - Method for removing nitrogen by using string-like fiber assembly and apparatus for the same - Google Patents

Method for removing nitrogen by using string-like fiber assembly and apparatus for the same Download PDF

Info

Publication number
JP2004181274A
JP2004181274A JP2002347698A JP2002347698A JP2004181274A JP 2004181274 A JP2004181274 A JP 2004181274A JP 2002347698 A JP2002347698 A JP 2002347698A JP 2002347698 A JP2002347698 A JP 2002347698A JP 2004181274 A JP2004181274 A JP 2004181274A
Authority
JP
Japan
Prior art keywords
water
treated
nitrogen
treated water
string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002347698A
Other languages
Japanese (ja)
Inventor
Katsuo Nakayama
勝夫 中山
Yuuhei Inamori
悠平 稲森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAYAMA KANKYO ENJI KK
Original Assignee
NAKAYAMA KANKYO ENJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAYAMA KANKYO ENJI KK filed Critical NAKAYAMA KANKYO ENJI KK
Priority to JP2002347698A priority Critical patent/JP2004181274A/en
Publication of JP2004181274A publication Critical patent/JP2004181274A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of obtaining treated water by removing nitrogen by a simple treatment process without the need for adding methanol to the water. <P>SOLUTION: The method for removing the nitrogen comprises storing the water 10 to be treated into a storage section 2 for the water to be treated having an anaerobic atmosphere in the interior 7 thereof, dipping a filter member 3 composed of the assembly of a plurality of string-like fiber assemblies disposed in the storage section for the water to be treated into the water to be treated to form a microorganism colony 1 and allowing the treated water 8 to flow out of the filter member in the state that the water is controlled to the oxidation reduction potential of a prescribed range in such a manner that the dissolution of the ammonia nitrogen is little and organic materials are well dissolved in the microorganism colony. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ひも状繊維集合体からなるろ過部材を使用した窒素除去方法およびその装置にかかり、特に、河川や湖の富栄養化などを防止するために、排水に含まれている窒素を除去(脱窒)して清浄な処理水を得るための方法およびその装置に関する。
【0002】
【従来の技術】
排水処理法のうち代表的な活性汚泥法を例にとると、この場合には、生活排水などの原水を曝気槽に流入させて、この曝気槽内部の高濃度微生物群により水処理を行なっている。
ところが、この活性汚泥法で処理された水に硝酸態の窒素(NO−N)が含まれていると、この水をそのまま河川や湖などに放流すれば、富栄養化による水質汚濁の原因となる。
【0003】
そこで、排水中の窒素を除去する技術として、たとえば非特許文献1には、排水から窒素を除去する生物学的窒素除去方法として、メタノールなどの有機炭素源を添加するメタノール添加法と、循環法とが記載されている。
しかしながら、メタノール添加法と循環法のいずれの場合も、沈殿槽などを設け、また汚泥の返送も行なっているので、処理工程が複雑になり高度な運転技術が必要であった。
また、メタノール添加法では、窒素除去のために常にメタノールを供給する必要があるので、メンテナンス作業が困難でコストもかかっていた。一方、循環法では、窒素を除去したのち硝化(アンモニア態の窒素を亜硝酸態または硝酸態の窒素に酸化することをいう)を行なっているので、硝化が阻害されて窒素の除去が困難になっていた。
いずれの方法の場合も、沈殿槽で汚泥を分離しており、ろ過をしていないので固液分離が十分とはいえず、清浄な処理水を得ることが困難であった。
なお、本発明の関連技術として、特許文献1(特開2002−263408号公報)には、ひも状繊維集合体からなるろ過部材による水処理方法およびその装置が記載されているが、排水から窒素を除去する点に関しての記載はされていない。
【0004】
【非特許文献1】
「浄化槽の維持管理」(財)日本環境整備教育センター出版,昭和61年3月,P.449−451
【特許文献1】
特開2002−263408号公報(1頁,図9)
【0005】
【発明が解決しようとする課題】
本発明は、このような課題を解決するためになされたもので、窒素除去のためのメタノールなどを添加する必要がなく、また簡素な処理工程で窒素を除去して清浄な処理水を得ることができる、ひも状繊維集合体を使用した窒素除去方法およびその装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するため、本発明にかかるひも状繊維集合体を使用した窒素除去方法は、窒素を含む被処理水から窒素を除去する方法であって、内部が嫌気性雰囲気の被処理水貯留部に前記被処理水を貯留し、この被処理水貯留部に設けられ複数のひも状繊維集合体の集合により構成されたろ過部材を前記被処理水に浸して微生物コロニーを形成し、この微生物コロニーではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解するように、処理水は、所定の範囲の酸化還元電位に制御された状態で前記ろ過部材から流出するようにした。
この方法を実施する上で好適なひも状繊維集合体を使用した窒素除去装置は、窒素を含む被処理水から窒素を除去する窒素除去装置であって、前記被処理水が貯留され内部が嫌気性雰囲気の被処理水貯留部と、この被処理水貯留部に設けられ、複数のひも状繊維集合体の集合により構成されたろ過部材と、このろ過部材から流出する処理水の酸化還元電位を調整するための酸化還元電位調整手段とを備え、前記ろ過部材を前記被処理水に浸して微生物コロニーを形成し、この微生物コロニーではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解するように、処理水は、前記酸化還元電位調整手段により所定の範囲の酸化還元電位に制御された状態で前記ろ過部材から流出するようにした。
【0007】
具体的な実施態様にかかる方法は、窒素を含む被処理水から窒素を除去する方法であって、内部が嫌気性雰囲気の被処理水貯留部に前記被処理水を貯留し、この被処理水貯留部に設けられ細長い複数のひも状繊維集合体の集合により構成されたろ過部材の一部またはほぼ全部を前記被処理水に浸し、水位差によりこの被処理水が前記ろ過部材の水に浸った表面全体から繊維の間の隙間に入ることにより、この繊維間隙間に入れない微生物の小集団は前記ひも状繊維集合体の表面にパイプ状に付着し、前記被処理水は、前記ひも状繊維集合体の長手方向に生じた圧力勾配により前記繊維間隙間を流れていき、前記ひも状繊維集合体の表面にパイプ状に付着した前記微生物の小集団は、次第に大きくなって内部に微小な隙間を有してろ過機能を発揮する微生物コロニーを形成し、その後、前記被処理水は、この微生物コロニーの内部の前記微小な隙間に入るところでろ過された後、この微小な隙間を前記水位差により流れ、次いで前記繊維間隙間を前記圧力勾配により流れていき、前記微生物コロニーではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解して程良い嫌気状態になるように、処理水は、所定の範囲の酸化還元電位に制御された状態で前記ろ過部材から流出して前記被処理水貯留部の外部に排出されるようにした。
この方法を実施する上で好適で具体的な窒素除去装置は、窒素を含む被処理水から窒素を除去する窒素除去装置であって、前記被処理水が貯留され内部が嫌気性雰囲気の被処理水貯留部と、この被処理水貯留部に設けられ、一部またはほぼ全部が前記被処理水に浸され、細長い複数のひも状繊維集合体の集合により構成されたろ過部材と、このろ過部材から流出する処理水を排出させるための処理水排出手段と、この処理水の酸化還元電位を調整するための酸化還元電位調整手段とを備え、前記被処理水は、水位差により前記ろ過部材の水に浸った表面全体から繊維の間の隙間に入ることにより、この繊維間隙間に入れない微生物の小集団は前記ひも状繊維集合体の表面にパイプ状に付着し、前記被処理水は、前記ひも状繊維集合体の長手方向に生じた圧力勾配により前記繊維間隙間を流れていき、前記ひも状繊維集合体の表面にパイプ状に付着した前記微生物の小集団は、次第に大きくなって内部に微小な隙間を有してろ過機能を発揮する微生物コロニーを形成し、その後、前記被処理水は、この微生物コロニーの内部の前記微小な隙間に入るところでろ過された後、この微小な隙間を前記水位差により流れ、次いで前記繊維間隙間を前記圧力勾配により流れていき、前記微生物コロニーではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解して程良い嫌気状態になるように、前記処理水は、前記酸化還元電位調整手段により所定の範囲の酸化還元電位に制御された状態で前記ろ過部材から流出して前記処理水排出手段により前記被処理水貯留部の外部に排出されるようにした。
前記方法および装置において、前記処理水の酸化還元電位は−120mVないし+50mVの範囲に制御されているのが好ましい。
また、前記微生物コロニーにおける固形物の濃度は3重量%ないし5重量%であるのが好ましい。
【0008】
【発明の実施の形態】
以下、本発明にかかる実施の形態の一例を、図1ないし図8を参照して説明する。
本実施形態では、本発明の窒素除去方法およびその装置が、下水処理法のうち代表的な活性汚泥法で処理されて硝酸態の窒素(NO−N)を含む排水(被処理水)の処理に適用された場合を例にとって説明する。
【0009】
本発明の方法および装置は、浮遊固形物の濃度(SS)が比較的低い原水(窒素除去装置に供給された処理前の水)を処理して、清浄な処理水(処理済みの水)を得るのにも使用される。たとえば、河川や湖から取水した河川水や湖水(原水)を上水場で処理して上水(飲料水)にする場合、井戸水(原水)を処理して上水にする場合、プールの水(原水)を処理して循環使用する場合、極細繊維を使用して精密処理を行う場合、排水処理設備の沈殿槽と砂ろ過装置での処理に相当する処理を行う場合、および、魚を養殖するための養殖池の水を浄化する場合などがある。その他、本発明は、住宅の下水処理用の浄化槽にも適用可能である。
【0010】
図1は、ひも状繊維集合体を使用した窒素除去装置の概略構成図、図2(A)は、前記ひも状繊維集合体からなるろ過部材を示す説明図、図2(B)はひも状繊維集合体の拡大断面図である。
図3(A),(B)は、それぞれ図2に示すろ過部材を円形に縫い合わせた状態を示す平面図,正面図、図4(A)は前記ろ過部材と処理水排出手段を示す縦断面図、図4(B)は図4(A)のB−B線断面図、図5は図4(A)の一部拡大断面図である。
図6(A)は、微生物の小集団が、ひも状繊維集合体に付着しはじめた状態の顕微鏡写真に相当する図、図6(B)は、微生物の小集団が集まって微生物コロニーを形成しはじめた状態の顕微鏡写真に相当する図である。
【0011】
図1ないし図6に示すように、窒素を含む被処理水10から窒素を除去(脱窒)する方法は、内部7が嫌気性雰囲気の被処理水貯留部2に被処理水10を貯留し、被処理水貯留部2に設けられ複数のひも状繊維集合体6の集合により構成されたろ過部材3を被処理水10に浸して微生物コロニー11を形成する。
そして、微生物コロニー11ではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解するように、処理水8は、所定の範囲の酸化還元電位(以下、ORPと記載)に制御された状態でろ過部材3から流出する。
この方法を実施するための、被処理水10から窒素を除去する窒素除去装置1は、被処理水10が貯留され内部が嫌気性雰囲気の被処理水貯留部2と、被処理水貯留部2に設けられ、複数のひも状繊維集合体6の集合により構成されたろ過部材3と、ろ過部材3から流出する処理水8のORPを調整するための酸化還元電位調整手段5とを備えている。
そして、ろ過部材3を被処理水10に浸して微生物コロニー11を形成し、微生物コロニー11ではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解するように、処理水8は、酸化還元電位調整手段5により所定の範囲のORPに制御された状態でろ過部材3から流出する。
【0012】
より具体的な実施態様にかかる窒素除去方法は、内部7が嫌気性雰囲気の被処理水貯留部2に被処理水10を貯留し、この被処理水貯留部2に設けられ細長い複数のひも状繊維集合体6の集合により構成されたろ過部材3の一部またはほぼ全部を被処理水10に浸し、水位差Hにより被処理水10がろ過部材3の水に浸った表面全体から繊維9の間の隙間に入ることにより、この繊維間隙間に入れない微生物の小集団(微生物の集合体であり、フロックとも呼ばれる)はひも状繊維集合体6の表面にパイプ状に付着し、被処理水10は、ひも状繊維集合体6の長手方向に生じた圧力勾配により繊維間隙間を流れていき、ひも状繊維集合体6の表面にパイプ状に付着した微生物の小集団は、次第に大きくなって内部に微小な隙間を有してろ過機能を発揮する微生物コロニー(微生物の可視的な集塊であり、たとえば、活性汚泥のコロニー)11を形成する。
その後、被処理水10は、微生物コロニー11の内部の微小な隙間に入るところでろ過された後、この微小な隙間を水位差Hにより流れ、次いで繊維間隙間を圧力勾配により流れていく。
そして、微生物コロニー11ではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解して程良い嫌気状態になるように、処理水8は、所定の範囲のORPに制御された状態でろ過部材3から流出して被処理水貯留部2の外部に排出される。
【0013】
この方法を実施する上で好適で具体的な窒素除去装置1は、窒素を含む被処理水10から窒素を除去する機能を有している。窒素除去装置1は、被処理水10が貯留され内部7が嫌気性雰囲気の被処理水貯留部2と、この被処理水貯留部2に設けられ、一部またはほぼ全部が被処理水10に浸され、細長い複数のひも状繊維集合体6の集合により構成されたろ過部材3と、このろ過部材3から流出する処理水8を排出させるための処理水排出手段4と、この処理水8のORPを調整するための酸化還元電位調整手段5とを備えている。
ひも状のろ過部材3を構成する複数のひも状繊維集合体6は、多数の繊維9からなっている。このひも状繊維集合体6は、繊維9どうしが絡みあって、繊維9と繊維9との間が細い隙間になっている。また、ひも状繊維集合体6の繊維9と、他のひも状繊維集合体6の繊維9との間も、細い隙間になっている。これらの繊維間の隙間が、あたかも微細な管と同じような擬似微細管を構成している。
【0014】
窒素除去装置1において、被処理水10は、水位差Hによりろ過部材3の水に浸った表面全体から繊維9の間の隙間に入ることにより、繊維間隙間に入れない微生物の小集団30はひも状繊維集合体6の表面にパイプ状に付着し、被処理水10は、ひも状繊維集合体6の長手方向に生じた圧力勾配により繊維間隙間を流れていき、ひも状繊維集合体6の表面にパイプ状に付着した微生物の小集団30は、次第に大きくなって内部に微小な隙間31を有してろ過機能を発揮する微生物コロニー11を形成する。
その後、被処理水10は、微生物コロニー11の内部の微小な隙間31に入るところでろ過された後、この微小な隙間31を水位差Hにより流れ次いで繊維間隙間を圧力勾配により流れていく。
そして、微生物コロニー11ではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解して程良い嫌気状態になるように、処理水8は、酸化還元電位調整手段5により所定の範囲のORPに制御された状態で、ろ過部材3から流出して処理水排出手段4により被処理水貯留部2の外部に排出される。
【0015】
ポンプなどにより供給用配管12を介して被処理水10を供給することにより、被処理水貯留部2内の被処理水10の水位Laは、所定の高さ位置に維持されている。
被処理水貯留部2には、貯留されている被処理水10を攪拌するための攪拌機17が設けられている。攪拌機17は、ろ過部材に付着している微生物の小集団30や微生物コロニー11が壊れたりろ過部材3から離脱しない程度に、羽根17aをゆっくりと回転させて被処理水10を攪拌している。
被処理水貯留部2には、空気供給部13が設けられている。空気供給部13は、被処理水貯留部2の底面近くで空気18をノズル19から吐出させることにより、処理水8のORPを所定の範囲に制御している。
被処理水貯留部2の下流側には、処理水8を貯留するための処理水貯留部12が配設されている。処理水貯留部12内の処理水8の水位Lcは、被処理水10の水位Laより下方に位置している。処理水貯留部12は、ろ過部材3から排出されて処理水排出手段4を流れる処理水8を受けて貯留する。
【0016】
処理水排出手段4は、被処理水貯留部2内に設けられたろ過部材支持部15と、ろ過部材支持部15に接続された排出用配管14とを有している。ろ過部材支持部15の内部には、ろ過部材3と連通して処理水8が流れる導水部16が形成されている。
排出用配管14は、導水部16と連通しており、導水部16を流れた処理水8を被処理水貯留部2の外部に導いて処理水貯留部12に排出している。ろ過部材3から流出する処理水8は、導水部16,排出用配管14を流れて処理水貯留部12に貯留される。
【0017】
窒素除去装置には、水位差調整手段が設けられて、水位差Hを調整可能になっている。
排出用配管14の排出口14aは、処理水貯留部12内の処理水8に浸されている。この場合の水位差Hは、処理水8の下流側水位(すなわち、処理水貯留部12内の処理水8の水位Lc)から、被処理水貯留部2内の被処理水10の水位Laまでの高さ寸法である。すなわち、水位差H=水位La−水位Lcである。この水位差Hは水位差調整手段により調整可能になっている。
これとは別に、排出用配管14の排出口14aが、処理水貯留部12の水面より離れて上方にあり、排出口14aは、被処理水10の水位Laより下方に位置している場合がある(図示せず)。
この場合の水位差Hは、処理水8の下流側水位Lb(すなわち、排出口14aの近傍の排出用配管14内の水面の高さ位置)から被処理水10の水位Laまでの高さ寸法である。すなわち、水位差H=水位La−水位Lbである。
【0018】
被処理水10は、流れの駆動源(エネルギー源)となる水位差Hに基づく重力による位置のエネルギーと、水の分子間の凝集力とにより自然に流れて、被処理水貯留部2から処理水貯留部12に移動する。
すなわち、ろ過部材3は、繊維間隙間により構成されている擬似微細管を有しているので、被処理水貯留部2内の被処理水10は、ひも状繊維集合体6の長手方向に生じた圧力勾配により擬似微細管内を流れる。
被処理水10には、擬似微細管の内径より大きい浮遊固形物が多く含まれている。そのため、被処理水10に含まれている浮遊固形物のうち、擬似微細管の内径より大きい浮遊固形物は、擬似微細管を通り抜けることができない。したがって、浮遊固形物は、ろ過部材3に付着して除去される。このろ過は、被処理水貯留部2に貯留されている被処理水10の水中で行われる。
このように、擬似微細管の内径寸法により、除去される浮遊固形物の大きさが決まることになる。したがって、被処理水10に含まれる浮遊固形物の種類,サイズ,粒度分布などに応じて、最適なろ過部材3の材質や、ひも状繊維集合体6および繊維9のサイズ,密度などの選定を行えばよい。
【0019】
処理水8のORPを所定の範囲に制御するための酸化還元電位調整手段5は、空気供給部13と、検出器21と、検出器21からの信号により空気供給部13を制御して空気18の流量を調整する制御部(図示せず)とにより構成されている。
検出器21は、排出用配管14に設けられ、ろ過部材3から流出する処理水8のORPを検出するためのものである。検出器21から出力される信号に基づいて、空気供給部13により被処理水10内に供給される空気18の流量を調節することにより、排出用配管14を流れる処理水8のORPを、所定の範囲たとえば−120mV〜+50mVの範囲に制御している。
また、微生物コロニー11における固形物(すなわち、汚泥)の濃度の範囲は、3重量%〜5重量%であるのが好ましい。
被処理水貯留部2内の被処理水10の水温が低いと微生物の活動が低下するが、この被処理水10の水温が所定範囲(好ましくは、23℃±7℃)であれば、微生物の活動が活発になって良好に窒素の除去が行われる。
そこで、窒素除去装置1は、被処理水10の水温を所定の範囲に調節するための水温調節手段22を有している。水温調節手段22は、被処理水貯留部2の被処理水10中に設けられたヒータ23をオン,オフ制御して、被処理水10の水温をたとえば23℃±7℃の範囲に調節可能である。
【0020】
ろ過部材3は、細長い複数のひも状繊維集合体6により構成されている。すなわち、ろ過部材3は、たて糸のみからなるひも状繊維集合体6により「すだれ状」に構成されている。一本のひも状繊維集合体6は、微細な多数の繊維9が集合したたて糸を複数本合わせることにより構成されている。
このように、ひも状のろ過部材3は、複数のひも状繊維集合体6が集合してすだれ状になっているので、目詰まりを起こしにくい。
ろ過部材3の組成は、ポリエステル系合成繊維,レーヨンおよびアクリル繊維などの化学繊維から少なくとも一つ選択されるのが好ましい。たとえば、ろ過部材3は、約40重量%のポリエステル系合成繊維と、約40重量%のレーヨンと、約20重量%のアクリル繊維により構成されている。
なお、ろ過部材3の素材として、次の高分子化合物を使用してもよい。たとえば、エチルセルロース,酢酸セルロース,ナイロン,ビニロン,アセテート,キュプラ,アクリルニトリル,ポリエチレン,ポリ塩化ビニル,ポリ塩化ビニリデン,ポリ酢酸ビニル,ポリスチレン,ポリテトラフルオロエチレン,ポリテレフタル酸エチレン,ポリトリフルオロエチレン,ポリクロロトリフルオロエチレン,ポリビニルアルコール,ポリプロピレン,ポリメタクリル酸メチル等が挙げられる。
【0021】
ろ過部材3は、複数のひも状繊維集合体6を平たい束状にするための縫い合わせ部40を有している。縫い合わせ部40では、ひも状繊維集合体6同士を圧縮せずにほぐした状態にしているので、処理水8が縫い合わせ部40の内部を流れる場合でも抵抗なく容易に通ることができる。
ひも状繊維集合体6の直径e(図2(B))は、微生物の種類,サイズ,粒度分布などに応じて適宜選定されるものであり、たとえば直径e=約3mm〜約4mmである。
ろ過部材3は、図2(A)に示す平たい形状のものを、図3(A),(B)に示すように、縫い合わせ部40の両方の端部40a,40bを縫い合わせて円環状に形成されている。なお、図3(B)では、ひも状繊維集合体6の一部の図示を省略している。
【0022】
円環状に形成された縫い合わせ部40の外周面には、円環状のバンド45が取付けられている。バンド45は、縫い合わせ部40を円環状に保持するとともに、ひも状繊維集合体6がほぐれてしまうのを防止している。
縫い合わせ部40とバンド45を支持部として、一方側のひも状繊維集合体6と他方側のひも状繊維集合体6を、それぞれ半径方向外方に広がるように折り返して使用することになる。
なお、本発明におけるひも状繊維集合体6には、本実施形態で示すもののほか、直径の細い糸状の繊維集合体や、たて糸と若干のよこ糸からなる繊維集合体なども含まれる。また、たとえば、布状の不織布などを細く切って、若干幅が広くて細長い形状のひも状繊維集合体を成形する場合であってもよい。
【0023】
ろ過部材支持部15は、中心部に縦方向に配置され下端部を閉じたパイプ状の支柱管41と、支柱管41に支持され、上端部と下端部がそれぞれ閉じられた中空のホルダ42とを有している。
支柱管41には、複数の連通孔48が穿設されている。ホルダ42には、支柱管41を中心位置に保持するための円環状の保持部46が一体形成され、保持部46には複数の連通孔47が穿設されている。
【0024】
ろ過部材3は、ホルダ42の開口部に、隙間がないように装着されている。これにより、ホルダ42の内部空間49はろ過部材3により被処理水貯留部2内の被処理水10に対して遮蔽されているので、被処理水のショートパスを防止することができる。
内部空間49と支柱管41の内部空間とにより、処理水8が流れる導水部16が構成されている。
被処理水10はろ過部材3により処理される。ろ過部材3から流出した処理水8は、ホルダ42の内部空間49に入り、その後、連通孔47を通って連通孔48から支柱管41内に入るかまたは内部空間49から直接連通孔48を通って支柱管41内に入る。その後、処理水48は、支柱管41から排出用配管14を通って被処理水貯留部2の外部に排出される。
【0025】
図5は、複数のひも状繊維集合体6のうちの一つのひも状繊維集合体6を例にとって示している。
ひも状繊維集合体6に固形物(微生物コロニー11)が付着していない状態のときには、被処理水10の大部分は、ひも状繊維集合体6の根元部で、水位差Hに基づく重力による位置のエネルギーによりひも状繊維集合体6の水に浸った表面全体から繊維9の間の隙間に入ることにより、繊維間隙間に入れない微生物の小集団30はひも状繊維集合体6の表面にパイプ状に付着し、被処理水10は、ひも状繊維集合体6の長手方向に生じた圧力勾配により繊維間隙間を流れる。
時間が経過すると、ひも状繊維集合体6の表面に微生物の小集団30がパイプ状に付着し、この微生物の小集団30は、次第に大きくなって活性汚泥(付着固形物)からなる微生物コロニー11を形成する。
微生物コロニー11が付着して周囲を囲まれたひも状繊維集合体6は、あたかも複数の繊維間隙間で構成された擬似パイプ(または、ハニカム)のような構造をなしている。微生物コロニー11の内部には、ろ過機能を発揮する微小な隙間31が形成されている。
したがって、被処理水10は、水位差Hに基づく重力による位置のエネルギーと、水の分子間の凝集力とにより、擬似パイプ内の隙間を流れることになる。また、被処理水10は、ろ過機能を発揮する微生物コロニーの内部の微小な隙間31を水位差Hにより流れる。
【0026】
被処理水10は、水位差Hによりひも状繊維集合体6の表面全体から繊維9の間の隙間に入るところでろ過され、繊維間隙間に入れない微生物の小集団30はひも状繊維集合体6の表面にパイプ状に付着し、被処理水10は、ひも状繊維集合体6の長手方向に生じた圧力勾配により繊維間隙間を流れていく。
また、被処理水10は、ろ過機能を有する微生物コロニー11の内部の微小な隙間31に入るところでもろ過された後、この微小な隙間31を水位差Hにより流れ、次いで、繊維間隙間を圧力勾配により流れていく。
これにより、被処理水10は、処理水8となってホルダ42の内部空間49に流れ込む。被処理水10は、繊維9の間の隙間を圧力勾配により流れるので、付着した微生物コロニー11のサイズが大きくなっても、継続して流れることができる。
【0027】
次に、本発明者の行なった実験について説明する。実験条件は下記の通りである。
・ろ過部材3の組成:ポリエステル系合成繊維40重量%,レーヨン40重量%,アクリル繊維20重量%
・ろ過部材3の寸法(展開時):約43cm(幅D)×約30cm(長さE)
・ひも状繊維集合体6:直径eが約4mm
・被処理水貯留部2の容積:1m
・ろ過部材支持部15:長さ約2mのホルダを1基として、3基(1組)を2組
・被処理水10:下水処理センターにて活性汚泥法で処理した後の水
・被処理水の流量:3.9m/日
・実験期間:2日間
【0028】
ろ過部材支持部15は、長さ約2mのホルダ42を1基とした場合、被処理水貯留部2内には、3基(1組)を2組(すなわち、合計6基)を設置し、排出用配管14に並列に接続した。
また、被処理水貯留部2内に、被処理水10を貯留したのち4.8kg(dry) の汚泥を投入し、ろ過部材3がこの汚泥を吸い寄せて微生物コロニー11が形成された状態で、窒素の除去の実験を行なった。
茨城県内の下水処理センターにて活性汚泥法で処理した後の水を原水(被処理水10)とし、3.9m/日の流量で原水を被処理水貯留部2に流入させた。被処理水貯留部2内での平均滞留時間は6.15Hrとなった。
水温調節手段22でヒータ23をオン,オフ制御することにより、被処理水貯留部2内の被処理水10の水温を23℃±7℃の範囲に調節している。
窒素の除去状態(脱窒状態)は、亜硝酸態と硝酸態の窒素(NO+NO −N)で評価した。図7は、この窒素の除去に関する実験データの一例を示す図である。図8は、処理水8のBOD(生化学的酸素要求量)とアンモニア態の窒素(NH−N)の濃度の一例を示すグラフである。図8の横軸は処理水8のORPを示し、縦軸は濃度を示している。図8中の曲線AはBODを示し、曲線BはNH−Nを示している。
【0029】
この実験に使用した窒素除去装置1において、内部が嫌気性雰囲気の被処理水貯留部2に被処理水10を貯留し、この被処理水貯留部2に設けられたろ過部材3の全部を被処理水10に浸している。
供給用配管12を介して、所定流量の被処理水10を被処理水貯留部2に供給している。その結果、被処理水貯留部2内の被処理水10の水位Laは、処理水貯留部12内の処理水8の水位Lcより高いので、水位差Hが確保されている。
【0030】
この水位差Hにより、被処理水10がろ過部材3の水に浸った表面全体から繊維9の間の隙間に入ることにより、この繊維間隙間に入れない微生物の小集団30はひも状繊維集合体6の表面にパイプ状に付着し、被処理水10は、ひも状繊維集合体6の長手方向に生じた圧力勾配により繊維間隙間を流れていく(図6(A)の状態)。
こうして、ひも状繊維集合体6の表面にパイプ状に付着した微生物の小集団30は、次第に大きくなって微生物コロニー11を形成する。この微生物コロニー11は、内部に微小な隙間31を有してろ過機能を発揮する(図6(B)の状態)。
繊維9の間の隙間の寸法(たとえば、内径が約20〜30μm)、微生物の粒子の寸法(たとえば、約1〜2μm)、および、微生物コロニー11の内部の微小な隙間31の寸法(たとえば、内径が約1μm以下)などは、顕微鏡写真により確認することができた。
【0031】
その後、被処理水10は、微生物コロニー11の内部の微小な隙間31に入るところでろ過された後、この微小な隙間31を水位差Hにより流れ、次いで繊維間隙間を圧力勾配により流れていく。
処理水8は、酸化還元電位調整手段5により所定の範囲のORPに制御された状態で、ろ過部材3から流出して被処理水貯留部2の外部に排出される。すなわち、処理水8は、ろ過部材3からホルダ42の内部空間49,支柱管41の内部,排出用配管14の順に流れて、処理水貯留部12に貯留される。
処理水8のORPは、処理水8が空気に触れる前に測定するのが好ましいので、被処理水貯留部2から排出した直後の位置で測定している。
【0032】
空気供給部13で供給する空気18の流量の増減により、処理水8のORPを増減させることができる。また、空気18の供給量を少なくして、処理水8のORPを減少させると、図8の曲線Aに示すように、処理水8のBODが上昇している。これは、処理水8のORPを減少させれば、微生物コロニー11では、微生物の有機物が処理水8中に溶解していることを意味している。
微生物コロニー11で、このような有機物の溶解が発生すると、残った微生物がこの有機物を餌として食べる。また、微生物は呼吸をするために酸素を必要とするので、微生物コロニー11の内部の微小な隙間31を流れる水に含まれている硝酸を分解して酸素を取り込む。
微小な隙間31を流れる水の中の硝酸は、こうして酸素と窒素に分解されるので、この水から窒素が除去される。しかも、微生物は溶解した有機物を餌として食べるので、従来のメタノール添加法などで添加していたメタノールなどの有機炭素源を添加する必要はない。
図8の曲線Aに示すように、処理水8のORPが+50mV以下のときに、有機物が良好に溶解して窒素の除去に特に有効であることが確認された。
【0033】
一方、処理水8中のNH−N(アンモニア態の窒素)に関しては、図8の曲線Bに示すように、処理水8のORPが減少して嫌気状態になれば、アンモニア態の窒素(NH−N)が増加している。これは、微生物コロニー11で、アンモニア態の窒素の溶解が起こって腐敗が始まっていることを意味している。
このようにアンモニア態の窒素が処理水8に溶解して窒素が増えると、窒素の除去の目的に反することになる。このアンモニア態の窒素は、処理水8のORPが−120mV以下の範囲で特に大きくなっている。
【0034】
以上の実験結果をまとめると、微生物コロニー11でアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解して程良い嫌気状態になる条件としては、処理水8のORPを−120mV〜+50mVの範囲に制御するのが好ましいことが分かる。
このときの微生物コロニー11における固形物の濃度(汚泥の濃度)は3重量%〜5重量%で、被処理水貯留部2内の被処理水10の水温が23℃±7℃の範囲であれば、窒素の除去が良好に行われた。
処理水8のORPについては、検出器21で検出された処理水8のORPの値に基づいて、空気供給部13を制御して空気18の流量を調整する。これにより、処理水8のORPの制御を行うことができる。
水位差Hを大きくすれば固形物の濃度は高くなり、水位差Hを小さくすれば固形物の濃度は低くなる。したがって、水位差Hを水位差調整手段により調整すれば、固形物の濃度を制御することができる。
また、水温調節手段22が、ヒータ23をオン,オフすることにより、被処理水貯留部2内の被処理水10の水温を23℃±7℃の範囲に制御することができる。
【0035】
上述のようにして窒素除去装置1を運転することにより、被処理水10から窒素を除去して清浄な処理水8を得ることができる。図7は、原水(被処理水10)と処理水8における亜硝酸と硝酸の濃度および除去率を示している。この実験では、平均の除去率は63.6%であり、良好に窒素を除去できることが確認された。
こうして、排水中の窒素を除去することにより清浄な排水を放流することができるので、河川や湖などの富栄養化を防止して水質を改善することができる。
【0036】
従来の窒素除去技術では、微生物は嫌気性雰囲気の槽の内部全体を常に浮遊した状態であり、この微生物などからなる浮遊固形物の濃度もそれほど高くすることができず、せいぜい0.3%〜0.5%が濃度の上限であった。
これに対して、本発明では、ろ過部材3に微生物コロニー11が形成され、この微生物コロニー11内の微小な隙間31を水が流れるようになっている。この微生物コロニー11は、微生物が棲み付いている住処でもあるので、微生物は槽内で浮遊することなくほぼ同じ位置に留まることができる。
こうして、微生物コロニー11が形成されると、汚泥(微生物)はほぼ同じ場所に留まっているので、微生物コロニー11内の汚泥の濃度を従来より著しく高くすることができる。
【0037】
また、微生物コロニー11内には、微生物の餌となる有機物が十分にあり、必要な酸素は微小な隙間31を流れる水により常時供給され、しかも微生物の濃度は従来より著しく高くなっている(たとえば、従来より約10倍)。
したがって、微生物は、微生物コロニー11内で安定した状態で棲むことができるので、生物学的に良好な状態で窒素が除去される。また、微生物コロニー11内では、溶解した有機物を微生物が餌として食べて汚泥を消費していくので、汚泥の除去を行う必要はなく、産業廃棄物となる汚泥の処理が不要になる可能性が高い。
【0038】
従来は、嫌気性雰囲気中で水中浮遊生物が窒素成分と接触するか、または生物膜表面にて窒素成分と接触していたが、本発明では、微生物コロニー11の内部を水が通過する接触構造となるので、接触の機会が多くなり、窒素の除去をよりよい効率で行うことができる。
従来の循環法では、窒素の除去が硝化を阻害していたが、本発明では、硝化の阻害がないので容易に窒素の除去を行うことができる。
たとえば、上水(飲料水)を得るために取水源地域に設置された上水場に本発明を適用すれば、取水した水に薬品を添加しなくても容易に窒素を除去して、上水の水質を改善することができる。
【0039】
本発明によれば、生物の食物連鎖をより促進することにより、産業廃棄物となる物質(汚泥)を自然な循環形態にすることができ、省エネルギーであり、設備の簡素化ができ、使用敷地の大幅な削減ができ、社会生活における経費を節減して社会に貢献することができる。
ろ過部材3および微生物コロニー11がろ過機能を発揮しているので、従来必要であった沈殿槽などが不要になり、また、汚泥を返送する必要もなくなる。したがって、処理工程が簡素になるとともに、ろ過装置を別途設けなくても固液分離が十分に行われるので、清浄な処理水8を得ることができる。
【0040】
本発明では、内部が嫌気性雰囲気の被処理水貯留部2に、ろ過部材3が取付けられたろ過部材支持部15などを増設すれば、本発明の窒素除去装置1を容易に構成することができる。
本実施形態では、被処理水10および処理水8の移動は、流れの駆動源(エネルギー源)となる水位差Hに基づく重力による位置のエネルギーと、水の分子間の凝集力によるものであり、この間に動力は全く使われていない。また、水を循環する必要もない。
したがって、従来の水処理技術と比べて、動力が小さくなるので、水処理装置の消費エネルギーを少なくすることができ、騒音もほとんど発生せず、処理工程が簡素なので運転も容易である。
【0041】
なお、ろ過部材3の全部を被処理水10に浸す場合を示したが、ろ過部材3の全部ではなくて大部分を被処理水10に浸す場合であってもよい。
また、ろ過部材支持部15を全体的にほぼ垂直方向(縦方向)に配置する場合を示したが、垂直方向に対して傾斜した方向(斜め方向)に配置する場合であってもよい。
【0042】
以上、本発明の実施形態を説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の要旨の範囲で種々の変形,付加などが可能である。
なお、各図中同一符号は同一または相当部分を示す。
【0043】
【発明の効果】
本発明は上述のように構成したので、窒素除去のためのメタノールなどを添加する必要がなく、また簡素な処理工程で窒素を除去して清浄な処理水を得ることができる。
【図面の簡単な説明】
【図1】図1ないし図8は本発明の実施形態の一例を示す図で、図1は窒素除去装置の概略構成図である。
【図2】図2(A)は、ひも状繊維集合体からなるろ過部材を示す説明図、図2(B)はひも状繊維集合体の拡大断面図である。
【図3】図3(A),(B)は、図2に示すろ過部材を円形に縫い合わせた状態を示す平面図,正面図である。
【図4】図4(A)は、前記ろ過部材と処理水排出手段を示す縦断面図、図4(B)は図4(A)のB−B線断面図である。
【図5】図4(A)の一部拡大断面図である。
【図6】図6(A)は、微生物の小集団がひも状繊維集合体に付着しはじめた状態の顕微鏡写真に相当する図、図6(B)は、前記微生物の小集団が集まって微生物コロニーを形成しはじめた状態の顕微鏡写真に相当する図である。
【図7】窒素の除去に関する実験データの一例を示す図である。
【図8】処理水のBODとアンモニア態の窒素の濃度の一例を示すグラフである。
【符号の説明】
1 窒素除去装置
2 被処理水貯留部
3 ろ過部材
4 処理水排出手段
5 酸化還元電位調整手段
6 ひも状繊維集合体
8 処理水
9 繊維
10 被処理水
11 微生物コロニー
30 微生物の小集団
31 微小な隙間
H 水位差
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for removing nitrogen using a filtration member comprising a string-like fiber aggregate, and particularly to remove nitrogen contained in wastewater to prevent eutrophication of rivers and lakes. The present invention relates to a method for denitrifying and obtaining clean treated water and an apparatus therefor.
[0002]
[Prior art]
Taking a typical activated sludge method among the wastewater treatment methods as an example, in this case, raw water such as domestic wastewater is allowed to flow into an aeration tank, and water treatment is performed using a high concentration of microorganisms in the aeration tank. I have.
However, nitric acid nitrogen (NO3If -N) is contained, if this water is discharged to rivers and lakes as it is, it will cause water pollution due to eutrophication.
[0003]
Therefore, as a technique for removing nitrogen in wastewater, for example, Non-Patent Document 1 discloses a biological nitrogen removal method for removing nitrogen from wastewater, a methanol addition method in which an organic carbon source such as methanol is added, and a circulation method. Is described.
However, in both cases of the methanol addition method and the circulation method, a sedimentation tank and the like are provided, and sludge is returned, so that the treatment process becomes complicated and sophisticated operation technology is required.
Further, in the methanol addition method, it is necessary to always supply methanol for removing nitrogen, so that maintenance work is difficult and costly. On the other hand, in the circulation method, nitrification is performed after removing nitrogen (meaning oxidization of ammonia nitrogen to nitrite or nitrate nitrogen). Therefore, nitrification is inhibited and nitrogen removal becomes difficult. Had become.
In either case, sludge is separated in the sedimentation tank, and filtration is not performed. Therefore, solid-liquid separation is not sufficient, and it is difficult to obtain clean treated water.
As a related art of the present invention, Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-263408) describes a water treatment method using a filtration member composed of a string-like fiber aggregate and an apparatus therefor. There is no description on the removal of
[0004]
[Non-patent document 1]
"Maintenance of septic tanks" published by Japan Environmental Education Center, March 1986, p. 449-451
[Patent Document 1]
JP-A-2002-263408 (page 1, FIG. 9)
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve such a problem, and it is not necessary to add methanol or the like for removing nitrogen, and it is possible to obtain clean treated water by removing nitrogen in a simple treatment process. It is an object of the present invention to provide a method for removing nitrogen using a string-like fiber aggregate and an apparatus therefor.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a nitrogen removing method using a string-like fiber aggregate according to the present invention is a method for removing nitrogen from a nitrogen-containing water to be treated, wherein the inside of the water to be treated has an anaerobic atmosphere. Storing the water to be treated in the storage part, immersing a filtration member provided in the water to be treated storage part constituted by a collection of a plurality of string-like fiber aggregates in the water to be treated to form a microbial colony, In the microbial colony, the treated water was allowed to flow out of the filtration member in a state where the redox potential was controlled within a predetermined range so that the ammonia nitrogen was less dissolved and the organic matter was dissolved well.
A nitrogen removing device using a string-like fiber aggregate suitable for carrying out this method is a nitrogen removing device for removing nitrogen from treated water containing nitrogen, wherein the treated water is stored and the inside is anaerobic. Treatment water storage part of a neutral atmosphere, a filtration member provided in the treatment water storage part, configured by a collection of a plurality of string-like fiber aggregates, and the oxidation-reduction potential of the treated water flowing out from the filtration member. And an oxidation-reduction potential adjusting means for adjusting, wherein the filtration member is immersed in the water to be treated to form a microbial colony, and in this microbial colony, ammonia-based nitrogen is less dissolved and organic matter is well dissolved. The treated water is allowed to flow out of the filtration member while being controlled to a predetermined range of oxidation-reduction potential by the oxidation-reduction potential adjusting means.
[0007]
A method according to a specific embodiment is a method for removing nitrogen from treated water containing nitrogen, the method comprising: storing the treated water in a treated water storage section having an anaerobic atmosphere therein; A part or almost all of the filtering member provided in the storage part and constituted by a collection of a plurality of elongated string-like fiber aggregates is immersed in the water to be treated, and the water to be treated is immersed in the water of the filtering member due to a difference in water level. By entering the interstices between the fibers from the entire surface, small groups of microorganisms that cannot enter the interstices of the fibers adhere to the surface of the string-like fiber aggregate in a pipe shape, and the water to be treated is Flowing through the inter-fiber gap due to the pressure gradient generated in the longitudinal direction of the fiber assembly, the small group of microorganisms attached in a pipe shape on the surface of the string-like fiber assembly gradually becomes large and becomes minute inside. Has a clearance function with a gap After that, the water to be treated is filtered where it enters the microscopic gap inside the microbial colony, and then flows through the microscopic gap due to the difference in water level. The treated water is controlled to a predetermined range of oxidation-reduction potential so as to flow by the pressure gradient and to dissolve ammonia nitrogen in the microbial colonies less and to dissolve organic matter well and to form a suitable anaerobic state. In this state, the water flows out of the filtration member and is discharged to the outside of the treated water storage part.
A preferred and specific nitrogen removing apparatus for carrying out this method is a nitrogen removing apparatus for removing nitrogen from the water to be treated containing nitrogen, wherein the water to be treated is stored and the inside of which is treated in an anaerobic atmosphere. A water storage part, a filtration member provided in the water storage part to be treated, a part or substantially all of which is immersed in the water to be treated, and a filtration member constituted by a collection of a plurality of elongated string-like fiber aggregates; A treated water discharging means for discharging treated water flowing out of the apparatus, and an oxidation-reduction potential adjusting means for adjusting the oxidation-reduction potential of the treated water, wherein the water to be treated is provided with By entering the gap between the fibers from the entire surface immersed in water, a small group of microorganisms that cannot enter the gap between the fibers adheres to the surface of the string-like fiber aggregate in a pipe shape, and the water to be treated is The longitudinal direction of the cord-like fiber aggregate Flow through the interfiber gap due to the pressure gradient generated, the small population of microorganisms attached in a pipe shape to the surface of the string-like fiber aggregate gradually increases and has a fine gap inside and is filtered. After forming a microbial colony that exhibits a function, the water to be treated is filtered where it enters the microscopic gap inside the microbial colony, and then flows through the microscopic gap due to the water level difference. The treated water flows through the gap by the pressure gradient, and in the microbial colonies, the treated water is adjusted to the oxidation-reduction potential adjustment so that the ammonia nitrogen is less dissolved and the organic matter is dissolved in a favorable anaerobic state. In the state where the oxidation-reduction potential is controlled within a predetermined range by the means, the water flows out of the filtration member and is discharged to the outside of the treated water storage unit by the treated water discharging means. It was.
In the above method and apparatus, it is preferable that the oxidation-reduction potential of the treated water is controlled in a range of -120 mV to +50 mV.
Preferably, the concentration of the solid in the microbial colony is 3% by weight to 5% by weight.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of an embodiment according to the present invention will be described with reference to FIGS.
In the present embodiment, the nitrogen removal method and apparatus according to the present invention are treated with a typical activated sludge method among sewage treatment methods to form nitrate nitrogen (NO3-N) will be described by way of example.
[0009]
The method and apparatus of the present invention treats raw water (water before treatment supplied to a nitrogen removal device) having a relatively low concentration of suspended solids (SS) to produce clean treated water (treated water). Also used to get. For example, when river water or lake water (raw water) taken from rivers and lakes is treated at a waterworks to make it clean (drinking water), when well water (raw water) is treated to make clean water, the pool water (Raw water) for processing and recycling, precision processing using ultra-fine fibers, processing equivalent to processing in sedimentation tanks and sand filtration equipment of wastewater treatment equipment, and fish cultivation To purify the water in the culture pond. In addition, the present invention is also applicable to a septic tank for sewage treatment of a house.
[0010]
FIG. 1 is a schematic configuration diagram of a nitrogen removing apparatus using a string-like fiber assembly, FIG. 2 (A) is an explanatory view showing a filtering member composed of the string-like fiber assembly, and FIG. 2 (B) is a string-like shape. It is an expanded sectional view of a fiber aggregate.
3 (A) and 3 (B) are a plan view and a front view, respectively, showing a state where the filtering member shown in FIG. 2 is sewn in a circle, and FIG. 4 (A) is a longitudinal section showing the filtering member and treated water discharging means. FIG. 4B is a sectional view taken along line BB of FIG. 4A, and FIG. 5 is a partially enlarged sectional view of FIG. 4A.
FIG. 6A is a diagram corresponding to a micrograph of a state in which a small group of microorganisms has begun to adhere to a string-like fiber aggregate, and FIG. 6B is a diagram in which small groups of microorganisms gather to form a microbial colony. It is a figure corresponding to the micrograph of the state where it began to do.
[0011]
As shown in FIGS. 1 to 6, the method of removing (denitrifying) nitrogen from the water to be treated 10 containing nitrogen involves storing the water to be treated 10 in the water to be treated storage section 2 having an anaerobic atmosphere 7. The filtration member 3 provided in the water-to-be-treated storage section 2 and constituted by a collection of a plurality of string-like fiber aggregates 6 is immersed in the water to be treated 10 to form microbial colonies 11.
Then, the treated water 8 is filtered in a state where it is controlled to a predetermined range of oxidation-reduction potential (hereinafter referred to as ORP) so that the ammonia-based nitrogen is less dissolved and the organic matter is favorably dissolved in the microbial colony 11. It flows out of the member 3.
The nitrogen removing apparatus 1 for removing nitrogen from the water to be treated 10 for carrying out this method includes a water to be treated storage part 2 in which the water to be treated 10 is stored and the inside of which is an anaerobic atmosphere; And a redox potential adjusting means 5 for adjusting the ORP of the treated water 8 flowing out of the filtering member 3. .
Then, the filtration member 3 is immersed in the water 10 to be treated to form a microbial colony 11, and the treated water 8 has an oxidation-reduction potential such that the ammonia-based nitrogen is less dissolved in the microorganism colony 11 and the organic matter is well dissolved. It flows out of the filtering member 3 in a state where the ORP is controlled to a predetermined range by the adjusting means 5.
[0012]
The nitrogen removal method according to a more specific embodiment is characterized in that the water to be treated 10 is stored in the water to be treated storage 2 having an anaerobic atmosphere 7 therein, and a plurality of elongated strings provided in the water to be treated storage 2 are provided. Part or almost all of the filtration member 3 formed by the collection of the fiber aggregates 6 is immersed in the water 10 to be treated, and the water 9 is removed from the entire surface of the filtration member 3 where the water 10 is immersed in the water due to the water level difference H. By entering the gap between the fibers, a small group of microorganisms (aggregates of microorganisms, also called flocs) that cannot enter the gap between the fibers adheres to the surface of the string-like fiber aggregate 6 in a pipe shape, and 10 flows through the inter-fiber gap due to the pressure gradient generated in the longitudinal direction of the string-like fiber aggregate 6, and the small population of microorganisms attached to the surface of the string-like fiber aggregate 6 in a pipe shape gradually increases. Filter with a small gap inside Microbial colonies exhibiting (a visible agglomerates of microorganisms, for example, colonies of activated sludge) to form a 11.
Thereafter, the water to be treated 10 is filtered where it enters a minute gap inside the microbial colony 11, and then flows through the minute gap by the water level difference H, and then flows through the gap between the fibers by a pressure gradient.
Then, in the microbial colony 11, the treated water 8 is filtered under a predetermined range of ORP such that the ammonia nitrogen is less dissolved and the organic matter is dissolved well and a suitable anaerobic state is obtained. And is discharged to the outside of the water-to-be-treated storage unit 2.
[0013]
A preferred and specific nitrogen removing apparatus 1 for performing this method has a function of removing nitrogen from the water to be treated 10 containing nitrogen. The nitrogen removal device 1 is provided in the treated water storage unit 2 in which the treated water 10 is stored and the inside 7 has an anaerobic atmosphere, and a part or almost all of the treated water 10 is stored in the treated water 10. A filtration member 3 formed by a set of a plurality of elongated string-like fiber aggregates 6 soaked, treated water discharge means 4 for discharging treated water 8 flowing out from the filtration member 3, An oxidation-reduction potential adjusting means 5 for adjusting ORP is provided.
The plurality of string-like fiber aggregates 6 constituting the string-like filtration member 3 are composed of a large number of fibers 9. In the string-like fiber assembly 6, the fibers 9 are entangled with each other, and a narrow gap is formed between the fibers 9. Also, a small gap is formed between the fiber 9 of the string-like fiber assembly 6 and the fiber 9 of the other string-like fiber assembly 6. The gaps between these fibers constitute a pseudo fine tube similar to a fine tube.
[0014]
In the nitrogen removing device 1, the water to be treated 10 enters the gap between the fibers 9 from the entire surface of the filter member 3 immersed in water due to the water level difference H, so that the small population 30 of microorganisms that cannot enter between the fiber gaps The to-be-processed water 10 adheres in a pipe shape to the surface of the string-like fiber aggregate 6 and flows through the inter-fiber gap due to the pressure gradient generated in the longitudinal direction of the string-like fiber aggregate 6. The small group 30 of microorganisms adhered in the shape of a pipe to the surface of the substrate gradually grows to form microbial colonies 11 having a minute gap 31 therein and exhibiting a filtering function.
Thereafter, the water to be treated 10 is filtered where it enters the microscopic gap 31 inside the microbial colony 11, flows through the microscopic gap 31 by the water level difference H, and then flows through the interfiber gap by the pressure gradient.
In the microbial colony 11, the treated water 8 is controlled to a predetermined range of ORP by the oxidation-reduction potential adjusting means 5 so that the ammonia nitrogen is less dissolved and the organic matter is dissolved well and the anaerobic state is good. In this state, the water flows out of the filtration member 3 and is discharged to the outside of the treated water storage unit 2 by the treated water discharge means 4.
[0015]
By supplying the water to be treated 10 via the supply pipe 12 by a pump or the like, the water level La of the water to be treated 10 in the water to be treated storage 2 is maintained at a predetermined height position.
The to-be-processed water storage part 2 is provided with a stirrer 17 for stirring the stored to-be-processed water 10. The stirrer 17 stirs the water 10 by slowly rotating the blades 17a so that the small group 30 of microorganisms and the microbial colony 11 adhering to the filtration member are not broken or separated from the filtration member 3.
The treated water storage unit 2 is provided with an air supply unit 13. The air supply unit 13 controls the ORP of the treated water 8 within a predetermined range by discharging air 18 from a nozzle 19 near the bottom surface of the treated water storage unit 2.
A treated water storage section 12 for storing the treated water 8 is provided downstream of the treated water storage section 2. The water level Lc of the treated water 8 in the treated water storage unit 12 is lower than the water level La of the water 10 to be treated. The treated water storage unit 12 receives and stores the treated water 8 discharged from the filtration member 3 and flowing through the treated water discharge means 4.
[0016]
The treated water discharge means 4 has a filtration member support 15 provided in the treated water storage 2 and a discharge pipe 14 connected to the filtration member support 15. Inside the filtration member support portion 15, a water guide portion 16 in which the treated water 8 flows in communication with the filtration member 3 is formed.
The discharge pipe 14 communicates with the water guide 16, guides the treated water 8 flowing through the water guide 16 to the outside of the treated water storage 2, and discharges the treated water 8 to the treated water storage 12. The treated water 8 flowing out of the filtering member 3 flows through the water guide 16 and the discharge pipe 14 and is stored in the treated water storage 12.
[0017]
The nitrogen removal device is provided with a water level difference adjusting means so that the water level difference H can be adjusted.
The discharge port 14 a of the discharge pipe 14 is immersed in the treated water 8 in the treated water storage unit 12. The water level difference H in this case is from the downstream water level of the treated water 8 (that is, the water level Lc of the treated water 8 in the treated water storage unit 12) to the water level La of the treated water 10 in the treated water storage unit 2. Is the height dimension. That is, the water level difference H = water level La−water level Lc. The water level difference H can be adjusted by the water level difference adjusting means.
Separately from this, the discharge port 14a of the discharge pipe 14 may be located above the water surface of the treated water storage unit 12 and located above the water level, and the discharge port 14a may be located below the water level La of the water 10 to be treated. (Not shown).
The water level difference H in this case is the height dimension from the downstream water level Lb of the treated water 8 (that is, the height position of the water surface in the discharge pipe 14 near the discharge port 14a) to the water level La of the water 10 to be treated. It is. That is, the water level difference H = water level La−water level Lb.
[0018]
The water to be treated 10 flows naturally due to the energy at the position due to gravity based on the water level difference H serving as the driving source (energy source) of the flow and the cohesive force between the water molecules, and is treated from the treated water storage 2. It moves to the water storage unit 12.
That is, since the filtration member 3 has the pseudo fine tube constituted by the inter-fiber gap, the water to be treated 10 in the water to be treated storage section 2 is generated in the longitudinal direction of the string-like fiber aggregate 6. Flows through the pseudo fine tube due to the pressure gradient.
The water to be treated 10 contains a large amount of suspended solids larger than the inside diameter of the pseudo fine tube. Therefore, among the suspended solids contained in the water 10 to be treated, suspended solids larger than the inner diameter of the pseudo fine tube cannot pass through the pseudo fine tube. Therefore, the suspended solids adhere to the filtering member 3 and are removed. This filtration is performed in the water to be treated 10 stored in the treated water storage unit 2.
As described above, the size of the suspended solids to be removed is determined by the inner diameter of the pseudo fine tube. Therefore, according to the type, size, particle size distribution, etc. of the suspended solids contained in the water 10 to be treated, the selection of the optimum material of the filtering member 3 and the size, density, etc. of the string-like fiber aggregate 6 and the fiber 9 are determined. Just do it.
[0019]
The oxidation-reduction potential adjusting means 5 for controlling the ORP of the treated water 8 within a predetermined range includes the air supply unit 13, the detector 21, and the air 18 by controlling the air supply unit 13 based on a signal from the detector 21. And a control unit (not shown) that adjusts the flow rate.
The detector 21 is provided in the discharge pipe 14 and detects the ORP of the treated water 8 flowing out of the filtration member 3. By adjusting the flow rate of the air 18 supplied into the water 10 to be treated by the air supply unit 13 based on the signal output from the detector 21, the ORP of the treated water 8 flowing through the discharge pipe 14 can be adjusted to a predetermined value. , For example, in the range of -120 mV to +50 mV.
Further, the range of the concentration of solid matter (that is, sludge) in the microbial colony 11 is preferably 3% by weight to 5% by weight.
If the temperature of the water to be treated 10 in the water to be treated storage unit 2 is low, the activity of the microorganisms is reduced. However, if the temperature of the water to be treated 10 is within a predetermined range (preferably 23 ° C. ± 7 ° C.), And the nitrogen removal is satisfactorily performed.
Therefore, the nitrogen removing device 1 has a water temperature adjusting means 22 for adjusting the water temperature of the water 10 to be treated to a predetermined range. The water temperature adjusting means 22 can control the heater 23 provided in the water to be treated 10 of the water to be treated storage 2 to control the temperature of the water to be treated 10 to, for example, 23 ° C. ± 7 ° C. It is.
[0020]
The filtering member 3 is composed of a plurality of elongated string-like fiber aggregates 6. That is, the filtering member 3 is configured in a “border shape” by the string-like fiber aggregate 6 composed of only the warp yarn. One string-like fiber aggregate 6 is formed by combining a plurality of warp yarns in which a large number of fine fibers 9 are gathered.
As described above, the string-like filtration member 3 is less likely to be clogged because the plurality of string-like fiber aggregates 6 are gathered into an interdigital shape.
The composition of the filtering member 3 is preferably selected from at least one of synthetic fibers such as polyester synthetic fiber, rayon and acrylic fiber. For example, the filtering member 3 is composed of about 40% by weight of a polyester synthetic fiber, about 40% by weight of rayon, and about 20% by weight of an acrylic fiber.
In addition, you may use the following high molecular compounds as a raw material of the filtration member 3. For example, ethyl cellulose, cellulose acetate, nylon, vinylon, acetate, cupra, acrylonitrile, polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polystyrene, polytetrafluoroethylene, polyterephthalate ethylene, polytrifluoroethylene, poly Examples thereof include chlorotrifluoroethylene, polyvinyl alcohol, polypropylene, and polymethyl methacrylate.
[0021]
The filtering member 3 has a stitching portion 40 for making the plurality of string-like fiber aggregates 6 into a flat bundle. In the stitching portion 40, the string-like fiber aggregates 6 are loosened without being compressed, so that even when the treated water 8 flows inside the stitching portion 40, the treated water 8 can easily pass therethrough.
The diameter e (FIG. 2B) of the string-like fiber aggregate 6 is appropriately selected according to the type, size, particle size distribution, and the like of the microorganism, and is, for example, about 3 mm to about 4 mm in diameter e.
As shown in FIGS. 3A and 3B, the filtering member 3 is formed into a circular shape by sewing both ends 40a and 40b of the stitched portion 40 together as shown in FIGS. Have been. Note that, in FIG. 3B, illustration of a part of the string-like fiber aggregate 6 is omitted.
[0022]
An annular band 45 is attached to the outer peripheral surface of the annularly formed sewing portion 40. The band 45 holds the stitched portion 40 in an annular shape and prevents the string-like fiber aggregate 6 from being loosened.
Using the stitched portion 40 and the band 45 as support portions, the string-like fiber aggregates 6 on one side and the string-like fiber aggregates 6 on the other side are used by being turned back so as to spread radially outward.
The string-like fiber aggregate 6 in the present invention includes, in addition to those shown in the present embodiment, a thread-like fiber aggregate having a small diameter, and a fiber aggregate including a warp and a slight weft. Further, for example, a case where a cloth-like nonwoven fabric or the like is cut into small pieces to form a string-like fiber aggregate having a slightly wide width and an elongated shape may be used.
[0023]
The filtration member support portion 15 is a pipe-shaped support tube 41 that is disposed vertically in the center and has a closed lower end, a hollow holder 42 that is supported by the support tube 41, and has an upper end and a lower end closed respectively. have.
A plurality of communication holes 48 are formed in the support tube 41. An annular holding portion 46 for holding the support tube 41 at the center position is formed integrally with the holder 42, and a plurality of communication holes 47 are formed in the holding portion 46.
[0024]
The filtering member 3 is attached to the opening of the holder 42 so that there is no gap. Thereby, since the internal space 49 of the holder 42 is shielded from the water 10 to be treated in the water to be treated storage part 2 by the filtration member 3, a short path of the water to be treated can be prevented.
The inner space 49 and the inner space of the support tube 41 constitute the water guide 16 through which the treated water 8 flows.
The water 10 to be treated is treated by the filtration member 3. The treated water 8 flowing out of the filtering member 3 enters the internal space 49 of the holder 42 and then passes through the communication hole 47 into the support tube 41 through the communication hole 48 or directly passes through the communication hole 48 from the internal space 49. Into the support tube 41. Thereafter, the treated water 48 is discharged from the support pipe 41 to the outside of the treated water storage unit 2 through the discharge pipe 14.
[0025]
FIG. 5 shows one string-shaped fiber aggregate 6 among a plurality of string-shaped fiber aggregates 6 as an example.
When no solid matter (microbial colony 11) is attached to the string-like fiber aggregate 6, most of the water to be treated 10 is at the root of the string-like fiber aggregate 6 due to gravity based on the water level difference H. By entering the gap between the fibers 9 from the entire surface of the string-like fiber assembly 6 immersed in water by the energy of the position, a small group 30 of microorganisms that cannot enter between the fiber gaps is placed on the surface of the string-like fiber assembly 6. The to-be-treated water 10 adheres in a pipe shape and flows through the inter-fiber gap due to a pressure gradient generated in the longitudinal direction of the string-like fiber aggregate 6.
As time passes, a small group 30 of microorganisms adheres to the surface of the string-like fiber aggregate 6 in a pipe shape, and the small group 30 of microorganisms gradually grows and becomes a microbial colony 11 composed of activated sludge (adhered solid matter). To form
The string-like fiber aggregate 6 to which the microbial colonies 11 adhere and are surrounded has a structure like a pseudo pipe (or honeycomb) constituted by a plurality of inter-fiber gaps. Inside the microbial colony 11, a minute gap 31 that exerts a filtering function is formed.
Therefore, the water to be treated 10 flows through the gap in the pseudo pipe by the energy of the position due to gravity based on the water level difference H and the cohesive force between the water molecules. Further, the water to be treated 10 flows through the minute gaps 31 inside the microbial colonies that exhibit the filtering function due to the water level difference H.
[0026]
The water 10 to be treated is filtered at the gap between the fibers 9 from the entire surface of the string-like fiber aggregate 6 due to the water level difference H. The water to be treated 10 flows in the inter-fiber gap due to the pressure gradient generated in the longitudinal direction of the string-like fiber aggregate 6.
Further, the water to be treated 10 is also filtered where it enters the minute gap 31 inside the microbial colony 11 having a filtering function, flows through the minute gap 31 due to the water level difference H, and then pressurizes the gap between the fibers. It flows by the gradient.
Thereby, the water to be treated 10 becomes the treated water 8 and flows into the internal space 49 of the holder 42. Since the water to be treated 10 flows through the gaps between the fibers 9 due to the pressure gradient, it can continue to flow even if the size of the attached microbial colonies 11 increases.
[0027]
Next, an experiment performed by the inventor will be described. The experimental conditions are as follows.
Composition of the filter member 3: 40% by weight of polyester synthetic fiber, 40% by weight of rayon, 20% by weight of acrylic fiber
・ Dimensions of filtering member 3 (when deployed): about 43 cm (width D) x about 30 cm (length E)
String-like fiber aggregate 6: diameter e is about 4 mm
・ Capacity of treated water storage unit 2: 1m3
-Filtration member support 15: 2 sets of 3 sets (1 set) with one holder of about 2 m in length
・ Water to be treated 10: Water after treatment by activated sludge method at sewage treatment center
・ Flow rate of water to be treated: 3.9m3/Day
・ Experiment period: 2 days
[0028]
When one holder 42 having a length of about 2 m is used as the filtration member supporting portion 15, two sets of three sets (one set) (that is, a total of six sets) are installed in the treated water storage section 2. , And connected to the discharge pipe 14 in parallel.
4.8 kg (dry) of sludge is charged into the treated water storage section 2 after storing the treated water 10, and the filtration member 3 sucks up the sludge to form microbial colonies 11. An experiment on nitrogen removal was performed.
The water treated by the activated sludge method at the sewage treatment center in Ibaraki Prefecture is used as raw water (water to be treated 10), 3.9m3The raw water flowed into the treated water storage unit 2 at a flow rate of / day. The average residence time in the treated water storage unit 2 was 6.15 Hr.
The water temperature of the water 10 to be treated in the treated water storage unit 2 is adjusted to a range of 23 ° C. ± 7 ° C. by turning on and off the heater 23 by the water temperature adjusting means 22.
The nitrogen removal state (denitrification state) includes nitrite and nitrate nitrogen (NO2+ NO3 -N). FIG. 7 is a diagram showing an example of experimental data relating to the removal of nitrogen. FIG. 8 shows BOD (biochemical oxygen demand) of treated water 8 and ammonia nitrogen (NH4It is a graph which shows an example of the density of -N). The horizontal axis in FIG. 8 indicates the ORP of the treated water 8, and the vertical axis indicates the concentration. Curve A in FIG. 8 shows BOD, and curve B shows NH4−N is indicated.
[0029]
In the nitrogen removal apparatus 1 used in this experiment, the water to be treated 10 is stored in the water to be treated storage section 2 having an anaerobic atmosphere inside, and the entire filtering member 3 provided in the water to be treated storage section 2 is covered. It is immersed in treated water 10.
A predetermined flow rate of the water to be treated 10 is supplied to the water to be treated storage section 2 via a supply pipe 12. As a result, the water level La of the treated water 10 in the treated water storage unit 2 is higher than the water level Lc of the treated water 8 in the treated water storage unit 12, so that the water level difference H is secured.
[0030]
Due to the water level difference H, the water to be treated 10 enters the gap between the fibers 9 from the entire surface of the filter member 3 immersed in water, and the small group 30 of microorganisms that cannot enter between the fiber gaps becomes a string-like fiber aggregate. The to-be-processed water 10 adheres to the surface of the body 6 in a pipe shape, and flows through the inter-fiber gap due to the pressure gradient generated in the longitudinal direction of the string-like fiber aggregate 6 (the state of FIG. 6A).
Thus, the small group 30 of microorganisms attached to the surface of the string-like fiber aggregate 6 in a pipe shape gradually grows to form the microorganism colonies 11. The microbial colony 11 has a minute gap 31 inside and exhibits a filtering function (the state of FIG. 6B).
The dimensions of the gaps between the fibers 9 (eg, about 20-30 μm inner diameter), the dimensions of the microbial particles (eg, about 1-2 μm), and the dimensions of the minute gaps 31 inside the microbial colony 11 (eg, Can be confirmed by a micrograph.
[0031]
After that, the water to be treated 10 is filtered where it enters the microscopic gap 31 inside the microbial colony 11, flows through the microscopic gap 31 by the water level difference H, and then flows through the interfiber gap by the pressure gradient.
The treated water 8 flows out of the filtration member 3 and is discharged to the outside of the treated water storage section 2 in a state where the ORP is controlled to a predetermined range by the oxidation-reduction potential adjusting means 5. That is, the treated water 8 flows from the filtration member 3 to the internal space 49 of the holder 42, the interior of the support tube 41, and the discharge pipe 14 in this order, and is stored in the treated water storage unit 12.
Since the ORP of the treated water 8 is preferably measured before the treated water 8 comes into contact with air, the ORP is measured at a position immediately after the treated water 8 is discharged from the treated water storage unit 2.
[0032]
The ORP of the treated water 8 can be increased or decreased by increasing or decreasing the flow rate of the air 18 supplied by the air supply unit 13. When the supply amount of the air 18 is reduced and the ORP of the treated water 8 is reduced, the BOD of the treated water 8 is increased as shown by a curve A in FIG. This means that if the ORP of the treated water 8 is reduced, the organic matter of the microorganism is dissolved in the treated water 8 in the microorganism colony 11.
When such dissolution of organic matter occurs in the microbial colony 11, the remaining microorganisms eat the organic matter as food. Moreover, since microorganisms need oxygen to breathe, they take in oxygen by decomposing nitric acid contained in water flowing through the minute gaps 31 inside the microorganism colony 11.
The nitric acid in the water flowing through the minute gap 31 is thus decomposed into oxygen and nitrogen, so that nitrogen is removed from the water. In addition, since microorganisms eat dissolved organic matter as food, there is no need to add an organic carbon source such as methanol which has been added by a conventional methanol addition method or the like.
As shown by the curve A in FIG. 8, when the ORP of the treated water 8 was +50 mV or less, it was confirmed that the organic matter was dissolved well and was particularly effective in removing nitrogen.
[0033]
On the other hand, NH in the treated water 84Regarding -N (ammonia-based nitrogen), as shown in a curve B in FIG. 8, when the ORP of the treated water 8 decreases and becomes anaerobic, the ammonia-based nitrogen (NH4−N) is increasing. This means that in the microbial colony 11, dissolution of ammonia nitrogen has occurred and decay has started.
When the ammonia nitrogen is dissolved in the treated water 8 and the nitrogen is increased, the purpose of the nitrogen removal is defeated. This ammonia nitrogen is particularly large when the ORP of the treated water 8 is in the range of -120 mV or less.
[0034]
To summarize the above experimental results, the conditions under which the dissolution of ammonia nitrogen in the microbial colony 11 is small and the organic matter is well dissolved and the anaerobic state is good are as follows: ORP of the treated water 8 is in the range of -120 mV to +50 mV It can be seen that it is preferable to control
At this time, the concentration of solid matter (concentration of sludge) in the microbial colony 11 is 3% by weight to 5% by weight, and the temperature of the water 10 to be treated in the treated water storage unit 2 is in the range of 23 ° C. ± 7 ° C. For example, nitrogen was successfully removed.
As for the ORP of the treated water 8, the flow rate of the air 18 is adjusted by controlling the air supply unit 13 based on the value of the ORP of the treated water 8 detected by the detector 21. Thereby, the ORP of the treated water 8 can be controlled.
Increasing the water level difference H increases the concentration of the solid, and decreasing the water level difference H decreases the concentration of the solid. Therefore, if the water level difference H is adjusted by the water level difference adjusting means, the concentration of the solid can be controlled.
Further, the water temperature adjusting means 22 turns on and off the heater 23 so that the water temperature of the water to be treated 10 in the water to be treated storage section 2 can be controlled within a range of 23 ° C. ± 7 ° C.
[0035]
By operating the nitrogen removing apparatus 1 as described above, it is possible to remove nitrogen from the water to be treated 10 and obtain clean treated water 8. FIG. 7 shows the concentrations and removal rates of nitrite and nitric acid in the raw water (the water to be treated 10) and the treated water 8. In this experiment, the average removal rate was 63.6%, and it was confirmed that nitrogen could be removed well.
In this way, since clean wastewater can be discharged by removing nitrogen in the wastewater, eutrophication of rivers and lakes can be prevented, and the water quality can be improved.
[0036]
In the conventional nitrogen removal technology, microorganisms are always suspended in the entire tank in an anaerobic atmosphere, and the concentration of suspended solids composed of such microorganisms cannot be so high. 0.5% was the upper limit of the concentration.
On the other hand, in the present invention, the microbial colonies 11 are formed on the filtering member 3, and water flows through the minute gaps 31 in the microbial colonies 11. Since the microbial colony 11 is also a place where the microorganisms live, the microorganisms can stay at substantially the same position without floating in the tank.
Thus, when the microbial colony 11 is formed, the sludge (microorganism) stays at substantially the same place, so that the concentration of the sludge in the microbial colony 11 can be significantly increased as compared with the conventional method.
[0037]
Further, in the microbial colony 11, there is a sufficient amount of organic matter serving as food for the microbes, necessary oxygen is constantly supplied by water flowing through the minute gaps 31, and the microbial concentration is significantly higher than before (for example, , About 10 times higher than before).
Therefore, the microorganisms can live in a stable state in the microorganism colony 11, and nitrogen is removed in a biologically favorable state. Further, in the microbial colony 11, since the microorganisms eat dissolved organic matter as food and consume the sludge, it is not necessary to remove the sludge, and there is a possibility that the treatment of the sludge which becomes industrial waste becomes unnecessary. high.
[0038]
In the past, in the anaerobic atmosphere, the floating organisms in the water were in contact with the nitrogen component, or were in contact with the nitrogen component on the surface of the biofilm, but in the present invention, the contact structure in which water passes through the inside of the microbial colony 11 Therefore, the chance of contact increases, and nitrogen can be removed with higher efficiency.
In the conventional circulation method, the removal of nitrogen inhibits nitrification. However, in the present invention, since there is no inhibition of nitrification, nitrogen can be easily removed.
For example, if the present invention is applied to a waterworks installed in a water intake source area to obtain clean water (drinking water), nitrogen can be easily removed without adding chemicals to the collected water, Water quality can be improved.
[0039]
ADVANTAGE OF THE INVENTION According to this invention, the substance (sludge) which becomes an industrial waste can be made into a natural circulation form by further promoting the food chain of living things, energy saving, the facility can be simplified, and Can greatly reduce the cost of social life and contribute to society.
Since the filtering member 3 and the microbial colony 11 perform the filtering function, the conventionally required sedimentation tank and the like become unnecessary, and the sludge does not need to be returned. Therefore, the treatment process is simplified, and solid-liquid separation is sufficiently performed without separately providing a filtration device, so that clean treated water 8 can be obtained.
[0040]
In the present invention, the nitrogen removing device 1 of the present invention can be easily configured by adding a filter member support portion 15 to which the filter member 3 is attached in the treated water storage portion 2 having an anaerobic atmosphere inside. it can.
In the present embodiment, the movement of the water to be treated 10 and the treated water 8 is due to the energy at the position due to gravity based on the water level difference H serving as the driving source (energy source) of the flow and the cohesive force between the water molecules. No power was used during this time. Also, there is no need to circulate water.
Therefore, compared with the conventional water treatment technology, the power is smaller, so that the energy consumption of the water treatment device can be reduced, the noise hardly occurs, and the operation is easy because the treatment process is simple.
[0041]
In addition, although the case where the whole of the filtering member 3 is immersed in the to-be-processed water 10 was shown, the case where not the whole of the filtering member 3 but most of the filtering member 3 is immersed in the to-be-processed water 10 may be sufficient.
In addition, although the case where the filter member supporting portion 15 is arranged in a substantially vertical direction (vertical direction) as a whole is shown, the case where the filter member supporting portion 15 is arranged in a direction inclined with respect to the vertical direction (oblique direction) may be employed.
[0042]
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications and additions can be made within the scope of the present invention.
In the drawings, the same reference numerals indicate the same or corresponding parts.
[0043]
【The invention's effect】
Since the present invention is configured as described above, it is not necessary to add methanol or the like for removing nitrogen, and clean treated water can be obtained by removing nitrogen in a simple treatment step.
[Brief description of the drawings]
FIGS. 1 to 8 show an example of an embodiment of the present invention, and FIG. 1 is a schematic configuration diagram of a nitrogen removing apparatus.
FIG. 2 (A) is an explanatory view showing a filtering member made of a string-shaped fiber aggregate, and FIG. 2 (B) is an enlarged sectional view of the string-shaped fiber aggregate.
3 (A) and 3 (B) are a plan view and a front view showing a state where the filtering member shown in FIG. 2 is sewn in a circular shape.
4 (A) is a longitudinal sectional view showing the filtration member and the treated water discharging means, and FIG. 4 (B) is a sectional view taken along line BB of FIG. 4 (A).
FIG. 5 is a partially enlarged sectional view of FIG.
FIG. 6A is a diagram corresponding to a micrograph of a state in which a small group of microorganisms has begun to adhere to a string-like fiber aggregate, and FIG. 6B is a diagram in which a small group of the microorganisms is gathered. It is a figure corresponding to the micrograph of the state where the microbe colony began to form.
FIG. 7 is a diagram showing an example of experimental data on nitrogen removal.
FIG. 8 is a graph showing an example of the concentrations of BOD and ammonia nitrogen in treated water.
[Explanation of symbols]
1 Nitrogen removal equipment
2 treated water storage
3 Filtration member
4 Treated water discharge means
5 Redox potential adjusting means
6 string fiber aggregate
8 Treated water
9 Fiber
10 Water to be treated
11 Microbial colonies
30 Small group of microorganisms
31 Minute gap
H water level difference

Claims (8)

窒素を含む被処理水から窒素を除去する方法であって、
内部が嫌気性雰囲気の被処理水貯留部に前記被処理水を貯留し、
この被処理水貯留部に設けられ複数のひも状繊維集合体の集合により構成されたろ過部材を前記被処理水に浸して微生物コロニーを形成し、
この微生物コロニーではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解するように、処理水は、所定の範囲の酸化還元電位に制御された状態で前記ろ過部材から流出するようにしたことを特徴とするひも状繊維集合体を使用した窒素除去方法。
A method for removing nitrogen from treated water containing nitrogen,
The treated water is stored in the treated water storage part having an anaerobic atmosphere inside,
A microbial colony is formed by immersing a filtration member, which is provided in the water-to-be-treated storage part, and constituted by a collection of a plurality of string-like fiber aggregates in the water to be treated,
In this microbial colony, the treated water is caused to flow out of the filtration member in a state where the treated water is controlled to a predetermined range of oxidation-reduction potential so that the ammonia nitrogen is less dissolved and the organic matter is favorably dissolved. A nitrogen removal method using a string-like fiber aggregate.
窒素を含む被処理水から窒素を除去する方法であって、
内部が嫌気性雰囲気の被処理水貯留部に前記被処理水を貯留し、
この被処理水貯留部に設けられ細長い複数のひも状繊維集合体の集合により構成されたろ過部材の一部またはほぼ全部を前記被処理水に浸し、
水位差によりこの被処理水が前記ろ過部材の水に浸った表面全体から繊維の間の隙間に入ることにより、この繊維間隙間に入れない微生物の小集団は前記ひも状繊維集合体の表面にパイプ状に付着し、前記被処理水は、前記ひも状繊維集合体の長手方向に生じた圧力勾配により前記繊維間隙間を流れていき、前記ひも状繊維集合体の表面にパイプ状に付着した前記微生物の小集団は、次第に大きくなって内部に微小な隙間を有してろ過機能を発揮する微生物コロニーを形成し、
その後、前記被処理水は、この微生物コロニーの内部の前記微小な隙間に入るところでろ過された後、この微小な隙間を前記水位差により流れ、次いで前記繊維間隙間を前記圧力勾配により流れていき、
前記微生物コロニーではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解して程良い嫌気状態になるように、処理水は、所定の範囲の酸化還元電位に制御された状態で前記ろ過部材から流出して前記被処理水貯留部の外部に排出されるようにしたことを特徴とするひも状繊維集合体を使用した窒素除去方法。
A method for removing nitrogen from treated water containing nitrogen,
The treated water is stored in the treated water storage part having an anaerobic atmosphere inside,
A part or almost the entirety of a filtration member formed by a collection of a plurality of elongated string-like fiber aggregates provided in the water to be treated is immersed in the water to be treated,
Due to the water level difference, the water to be treated enters the gap between the fibers from the entire surface of the filter member immersed in water, so that a small population of microorganisms that cannot enter between the fiber gaps is on the surface of the string-like fiber aggregate. Attached in a pipe shape, the to-be-processed water flowed through the inter-fiber gap due to a pressure gradient generated in a longitudinal direction of the string-shaped fiber aggregate, and adhered in a pipe shape to the surface of the string-shaped fiber aggregate. The small population of microorganisms gradually grows to form microbial colonies that exhibit a filtering function with small gaps inside,
Thereafter, the water to be treated is filtered where it enters the microscopic gap inside the microbial colony, and then flows through the microscopic gap due to the water level difference, and then flows through the interfiber gap by the pressure gradient. ,
In the microbial colony, the treated water is filtered from the filtration member in a state where the dissolution of ammonia nitrogen is small and the organic matter is dissolved in a favorable anaerobic state so as to be in a favorable anaerobic state. A method for removing nitrogen using a string-like fiber aggregate, wherein the nitrogen is discharged and discharged to the outside of the treated water storage part.
前記処理水の酸化還元電位は−120mVないし+50mVの範囲に制御されていることを特徴とする請求項1または2に記載のひも状繊維集合体を使用した窒素除去方法。The method according to claim 1 or 2, wherein the oxidation-reduction potential of the treated water is controlled in a range of -120 mV to +50 mV. 前記微生物コロニーにおける固形物の濃度は3重量%ないし5重量%であることを特徴とする請求項1,2または3に記載のひも状繊維集合体を使用した窒素除去方法。4. The method of claim 1, wherein a concentration of solids in the microbial colony is 3% by weight to 5% by weight. 5. 窒素を含む被処理水から窒素を除去する窒素除去装置であって、
前記被処理水が貯留され内部が嫌気性雰囲気の被処理水貯留部と、
この被処理水貯留部に設けられ、複数のひも状繊維集合体の集合により構成されたろ過部材と、
このろ過部材から流出する処理水の酸化還元電位を調整するための酸化還元電位調整手段とを備え、
前記ろ過部材を前記被処理水に浸して微生物コロニーを形成し、この微生物コロニーではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解するように、処理水は、前記酸化還元電位調整手段により所定の範囲の酸化還元電位に制御された状態で前記ろ過部材から流出するようにしたことを特徴とするひも状繊維集合体を使用した窒素除去装置。
A nitrogen removing device for removing nitrogen from treated water containing nitrogen,
The treated water is stored, and the treated water storage portion has an anaerobic atmosphere inside,
A filtration member provided in the water-to-be-treated storage part and configured by a set of a plurality of string-like fiber aggregates,
An oxidation-reduction potential adjusting means for adjusting the oxidation-reduction potential of the treated water flowing out of the filtration member,
The filtration member is immersed in the water to be treated to form a microbial colony.In this microbial colony, the treated water is treated by the oxidation-reduction potential adjusting means so that the dissolution of ammonia nitrogen is small and the organic matter is well dissolved. A nitrogen removal device using a string-like fiber aggregate, wherein the nitrogen-removal device is made to flow out of the filtration member in a state where the oxidation-reduction potential is controlled within a predetermined range.
窒素を含む被処理水から窒素を除去する窒素除去装置であって、
前記被処理水が貯留され内部が嫌気性雰囲気の被処理水貯留部と、
この被処理水貯留部に設けられ、一部またはほぼ全部が前記被処理水に浸され、細長い複数のひも状繊維集合体の集合により構成されたろ過部材と、
このろ過部材から流出する処理水を排出させるための処理水排出手段と、
この処理水の酸化還元電位を調整するための酸化還元電位調整手段とを備え、
前記被処理水は、水位差により前記ろ過部材の水に浸った表面全体から繊維の間の隙間に入ることにより、この繊維間隙間に入れない微生物の小集団は前記ひも状繊維集合体の表面にパイプ状に付着し、前記被処理水は、前記ひも状繊維集合体の長手方向に生じた圧力勾配により前記繊維間隙間を流れていき、前記ひも状繊維集合体の表面にパイプ状に付着した前記微生物の小集団は、次第に大きくなって内部に微小な隙間を有してろ過機能を発揮する微生物コロニーを形成し、
その後、前記被処理水は、この微生物コロニーの内部の前記微小な隙間に入るところでろ過された後、この微小な隙間を前記水位差により流れ、次いで前記繊維間隙間を前記圧力勾配により流れていき、
前記微生物コロニーではアンモニア態の窒素の溶解が少なく且つ有機物が良好に溶解して程良い嫌気状態になるように、前記処理水は、前記酸化還元電位調整手段により所定の範囲の酸化還元電位に制御された状態で前記ろ過部材から流出して前記処理水排出手段により前記被処理水貯留部の外部に排出されるようにしたことを特徴とするひも状繊維集合体を使用した窒素除去装置。
A nitrogen removing device for removing nitrogen from treated water containing nitrogen,
The treated water is stored, and the treated water storage portion has an anaerobic atmosphere inside,
A filtration member provided in the treated water storage part, a part or almost all of which is immersed in the treated water, and constituted by a collection of a plurality of elongated string-like fiber aggregates,
Treated water discharge means for discharging treated water flowing out of the filtration member,
An oxidation-reduction potential adjusting means for adjusting the oxidation-reduction potential of the treated water,
The water to be treated enters the gaps between the fibers from the entire surface of the filter member immersed in water due to the difference in water level. The to-be-treated water flows through the inter-fiber gap due to the pressure gradient generated in the longitudinal direction of the string-like fiber aggregate, and adheres in a pipe-like manner to the surface of the string-like fiber aggregate. The small population of the microorganisms gradually grows to form microbial colonies that exhibit a filtering function with small gaps inside,
Thereafter, the water to be treated is filtered where it enters the microscopic gap inside the microbial colony, and then flows through the microscopic gap due to the water level difference, and then flows through the interfiber gap by the pressure gradient. ,
In the microbial colony, the treated water is controlled to a predetermined range of oxidation-reduction potential by the oxidation-reduction potential adjusting means so that the ammonia-based nitrogen is less dissolved and the organic matter is dissolved well and a suitable anaerobic state is obtained. The nitrogen removal device using a string-like fiber aggregate, wherein the device is discharged from the filtering member in a state of being discharged and discharged to the outside of the treated water storage section by the treated water discharge means.
前記処理水の酸化還元電位は−120mVないし+50mVの範囲に制御されていることを特徴とする請求項5または6に記載のひも状繊維集合体を使用した窒素除去装置。7. The nitrogen removing apparatus according to claim 5, wherein the oxidation-reduction potential of the treated water is controlled in a range of -120 mV to +50 mV. 前記微生物コロニーにおける固形物の濃度は3重量%ないし5重量%であることを特徴とする請求項5,6または7に記載のひも状繊維集合体を使用した窒素除去装置。8. The nitrogen removing apparatus according to claim 5, 6 or 7, wherein the concentration of the solid matter in the microbial colony is 3% by weight to 5% by weight.
JP2002347698A 2002-11-29 2002-11-29 Method for removing nitrogen by using string-like fiber assembly and apparatus for the same Pending JP2004181274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347698A JP2004181274A (en) 2002-11-29 2002-11-29 Method for removing nitrogen by using string-like fiber assembly and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347698A JP2004181274A (en) 2002-11-29 2002-11-29 Method for removing nitrogen by using string-like fiber assembly and apparatus for the same

Publications (1)

Publication Number Publication Date
JP2004181274A true JP2004181274A (en) 2004-07-02

Family

ID=32750812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347698A Pending JP2004181274A (en) 2002-11-29 2002-11-29 Method for removing nitrogen by using string-like fiber assembly and apparatus for the same

Country Status (1)

Country Link
JP (1) JP2004181274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305531A (en) * 2005-03-29 2006-11-09 Sanwa Seisakusho:Kk Method and apparatus for treating organic waste
JP2007190485A (en) * 2006-01-19 2007-08-02 Matsushita Electric Ind Co Ltd Wastewater treatment apparatus
JP2008029943A (en) * 2006-07-27 2008-02-14 Kanazawa Univ Microorganism carrier and waste water treatment equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305531A (en) * 2005-03-29 2006-11-09 Sanwa Seisakusho:Kk Method and apparatus for treating organic waste
JP2007190485A (en) * 2006-01-19 2007-08-02 Matsushita Electric Ind Co Ltd Wastewater treatment apparatus
JP2008029943A (en) * 2006-07-27 2008-02-14 Kanazawa Univ Microorganism carrier and waste water treatment equipment

Similar Documents

Publication Publication Date Title
JP4519836B2 (en) Ammonia-containing wastewater treatment method
US7691262B2 (en) System for treating wastewater having a controlled reaction-volume module usable therein
CN112209573B (en) Breeding tail water treatment system
CN107021597A (en) Improve the system and method for biochemical and deeply treating wastewater using Powdered Activated Carbon
KR20110002832A (en) Method and device for the treatment of waste water
JPH0899092A (en) Waste water treatment apparatus and method
CN101318758A (en) Air-float and bio-filter combined water treatment process
JP2000312542A (en) Circulatory filtration apparatus for culturing fishes and shellfishes
JP2008029943A (en) Microorganism carrier and waste water treatment equipment
AU2006300978B2 (en) SAF system and method involving specific treatments at respective stages
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
KR101186606B1 (en) Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater
KR19980025268A (en) Leachate Treatment Method and Apparatus
JP2004181274A (en) Method for removing nitrogen by using string-like fiber assembly and apparatus for the same
KR100458764B1 (en) Method and apparatus for the treatment of contaminated water by submersible biological aerated filter
KR200394153Y1 (en) The Device to Treat Lakes using the Power-driven Floating Island of Contacting Oxidation with the Coconut Activated Carbon
KR100353004B1 (en) Biological Nutrient Removal Method using a Submerged Moving Media Intermittent Aeration Reactor and System
JP2003225690A (en) Water cleaning method and apparatus using fine air bubble and carbon fiber
CN210711166U (en) Villages and towns sewage treatment plant
JPH11188378A (en) Organism fixing carrier for drainage treatment and drainage treatment apparatus
CN206985984U (en) A kind of system of deeply treating wastewater
KR20030013491A (en) Sewage treatment system utilized bio-ball, bio-tank and lock-filter
CN207347250U (en) A kind of multifunction ecological filter bed for rural scattered domestic sewage processing
KR100766334B1 (en) bio-filter system for improving reservoir water quality
JP2000246272A (en) Method for removing nitrogen of sewage