JP2003188447A - Diffraction grating exchange type electromagnetic wave generator, diffraction grating position adjusting method and apparatus thereof - Google Patents

Diffraction grating exchange type electromagnetic wave generator, diffraction grating position adjusting method and apparatus thereof

Info

Publication number
JP2003188447A
JP2003188447A JP2001381506A JP2001381506A JP2003188447A JP 2003188447 A JP2003188447 A JP 2003188447A JP 2001381506 A JP2001381506 A JP 2001381506A JP 2001381506 A JP2001381506 A JP 2001381506A JP 2003188447 A JP2003188447 A JP 2003188447A
Authority
JP
Japan
Prior art keywords
diffraction grating
electron beam
electromagnetic wave
vacuum chamber
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001381506A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishida
稔幸 石田
Yasumasa Kaneda
安正 金田
Takeshi Iida
武 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2001381506A priority Critical patent/JP2003188447A/en
Publication of JP2003188447A publication Critical patent/JP2003188447A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To exchange the other diffraction grating without breaking a vacuum after an electromagnetic wave generating state is adjusted using a reference diffraction grating within a vacuum chamber. <P>SOLUTION: The diffraction grating exchange type electromagnetic wave generator, a diffraction grating position adjusting method and its apparatus are configured so that the other diffraction gratings (4, 4b and 4c) are exchanged without breaking a vacuum after a position is adjusted with the reference diffraction grating (4a) within the vacuum chamber (1), and the position is adjusted by detecting electromagnetic waves (11) from minute domains of both ends (P1, P2) of the reference diffraction grating (4a) using a pair of light receiving elements (21, 21a). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回折格子交換型電
磁波発生装置並びに回折格子位置調整方法および装置に
関し、特に、真空チャンバー内で複数の回折格子を移動
可能とすることによって真空を破ることなく目的に合っ
た回折格子を選択可能とし、各回折格子の中の基準回折
格子からの電磁波の強度を一対の受光素子で測定するこ
とによって電子ビームと基準回折格子の相対位置を調整
し、他の各回折格子の取り替えに対して位置の再調整を
不要とするための新規な改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffraction grating exchange type electromagnetic wave generating apparatus and a diffraction grating position adjusting method and apparatus, and more particularly, to a plurality of diffraction gratings that can be moved in a vacuum chamber without breaking the vacuum. A diffraction grating suitable for the purpose can be selected, and the relative position of the electron beam and the reference diffraction grating is adjusted by measuring the intensity of the electromagnetic wave from the reference diffraction grating in each diffraction grating with a pair of light receiving elements. The present invention relates to a new improvement for eliminating the need for readjustment of position for replacement of each diffraction grating.

【0002】[0002]

【従来の技術】従来、用いられていたこの種の回折格子
を用いた電磁波発生装置としては、図4から図5で示さ
れる構成が採用されていた。すなわち、図4の構成の場
合、真空チャンバー1には、互いに直交する位置に電子
銃2と回折格子駆動軸3が設けられ、この回折格子駆動
軸3には回折格子4が回転できるように設けられてい
る。前記電子銃2からの電子ビーム5は回折格子4に入
射し、この回折格子4には電流計6が接続されている。
従って、回折格子4に流れている電流を計測することに
よって回折格子4と電子ビーム5の位置関係を測定し、
必要に応じて高真空を破って他の回折格子4に交換して
いた。
2. Description of the Related Art As an electromagnetic wave generator using a diffraction grating of this type that has been conventionally used, the configuration shown in FIGS. 4 to 5 has been adopted. That is, in the case of the configuration of FIG. 4, the vacuum chamber 1 is provided with the electron gun 2 and the diffraction grating drive shaft 3 at positions orthogonal to each other, and the diffraction grating drive shaft 3 is provided with the diffraction grating 4 so as to be rotatable. Has been. An electron beam 5 from the electron gun 2 enters a diffraction grating 4 and an ammeter 6 is connected to the diffraction grating 4.
Therefore, the positional relationship between the diffraction grating 4 and the electron beam 5 is measured by measuring the current flowing in the diffraction grating 4,
If necessary, the high vacuum was broken and replaced with another diffraction grating 4.

【0003】図5及び図6に示される他の従来例の場
合、構成は図4と同じであるため、同一部分には同一符
号を付しその説明は省略しているが、真空チャンバー1
に設けられた目視部10により、電子ビーム5との相互
作用により放射される電磁波11であるレーザー光とし
ての可視光を目視にて判断し、確認を行うことで、電子
ビーム5と回折格子4の相対位置決めを行っていた。従
って、図4において目的の波長に対応する回折格子4
を、電子ビーム5の当たる位置まで移動し、電子ビーム
電流値を電流計6で測定しながら、回折格子4を電流値
が0アンペアとなる位置にまで移動することで調整が完
了する。又は、回折格子4を動かすのでは無く、電子銃
2を動かすことで同様の調整を行う。図5においては、
電子ビーム5との相互作用により、回折格子4上に発生
する電磁波である。可視光を目視にて確認しながら、回
折格子4と電子ビーム5との位置調整を行っている。
In the case of the other conventional example shown in FIGS. 5 and 6, the structure is the same as that of FIG. 4, and therefore the same parts are denoted by the same reference numerals and the description thereof is omitted, but the vacuum chamber 1
The visible portion as a laser beam, which is the electromagnetic wave 11 radiated by the interaction with the electron beam 5, is visually determined by the visual observation unit 10 provided in the electron beam 5 and the diffraction grating 4 to be confirmed. Relative positioning was performed. Therefore, in FIG. 4, the diffraction grating 4 corresponding to the target wavelength is
Is moved to a position where the electron beam 5 hits, and while the electron beam current value is measured by the ammeter 6, the adjustment is completed by moving the diffraction grating 4 to a position where the current value becomes 0 amperes. Alternatively, the same adjustment is performed by moving the electron gun 2 instead of moving the diffraction grating 4. In FIG.
It is an electromagnetic wave generated on the diffraction grating 4 due to the interaction with the electron beam 5. The position of the diffraction grating 4 and the electron beam 5 is adjusted while visually confirming visible light.

【0004】[0004]

【発明が解決しようとする課題】従来の回折格子を用い
た電磁波発生装置は、以上のように構成されていたた
め、次のような課題が存在していた。すなわち、電子銃
から、放射される電子ビームは、一度照射を止めて真空
チャンバーの真空を破ると、真空を止める前と後とで
は、ビーム軌道に対する再現性に保証が無いため、機械
的に同じ位置に回折格子を持って来ても、電子ビームと
回折格子との位置関係が適切に保たれている保証は無い
と言う欠点が存在する。そのため、従来の装置は、目的
とする波長の電磁波を得るためには、対応する回折格子
に適宜交換するように構成されているため、その度に真
空を破る必要が有り、電子ビームの照射が再度可能とな
る超高真空状態になるまで、長時間を必要とした。又、
回折格子を交換する度に、電子ビームと回折格子の位置
調整を行う必要があった。そこでの位置調整方法の1つ
である、回折格子に流れる電流値の測定では、回折格子
と電子ビームとの平行度までは測定出来ない。また別の
位置調整方法である、電子ビームとの相互作用により、
回折格子に発生する電磁波である可視光の目視による測
定では、確定に時間がかかり、その発光強度までは測定
出来ないため、定量性に欠けると言う欠点が存在してい
た。
Since the conventional electromagnetic wave generator using the diffraction grating is constructed as described above, there are the following problems. That is, once the irradiation of the electron beam emitted from the electron gun is stopped and the vacuum in the vacuum chamber is broken, the reproducibility of the beam trajectory is not guaranteed before and after the vacuum is stopped. There is a drawback that even if the diffraction grating is brought to a position, there is no guarantee that the positional relationship between the electron beam and the diffraction grating is properly maintained. Therefore, in order to obtain an electromagnetic wave having a target wavelength, the conventional device is configured to be appropriately replaced with a corresponding diffraction grating, and therefore it is necessary to break the vacuum each time, and the electron beam irradiation is not performed. It took a long time to reach the ultra-high vacuum state that would be possible again. or,
Each time the diffraction grating was replaced, it was necessary to adjust the positions of the electron beam and the diffraction grating. In the measurement of the current value flowing through the diffraction grating, which is one of the position adjusting methods therefor, the parallelism between the diffraction grating and the electron beam cannot be measured. Another position adjustment method, interaction with the electron beam,
In the visual measurement of visible light, which is an electromagnetic wave generated in the diffraction grating, it takes a long time to determine, and the emission intensity thereof cannot be measured.

【0005】本発明は、以上のような課題を解決するた
めになされたもので、特に、真空チャンバー内で複数の
回折格子を移動させることによって真空を破ることなく
目的に合った回折格子を選択可能とし、各回折格子の中
の基準回折格子からの電磁波の強度を一対の受光素子で
測定することによって電子ビームと基準回折格子の相対
位置を調整可能とし、他の回折格子の取り替えに対して
位置の再調整を不要とする回折格子交換型電磁波発生装
置並びに回折格子位置調整方法および装置を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and in particular, by moving a plurality of diffraction gratings in a vacuum chamber, a diffraction grating suitable for the purpose can be selected without breaking the vacuum. It is possible to adjust the relative position of the electron beam and the reference diffraction grating by measuring the intensity of the electromagnetic wave from the reference diffraction grating in each diffraction grating with a pair of light receiving elements, and to replace other diffraction gratings. It is an object of the present invention to provide a diffraction grating exchange type electromagnetic wave generator which does not require readjustment of position, and a diffraction grating position adjusting method and device.

【0006】[0006]

【課題を解決するための手段】本発明による回折格子交
換型電磁波発生装置は、真空チャンバー内で電子ビーム
と回折格子との相互作用により、任意の波長の電磁波を
発生させるようにした電磁波発生装置において、前記回
折格子を複数個用い、前記各回折格子を回転又は直線的
移動させることにより、目的とする電磁波に対応した回
折格子を前記真空チャンバー内の真空を破ることなく前
記電子ビームに対して所定の位置に設置するようにした
構成であり、また、前記各回折格子は、前記真空チャン
バーに設けられた回折格子駆動軸の外周位置に所定回転
角度毎に設けられていると共に、各回折格子の中の基準
回折格子からの電磁波を少なくとも2個の受光素子で受
光して基準値を検出する構成である、また、本発明によ
る回折格子位置調整方法は、真空チャンバー内で電子ビ
ームを複数の回折格子の中の基準回折格子に入射させ、
前記回折格子の表面に発生した電磁波のうち、前記表面
の2ケ所の微小領域から発生した電磁波を検出し、その
放射強度を測定することによって前記電子ビームと回折
格子の相対的位置調整を行う方法であり、また、本発明
による回折格子位置調整装置は、真空チャンバー内で電
子ビームを複数の回折格子の中の基準回折格子に入射さ
せ、前記電子ビームと基準回折格子の相対的位置調整を
行うようにした回折格子位置調整装置において、前記真
空チャンバーに設けられ前記基準回折格子の両端と対向
すると共に互いに離間する少なくとも一対の受光素子
と、前記各受光素子と回折格子との間に設けられ互いに
離間する一対の細管とを有し、前記回折格子表面に発生
した電磁波のうち、前記表面の2ケ所の微小領域から発
生した電磁波を前記各細管を介して導くことにより各受
光素子で放射強度を測定し、前記電子ビームと基準回折
格子の相対的位置調整を行う構成である。
A diffraction grating exchange type electromagnetic wave generator according to the present invention is an electromagnetic wave generator for generating an electromagnetic wave of an arbitrary wavelength by the interaction between an electron beam and a diffraction grating in a vacuum chamber. In the above, by using a plurality of the diffraction gratings and rotating or linearly moving each of the diffraction gratings, a diffraction grating corresponding to the target electromagnetic wave is applied to the electron beam without breaking the vacuum in the vacuum chamber. The diffraction grating is installed at a predetermined position, and each diffraction grating is provided at a predetermined rotation angle at an outer peripheral position of a diffraction grating drive shaft provided in the vacuum chamber, and each diffraction grating is provided. The electromagnetic wave from the reference diffraction grating in FIG. 2 is received by at least two light receiving elements and the reference value is detected. Method, is incident electron beam to the reference grating of a plurality of diffraction gratings in a vacuum chamber,
A method of adjusting the relative positions of the electron beam and the diffraction grating by detecting the electromagnetic waves generated from two minute areas on the surface of the electromagnetic waves generated on the surface of the diffraction grating and measuring the radiation intensity thereof. Further, the diffraction grating position adjusting device according to the present invention makes an electron beam incident on a reference diffraction grating of a plurality of diffraction gratings in a vacuum chamber, and performs relative position adjustment of the electron beam and the reference diffraction grating. In the diffraction grating position adjusting device configured as described above, at least a pair of light receiving elements that are provided in the vacuum chamber and that are opposed to both ends of the reference diffraction grating and are spaced apart from each other, and are provided between each of the light receiving elements and the diffraction grating. Among the electromagnetic waves generated on the surface of the diffraction grating, the electromagnetic waves generated from two minute regions on the surface are described above. The radiation intensity measured by the light receiving element by directing through the capillary, which is configured to perform the relative positioning of the electron beam and the reference grating.

【0007】[0007]

【発明の実施の形態】以下、図面と共に本発明による回
折格子交換型電磁波発生装置並びに回折格子位置調整方
法および装置の好適な実施の形態について説明する。
尚、従来例と同一又は同等部分には同一符号を付して説
明する。図1から図3において、符号1で示されるもの
は全体形状が箱形をなし、10 -9Torrより高い真空
の真空チャンバーであり、この真空チャンバー1の一面
1aには電子ビーム5を発射する電子銃2が設けられて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described with reference to the drawings.
Folded grating exchange type electromagnetic wave generator and diffraction grating position adjustment method
A preferred embodiment of the method and apparatus will be described.
It should be noted that the same or equivalent parts as those of the conventional example are designated by the same reference numerals.
Reveal What is designated by reference numeral 1 in FIGS. 1 to 3
Has a box shape as a whole, 10 -9Vacuum higher than Torr
One side of this vacuum chamber 1.
1a is provided with an electron gun 2 for emitting an electron beam 5
There is.

【0008】前記真空チャンバー1の一面1aとは直交
する他面1bには、図2で示されるように、モータ等に
よって駆動される回折格子駆動軸3が設けられ、この回
折格子駆動軸3と電子ビーム5の軸方向は各々互いに直
交もしくは略直交するように構成されている。尚、この
回折格子駆動軸3は、後述の各回折格子4、4a、4
b、4cの回転交換移動と、回転格子4、4a、4b、
4c自体の微調整の二つの役割を有する多軸機構(図示
せず)によって構成されている。また、前記軸方向は回
転格子4、4a、4b、4cと電子ビーム5の位置微調
整によって完全直交とは若干ずれた略直交となることも
ある。
As shown in FIG. 2, a diffraction grating drive shaft 3 driven by a motor or the like is provided on the other surface 1b orthogonal to the one surface 1a of the vacuum chamber 1. The axial directions of the electron beams 5 are configured to be orthogonal or substantially orthogonal to each other. It should be noted that this diffraction grating drive shaft 3 is used for each diffraction grating 4, 4a, 4
rotation exchange movement of b and 4c and rotation gratings 4, 4a and 4b,
4c itself is constituted by a multi-axis mechanism (not shown) having two roles of fine adjustment. In addition, the axial direction may be substantially orthogonal to a slight deviation from the perfect orthogonal due to fine adjustment of the positions of the rotating gratings 4, 4a, 4b and 4c and the electron beam 5.

【0009】前記回折格子駆動軸3に設けられ全体形状
が十字型をなす回折格子取付台20には、互いに90度
回転角度が異なる位置に合計4個の回折格子4、4a、
4b、4cが設けられ、そのうち基準回折格子4a以外
は、互いに目的の波長が異なる電磁波に対応する回折格
子4、4b、4cで構成されている。従って、図1の状
態では、電子ビーム5が基準回折格子4aに入射するよ
うな位置に回折格子取付台20が位置決めされている状
態が示されている。
The diffraction grating mounting base 20 provided on the diffraction grating drive shaft 3 and having a cross shape as a whole has a total of four diffraction gratings 4 and 4a at positions different in 90 degree rotation angle.
4b and 4c are provided, of which diffraction gratings 4, 4b and 4c corresponding to electromagnetic waves having mutually different target wavelengths are provided, except for the reference diffraction grating 4a. Therefore, in the state of FIG. 1, the state where the diffraction grating mounting base 20 is positioned at a position where the electron beam 5 is incident on the reference diffraction grating 4a is shown.

【0010】前記回折格子駆動軸3の軸方向に沿う対向
面1cには、図2及び図3で示されるように、少なくと
も一対の受光素子21、21aが(一対以上も可)前記
基準回折格子4aに対向しかつ互いに離間して配設され
ている。前記各受光素子21、21aは、真空チャンバ
ー1の前記対向面1cに位置し、各受光素子21、21
aと対応しかつ前記真空チャンバー1の内側には、例え
ば、周知の導波路のように基準回折格子4aから放射し
て発生する電磁波が透過伝搬できるような空洞構造を有
する一対の細管22、22aが配設され、これらの各細
管22、22aは電子ビーム5が入射する位置に位置決
めされた何れかの回折格子4〜4cの両端P1、P2に
対応して位置するように配設されている。
As shown in FIGS. 2 and 3, at least a pair of light receiving elements 21 and 21a (a pair or more is also possible) on the facing surface 1c along the axial direction of the diffraction grating drive shaft 3 is the reference diffraction grating. 4a and 4a are spaced apart from each other. Each of the light receiving elements 21 and 21a is located on the facing surface 1c of the vacuum chamber 1, and each of the light receiving elements 21 and 21a.
A pair of thin tubes 22, 22a corresponding to a and having a cavity structure inside the vacuum chamber 1 having a cavity structure through which the electromagnetic waves generated from the reference diffraction grating 4a can be transmitted and propagated like a known waveguide. And each of these thin tubes 22 and 22a is arranged so as to correspond to both ends P1 and P2 of one of the diffraction gratings 4 to 4c positioned at the position where the electron beam 5 is incident. .

【0011】従って、前記各細管22、22aを回折格
子4〜4cの両端P1、P2に電子ビーム5が通過する
程度の距離Dを隔てて配設し、その反対側に各受光素子
21、21aを配設していることにより、基準回折格子
4a両端P1、P2の極微小な微小領域から放射した電
磁波11のみを検知し、かつ、両端から同時に受光素子
21、21aで基準値を検出することで、交換した場合
の回折格子4〜4cと電子ビーム5の平行度を調整で
き、また、検出した電磁波の強度を測定することで基準
回折格子4aと電子ビーム5の距離D関係の調整も可能
となる。また、この調整時においては、真空を破って電
子ビーム5を止める必要がないため、一度基準回折格子
4aと電子ビーム5との位置関係を調整しておけば、再
度調整することなく、他の各回折格子4、4b、4cの
交換による目的の波長への交換が容易となる。尚、前述
の構成においては、各回折格子4、4b、4cを回転さ
せて移動し、交換する場合について述べたが、回転だけ
ではなく、直線移動によって選択するように構成するこ
とも可能である。
Therefore, the thin tubes 22 and 22a are arranged at both ends P1 and P2 of the diffraction gratings 4 to 4c with a distance D enough for the electron beam 5 to pass therethrough, and the light receiving elements 21 and 21a on the opposite side thereof. By arranging the above, only the electromagnetic wave 11 radiated from the extremely small area of the reference diffraction grating 4a at both ends P1 and P2 is detected, and the reference values are simultaneously detected by the light receiving elements 21 and 21a from both ends. Thus, the parallelism between the diffraction gratings 4 to 4c and the electron beam 5 when exchanged can be adjusted, and the distance D relationship between the reference diffraction grating 4a and the electron beam 5 can be adjusted by measuring the intensity of the detected electromagnetic wave. Becomes In addition, at the time of this adjustment, it is not necessary to break the vacuum to stop the electron beam 5, so once the positional relationship between the reference diffraction grating 4a and the electron beam 5 is adjusted, other adjustments are not made. It becomes easy to switch to the target wavelength by replacing the diffraction gratings 4, 4b, and 4c. In the above-mentioned configuration, the case where the diffraction gratings 4, 4b and 4c are rotated and moved and replaced is described, but it is also possible to select not only by rotation but also by linear movement. .

【0012】次に、動作について説明する。まず、目的
とする波長の電磁波が放射できるように構成された各回
折格子4、4b、4cを基準回折格子4a以外の位置に
設置する。前述の状態において、まず基準回折格子4a
を電子ビーム5と交差する位置に持って来る。次に電子
銃2より、電子ビーム5を放出し、適当な位置に基準回
折格子4aを移動させる、または電子銃2を移動させ、
電子ビーム軌道を修正すると、電子ビーム5と回折格子
4aとの相互作用により、可視光の放射が、回折格子4
a上に確認出来る位置を得ることが出来る。ここで、電
子ビーム5と基準回折格子4aの相対位置を適当に選択
することで、回折格子4aより放射される電磁波11の
波長を可視光領域に選ぶことが出来る。次に放射された
可視光は、細管22、22aを伝搬して、受光素子2
1、21aにより、検出および強度測定が行われる。こ
の時、2つの受光素子21、21aに同時に同強度の可
視光が検出されれば、基準回折格子4aの両端から、同
強度の可視光が放射されていることになり、電子ビーム
5は基準回折格子4aに対して、正確な平行度を維持し
ていることとなる。このように基準回折格子4aと電子
ビーム5の位置調整が終了した時点で、目的とする波長
に対する他の回折格子4、4b、4cを、前述の基準回
折格子4a位置に回転移動させることで、目的とする電
磁波を得ることが出来る。前述の回折格子4、4b、4
cを切換えて選択する動作は電子ビーム5を止める必要
は無いため、再調整の必要は基本的には必要無い。従っ
て、回折格子4、4b、4cの機械的移動をモータにて
行い、2つの受光素子21、21aが、ある閾値にてO
Nする位置まで移動させることを自動的に制御すること
で、他の回折格子4、4b、4cと電子ビーム5の自動
位置調整を行うことが出来る。また、前述の場合、基準
回折格子4aから放射した電磁波11は受光素子21、
21aで検出するため、数値的に放射強度を測定するこ
とにより、オン/オフとしてのデジタル処理が可能であ
ると共に、位置決めの精度が上がり、かつ自動位置決め
制御を行うことも可能となり、電磁波(レーザ)発生装
置の自動立ち上げ機構を得ることも可能となる。
Next, the operation will be described. First, the diffraction gratings 4, 4b, 4c configured to emit electromagnetic waves having a target wavelength are installed at positions other than the reference diffraction grating 4a. In the above-mentioned state, first, the reference diffraction grating 4a
Are brought to a position intersecting with the electron beam 5. Next, the electron beam 2 is emitted from the electron gun 2 and the reference diffraction grating 4a is moved to an appropriate position, or the electron gun 2 is moved,
When the electron beam trajectory is corrected, the interaction between the electron beam 5 and the diffraction grating 4a causes the emission of visible light to change to the diffraction grating 4a.
The position that can be confirmed on a can be obtained. Here, by appropriately selecting the relative position between the electron beam 5 and the reference diffraction grating 4a, the wavelength of the electromagnetic wave 11 emitted from the diffraction grating 4a can be selected in the visible light region. Next, the emitted visible light propagates through the thin tubes 22 and 22a, and the light receiving element 2
The detection and the intensity measurement are performed by 1, 21a. At this time, if visible light of the same intensity is detected by the two light receiving elements 21 and 21a at the same time, it means that visible light of the same intensity is emitted from both ends of the reference diffraction grating 4a, and the electron beam 5 is the reference light. This means that accurate parallelism is maintained with respect to the diffraction grating 4a. When the position adjustment of the reference diffraction grating 4a and the electron beam 5 is completed in this way, the other diffraction gratings 4, 4b, 4c for the target wavelength are rotationally moved to the reference diffraction grating 4a position described above, The target electromagnetic wave can be obtained. The aforementioned diffraction gratings 4, 4b, 4
Since it is not necessary to stop the electron beam 5 in the operation of switching and selecting c, readjustment is basically unnecessary. Therefore, the mechanical movement of the diffraction gratings 4, 4b, 4c is performed by the motor, and the two light receiving elements 21, 21a are set to O at a certain threshold value.
It is possible to automatically adjust the positions of the other diffraction gratings 4, 4b, 4c and the electron beam 5 by automatically controlling the movement to the N position. In the case described above, the electromagnetic wave 11 emitted from the reference diffraction grating 4a is received by the light receiving element 21,
Since it is detected by 21a, it is possible to perform digital processing as on / off by numerically measuring the radiation intensity, improve positioning accuracy, and perform automatic positioning control. ) It is also possible to obtain an automatic start-up mechanism for the generator.

【0013】[0013]

【発明の効果】本発明による回折格子交換型電磁波発生
装置並びに回折格子位置調整方法および装置は、以上の
ように構成されているため、次のような効果を得ること
ができる。すなわち、目的とする波長の電磁波を発生さ
せることができる複数の回折格子を最初から真空内に移
動自在に設置しておくことで、真空を破ることなしに、
回折格子の交換が可能となる。真空は、使用する電子銃
の種類により、10-9Torrより高い真空を必要とす
るものもあり、その場合、その真空状態に到達するの
に、真空容器の焼き出し等の作業を行っても、1昼夜以
上を必要とする場合もあるが、回折格子の交換時に真空
を破る必要が無いことは、時間的に連続して異なる波長
の電磁波を得ることを可能とする。また、回折格子と電
子ビームとの最適位置関係を求めるために、2つの受光
素子を用いて、回折格子の両端より放射される電磁波を
同時かつ、その強度を検出することで、回折格子と電子
ビームとの位置調整において両者の最適位置関係の再現
性を向上させ、また電磁波の検出のオン/オフおよび強
度測定による基準値以上かどうかのオン/オフとしての
デジタル処理を利用することで、将来的に、回折格子の
自動交換機構、回折格子と電子ビームの自動最適位置決
め機構の構築が可能となる。
Since the diffraction grating exchange type electromagnetic wave generator and the diffraction grating position adjusting method and apparatus according to the present invention are configured as described above, the following effects can be obtained. That is, by installing a plurality of diffraction gratings capable of generating electromagnetic waves of a target wavelength in a vacuum from the beginning, without breaking the vacuum,
It is possible to replace the diffraction grating. Some vacuums require a vacuum higher than 10 -9 Torr depending on the type of electron gun used. In that case, even if the vacuum container is burned out to reach the vacuum state, Although it may require one day or more, there is no need to break the vacuum when exchanging the diffraction grating, which makes it possible to continuously obtain electromagnetic waves having different wavelengths. Further, in order to obtain the optimum positional relationship between the diffraction grating and the electron beam, two light receiving elements are used to detect the electromagnetic waves radiated from both ends of the diffraction grating at the same time and their intensities. By improving the reproducibility of the optimum positional relationship between the two in adjusting the position with the beam, and by using digital processing to turn on / off the detection of electromagnetic waves and to turn on / off whether or not it is above the reference value by intensity measurement, Therefore, it is possible to construct an automatic exchange mechanism for the diffraction grating and an automatic optimum positioning mechanism for the diffraction grating and the electron beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による回折格子交換型電磁波発生装置並
びに回折格子位置調整方法および装置を示す正面図であ
る。
FIG. 1 is a front view showing a diffraction grating exchange type electromagnetic wave generating device, a diffraction grating position adjusting method and a device according to the present invention.

【図2】図1の右側面図である。FIG. 2 is a right side view of FIG.

【図3】図2の平面図である。FIG. 3 is a plan view of FIG.

【図4】従来の回析格子を用いた電磁波発生装置を示す
構成図である。
FIG. 4 is a configuration diagram showing an electromagnetic wave generator using a conventional diffraction grating.

【図5】図4の他の従来形態を示す構成図である。5 is a configuration diagram showing another conventional form of FIG.

【図6】図5のA部を示す拡大図である。FIG. 6 is an enlarged view showing part A of FIG.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 2 電子銃 3 回折格子駆動軸 4、4b、4c 回折格子 4a 基準回折格子 5 電子ビーム P1、P2 両端 11 電磁波 20 回折格子取付台 1 vacuum chamber 2 electron gun 3 Diffraction grating drive axis 4, 4b, 4c diffraction grating 4a Reference diffraction grating 5 electron beam Both ends of P1 and P2 11 electromagnetic waves 20 Diffraction grating mount

フロントページの続き (72)発明者 飯田 武 神奈川県横浜市金沢区福浦2丁目2番1号 株式会社日本製鋼所内 Fターム(参考) 2H049 AA02 AA50 AA55 AA62 AA68 AA69 5F072 AC10 KK07 KK30 Continued front page    (72) Inventor Takeshi Iida             2-2-1 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa               Japan Steel Works, Ltd. F-term (reference) 2H049 AA02 AA50 AA55 AA62 AA68                       AA69                 5F072 AC10 KK07 KK30

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバー(1)内で電子ビーム(5)と
回折格子(4〜4c)との相互作用により、任意の波長の電
磁波(11)を発生させるようにした電磁波発生装置におい
て、前記回折格子(4〜4c)を複数個用い、前記各回折格
子(4〜4c)を回転又は直線的移動させることにより、目
的とする電磁波に対応した回折格子(4〜4c)を前記真空
チャンバー(1)内の真空を破ることなく前記電子ビーム
(5)に対して所定の位置に設置するように構成したこと
を特徴とする回折格子交換型電磁波発生装置。
1. An electromagnetic wave generator for generating an electromagnetic wave (11) of an arbitrary wavelength by interaction between an electron beam (5) and a diffraction grating (4-4c) in a vacuum chamber (1), Using a plurality of the diffraction grating (4-4c), by rotating or linearly moving each of the diffraction grating (4-4c), the diffraction grating (4-4c) corresponding to the target electromagnetic wave, the vacuum chamber (1) The electron beam without breaking the vacuum inside
A diffraction grating exchange type electromagnetic wave generator characterized in that it is arranged at a predetermined position with respect to (5).
【請求項2】 前記各回折格子(4〜4c)は、前記真空チ
ャンバー(1)に設けられた回折格子駆動軸(3)の外周位置
に所定回転角度毎に設けられていると共に、各回折格子
(4〜4c)の中の基準回折格子(4a)からの電磁波(11)を少
なくとも2個の受光素子(21、21a)で受光して基準値を
検出することを特徴とする請求項1記載の回折格子交換
型電磁波発生装置。
2. Each of the diffraction gratings (4-4c) is provided at a predetermined rotation angle at an outer peripheral position of a diffraction grating drive shaft (3) provided in the vacuum chamber (1), and each diffraction grating (4-4c) is provided. lattice
The electromagnetic wave (11) from the reference diffraction grating (4a) in (4 to 4c) is received by at least two light receiving elements (21, 21a) to detect the reference value. Diffractive grating exchange type electromagnetic wave generator.
【請求項3】 真空チャンバー(1)内で電子ビーム(5)を
複数の回折格子(4〜4c)の中の基準回折格子(4a)に入射
させ、前記回折格子(4〜4c)の表面に発生した電磁波の
うち、前記表面の2ケ所の微小領域から発生した電磁波
(11)を検出し、その放射強度を測定することによって前
記電子ビーム(5)と回折格子(4〜4c)の相対的位置調整を
行うことを特徴とする回折格子位置調整方法。
3. A surface of the diffraction grating (4-4c), wherein an electron beam (5) is made incident on a reference diffraction grating (4a) among a plurality of diffraction gratings (4-4c) in a vacuum chamber (1). Of the electromagnetic waves generated on the surface, the electromagnetic waves generated from the two minute areas on the surface
A diffraction grating position adjusting method characterized in that the relative position of the electron beam (5) and the diffraction grating (4-4c) is adjusted by detecting (11) and measuring the radiation intensity thereof.
【請求項4】 真空チャンバー(1)内で電子ビーム(5)を
複数の回折格子(4〜4c)の中の基準回折格子(4a)に入射
させ、前記電子ビーム(5)と基準回折格子(4a)の相対的
位置調整を行うようにした回折格子位置調整装置におい
て、前記真空チャンバー(1)に設けられ前記基準回折格
子(4a)の両端(P1、P2)と対向すると共に互いに離間する
少なくとも一対の受光素子(21、21a)と、前記各受光素
子(21、21a)と回折格子(4〜4c)との間に設けられ互いに
離間する一対の細管(22、22a)と、を有し、前記回折格
子(4〜4c)表面に発生した電磁波(11)のうち、前記表面
の2ケ所の微小領域から発生した電磁波(11)を前記各細
管(22、22a)を介して導くことにより各受光素子(21、21
a)で放射強度を測定し、前記電子ビーム(5)と基準回折
格子(4a)の相対的位置調整を行う構成としたことを特徴
とする回折格子位置調整装置。
4. An electron beam (5) is made incident on a reference diffraction grating (4a) among a plurality of diffraction gratings (4-4c) in a vacuum chamber (1) to obtain the electron beam (5) and the reference diffraction grating. (4a) in a diffraction grating position adjusting device for performing relative position adjustment, facing the both ends (P1, P2) of the reference diffraction grating (4a) provided in the vacuum chamber (1) and separated from each other. At least a pair of light receiving elements (21, 21a), and a pair of thin tubes (22, 22a) provided between each of the light receiving elements (21, 21a) and the diffraction gratings (4 to 4c) and separated from each other. Of the electromagnetic waves (11) generated on the surface of the diffraction grating (4 to 4c), the electromagnetic waves (11) generated from two minute areas on the surface are guided through the thin tubes (22, 22a). Each light receiving element (21, 21
A diffraction grating position adjusting device, characterized in that the radiation intensity is measured in a) and the relative position of the electron beam (5) and the reference diffraction grating (4a) is adjusted.
JP2001381506A 2001-12-14 2001-12-14 Diffraction grating exchange type electromagnetic wave generator, diffraction grating position adjusting method and apparatus thereof Withdrawn JP2003188447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381506A JP2003188447A (en) 2001-12-14 2001-12-14 Diffraction grating exchange type electromagnetic wave generator, diffraction grating position adjusting method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381506A JP2003188447A (en) 2001-12-14 2001-12-14 Diffraction grating exchange type electromagnetic wave generator, diffraction grating position adjusting method and apparatus thereof

Publications (1)

Publication Number Publication Date
JP2003188447A true JP2003188447A (en) 2003-07-04

Family

ID=27592156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381506A Withdrawn JP2003188447A (en) 2001-12-14 2001-12-14 Diffraction grating exchange type electromagnetic wave generator, diffraction grating position adjusting method and apparatus thereof

Country Status (1)

Country Link
JP (1) JP2003188447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534707A (en) * 2006-04-19 2009-09-24 レイセオン カンパニー Adjustable optical mounting apparatus and mounting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534707A (en) * 2006-04-19 2009-09-24 レイセオン カンパニー Adjustable optical mounting apparatus and mounting method

Similar Documents

Publication Publication Date Title
JP4468334B2 (en) Stage apparatus, lithographic apparatus, and device manufacturing method
KR100495710B1 (en) Surface inspection system
CN100501575C (en) Around exposure device and method thereof
KR101975487B1 (en) Method and apparatus for adjusting radiation spot size
EP0854351A3 (en) A laser survey instrument
JP2006350123A (en) Laser beam machining method and apparatus
EP1219973B1 (en) Optical Distance Measuring System
US6419802B1 (en) System and method for controlling deposition thickness by synchronously varying a sputtering rate of a target with respect to a position of a rotating substrate
JP2003188447A (en) Diffraction grating exchange type electromagnetic wave generator, diffraction grating position adjusting method and apparatus thereof
JP2002042709A (en) Calibration method of scanning electron microscope
US20210260692A1 (en) Lightguide device and laser processing device
JP4491446B2 (en) Peripheral exposure apparatus and method
KR20100106982A (en) Method of increasing the operation lifetime of a collector optics arranged in an irradiation device and corresponding irradiation device
JP4533874B2 (en) Laser beam exposure system
JP2007148362A (en) Laser beam/uv-irradiation peripheral exposure apparatus and method therefor
JP3306394B2 (en) Film thickness measuring device and film thickness measuring method
JP4491445B2 (en) Peripheral exposure apparatus and method
JP2768337B2 (en) Optical axis adjusting device and optical axis adjusting method
JPH08241847A (en) Aligner and its method
JP4491444B2 (en) Laser beam / ultraviolet irradiation peripheral exposure apparatus and method
JP2004035958A (en) Film deposition system
JPS5856947B2 (en) Electron beam alignment device
JP3788587B2 (en) Substrate exposure equipment
JPH0743786A (en) Diaphragm mechanism and light projecting device
KR20060111119A (en) Stepper

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301