JP2003187975A - Organic electroluminescent device - Google Patents

Organic electroluminescent device

Info

Publication number
JP2003187975A
JP2003187975A JP2001384241A JP2001384241A JP2003187975A JP 2003187975 A JP2003187975 A JP 2003187975A JP 2001384241 A JP2001384241 A JP 2001384241A JP 2001384241 A JP2001384241 A JP 2001384241A JP 2003187975 A JP2003187975 A JP 2003187975A
Authority
JP
Japan
Prior art keywords
oxygen
organic
color conversion
layer
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001384241A
Other languages
Japanese (ja)
Inventor
Noboru Sakaeda
暢 栄田
Satoshi Hachiya
聡 蜂屋
Hitoshi Kuma
均 熊
Chishio Hosokawa
地潮 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2001384241A priority Critical patent/JP2003187975A/en
Publication of JP2003187975A publication Critical patent/JP2003187975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL device in which deterioration of a color conversion layer can be suppressed. <P>SOLUTION: The organic EL device 100 comprises, on a support substrate 2 in the direction of taking out light as shown by an arrow, a TFT 6 embedded in the electric insulating membrane 4, an insulating membrane between the layers 8, an organic EL element 16, an oxygen cut-off layer 20, an oxygen supply layer 22, and a color conversion membrane 28. When oxygen is supplied from the oxygen supply layer 22 to the color conversion layer 26 contained in the color conversion membrane 28, deterioration of the fluorescent intensity of the color conversion layer 26 at the time of continuous drive is prevented. And since the oxygen cut-off layer 20 is provided between the oxygen supply layer 22 and the organic EL element 16, the organic EL element 16 is not deteriorated as oxygen does not come from the oxygen supply layer 22 to the organic EL element 16. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、民生用及び工業用
の表示機器(ディスプレイ)あるいはプリンターヘッド
の光源等に好適に用いられる有機エレクトロルミネッセ
ンス(EL)発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence (EL) light emitting device which is preferably used as a light source of a display device (display) for a consumer or an industrial use or a printer head.

【0002】[0002]

【従来の技術】従来、電界発光を利用したEL素子は、
自己発光が可能であり、視認性が高く、また、完全固体
であるため、耐衝撃性に優れる等の特徴を有することか
ら、各種表示装置における発光素子としての利用が注目
されている。特に、発光材料として有機化合物を用いた
有機EL発光装置は、印加電圧を大幅に低くすることが
できるとともに、薄型かつ小型化が容易であって、消費
電力を小さくできることから、その実用化が積極的に図
られている。
2. Description of the Related Art Conventionally, EL devices utilizing electroluminescence are
Since it is capable of self-light emission, has high visibility, and has a characteristic of being excellent in impact resistance because it is completely solid, its use as a light emitting element in various display devices has been drawing attention. In particular, an organic EL light-emitting device using an organic compound as a light-emitting material can be applied to a large amount because the applied voltage can be significantly reduced, and the device can be thin and small in size and power consumption can be reduced. Is aimed at.

【0003】これら有機EL発光装置では、有機EL素
子の発する光を異なる波長の光に変換する色変換層を設
けて、フルカラー表示を可能としている。例えば、色変
換層は、青色光を主に含む光を赤色光又は緑色光に変換
して、青赤緑の三原色によるフルカラー表示を実現して
いる。ここで、色変換層は、蛍光色素のみ、又は、蛍光
色素とバインダー樹脂から構成される。
In these organic EL light emitting devices, a color conversion layer for converting the light emitted from the organic EL element into light of different wavelengths is provided to enable full color display. For example, the color conversion layer converts light that mainly contains blue light into red light or green light to realize full-color display with the three primary colors of blue, red, and green. Here, the color conversion layer is composed of only a fluorescent dye or a fluorescent dye and a binder resin.

【0004】[0004]

【発明が解決しようとする課題】色変換層に励起光であ
る有機EL素子の発する光が照射されると、基底状態に
ある蛍光色素は、励起光を吸収して励起一重項状態とな
る。この励起一重項状態は、数〜数百ナノ秒の寿命が経
過した後、蛍光を発しながら基底状態に戻る。このよう
な現象により、励起光は効率よく所望の波長の光に変換
される。励起一重項状態は、電子的に活性な状態ではあ
るが、その寿命が短いため、他の蛍光色素又はバインダ
ー樹脂と相互作用しにくい傾向にある。しかし、一重項
状態に励起された蛍光色素は、ある確率で必ず励起三重
項状態へ項間交差して遷移する。この励起三重項状態
は、励起一重項状態に比べ、数百ナノ秒〜数千マイクロ
秒という長い励起寿命を有するため、他の蛍光色素又は
バインダー樹脂との相互作用により色素構造が変化しや
すい。従って、色変換層に長時間励起光を照射し続ける
と、徐々に蛍光性が低下するという現象、即ち、色変換
効率が低下する(劣化する)という問題が生じた。従っ
て、本発明は、色変換層の劣化を抑制できる有機EL発
光装置を提供することを目的とする。
When the color conversion layer is irradiated with the light emitted from the organic EL element, which is the excitation light, the fluorescent dye in the ground state absorbs the excitation light and becomes the excited singlet state. This excited singlet state returns to the ground state while emitting fluorescence after a lifetime of several to several hundred nanoseconds has passed. Due to such a phenomenon, the excitation light is efficiently converted into light having a desired wavelength. The excited singlet state is an electronically active state, but its lifetime is short, and therefore it tends to be difficult to interact with other fluorescent dyes or binder resins. However, the fluorescent dye excited to the singlet state always transits to the excited triplet state by intersystem crossing with a certain probability. The excited triplet state has a longer excitation lifetime of several hundred nanoseconds to several thousand microseconds than the excited singlet state, and therefore the dye structure is likely to change due to the interaction with other fluorescent dyes or binder resins. Therefore, when the color conversion layer is continuously irradiated with the excitation light for a long time, there is a problem that the fluorescence gradually decreases, that is, the color conversion efficiency decreases (deteriorates). Therefore, an object of the present invention is to provide an organic EL light emitting device that can suppress deterioration of the color conversion layer.

【0005】[0005]

【課題を解決するための手段】ここで、本発明者らは、
色変換層の劣化対策を鋭意検討した結果、色変換層の劣
化を抑制するために、励起三重項状態にある蛍光色素か
らエネルギーを受け取り、蛍光色素を基底状態に戻すよ
うな添加剤を加えればよいことを見出した。しかも、そ
のためには、添加剤の最低励起状態、即ち最低励起三重
項のエネルギーレベルが、蛍光色素の三重項エネルギー
レベルよりも低いことが必要であることを見出した。一
方、蛍光色素の三重項状態からエネルギーを受け取る物
質として酸素が知られている。その理由は、酸素の基底
状態が三重項状態であり、励起三重項状態になる確率が
高いためである。実際に、酸素の存在下にて、色変換層
に励起光を照射したところ、色変換層の劣化が抑制され
ることが分かった。
Here, the present inventors
As a result of earnest studies on the deterioration countermeasure of the color conversion layer, in order to suppress the deterioration of the color conversion layer, if an additive that receives energy from the fluorescent dye in the excited triplet state and returns the fluorescent dye to the ground state is added, I found something good. Moreover, it has been found that for that purpose, the lowest excited state of the additive, that is, the lowest excited triplet energy level, must be lower than the triplet energy level of the fluorescent dye. On the other hand, oxygen is known as a substance that receives energy from the triplet state of a fluorescent dye. The reason is that the ground state of oxygen is a triplet state and the probability of being an excited triplet state is high. In fact, it was found that when the color conversion layer was irradiated with excitation light in the presence of oxygen, deterioration of the color conversion layer was suppressed.

【0006】そこで、有機EL素子と、有機EL素子の
発する光を異なる波長の光に変換する色変換層と、色変
換層に酸素を供給するための酸素供給層とを含む有機E
L発光装置が提供される。その結果、酸素供給層によ
り、色変換層に酸素を供給できるため、色変換層の連続
駆動時における蛍光強度の劣化を抑制する(色変換層の
寿命を延ばす)ことができた。ところが、有機EL素
子、特に、有機EL素子の電子注入部分(陰極又は電子
注入層)の仕事関数が小さいため、酸素の存在によっ
て、酸化され、電子注入性が著しく低下する。また、有
機EL素子の有機発光媒体は、有機物で構成されるた
め、無機物に比べて、駆動時に、酸素ラジカルにより、
酸化されたり、分解劣化されやすい。即ち、酸素の存在
が、有機EL素子の劣化を促進しやすいことが分かっ
た。そのため、特に色変換層と有機EL素子とを組み合
わせたカラー化有機EL素子においては、酸素供給層
と、有機EL素子との間に酸素遮断層を有することがよ
り好ましい。即ち、酸素遮断層を設けることにより、酸
素供給層から供給される酸素による、有機EL素子の酸
化を防ぐことができる。
Therefore, an organic EL element including an organic EL element, a color conversion layer for converting light emitted from the organic EL element into light of different wavelengths, and an oxygen supply layer for supplying oxygen to the color conversion layer
An L light emitting device is provided. As a result, since oxygen can be supplied to the color conversion layer by the oxygen supply layer, deterioration of fluorescence intensity during continuous driving of the color conversion layer can be suppressed (the life of the color conversion layer can be extended). However, since the work function of the organic EL element, particularly the electron injection portion (cathode or electron injection layer) of the organic EL element is small, it is oxidized by the presence of oxygen, and the electron injection property is significantly deteriorated. In addition, since the organic light emitting medium of the organic EL element is composed of an organic substance, it is more likely to emit oxygen radicals during driving than an inorganic substance.
It is easily oxidized and decomposed and deteriorated. That is, it was found that the presence of oxygen easily promotes the deterioration of the organic EL element. Therefore, particularly in a colorized organic EL element in which a color conversion layer and an organic EL element are combined, it is more preferable to have an oxygen blocking layer between the oxygen supply layer and the organic EL element. That is, by providing the oxygen blocking layer, it is possible to prevent the organic EL element from being oxidized by oxygen supplied from the oxygen supply layer.

【0007】以上の有機EL発光装置の具体的な構成と
しては、酸素供給層と色変換層とを積層してもよいし、
酸素供給層と前記色変換層とを並置してもよい。
As a specific structure of the above organic EL light emitting device, an oxygen supply layer and a color conversion layer may be laminated.
The oxygen supply layer and the color conversion layer may be juxtaposed.

【0008】本発明の別の態様は、有機EL素子と、有
機EL素子の発する光を異なる波長の光に変換する色変
換層と、外部から色変換層へ酸素を透過させる酸素透過
性基板とを含む有機EL発光装置である。酸素透過性基
板により、この基板を通して、大気中から色変換層に酸
素を供給できるため、色変換層の寿命が長くなる。酸素
透過性基板の意味は、大気中から色変換層に酸素を供給
できる基板であって、酸素透過量の高い基板であっても
よいし、発光装置の製造及び表示品質に影響を与えない
基板の一部分に、酸素供給孔を設けてもよい。例えば、
基板の表示領域の周辺に酸素供給孔(基板の貫通孔)を
設けてもよい。
Another aspect of the present invention is an organic EL element, a color conversion layer for converting light emitted from the organic EL element into light of different wavelengths, and an oxygen permeable substrate for transmitting oxygen from the outside to the color conversion layer. It is an organic EL light emitting device including. Since the oxygen permeable substrate allows oxygen to be supplied from the atmosphere to the color conversion layer through the substrate, the life of the color conversion layer is extended. The meaning of the oxygen permeable substrate is a substrate that can supply oxygen to the color conversion layer from the atmosphere, and may be a substrate having a high oxygen transmission amount, or a substrate that does not affect the manufacturing and display quality of the light emitting device. An oxygen supply hole may be provided in a part of the. For example,
Oxygen supply holes (through holes in the substrate) may be provided around the display area of the substrate.

【0009】また、色変換層の膜厚をH(μm)、酸素
透過性基板の酸素透過量をP(cc/m・day)と
したとき、P/H>0.03を満たすことが好ましい。
より好ましくは、P/H>0.3、さらに好ましくはP
/H>3である。ここで、Hは、色変換層の最大膜厚で
あり、酸素透過量は、ASTM D3985、ASTM
D1434、JIS Z1707、JIS K7126に
よる試験方法により定義される。酸素透過量は、酸素透
過性基板の材質、その板厚、基板の表面処理状態(例え
ば、外気側に酸素富化膜処理等)によって調節できる。
P/H>0.03 とすることで、色変換機能の劣化を
より効果的に抑制できる理由の1つとして、下記の蛍光
色素劣化防止機構が考えられる。しかし、本発明は下記
の蛍光色素劣化防止機構によるものに限定されない。励
起三重項状態になった色変換層内の蛍光色素は、酸素に
エネルギーを渡し、安定な基底状態にもどり、エネルギ
ーを受け取った酸素は、熱的に放射失活して、通常の三
重項基底状態に戻ると考えられる。すなわち、色変換層
の蛍光色素分子は、有機EL素子の発する光にて励起さ
れ、ある確率で励起三重項状態に項間交差による遷移が
あったとしても、酸素分子の存在により、劣化すること
なく、基底状態に戻るというサイクルを繰り返すことに
よって、色変換層の劣化が抑制されると考えられる。従
って、蛍光色素からエネルギーを受け取る酸素の分子数
は、色変換層内の蛍光色素の分子数と同じか多いことが
好ましいと考えられる。ここで、酸素透過性基板の酸素
透過量をP(cc/m・day)、色変換層と接する
面積をA(m)、色変換層の膜厚をH(μm)、色変
換層内の蛍光色素濃度をC(mol/m)とする。1
日(常圧、常温(20℃))で、色変換層の蛍光色素の
分子数以上の酸素分子が、酸素透過性基板を透過して、
色変換層に供給されるとすると、 P(cc/m・day)×A(m)/24000
(cc)≧A(m)×H(μm)×10−6×C(m
ol/m) を満たす。ところで、色変換層内の蛍光色素が十分な色
変換能を発揮する(有機EL素子の光を効率よく吸収し
効率よく蛍光に変換する)ためには、蛍光色素濃度を1
×10−3(mol/l)、即ち、1(mol/m
以上にする必要がある場合が多い。よって、P/H≧
0.024 とすることにより、多くの場合、色変換層
の劣化の抑制が可能になると考えられる。ただし、蛍光
色素の種類によっては、十分な色変換能を発揮するため
に必用な蛍光色素濃度が1(mol/m)以上でない
場合がある。このような場合は、上記式より算出される
P/Hを目安として適宜酸素透過量を調節すればよい。
また、より短時間で過剰の酸素を色変換層に供給する方
が、色変換層内への酸素の拡散を考慮すると、蛍光色素
の劣化をより確実に抑制できると考えられる。よって、
P/Hは可能な限り大きくすることが好ましい。
When the film thickness of the color conversion layer is H (μm) and the oxygen transmission amount of the oxygen permeable substrate is P (cc / m 2 · day), P / H> 0.03 is satisfied. preferable.
More preferably P / H> 0.3, and even more preferably P
/ H> 3. Here, H is the maximum film thickness of the color conversion layer, and the oxygen transmission amount is ASTM D3985, ASTM
It is defined by the test method according to D1434, JIS Z1707 and JIS K7126. The amount of oxygen permeation can be adjusted by the material of the oxygen permeable substrate, its plate thickness, and the surface treatment state of the substrate (for example, oxygen enriched film treatment on the outside air side).
One of the reasons why the deterioration of the color conversion function can be suppressed more effectively by setting P / H> 0.03 is the following mechanism for preventing deterioration of the fluorescent dye. However, the present invention is not limited to the following mechanism for preventing deterioration of the fluorescent dye. The fluorescent dye in the color conversion layer in the excited triplet state transfers energy to oxygen and returns to the stable ground state, and the oxygen that has received the energy is thermally radiatively deactivated and becomes a normal triplet basis. It is thought to return to the state. That is, the fluorescent dye molecules in the color conversion layer are excited by the light emitted from the organic EL element, and even if the excited triplet state undergoes transition due to intersystem crossing with a certain probability, it deteriorates due to the presence of oxygen molecules. It is considered that the deterioration of the color conversion layer is suppressed by repeating the cycle of returning to the ground state instead. Therefore, it is considered preferable that the number of oxygen molecules that receive energy from the fluorescent dye is equal to or larger than the number of fluorescent dye molecules in the color conversion layer. Here, the oxygen permeation amount of the oxygen permeable substrate is P (cc / m 2 · day), the area in contact with the color conversion layer is A (m 2 ), the film thickness of the color conversion layer is H (μm), and the color conversion layer is The fluorescent dye concentration inside is C (mol / m 3 ). 1
At day (normal pressure, normal temperature (20 ° C.)), oxygen molecules more than the number of molecules of the fluorescent dye in the color conversion layer permeate the oxygen permeable substrate,
If supplied to the color conversion layer, P (cc / m 2 · day) × A (m 2 ) / 24000
(Cc) ≧ A (m 2 ) × H (μm) × 10 −6 × C (m
ol / m 3 ) is satisfied. By the way, in order for the fluorescent dye in the color conversion layer to exhibit a sufficient color conversion ability (to efficiently absorb the light of the organic EL element and efficiently convert it into fluorescence), the fluorescent dye concentration is set to 1
× 10 −3 (mol / l), that is, 1 (mol / m 3 ).
It is often necessary to do more. Therefore, P / H ≧
It is considered that the deterioration of the color conversion layer can be suppressed in many cases by setting 0.024. However, depending on the type of fluorescent dye, the fluorescent dye concentration necessary for exhibiting sufficient color conversion ability may not be 1 (mol / m 3 ) or more. In such a case, the oxygen permeation amount may be adjusted appropriately using P / H calculated from the above formula as a guide.
Further, it is considered that supplying excess oxygen to the color conversion layer in a shorter time can more reliably suppress the deterioration of the fluorescent dye in consideration of diffusion of oxygen into the color conversion layer. Therefore,
P / H is preferably as large as possible.

【0010】また、色変換層の表面積の50%以上が、
酸素透過性基板に接していることが好ましい。より好ま
しくは、60%以上が酸素透過性基板に接する。色変換
層に酸素を供給する場合、色変換層と酸素透過性基板と
の接触面積が大きいと、色変換層内全てに酸素が拡散す
る速度が大きくなるので好ましい。「色変換層の表面
積」は、色変換層の下面のみならず、側面、さらに上面
のいずれの面も含む。例えば、色変換層が酸素透過性基
板内に埋め込まれていて、色変換層の下面と側面が酸素
透過性基板と接触していてもよい。さらに、色変換層と
酸素透過性基板の界面が凹凸面であってもよく、また、
色変換層の形状が台形状(長辺が酸素透過性基板との界
面)であってもよい。
Further, 50% or more of the surface area of the color conversion layer is
It is preferably in contact with the oxygen permeable substrate. More preferably, 60% or more is in contact with the oxygen permeable substrate. When oxygen is supplied to the color conversion layer, it is preferable that the contact area between the color conversion layer and the oxygen permeable substrate is large because the rate of diffusion of oxygen into the entire color conversion layer is increased. The "surface area of the color conversion layer" includes not only the lower surface of the color conversion layer, but also the side surface and any upper surface. For example, the color conversion layer may be embedded in the oxygen permeable substrate, and the lower surface and the side surface of the color conversion layer may be in contact with the oxygen permeable substrate. Furthermore, the interface between the color conversion layer and the oxygen permeable substrate may be an uneven surface, and
The color conversion layer may have a trapezoidal shape (long side is an interface with the oxygen permeable substrate).

【0011】また、酸素透過性基板と有機エレクトロル
ミネッセンス素子との間に酸素遮断層を有することが好
ましい。酸素遮断層を設けることにより、酸素透過性基
板から透過する酸素による、有機EL素子の酸化を防ぐ
ことができる。
Further, it is preferable to have an oxygen barrier layer between the oxygen permeable substrate and the organic electroluminescence element. By providing the oxygen blocking layer, it is possible to prevent the organic EL element from being oxidized by oxygen that permeates from the oxygen permeable substrate.

【0012】また、酸素透過性基板が、光学的に透明で
あることが好ましい。酸素透過性基板を透明にすること
により、色変換層からの蛍光の発光を効率よく取出すこ
とができる。
Further, it is preferable that the oxygen permeable substrate is optically transparent. By making the oxygen permeable substrate transparent, the fluorescence emission from the color conversion layer can be efficiently extracted.

【0013】また、酸素透過性基板が多孔質ガラスから
なることが好ましい。多孔質ガラスとすることにより、
この基板を通して、大気中から色変換層に酸素を供給で
きる上、透明性を維持したまま、発光装置の機械的強度
を高めることができる。多孔質ガラスの意味は、基板全
体に多孔質であるという意味だけではなく、基板の一部
に多孔質部分があってもよい。
The oxygen permeable substrate is preferably made of porous glass. By using porous glass,
Through this substrate, oxygen can be supplied to the color conversion layer from the atmosphere, and the mechanical strength of the light emitting device can be increased while maintaining transparency. The meaning of the porous glass is not limited to the meaning that the entire substrate is porous, and a part of the substrate may have a porous portion.

【0014】[0014]

【発明の実施の形態】以下、本発明の有機EL発光装置
の部材について説明する。 1.有機EL素子 有機EL素子は、電極である陽極層と陰極層が有機発光
媒体を挟持している。 (1)有機発光媒体 有機発光媒体は、電子と正孔とが再結合して、EL発光
が可能な有機EL発光層を含む媒体と定義することがで
きる。かかる有機発光媒体は、例えば、陽極層上に、以
下の各層を積層して構成することができる。 有機EL発光層 正孔注入層/有機EL発光層 有機EL発光層/電子注入層 正孔注入層/有機EL発光層/電子注入層 有機半導体層/有機EL発光層 有機半導体層/電子障壁層/有機EL発光層 正孔注入層/有機EL発光層/付着改善層 これらの中で、の構成が、より高い発光輝度が得ら
れ、耐久性にも優れていることから通常好ましく用いら
れる。
BEST MODE FOR CARRYING OUT THE INVENTION Members of the organic EL light emitting device of the present invention will be described below. 1. Organic EL Element In an organic EL element, an anode layer and a cathode layer, which are electrodes, sandwich an organic light emitting medium. (1) Organic Light-Emitting Medium An organic light-emitting medium can be defined as a medium including an organic EL light-emitting layer capable of EL emission by recombination of electrons and holes. Such an organic light emitting medium can be formed by stacking the following layers on the anode layer, for example. Organic EL light emitting layer hole injection layer / organic EL light emitting layer organic EL light emitting layer / electron injection layer hole injection layer / organic EL light emitting layer / electron injection layer organic semiconductor layer / organic EL light emitting layer organic semiconductor layer / electron barrier layer / Organic EL light-emitting layer Hole injection layer / organic EL light-emitting layer / adhesion improving layer Among these, the structure of (1) is usually preferably used since higher emission brightness can be obtained and durability is excellent.

【0015】(i)材料 有機発光媒体における発光材料としては、例えば、p−
クオーターフェニル誘導体、p−クィンクフェニル誘導
体、ベンゾチアゾール系化合物、ベンゾイミダゾール系
化合物、ベンゾオキサゾール系化合物、金属キレート化
オキシノイド化合物、オキサジアゾール系化合物、スチ
リルベンゼン系化合物、ジスチリルピラジン誘導体、ブ
タジエン系化合物、ナフタルイミド化合物、ペリレン誘
導体、アルダジン誘導体、ピラジリン誘導体、シクロペ
ンタジエン誘導体、ピロロピロール誘導体、スチリルア
ミン誘導体、クマリン系化合物、芳香族ジメチリディン
系化合物、8−キノリノール誘導体を配位子とする金属
錯体、ポリフェニル系化合物等の一種単独又は二種以上
の組み合わせが挙げられる。
(I) Material As the light emitting material in the organic light emitting medium, for example, p-
Quarter phenyl derivatives, p-quinque phenyl derivatives, benzothiazole compounds, benzimidazole compounds, benzoxazole compounds, metal chelated oxinoid compounds, oxadiazole compounds, styrylbenzene compounds, distyrylpyrazine derivatives, butadiene compounds Compounds, naphthalimide compounds, perylene derivatives, aldazine derivatives, pyrazirine derivatives, cyclopentadiene derivatives, pyrrolopyrrole derivatives, styrylamine derivatives, coumarin compounds, aromatic dimethylidyne compounds, metal complexes having 8-quinolinol derivatives as ligands, Examples thereof include one kind alone or a combination of two or more kinds such as polyphenyl compounds.

【0016】また、これらの有機発光材料のうち、芳香
族ジメチリディン系化合物としての、4,4′−ビス
(2,2−ジ−t−ブチルフェニルビニル)ビフェニル
(DTBPBBi)や、4,4′−ビス(2,2−ジフ
ェニルビニル)ビフェニル(DPVBi)、及びこれら
の誘導体がより好ましい。さらに、ジスチリルアリーレ
ン骨格等を有する有機発光材料をホスト材料とし、当該
ホスト材料に、ドーパントとしての青色から赤色までの
強い蛍光色素、例えばクマリン系材料、あるいはホスト
と同様の蛍光色素をドープした材料を併用することも好
適である。より具体的には、ホスト材料として、上述し
たDPVBi等を用い、ドーパントとして、N,N−ジ
フェニルアミノベンゼン(DPAVB)等を用いること
が好ましい。また、前記のような低分子材料(数平均分
子量10,000未満)の他に、高分子材料(数平均分
子量10,000以上)を用いることも好ましい。具体
的には、ポリアリーレンビニレン及びその誘導体(PP
V)、ポリフルオレン及びその誘導体、フルオレン含有
共重合体等が挙げられる。
Among these organic light emitting materials, 4,4'-bis (2,2-di-t-butylphenylvinyl) biphenyl (DTBPBBi) and 4,4 'as aromatic dimethylidyne compounds are used. -Bis (2,2-diphenylvinyl) biphenyl (DPVBi), and derivatives thereof are more preferable. Furthermore, an organic light-emitting material having a distyrylarylene skeleton or the like is used as a host material, and the host material is doped with a strong fluorescent dye from blue to red as a dopant, for example, a coumarin-based material, or a fluorescent dye similar to the host. It is also preferable to use in combination. More specifically, it is preferable to use DPVBi described above as the host material and N, N-diphenylaminobenzene (DPAVB) as the dopant. In addition to the low molecular weight material (number average molecular weight less than 10,000) as described above, it is also preferable to use a polymer material (number average molecular weight 10,000 or more). Specifically, polyarylene vinylene and its derivatives (PP
V), polyfluorene and its derivatives, fluorene-containing copolymers and the like.

【0017】(ii)厚さ また、有機発光媒体の厚さについては特に制限はない
が、例えば、厚さを5nm〜5μmとすることが好まし
い。この理由は、有機発光媒体の厚さが5nm未満とな
ると、発光輝度や耐久性が低下する場合があり、一方、
有機発光媒体の厚さが5μmを超えると、印加電圧の値
が高くなる場合があるためである。また、このような理
由から、有機発光媒体の厚さを10nm〜3μmとする
ことがより好ましく、20nm〜1μmとすることがさ
らに好ましい。
(Ii) Thickness The thickness of the organic light emitting medium is not particularly limited, but for example, the thickness is preferably 5 nm to 5 μm. The reason for this is that when the thickness of the organic light emitting medium is less than 5 nm, the emission brightness and durability may decrease, while
This is because when the thickness of the organic light emitting medium exceeds 5 μm, the value of the applied voltage may increase. For this reason, the thickness of the organic light emitting medium is more preferably 10 nm to 3 μm, further preferably 20 nm to 1 μm.

【0018】(2)電極 以下、電極としての陽極層及び陰極層について説明す
る。尚、本発明では、電極は、有機EL発光装置の構成
に応じて、下部電極及び上部電極のいずれにも該当す
る。
(2) Electrode Hereinafter, the anode layer and the cathode layer as electrodes will be described. In the present invention, the electrode corresponds to both the lower electrode and the upper electrode depending on the configuration of the organic EL light emitting device.

【0019】(i)陽極層 陽極層には、仕事関数の大きい(例えば、4.0eV以
上)金属、合金、電気電導性化合物又はこれらの混合物
を使用することが好ましい。これらの具体例としては、
インジウムスズ酸化物(ITO)、インジウム亜鉛酸化
物(IZO)、インジウム銅(CuIn)、酸化スズ
(SnO)、酸化亜鉛(ZnO)、金、白金、パラジ
ウム等の一種単独又は二種以上の組み合わせが挙げられ
る。
(I) Anode Layer For the anode layer, it is preferable to use a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (for example, 4.0 eV or more). Specific examples of these are:
Indium tin oxide (ITO), indium zinc oxide (IZO), indium copper (CuIn), tin oxide (SnO 2 ), zinc oxide (ZnO), gold, platinum, palladium or the like alone or in combination of two or more. Is mentioned.

【0020】また、陽極層を光を取り出す側の電極とし
て用いる場合には、当該陽極層を透明電極とすることが
好ましい。透明電極の材料としては、ITO、IZO、
CuIn、SnO、ZnO等の透明導電性材料が挙げ
られる。このうち、非結晶性で表面平滑性が高く、有機
ELの欠陥が少なくなるという点から、IZOがより好
ましい。
When the anode layer is used as an electrode for extracting light, it is preferable that the anode layer is a transparent electrode. As the material of the transparent electrode, ITO, IZO,
Examples of the transparent conductive material include CuIn, SnO 2 , and ZnO. Of these, IZO is more preferable because it is non-crystalline, has high surface smoothness, and has fewer defects in the organic EL.

【0021】また、陽極層の成膜方法としては、真空蒸
着法、スパッタリング法、イオンプレーティング法、電
子ビーム蒸着法、CVD法(Chemical Vap
orDeposition)、MOCVD法(Meta
l Oxide Chemical Vapor Depo
sition)、プラズマCVD法等の乾燥状態での成
膜が可能な方法が挙げられる。
As a method for forming the anode layer, a vacuum vapor deposition method, a sputtering method, an ion plating method, an electron beam vapor deposition method, a CVD method (Chemical Vap) are used.
orDeposition), MOCVD method (Meta
l Oxide Chemical Vapor Depo
and a method capable of forming a film in a dry state such as a plasma CVD method.

【0022】また、陽極層の膜厚も特に制限されるもの
ではないが、例えば、10〜1,000nmとするのが
好ましく、10〜200nmとするのがより好ましい。
The thickness of the anode layer is also not particularly limited, but is preferably 10 to 1,000 nm, and more preferably 10 to 200 nm.

【0023】(ii)陰極層 陰極層には、仕事関数の小さい(例えば、4.0eV未
満)金属、合金、電気電導性化合物又はこれらの混合物
あるいは含有物を使用することが好ましい。これらの具
体例としては、ナトリウム、ナトリウム−カリウム合
金、セシウム、マグネシウム、リチウム、マグネシウム
−銀合金、アルミニウム、酸化アルミニウム、アルミニ
ウム−リチウム合金、インジウム、希土類金属、これら
の金属と有機発光媒体材料との混合物、及びこれらの金
属と電子注入層材料との混合物等の一種単独又は二種以
上の組み合わせが挙げられる。
(Ii) Cathode Layer For the cathode layer, it is preferable to use a metal, an alloy, an electrically conductive compound having a low work function (for example, less than 4.0 eV), or a mixture or inclusion thereof. Specific examples thereof include sodium, sodium-potassium alloy, cesium, magnesium, lithium, magnesium-silver alloy, aluminum, aluminum oxide, aluminum-lithium alloy, indium, rare earth metal, and these metals and organic light emitting medium materials. Mixtures, and mixtures of these metals and electron injection layer materials may be used alone or in combination of two or more.

【0024】また、陰極層の膜厚についても、陽極層と
同様に、特に制限されるものではないが、具体的に10
〜1,000nmとするのが好ましく、10〜200n
mとするのがより好ましい。
The thickness of the cathode layer is not particularly limited as in the case of the anode layer, but is specifically 10
It is preferable that it is ~ 1,000 nm, and it is 10-200 n.
More preferably, it is m.

【0025】2.色変換層 色変換層は、有機EL素子の発光を吸収して、より長波
長の蛍光を発光する機能を有する。例えば、青色光を主
に含む光を緑色光又は赤色光に変換する。尚、色変換層
の他に、色再現性をよくするためにカラーフィルターを
含んでもよい。
2. Color conversion layer The color conversion layer has a function of absorbing light emitted from the organic EL element and emitting fluorescence of longer wavelength. For example, light mainly containing blue light is converted into green light or red light. In addition to the color conversion layer, a color filter may be included to improve color reproducibility.

【0026】各色変換層は、有機EL素子の発光領域、
例えば、陽極と陰極との交差部分の位置に対応して配置
してあることが好ましい。このように構成することによ
り、陽極と陰極との交差部分における有機EL発光層が
発光した場合に、その光を各色変換層が受光して、異な
る色(波長)の発光を外部に取り出すことが可能にな
る。この場合、特に、有機EL素子が青色発光するとと
もに、色変換層によって、緑色、赤色発光に変換可能な
構成とすると、一つの有機EL素子であっても、青色、
緑色、赤色の光の三原色が得られ、フルカラー表示が可
能であることから好適である。
Each color conversion layer is a light emitting region of an organic EL device,
For example, it is preferable that they are arranged corresponding to the position of the intersection of the anode and the cathode. With this configuration, when the organic EL light emitting layer at the intersection of the anode and the cathode emits light, each color conversion layer receives the light, and the emission of different colors (wavelengths) can be extracted to the outside. It will be possible. In this case, in particular, when the organic EL element emits blue light and the color conversion layer is capable of converting to green and red light emission, even one organic EL element emits blue light.
This is preferable because the three primary colors of light of green and red can be obtained and full-color display is possible.

【0027】(1)材料 色変換層の材料は特に制限されるものではないが、例え
ば、蛍光色素及びバインダー樹脂、又は蛍光色素のみか
らなり、蛍光色素及びバインダー樹脂は、蛍光色素を顔
料樹脂及び/又はバインダー樹脂中に溶解又は分散させ
た固形状態のものを挙げることができる。
(1) Material The material of the color conversion layer is not particularly limited. For example, the color conversion layer is composed of a fluorescent dye and a binder resin, or only a fluorescent dye. And / or a solid state resin dissolved or dispersed in a binder resin.

【0028】具体的な蛍光色素について説明すると、有
機EL素子における近紫外光から紫色の発光を青色発光
に変換する蛍光色素としては、1,4−ビス(2−メチ
ルスチリル)ベンゼン(Bis−MBS)、トランス−
4,4′−ジフェニルスチルベン(DPS)等のスチル
ベン系色素、7−ヒドロキシ−4−メチルクマリン(ク
マリン4)等のクマリン系色素を挙げることができる。
Explaining concrete fluorescent dyes, 1,4-bis (2-methylstyryl) benzene (Bis-MBS) is used as a fluorescent dye for converting near-ultraviolet light to violet emission into blue emission in an organic EL device. ), Trance
Examples thereof include stilbene dyes such as 4,4′-diphenylstilbene (DPS) and coumarin dyes such as 7-hydroxy-4-methylcoumarin (coumarin 4).

【0029】また、有機EL素子における青色、青緑色
又は白色の発光を緑色発光に変換する場合の蛍光色素に
ついては、例えば、2,3,5,6−1H,4H−テト
ラヒドロ−8−トリフロルメチルキノリジノ(9,9
a,1−gh)クマリン(クマリン153)、3−
(2′−ベンゾチアゾリル)−7−ジエチルアミノクマ
リン(クマリン6)、3−(2′−ベンズイミダゾリ
ル)−7−N,N−ジエチルアミノクマリン(クマリン
7)等のクマリン色素、その他クマリン色素系染料であ
るベーシックイエロー51、また、ソルベントイエロー
11、ソルベントイエロー116等のナフタルイミド色
素を挙げることができる。
Further, regarding the fluorescent dye in the case of converting the blue, blue-green or white emission in the organic EL element into green emission, for example, 2,3,5,6-1H, 4H-tetrahydro-8-triflor is used. Methyl quinolizino (9,9
a, 1-gh) Coumarin (coumarin 153), 3-
Coumarin dyes such as (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6) and 3- (2′-benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), and other coumarin dyes. Naphthalimide dyes such as Basic Yellow 51, Solvent Yellow 11 and Solvent Yellow 116 can be mentioned.

【0030】また、有機EL素子における青色から緑色
までの発光、又は白色の発光を、橙色から赤色までの発
光に変換する場合の蛍光色素については、例えば、4−
ジシアノメチレン−2−メチル−6−(p−ジメチルア
ミノスチルリル)−4H−ピラン(DCM)等のシアニ
ン系色素、1−エチル−2−(4−(p−ジメチルアミ
ノフェニル)−1,3−ブタジエニル)−ピリジニウム
−パークロレート(ピリジン1)等のピリジン系色素、
ローダミンB、ローダミン6G等のローダミン系色素、
その他にオキサジン系色素等が挙げられる。
Further, regarding the fluorescent dye in the case of converting the blue to green emission or the white emission in the organic EL device into the orange to red emission, for example, 4-
Cyanine dyes such as dicyanomethylene-2-methyl-6- (p-dimethylaminostyrylyl) -4H-pyran (DCM), 1-ethyl-2- (4- (p-dimethylaminophenyl) -1,3. -Butadienyl) -pyridinium-perchlorate (pyridine 1) and the like,
Rhodamine dyes such as Rhodamine B and Rhodamine 6G,
Other examples include oxazine dyes.

【0031】さらに、各種染料(直接染料、酸性染料、
塩基性染料、分散染料等)も蛍光性があれば蛍光色素と
して選択することが可能である。また、蛍光色素をポリ
メタクリル酸エステル、ポリ塩化ビニル、塩化ビニル酢
酸ビニル共重合体、アルキッド樹脂、芳香族スルホンア
ミド樹脂、ユリア樹脂、メラニン樹脂、ベンゾグアナミ
ン樹脂等の顔料樹脂中に予め練り込んで顔料化したもの
でもよい。
Further, various dyes (direct dyes, acid dyes,
Basic dyes, disperse dyes, etc.) can also be selected as fluorescent dyes if they have fluorescence. In addition, a pigment is prepared by previously kneading a fluorescent dye into a pigment resin such as polymethacrylic acid ester, polyvinyl chloride, vinyl chloride vinyl acetate copolymer, alkyd resin, aromatic sulfonamide resin, urea resin, melanin resin, benzoguanamine resin. It may be a converted version.

【0032】一方、バインダー樹脂は、透明な(可視光
における光透過率が50%以上)材料が好ましい。例え
ば、ポリメチルメタクリレート、ポリアクリレート、ポ
リカーボネート、ポリビニルアルコール、ポリビニルピ
ロリドン、ヒドロキシエチルセルロース、カルボキシメ
チルセルロース等の透明樹脂(高分子)が挙げられる。
On the other hand, the binder resin is preferably a transparent material (having a light transmittance of 50% or more in visible light). Examples thereof include transparent resins (polymers) such as polymethylmethacrylate, polyacrylate, polycarbonate, polyvinyl alcohol, polyvinylpyrrolidone, hydroxyethyl cellulose, carboxymethyl cellulose and the like.

【0033】尚、蛍光媒体を平面的に分離配置するため
に、フォトリソグラフィー法が適用できる感光性樹脂も
選ばれる。例えば、アクリル酸系、メタクリル酸系、ポ
リケイ皮酸ビニル系、環ゴム系等の反応性ビニル基を有
する光硬化型レジスト材料が挙げられる。また、印刷法
を用いる場合には、透明な樹脂を用いた印刷インキ(メ
ジウム)が選ばれる。例えば、ポリ塩化ビニル樹脂、メ
ラミン樹脂、フェノール樹脂、アルキド樹脂、エポキシ
樹脂、ポリウレタン樹脂、ポリエステル樹脂、マレイン
酸樹脂、ポリアミド樹脂のモノマー、オリゴマー、ポリ
マーまた、ポリメチルメタクリレート、ポリアクリレー
ト、ポリカーボネート、ポリビニルアルコール、ポリビ
ニルピロリドン、ヒドロキシエチルセルロース、カルボ
キシメチルセルロース等の透明樹脂を用いることができ
る。
A photosensitive resin to which the photolithography method can be applied is also selected in order to dispose the fluorescent medium on a plane. Examples thereof include photocurable resist materials having a reactive vinyl group such as acrylic acid type, methacrylic acid type, polyvinyl cinnamate type, and ring rubber type. When using the printing method, a printing ink (medium) using a transparent resin is selected. For example, polyvinyl chloride resin, melamine resin, phenol resin, alkyd resin, epoxy resin, polyurethane resin, polyester resin, maleic acid resin, polyamide resin monomer, oligomer, polymer, polymethylmethacrylate, polyacrylate, polycarbonate, polyvinyl alcohol. Transparent resins such as polyvinylpyrrolidone, hydroxyethyl cellulose, and carboxymethyl cellulose can be used.

【0034】(2)形成方法 色変換層が、主に蛍光色素からなる場合は、所望の色変
換層のパターンが得られるマスクを介して真空蒸着又は
スパッタリング法で成膜することが好ましい。一方、色
変換層が、蛍光色素と樹脂からなる場合は、蛍光色素と
樹脂と適当な溶剤とを混合、分散又は可溶化させて液状
物とし、当該液状物を、スピンコート、ロールコート、
キャスト法等の方法で成膜し、その後、フォトリソグラ
フィー法で所望の色変換層のパターンにパターニングし
たり、スクリーン印刷、インクジェット法等の方法で所
望のパターンにパターニングして、色変換層を形成する
のが好ましい。
(2) Forming Method When the color conversion layer is mainly composed of a fluorescent dye, it is preferable to form the film by vacuum vapor deposition or sputtering through a mask that can obtain a desired pattern of the color conversion layer. On the other hand, when the color conversion layer is composed of a fluorescent dye and a resin, the fluorescent dye, the resin and a suitable solvent are mixed, dispersed or solubilized to obtain a liquid material, and the liquid material is spin-coated, roll-coated,
A film is formed by a method such as a cast method, and then a pattern of a desired color conversion layer is formed by a photolithography method, or a pattern is formed by a method such as screen printing or an inkjet method to form a color conversion layer. Preferably.

【0035】(3)厚さ 色変換層の厚さは、有機EL素子の発光を十分に受光
(吸収)するとともに、蛍光の発生機能を妨げるもので
なければ、特に制限されるものではないが、例えば、1
0nm〜1,000μmとすることが好ましく、0.1
μm〜500μmとすることがより好ましく、5μm〜
100μmとすることがさらに好ましい。この理由は、
色変換層の厚さが10nm未満となると、機械的強度が
低下したり、積層することが困難となる場合があるため
である。一方、色変換層の厚さが1mmを超えると、光
透過率が著しく低下して、外部に取り出せる光量が低下
したり、あるいは有機EL発光装置の薄型化が困難とな
る場合があるためである。
(3) Thickness The thickness of the color conversion layer is not particularly limited as long as it sufficiently receives (absorbs) the light emitted from the organic EL element and does not interfere with the function of generating fluorescence. , For example, 1
The thickness is preferably 0 nm to 1,000 μm, and 0.1
It is more preferable that the thickness is from 500 μm to 500 μm.
More preferably, it is 100 μm. The reason for this is
This is because if the thickness of the color conversion layer is less than 10 nm, the mechanical strength may decrease and it may be difficult to stack the layers. On the other hand, if the thickness of the color conversion layer exceeds 1 mm, the light transmittance may be significantly reduced, the amount of light that can be extracted to the outside may be reduced, or it may be difficult to reduce the thickness of the organic EL light emitting device. .

【0036】3.遮光層 遮光層は、有機EL素子から発せられた不必要な光を遮
光して、混色を防止し、視野角特性を向上させる。遮光
層の材料としては、例えば以下の金属及び黒色色素を挙
げることができる。金属の種類としては、Ag、Al、
Au、Cu、Fe、Ge、In、K、Mg、Ba、N
a、Ni、Pb、Pt、Si、Sn、W、Zn、Cr、
Ti、Mo、Ta、ステンレス等の1種又は2種以上の
金属又は合金が挙げられる。また、上記金属の酸化物、
窒化物、硫化物、硝酸塩、硫酸塩等を用いてもよく、必
要に応じて炭素が含有されていてもよい。上記遮光層の
材料は、スパタリング法、蒸着法、CVD法、イオンプ
レーティング法、電析法、電気メッキ法、化学メッキ法
等の方法により、透光性基板状に成膜され、フォトリソ
グラフィー法等によりパターニングを行って、遮光層の
パターン(平面的に分離配置)を形成することができ
る。また、黒色色素としては、カーボンブラック、チタ
ンブラック、アニリンブラック、前記カラーフィルタ色
素を混合して黒色化したものが挙げられる。これらの黒
色色素又は前記金属材料を色変換層で用いたバインダー
樹脂中に溶解又は分散させた固体状態とし、色変換層と
同様な方法でパターニングしてパターン化された遮光層
を形成する。ここでこの遮光層は酸素透過性基板の一部
にしてもよい。その結果、色変換層の表面積の50%以
上が酸素透過性基板に接するので好ましい。
3. Light-shielding layer The light-shielding layer shields unnecessary light emitted from the organic EL element, prevents color mixing, and improves viewing angle characteristics. Examples of materials for the light-shielding layer include the following metals and black dyes. The types of metals are Ag, Al,
Au, Cu, Fe, Ge, In, K, Mg, Ba, N
a, Ni, Pb, Pt, Si, Sn, W, Zn, Cr,
One or more metals or alloys of Ti, Mo, Ta, stainless steel, etc. may be mentioned. Also, oxides of the above metals,
Nitride, sulfide, nitrate, sulfate or the like may be used, and carbon may be contained as necessary. The material of the light shielding layer is formed into a transparent substrate by a method such as a sputtering method, a vapor deposition method, a CVD method, an ion plating method, an electrodeposition method, an electroplating method, a chemical plating method, and a photolithography method. It is possible to form a pattern of the light-shielding layer (separately arranged in a plane) by performing patterning using the above method. Further, examples of the black dye include carbon black, titanium black, aniline black, and those obtained by mixing the above color filter dyes to blacken. The black dye or the metal material is dissolved or dispersed in the binder resin used in the color conversion layer to form a solid state, which is then patterned in the same manner as the color conversion layer to form a patterned light-shielding layer. Here, the light shielding layer may be a part of the oxygen permeable substrate. As a result, 50% or more of the surface area of the color conversion layer contacts the oxygen permeable substrate, which is preferable.

【0037】遮光層の膜厚は、通常10nm〜1mmの
範囲内の値、好ましくは1μm〜1mmの範囲内の値、
より好ましくは5μm〜100μmの範囲内の値であ
る。また、遮光層の表面形状は格子状でもストライプ状
でもよいが、格子状がより好ましい。遮光層の透過率
は、有機EL素子の光又は色変換層からの光を発する領
域、即ち波長400nm〜700nmの可視領域におけ
る光において10%以下であることが好ましく、1%以
下がさらに好ましい。10%を超えるとEL素子の光又
は色変換層からの光が正面の色変換層のみならず隣接の
色変換層に入り込み、遮光層としての機能を十分果たさ
なくなるおそれがある。また、遮光層の少なくとも色変
換層と接する側面において、波長400nm〜700n
mの可視領域における光の反射率を10%以上の値、よ
り好ましくは、50%以上の値とするとよい。このよう
な範囲に反射率を制御することにより、色変換層からの
光を有効に取り出して、有機EL表示装置の輝度を高
め、視認性をより高めることができる。光の反射率を調
整するためには、前記金属材料をそのまま遮光層のパタ
ーンとして用いるか、黒色色素のみ、又は黒色色素とバ
インダー樹脂とからなる遮光層のパターンに、上記金属
材料をスパタリング法、蒸着法、CVD法、イオンプレ
ーティング法等の方法で成膜することにより調整するこ
とができる。
The thickness of the light-shielding layer is usually in the range of 10 nm to 1 mm, preferably in the range of 1 μm to 1 mm,
It is more preferably a value within the range of 5 μm to 100 μm. Further, the surface shape of the light shielding layer may be a lattice shape or a stripe shape, but a lattice shape is more preferable. The transmittance of the light-shielding layer is preferably 10% or less, and more preferably 1% or less in a region that emits light of the organic EL element or light from the color conversion layer, that is, light in a visible region having a wavelength of 400 nm to 700 nm. If it exceeds 10%, the light of the EL element or the light from the color conversion layer may enter not only the front color conversion layer but also the adjacent color conversion layer, and the function as the light shielding layer may not be sufficiently fulfilled. In addition, at least on the side surface of the light-shielding layer that is in contact with the color conversion layer, the wavelength is 400 nm to 700 n.
The reflectance of light in the visible region of m is 10% or more, and more preferably 50% or more. By controlling the reflectance within such a range, the light from the color conversion layer can be effectively extracted, the brightness of the organic EL display device can be increased, and the visibility can be further improved. In order to adjust the reflectance of light, the metal material is used as it is as the pattern of the light-shielding layer, or a pattern of the light-shielding layer consisting of a black dye alone or a black dye and a binder resin, the metal material is sputtered, It can be adjusted by forming a film by a method such as a vapor deposition method, a CVD method or an ion plating method.

【0038】4.酸素供給層 酸素供給層は、色変換層に対して酸素を供給できるもの
であれば制限されない。酸素供給層の具体例としては、
十分酸素をバブリングした液体(例えば、フロリナー
ト、シリコーンオイル)、又はゲル状物質(シリコーン
ゲル、フルオロゲル、天然物系ゲル等)、人工血液、ポ
ルフィリン、TiO、光触媒及び水の混合物を含む層
等が挙げられる。また、空気等の酸素を含む気体から構
成されていてもよい。ここで、酸素供給層と色変換層を
併置した例としては、遮光層部分に酸素供給層を一部配
置させ、色変換層の側面に酸素を供給することができ
る。より、具体的には、遮光層の幅を光の取出し方向に
向けて、漸次、又は、段階的に小さくしたオーバーハン
グ形断面形状又はT字形断面形状にして、色変換層との
隙間に酸素供給層を配置する。また、酸素供給層は、遮
光層に含まれていてもよい。具体的には、二酸化マンガ
ン、過マンガン酸カリウム、クロム酸カリウム等の酸化
物が挙げられる。ここで、酸素供給層の厚さは、有機E
L発光装置の精細度にもよるが、0.1μm〜1mm、
好ましくは、0.5μm〜100μm、より好ましく
は、1μm〜20μmである。0.1μmより小さい
と、十分に、色変換層への酸素供給されず、1mmより
大きいと、有機EL素子の光が拡散して、所望の色変換
層の入射が妨げられるので、視認性が低下(色にじみ、
混色、視野角依存)する。
4. Oxygen Supply Layer The oxygen supply layer is not limited as long as it can supply oxygen to the color conversion layer. As a specific example of the oxygen supply layer,
Liquid with sufficient oxygen bubbling (eg, Fluorinert, silicone oil), or gel-like substance (silicone gel, fluorogel, natural product gel, etc.), artificial blood, porphyrin, TiO 2 , a layer containing a mixture of photocatalyst and water, etc. Is mentioned. It may also be composed of a gas containing oxygen such as air. Here, as an example in which the oxygen supply layer and the color conversion layer are arranged side by side, a part of the oxygen supply layer may be arranged in the light shielding layer portion to supply oxygen to the side surface of the color conversion layer. More specifically, the width of the light-shielding layer is gradually or gradually reduced toward the light extraction direction to form an overhang-shaped or T-shaped cross-sectional shape, and oxygen is provided in a gap between the color conversion layer. Place the feed layer. The oxygen supply layer may be included in the light shielding layer. Specific examples thereof include oxides such as manganese dioxide, potassium permanganate, and potassium chromate. Here, the thickness of the oxygen supply layer is
Depending on the definition of the L light emitting device, 0.1 μm to 1 mm,
It is preferably 0.5 μm to 100 μm, more preferably 1 μm to 20 μm. If it is smaller than 0.1 μm, oxygen is not sufficiently supplied to the color conversion layer, and if it is larger than 1 mm, the light of the organic EL element is diffused and the incidence of a desired color conversion layer is hindered. Deterioration (color bleeding,
Color mixing, viewing angle dependence).

【0039】5.酸素遮断層 酸素遮断層は、酸素供給層から供給された酸素が、有機
EL素子と接触するのを遮断できるものであれば制限さ
れない。酸素遮断層の酸素透過量は、0.1cc/m
・day未満が好ましく、0.01cc/m・day
未満であることがより好ましい。具体的な材料として
は、透明無機物、透明樹脂、封止液が挙げられる。ま
ず、透明無機物が最も好ましい。より具体的には、Si
、SiO、SiO、Si、Al
、AlO、TiO、TiO、ITO(In
−SnO)、IZO(In−ZnO)、
SnO、ZnO、インジウム銅(CuIn)、金、白
金、パラジウム等の一種単独又は二種以上の組み合わせ
等の透明無機物が挙げられる。この場合には、有機EL
素子又は色変換層を劣化させないように、低温(100
℃以下)で、成膜速度を遅くして成膜するのが好まし
く、具体的にはスパッタリング、蒸着、CVD、イオン
プレーティング等の方法が好ましい。また、これらの透
明無機物は、非晶質(アモルファス)であることが、酸素
の遮断効果が高いので好ましい。次に、透明樹脂として
は、ポリビニルアルコール、ポリ塩化ビニリデン、ポリ
アクリルニトリル、セロファン、ナイロン6、ポリエチ
レンテレフタレート等の樹脂、ポリ3フッ化塩化エチレ
ン、PCTFE(ポリクロロトリフルオロエチレン)、
PTFE(ポリテトラフルオロエチレン)、等のフッ素
を含む樹脂が好ましい。これらの膜は、二軸延伸法にて
フィルム化したり、他の汎用の樹脂膜にコーティングさ
れていてもよい。次に、封止液としては、不活性液体が
有機EL素子を劣化させないので好ましく、具体的に
は、フッ化炭化水素、シリコンオイル等が挙げられる。
5. Oxygen barrier In the oxygen barrier layer, the oxygen supplied from the oxygen supply layer is
Limited as long as it can block contact with the EL element
I can't. The oxygen transmission rate of the oxygen barrier layer is 0.1 cc / mTwo
・ Preferably less than day, 0.01 cc / mTwo・ Day
It is more preferably less than. As a concrete material
Examples include transparent inorganic substances, transparent resins, and sealing liquids. Well
However, transparent inorganic materials are most preferable. More specifically, Si
OTwo, SiOx, SiOxNy, SiThreeNFour, AlTwoO
Three, AlOxNy, TiOTwo, TiOx, ITO (In
TwoOThree-SnOTwo), IZO (InTwoOThree-ZnO),
SnOTwo, ZnO, indium copper (CuIn), gold, white
Gold, palladium, etc., alone or in combination of two or more
And transparent inorganic substances. In this case, the organic EL
In order not to deteriorate the device or the color conversion layer, a low temperature (100
It is preferable to slow down the deposition rate at (° C or below)
Specifically, sputtering, vapor deposition, CVD, ion
A method such as plating is preferable. Also, these transparent
A clear inorganic substance is that it is amorphous.
It is preferable because it has a high blocking effect. Next, as a transparent resin
Is polyvinyl alcohol, polyvinylidene chloride, poly
Acrylonitrile, cellophane, nylon 6, polyethylene
Resins such as lenterephthalate, polytrifluorochloroethylene
, PCTFE (polychlorotrifluoroethylene),
Fluorine such as PTFE (polytetrafluoroethylene)
Resins containing are preferred. These films are biaxially stretched
It can be made into a film or coated on another general-purpose resin film.
It may be. Next, an inert liquid is used as the sealing liquid.
It is preferable because it does not deteriorate the organic EL element.
Examples thereof include fluorohydrocarbon and silicone oil.

【0040】ここで、酸素遮断層の厚さは、酸素供給層
と同様に、有機EL発光装置の精細度にもよるが、0.
1μm〜1mm、好ましくは、0.5μm〜100μ
m、より好ましくは、1μm〜20μmである。0.1
μmより小さいと、酸素遮断効果がなくなり、1mmよ
り大きいと、有機EL素子の光が拡散して、所望の色変
換層の入射が妨げられるので、視認性が低下(色にじ
み、混色、視野角依存)する。
Here, the thickness of the oxygen barrier layer depends on the definition of the organic EL light emitting device, as in the oxygen supply layer, but is 0.
1 μm to 1 mm, preferably 0.5 μm to 100 μ
m, more preferably 1 μm to 20 μm. 0.1
If it is smaller than μm, the oxygen blocking effect is not obtained, and if it is larger than 1 mm, the light of the organic EL element is diffused and the incidence of the desired color conversion layer is blocked, so that the visibility is deteriorated (color bleeding, color mixture, viewing angle Dependent.

【0041】6.酸素透過性基板 酸素透過性基板は、基板を通して色変換層へ酸素を透過
できるものであれば制限されない。また、酸素透過性基
板を支持基板として使用する場合は、機械的強度や、寸
法安定性に優れていることが好ましい。
6. Oxygen-permeable substrate The oxygen-permeable substrate is not limited as long as it can transmit oxygen to the color conversion layer through the substrate. When an oxygen permeable substrate is used as the supporting substrate, it is preferable that it has excellent mechanical strength and dimensional stability.

【0042】このような酸素透過性基板としては、ポリ
カーボネート樹脂、アクリル樹脂、塩化ビニル樹脂、ポ
リエチレンテレフタレート樹脂、ポリイミド樹脂、ポリ
エステル樹脂、エポキシ樹脂、フェノール樹脂、シリコ
ーン樹脂、フッ素樹脂、ポリビニルピロリドン樹脂、ポ
リウレタン樹脂、エポキシ樹脂、シアネート樹脂、メラ
ミン樹脂、マレイン樹脂、酢酸ビニル樹脂、ポリアセタ
ール樹脂、セルロース樹脂、メタクリル酸メチル樹脂、
テトラフルオロエチレン樹脂、ポリエーテルスルホン樹
脂等の有機材料が好ましい。これらの樹脂は、単一でも
よいし、複数組み合わせて用いてもよい。複数組み合わ
せるときは、積層構造であってもよいし、色変換層の側
面に存在する樹脂と下地の樹脂を異なるものにしてもよ
い。より具体的には、図3の酸素透過性基板は30のみ
ならず30と24にしてもよい。ここでは24は遮光層
でも透明層でもよい。酸素透過性基板を30と24にし
た場合は色変換層と酸素透過性基板の接触面積は一般に
色変換層の表面積の50%を超えるようになるので好ま
しい。
Examples of the oxygen permeable substrate include polycarbonate resin, acrylic resin, vinyl chloride resin, polyethylene terephthalate resin, polyimide resin, polyester resin, epoxy resin, phenol resin, silicone resin, fluororesin, polyvinylpyrrolidone resin, polyurethane. Resin, epoxy resin, cyanate resin, melamine resin, malein resin, vinyl acetate resin, polyacetal resin, cellulose resin, methyl methacrylate resin,
Organic materials such as tetrafluoroethylene resin and polyether sulfone resin are preferable. These resins may be used alone or in combination. When combining a plurality of layers, a laminated structure may be used, or the resin existing on the side surface of the color conversion layer and the underlying resin may be different. More specifically, the oxygen permeable substrate of FIG. 3 may be 30 and 24 as well as 30. Here, 24 may be a light-shielding layer or a transparent layer. When the oxygen permeable substrates are 30 and 24, the contact area between the color conversion layer and the oxygen permeable substrate generally exceeds 50% of the surface area of the color conversion layer, which is preferable.

【0043】無機材料からなる酸素透過性基板は、一般
に酸素透過性が低いので、好ましくはない。ただし、多
孔質化して、酸素を外気から取り入れられたり、基板内
に酸素を保持できるのであれば、その限りではない。例
えば、多孔質化ガラス板、多孔質化セラミックス板等が
挙げられるが、具体的な材料としては、酸化珪素、酸化
アルミニウム、酸化チタン、酸化イットリウム、酸化ゲ
ルマニウム、酸化亜鉛、酸化マグネシウム、酸化カルシ
ウム、酸化ストロンチウム、酸化バリウム、酸化鉛、酸
化ナトリウム、酸化ジルコニア、酸化ナトリウム、酸化
リチウム、酸化硼素、窒化シリコン、ソーダ石灰ガラ
ス、バリウム・ストロンチウム含有ガラス、鉛ガラス、
アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホ
ウケイ酸ガラス等を挙げることができる。また、酸素透
過性基板が、酸素富化膜であれば、より好ましい。酸素
富化膜は、大気中の空気から、選択性よく酸素を取り入
れることができるので、色変換層に大気よりも高濃度の
酸素を供給できる(20%から30%)。酸素富化膜の
酸素/窒素の分離係数は2以上であることが好ましく、
例えば、層状粘度鉱物であるモンモリロナイトにフッ素
鎖を有する合成二分子膜とを複合化したものが挙げられ
る。
An oxygen permeable substrate made of an inorganic material generally has low oxygen permeability and is not preferred. However, it is not limited as long as oxygen can be taken in from the outside air or oxygen can be retained in the substrate by making it porous. For example, a porous glass plate, a porous ceramic plate and the like can be mentioned, and specific materials include silicon oxide, aluminum oxide, titanium oxide, yttrium oxide, germanium oxide, zinc oxide, magnesium oxide, calcium oxide, Strontium oxide, barium oxide, lead oxide, sodium oxide, zirconia, sodium oxide, lithium oxide, boron oxide, silicon nitride, soda-lime glass, barium-strontium-containing glass, lead glass,
Aluminosilicate glass, borosilicate glass, barium borosilicate glass, etc. can be mentioned. Further, it is more preferable that the oxygen-permeable substrate is an oxygen-enriched film. Since the oxygen-enriched film can take in oxygen from the air in the atmosphere with good selectivity, it is possible to supply oxygen to the color conversion layer in a concentration higher than that in the atmosphere (20% to 30%). The oxygen / nitrogen separation coefficient of the oxygen-enriched film is preferably 2 or more,
For example, a composite of montmorillonite, which is a layered clay mineral, and a synthetic bilayer membrane having a fluorine chain can be mentioned.

【0044】[実施形態1]図1は、本発明の一実施形
態による有機EL発光装置を示す模式図である。この有
機EL発光装置100は、光を基板と反対側から取り出
す上取り出しタイプである。有機EL発光装置100
は、支持基板2上に、電気絶縁膜4に埋設されたTFT
6、層間絶縁膜8、有機EL素子16、酸素遮断層2
0、酸素供給層22及び色変換部材28を備えている。
有機EL素子16は、下部電極10と上部電極14の間
に有機発光媒体12を挟持している。色変換部材28は
色変換層26と遮光層24及びそれらを支持する封止基
板(図示せず、図1の色変換層の上側)からなる。コン
タクトホール18によりTFT6及び有機EL素子16
が電気接続される。図中の矢印は光を取り出す方向を表
す。
[Embodiment 1] FIG. 1 is a schematic view showing an organic EL light emitting device according to an embodiment of the present invention. The organic EL light emitting device 100 is an upper extraction type that extracts light from the side opposite to the substrate. Organic EL light emitting device 100
Is a TFT embedded in the electric insulating film 4 on the supporting substrate 2.
6, interlayer insulating film 8, organic EL element 16, oxygen barrier layer 2
0, an oxygen supply layer 22, and a color conversion member 28.
The organic EL element 16 sandwiches the organic light emitting medium 12 between the lower electrode 10 and the upper electrode 14. The color conversion member 28 includes a color conversion layer 26, a light shielding layer 24, and a sealing substrate (not shown, above the color conversion layer in FIG. 1) that supports them. The TFT 6 and the organic EL element 16 are formed by the contact hole 18.
Are electrically connected. The arrow in the figure represents the direction of extracting light.

【0045】TFT6により駆動され、有機EL素子1
6から発せられた青色光は、酸素遮断層20、酸素供給
層22を通過して色変換部材28に達する。色変換部材
28の色変換層26により、青色光の一部は、緑色光と
赤色光に変換され、色変換部材28からは三色が発せら
れる。このとき、遮光層24は三色の混色を防止する。
The organic EL element 1 is driven by the TFT 6
The blue light emitted from 6 reaches the color conversion member 28 through the oxygen blocking layer 20 and the oxygen supply layer 22. The color conversion layer 26 of the color conversion member 28 converts part of the blue light into green light and red light, and the color conversion member 28 emits three colors. At this time, the light shielding layer 24 prevents the three colors from being mixed.

【0046】色変換層26は、酸素供給層22から酸素
が供給されるため、色変換層の劣化を防止できる。ま
た、酸素遮断層20が、酸素供給層22と有機EL素子
16の間にあるため、有機EL素子16には酸素供給層
22から酸素が移行しないで劣化を防ぐことができる。
Since oxygen is supplied from the oxygen supply layer 22 to the color conversion layer 26, deterioration of the color conversion layer can be prevented. Further, since the oxygen blocking layer 20 is between the oxygen supply layer 22 and the organic EL element 16, the oxygen can be prevented from migrating from the oxygen supply layer 22 to the organic EL element 16 and the deterioration can be prevented.

【0047】尚、この実施形態においては、酸素供給層
22を色変換層26の下側に配置したが、上側(色変換
層と封止基板との間)に配置してもよい。また、酸素供
給層22は色変換層26に接して配置しているが、酸素
を透過するものであれば、他の層が介在してもよい。
In this embodiment, the oxygen supply layer 22 is arranged on the lower side of the color conversion layer 26, but it may be arranged on the upper side (between the color conversion layer and the sealing substrate). Further, the oxygen supply layer 22 is arranged in contact with the color conversion layer 26, but another layer may intervene as long as it is permeable to oxygen.

【0048】[実施形態2]図2は、本発明の他の実施
形態による有機EL発光装置を示す模式図である。この
図において、図1と同じ参照番号は同じ部材を示し、そ
の説明は省略する。実施形態2の有機EL発光装置20
0は、酸素供給層22が色変換層26と並置していて、
酸素供給層22は遮光層の存在する部分に一部存在する
か、遮光層に含まれる他は、実施形態1の有機EL発光
装置100と同じである。色変換層26は、酸素供給層
22から酸素が供給されるため、色変換層の劣化を防止
できる。また、酸素遮断層20が、酸素供給層22と有
機EL素子16の間にあるため、有機EL素子16には
酸素供給層22から酸素が移行しないで劣化を防ぐこと
ができる。尚、この実施形態の酸素供給層22は、遮光
層の存在する部分に一部存在するか、遮光層に含まれて
いるが、遮光層とは別に色変換層26の片側、両側、上
側、下側等に並置してもよい。
[Embodiment 2] FIG. 2 is a schematic view showing an organic EL light emitting device according to another embodiment of the present invention. In this figure, the same reference numerals as those in FIG. 1 denote the same members, and the description thereof will be omitted. Organic EL light emitting device 20 of Embodiment 2
0 means that the oxygen supply layer 22 is juxtaposed with the color conversion layer 26,
The oxygen supply layer 22 is the same as the organic EL light emitting device 100 of the first embodiment except that the oxygen supply layer 22 is partially present in the portion where the light shielding layer is present or is included in the light shielding layer. Since oxygen is supplied from the oxygen supply layer 22 to the color conversion layer 26, deterioration of the color conversion layer can be prevented. Further, since the oxygen blocking layer 20 is between the oxygen supply layer 22 and the organic EL element 16, the oxygen can be prevented from migrating from the oxygen supply layer 22 to the organic EL element 16 and the deterioration can be prevented. Note that the oxygen supply layer 22 of this embodiment partially exists in the portion where the light shielding layer exists or is included in the light shielding layer, but separately from the light shielding layer, one side, both sides, the upper side of the color conversion layer 26, It may be juxtaposed on the lower side or the like.

【0049】[実施形態3]図3は、本発明のさらに他
の実施形態による有機EL発光装置を示す模式図であ
る。この図において、図1と同じ参照番号は同じ部材を
示し、その説明は省略する。有機EL発光装置300
は、光を基板側から取り出す基板取り出しタイプであ
る。有機EL発光装置300は、酸素透過性基板30上
に、色変換部材28、酸素遮断層20、有機EL素子1
6を備えている。この図では、TFT等は省略している
場合、又はパッシブ駆動の場合を示す。図中の矢印は光
を取り出す方向を表す。この装置では、酸素透過性基板
30は支持基板を兼ねている。色変換層26は、酸素透
過性基板30を通して外部から酸素が供給されるため、
色変換層の劣化を防止できる。また、酸素遮断層20
が、酸素透過性基板30と有機EL素子16の間にある
ため、有機EL素子16には酸素透過性基板30を透過
した酸素が移行しないで劣化を防ぐことができる。
[Embodiment 3] FIG. 3 is a schematic view showing an organic EL light emitting device according to still another embodiment of the present invention. In this figure, the same reference numerals as those in FIG. 1 denote the same members, and the description thereof will be omitted. Organic EL light emitting device 300
Is a substrate extraction type that extracts light from the substrate side. The organic EL light emitting device 300 includes a color conversion member 28, an oxygen barrier layer 20, an organic EL element 1 on an oxygen permeable substrate 30.
6 is provided. In this figure, TFTs and the like are omitted, or the case of passive driving is shown. The arrow in the figure represents the direction of extracting light. In this device, the oxygen permeable substrate 30 also serves as a supporting substrate. Since the color conversion layer 26 is supplied with oxygen from the outside through the oxygen permeable substrate 30,
It is possible to prevent deterioration of the color conversion layer. In addition, the oxygen barrier layer 20
However, since it is between the oxygen-permeable substrate 30 and the organic EL element 16, the oxygen that has permeated the oxygen-permeable substrate 30 does not migrate to the organic EL element 16 and deterioration can be prevented.

【0050】尚、この実施形態においては、酸素透過性
基板30は色変換層26に接して配置しているが、酸素
を透過するものであれば、他の層が介在してもよい。ま
た、酸素透過性基板30の代わりに、実施形態1のよう
に、酸素供給層を色変換層26と酸素遮断層20の間に
設けてもよいし、実施形態2のように、酸素供給層を色
変換層26と並置して設けてもよい。さらに、実施形態
1及び2の上取り出しタイプの装置においても、酸素供
給層の代わりに酸素透過性基板を、色変換層の上部に設
けてもよい。
In this embodiment, the oxygen permeable substrate 30 is arranged in contact with the color conversion layer 26, but another layer may be interposed as long as it is permeable to oxygen. Further, instead of the oxygen permeable substrate 30, an oxygen supply layer may be provided between the color conversion layer 26 and the oxygen blocking layer 20 as in the first embodiment, or as in the second embodiment. May be provided in parallel with the color conversion layer 26. Further, also in the top-out type devices of Embodiments 1 and 2, an oxygen permeable substrate may be provided above the color conversion layer instead of the oxygen supply layer.

【0051】[0051]

【実施例】実施例1(実施形態1型) 色変換基板の作製 102mm×133mm×1.1mmの支持基板(OA
2ガラス:日本電気硝子社製)上に、ブラックマトリッ
クス(BM)の材料としてV259BK(新日鉄化学社
製)をスピンコートし、格子状のパターンになるような
フォトマスクを介して紫外線露光し、2%炭酸ナトリウ
ム水溶液で現像後、200℃でベークして、ブラックマ
トリックス(膜厚1.5μm)のパターンを形成した。
次に、青色カラーフィルタの材料として、V259B
(新日鉄化学社製)をスピンコートし、長方形(90μ
mライン、240μmギャップ)のストライプパターン
が320本得られるようなフォトマスクを介して、BM
に位置合わせして紫外線露光し、2%炭酸ナトリウム水
溶液で現像後、200℃でベークして、青色カラーフィ
ルタ(膜厚1.5μm)のパターンを形成した。次に、
緑色カラーフィルタの材料として、V259G(新日鉄
化学社製)をスピンコートし、長方形(90μmライ
ン、240μmギャップ)のストライプパターンが32
0本得られるようなフォトマスクを介して、BMに位置
合わせして紫外線露光し、2%炭酸ナトリウム水溶液で
現像後、200℃でベークして、青色カラーフィルタの
隣に緑色カラーフィルタ(膜厚1.5μm)のパターン
を形成した。次に、赤色カラーフィルタの材料として、
V259R(新日鉄化学社製)をスピンコートし、長方
形(90μmライン、240μmギャップ)のストライ
プパターンが320本得られるようなフォトマスクを介
して、BMに位置合わせして紫外線露光し、2%炭酸ナ
トリウム水溶液で現像後、200℃でベークして、青色
カラーフィルタと緑色カラーフィルタの間に赤色カラー
フィルタ(膜厚1.5μm)のパターンを形成した。
EXAMPLE Example 1 (Embodiment 1 type) Preparation of color conversion substrate 102 mm × 133 mm × 1.1 mm supporting substrate (OA
2 glass: manufactured by Nippon Electric Glass Co., Ltd.), V259BK (manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated as a material for the black matrix (BM), and was exposed to ultraviolet light through a photomask having a grid pattern. % Aqueous sodium carbonate solution and baked at 200 ° C. to form a black matrix (film thickness 1.5 μm) pattern.
Next, as a material for the blue color filter, V259B
(Nippon Steel Chemical Co., Ltd.) is spin coated to form a rectangle (90μ
BM through a photomask such that 320 stripe patterns of m lines and 240 μm gap) can be obtained.
The substrate was exposed to ultraviolet light by aligning with, and developed with a 2% sodium carbonate aqueous solution, and then baked at 200 ° C. to form a pattern of a blue color filter (film thickness 1.5 μm). next,
As a material for the green color filter, V259G (manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated to form a rectangular (90 μm line, 240 μm gap) stripe pattern.
Through a photomask such that 0 pieces can be obtained, the BM is aligned and exposed to ultraviolet rays, developed with a 2% sodium carbonate aqueous solution, baked at 200 ° C., and next to the blue color filter, a green color filter (film thickness A pattern of 1.5 μm) was formed. Next, as the material of the red color filter,
V259R (manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated, and UV exposure was performed by aligning it with the BM through a photomask such that 320 rectangular patterns (90 μm lines, 240 μm gaps) were obtained, and 2% sodium carbonate. After development with an aqueous solution, baking was performed at 200 ° C. to form a pattern of a red color filter (film thickness 1.5 μm) between the blue color filter and the green color filter.

【0052】次に、緑色変換層の材料として、0.04
mol/kg(対固形分)となる量のクマリン6をアク
リル系ネガ型フォトレジスト(V259PA、固形分濃
度50%:新日鉄化学社製)に溶解させたインキを調製
した。このインキを、先の基板上にスピンコートし、緑
色カラーフィルタ上に相当する部分を紫外線露光し、2
%炭酸ナトリウム水溶液で現像後、200℃でベークし
て、緑色カラーフィルタ上に緑色変換膜のパターン(膜
厚10μm)を形成した。次に、赤色変換層の材料とし
て、クマリン6:0.53g、ベーシックバイオレット
11:1.5g、ローダミン6G:1.5g、アクリル系
ネガ型フォトレジスト(V259PA、固形分濃度50
%:新日鉄化学社製):100gに溶解させたインキを
調製した。このインキを、先の基板上にスピンコート
し、赤色カラーフィルタ上に相当する部分を紫外線露光
し、2%炭酸ナトリウム水溶液で現像後、180℃でベ
ークして、赤色カラーフィルタ上に赤色変換膜のパター
ン(膜厚10μm)を形成し、色変換基板(色変換部
材)を得た。
Next, as a material for the green color conversion layer, 0.04
An ink was prepared by dissolving coumarin 6 in an amount of mol / kg (relative to solid content) in an acrylic negative photoresist (V259PA, solid content concentration 50%: Nippon Steel Chemical Co., Ltd.). This ink was spin-coated on the above substrate, and the portion corresponding to the green color filter was exposed to ultraviolet light, and
% Aqueous sodium carbonate solution and baked at 200 ° C. to form a green conversion film pattern (film thickness 10 μm) on the green color filter. Next, as materials for the red color conversion layer, coumarin 6: 0.53 g, basic violet 11: 1.5 g, rhodamine 6G: 1.5 g, acrylic negative photoresist (V259PA, solid content concentration 50).
%: Nippon Steel Chemical Co., Ltd.): An ink dissolved in 100 g was prepared. This ink was spin-coated on the above substrate, the portion corresponding to the red color filter was exposed to ultraviolet light, developed with a 2% sodium carbonate aqueous solution, and baked at 180 ° C. to form a red conversion film on the red color filter. Pattern (film thickness 10 μm) was formed to obtain a color conversion substrate (color conversion member).

【0053】(2)TFT基板の作製 図4(a)〜(i)は、ポリシリコンTFTの形成工程
を示す図である。まず、112mm×143mm×1.
1mmのガラス基板2(OA2ガラス、日本電気硝子
(株)製)上に、減圧CVD(Low Pressure Chemical
Vapor Deposition, LPCVD)等の手法により、α−
Si層40を積層した(図4(a))。次に、KrF
(248nm)レーザ等のエキシマーレーザをα−Si
層40に照射して、アニール結晶化を行い、ポリシリコ
ンとした(図4(b))。このポリシリコンを、フォト
リソグラフィにより、アイランド状にパターン化した
(図4(c))。得られたアイランド化ポリシリコン4
1及び基板2の表面に、絶縁ゲート材料42を化学蒸着
(CVD)等により積層して、ゲート酸化物絶縁層42
とした(図4(d))。次に、ゲート電極43を、蒸着
又はスパッタリングで成膜して形成し(図4(e))、
ゲート電極43をパターニングするとともに、陽極酸化
を行った(図4(f)〜(h))。さらに、イオンドー
ピング(イオン注入)により、ドーピング領域を形成
し、それにより活性層を形成して、ソース45及びドレ
イン47とし、ポリシリコンTFTを形成した(図4
(i))。この際、ゲート電極43(及び図5の走査電
極50、コンデンサー57の底部電極)をAl、TFT
のソース45及びドレイン47をn+型とした。
(2) Fabrication of TFT Substrate FIGS. 4 (a) to 4 (i) are views showing a process of forming a polysilicon TFT. First, 112 mm × 143 mm × 1.
On a 1 mm glass substrate 2 (OA2 glass, manufactured by Nippon Electric Glass Co., Ltd.), low pressure chemical vapor deposition (Low Pressure Chemical
Vapor Deposition, LPCVD)
The Si layer 40 was laminated (FIG. 4A). Next, KrF
An excimer laser such as a (248 nm) laser is used as α-Si.
The layer 40 was irradiated and annealed and crystallized to form polysilicon (FIG. 4B). This polysilicon was patterned into islands by photolithography (FIG. 4 (c)). Obtained islanded polysilicon 4
1 and the surface of the substrate 2 are laminated with an insulating gate material 42 by chemical vapor deposition (CVD) or the like to form a gate oxide insulating layer 42.
(FIG. 4 (d)). Next, the gate electrode 43 is formed by vapor deposition or sputtering (FIG. 4E),
The gate electrode 43 was patterned and anodized (FIGS. 4F to 4H). Further, a doping region is formed by ion doping (ion implantation), and thereby an active layer is formed to form a source 45 and a drain 47, and a polysilicon TFT is formed (FIG. 4).
(I)). At this time, the gate electrode 43 (and the scan electrode 50 in FIG. 5, the bottom electrode of the capacitor 57) is Al, TFT
The source 45 and the drain 47 are of n + type.

【0054】次に、得られた活性層上に、層間絶縁膜
(SiO)を500nmの膜厚でCRCVD法にて形
成した後、信号電極線51及び共通電極線52、コンデ
ンサ上部電極(Al)の形成と、第2のトランジスタ
(Tr2)56のソース電極と共通電極との連結、第1
のトランジスタ(Tr1)55のドレインと信号電極と
の連結を行った(図5、図6)。各TFTと各電極の連
結は、適宜、層間絶縁膜SiOを弗酸によるウエット
エッチングにより開口して行った。次に、CrとITO
を順次、スパッタリングにより、それぞれ2000Å、
1300Åで成膜した。この基板上にポジ型レジスト
(HPR204:富士フィルムアーチ製)をスピンコー
トし、90μm×320μmのドット状のパターンにな
るようなフォトマスクを介して、紫外線露光し、TMA
H(テトラメチルアンモニウムヒドロキシド)の現像液
で現像し、130℃でベークし、レジストパターンを得
た。次に、47%臭化水素酸からなるITOエッチャン
トにて、露出している部分のITOをエッチングし、次
に硝酸セリウムアンモニウム/過塩素酸水溶液(HC
E:長瀬産業製)にて、Crをエッチングした。次に、
レジストをエタノールアミンを主成分とする剥離液(N
303:長瀬産業製)で処理して、Cr/ITOパター
ン(下部電極:陽極)を得た。この際、Tr2 56と
下部電極10が開口部59を介して接続された(図
6)。次に、第二の層間絶縁膜として、ネガ型レジスト
(V259BK:新日鉄化学社製)をスピンコートし、
紫外線露光し、TMAH(テトラメチルアンモニウムヒ
ドロキシド)の現像液で現像した。次に、180℃でベ
ークして、Cr/ITOのエッジを被覆した(ITOの
開口部が70μm×200μm)有機膜の層間絶縁膜を
形成した(図示せず)。
Next, after forming an interlayer insulating film (SiO 2 ) with a film thickness of 500 nm on the obtained active layer by the CRCVD method, the signal electrode line 51, the common electrode line 52, the capacitor upper electrode (Al ) And connecting the source electrode and the common electrode of the second transistor (Tr2) 56,
The drain of the transistor (Tr1) 55 and the signal electrode were connected (FIGS. 5 and 6). The connection between each TFT and each electrode was appropriately made by opening the interlayer insulating film SiO 2 by wet etching with hydrofluoric acid. Next, Cr and ITO
By sputtering, 2000 Å,
The film was formed at 1300Å. A positive type resist (HPR204: made by Fuji Film Arch) is spin-coated on this substrate, and is exposed to ultraviolet light through a photomask having a dot pattern of 90 μm × 320 μm, and is exposed to UV rays.
It was developed with a developing solution of H (tetramethylammonium hydroxide) and baked at 130 ° C. to obtain a resist pattern. Next, the exposed part of the ITO is etched with an ITO etchant made of 47% hydrobromic acid, and then cerium ammonium nitrate / perchloric acid aqueous solution (HC
E: manufactured by Nagase & Co.) was used to etch Cr. next,
A resist stripper containing ethanolamine as a main component (N
303: manufactured by Nagase & Co., Ltd.) to obtain a Cr / ITO pattern (lower electrode: anode). At this time, Tr256 and the lower electrode 10 were connected via the opening 59 (FIG. 6). Next, as a second interlayer insulating film, a negative resist (V259BK: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated,
It was exposed to ultraviolet rays and developed with a developer of TMAH (tetramethylammonium hydroxide). Next, baking was performed at 180 ° C. to form an organic interlayer insulating film (not shown) that covers the edge of Cr / ITO (ITO openings are 70 μm × 200 μm).

【0055】(3)有機EL発光装置の作製 このようにして得られた層間絶縁膜付き基板を純水及び
イソプロピルアルコール中で超音波洗浄し、Airブロ
ーにて乾燥後、UV洗浄した。次に、TFT基板を、有
機蒸着装置(日本真空技術製)に移動し、基板ホルダー
に基板を固定した。尚、予め、それぞれのモリブテン製
の加熱ボートに、正孔注入材料として、4,4’,
4’’−トリス[N−(3−メチルフェニル)−N−フ
ェニルアミノ]トリフェニルアミン(MTDATA)、
4,4’−ビス[N−(1−ナフチル)−N−フェニル
アミノ]ビフェニル(NPD)、発光材料のホストとし
て、4,4’−ビス(2,2−ジフェニルビニル)ビフ
ェニル(DPVBi)、ドーパントとして、1,4−ビ
ス[4−(N,N−ジフェニルアミノスチリルベンゼ
ン)](DPAVB)、電子注入材料及び陰極として、
トリス(8−キノリノール)アルミニウム(Alq)と
Liをそれぞれ仕込み、さらに陰極の取出し電極として
IZO(前出)ターゲットを別のスパッタリング槽に装
着した。
(3) Preparation of Organic EL Light Emitting Device The substrate with an interlayer insulating film thus obtained was ultrasonically cleaned in pure water and isopropyl alcohol, dried by Air blow, and then UV cleaned. Next, the TFT substrate was moved to an organic vapor deposition device (manufactured by Nippon Vacuum Technology), and the substrate was fixed to a substrate holder. It should be noted that the heating boats made of molybdenum were previously charged with 4,4 ′,
4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA),
4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), 4,4′-bis (2,2-diphenylvinyl) biphenyl (DPVBi) as a host of the light emitting material, 1,4-bis [4- (N, N-diphenylaminostyrylbenzene)] (DPAVB) as a dopant, an electron injection material and a cathode,
Tris (8-quinolinol) aluminum (Alq) and Li were charged respectively, and an IZO (previously described) target was attached to another sputtering tank as a cathode take-out electrode.

【0056】その後、真空槽を5×10−7torrま
で減圧にしたのち、以下の順序で正孔注入層から陰極ま
で途中で真空を破らず一回の真空引きで順次積層した。
まず、正孔注入層としては、MTDATAを蒸着速度
0.1〜0.3nm/秒、膜厚60nm及び、NPDを蒸
着速度0.1〜0.3nm/秒、膜厚20nm、発光層と
しては、DPVBiとDPAVBをそれぞれ蒸着速度
0.1〜0.3nm/秒、蒸着速度0.03〜0.05nm
/秒を共蒸着して膜厚50nm、電子注入層としては、
Alqを蒸着速度0.1〜0.3nm/秒、膜厚20n
m、さらに、陰極として、AlqとLiをそれぞれ蒸着
速度0.1〜0.3nm/秒、0.005nm/秒で共蒸
着し、膜厚を20nmとした。次に、基板をスパッタリ
ング槽に移動し、陰極の取り出し電極としてIZOを、
成膜速度0.1〜0.3nm/秒で、膜厚200nmと
し、有機EL素子を作製した。
After that, the vacuum chamber was evacuated to 5 × 10 −7 torr, and the layers from the hole injecting layer to the cathode were successively laminated in one vacuum without breaking the vacuum in the following order.
First, as the hole injecting layer, MTDATA has a vapor deposition rate of 0.1 to 0.3 nm / sec and a film thickness of 60 nm, and NPD has a vapor deposition rate of 0.1 to 0.3 nm / sec and a film thickness of 20 nm. , DPVBi and DPAVB have a vapor deposition rate of 0.1 to 0.3 nm / sec and a vapor deposition rate of 0.03 to 0.05 nm.
/ Second is co-evaporated to a film thickness of 50 nm, and the electron injection layer is
Alq vapor deposition rate 0.1-0.3 nm / sec, film thickness 20n
m, and as a cathode, Alq and Li were co-evaporated at vapor deposition rates of 0.1 to 0.3 nm / sec and 0.005 nm / sec, respectively, to a thickness of 20 nm. Next, the substrate was moved to a sputtering tank and IZO was used as a cathode take-out electrode.
An organic EL device was produced at a film forming rate of 0.1 to 0.3 nm / sec and a film thickness of 200 nm.

【0057】次に、酸素遮断層として、有機EL素子の
上部電極上に透明無機膜としてSiOxNy(O/O+
N=50%:Atomic ratio)を低温CVD
により200nmの厚さで成膜した(尚、IZOも酸素
遮断層として機能する)。酸素透過量は0.1cc/m
・day未満であった。次に、先ほど作製した色変換
基板にて画素を位置合わせして表示部を被覆し、表示部
周辺部はカチオン硬化製の接着剤(TB3102:スリ
ーボンド製)で光硬化させて貼り合わせた。次に、この
TFT基板と色変換基板の間に、酸素をバブリングした
フッ化炭化水素(フロリナートFC72:住友スリーエ
ム社製、酸素溶解量は、常圧、25℃で65ml/10
0ml)を貼り合わせの隙間部分から注入し、隙間部分
を封止して、酸素供給層とした。厚みは、約10μmで
ある。
Next, as an oxygen blocking layer, SiOxNy (O / O +) was formed as a transparent inorganic film on the upper electrode of the organic EL element.
N = 50%: Atomic ratio) low temperature CVD
To form a film having a thickness of 200 nm (note that IZO also functions as an oxygen barrier layer). Oxygen permeation rate is 0.1 cc / m
It was less than 2 · day. Next, the pixels were aligned with the color conversion substrate prepared above to cover the display portion, and the periphery of the display portion was photo-cured with a cation-curing adhesive (TB3102: manufactured by ThreeBond) to be bonded. Next, between this TFT substrate and the color conversion substrate, a fluorinated hydrocarbon bubbling oxygen (Fluorinert FC72: manufactured by Sumitomo 3M Limited, the amount of dissolved oxygen is 65 ml / 10 at 25 ° C. and atmospheric pressure).
0 ml) was injected from the gap portion of the bonding and the gap portion was sealed to form an oxygen supply layer. The thickness is about 10 μm.

【0058】(4)有機EL発光装置の評価 このようにして、アクティブ有機EL表示装置(図1)
を作製し、その下部電極(ITO/Cr)と陰極の取出
し電極(上部電極)(IZO)にDC7Vの電圧を印加
(下部電極:(+)、上部電極:(−))したところ、
各電極の交差部分(画素)が発光した。発光輝度は、色
彩色差計(CS100,ミノルタ製)にて、青色カラー
フィルタ部(青色画素)で17cd/mでCIE色度
座標は、X=0.15、Y=0.16の青色の発光、緑色
変換層/緑色カラーフィルタ部(緑色画素)で47cd
/mでCIE色度座標は、X=0.27、Y=0.67
の緑色の発光、赤色変換層/赤色カラーフィルタ部(赤
色画素)で16cd/mでCIE色度座標は、X=
0.64、Y=0.35の赤色の発光が得られ、光の三原
色が得られた。尚、その時の有機EL素子の発光輝度は
200cd/m(全画素発光に相当、各色画素に対し
てはその1/3に相当)でCIE色度座標は、X=0.
17、Y=0.28の青色の発光であった。
(4) Evaluation of Organic EL Light Emitting Device In this way, the active organic EL display device (FIG. 1)
Was prepared, and a voltage of DC7V was applied to the lower electrode (ITO / Cr) and the extraction electrode (upper electrode) (IZO) of the cathode (lower electrode: (+), upper electrode: (−)),
The intersection (pixel) of each electrode emitted light. The emission luminance was 17 cd / m 2 in the blue color filter section (blue pixel) with a colorimeter (CS100, made by Minolta), and the CIE chromaticity coordinates were X = 0.15 and Y = 0.16 for blue. 47 cd in emission, green conversion layer / green color filter (green pixel)
/ M 2 CIE chromaticity coordinates, X = 0.27, Y = 0.67
Green emission, red conversion layer / red color filter section (red pixel) at 16 cd / m 2 , CIE chromaticity coordinate is X =
A red emission of 0.64 and Y = 0.35 was obtained, and the three primary colors of light were obtained. In addition, the emission luminance of the organic EL element at that time is 200 cd / m 2 (corresponding to all pixel emission, corresponding to 1/3 thereof for each color pixel), and the CIE chromaticity coordinate is X = 0.
The emission of blue light was 17 and Y = 0.28.

【0059】次に、この駆動条件で、室温22℃で10
00時間駆動させたところ、青色画素が12cd/m
(初期1とした時0.71)、緑色画素が33cd/m
(初期1とした時0.70)、赤色画素が11cd/
(初期1とした時0.69)であり、有機EL素子
の輝度は140cd/m(初期1とした時0.70)
であった。また、有機EL素子を通常の乾燥窒素のよう
な不活性気体にて封止した場合の有機EL素子の輝度劣
化は、この駆動条件は、初期を1とした時に0.73で
あった。これより、ほとんど色変換層の効率低下がなく
(表1)、酸素供給層を配置しても、酸素遮断層を配置
したので、有機EL素子にほとんど影響がないことが分
かった。
Next, under these driving conditions, room temperature is 22 ° C. for 10 minutes.
When driven for 00 hours, the blue pixel is 12 cd / m 2
(0.71 when the initial value is 1), the green pixel is 33 cd / m
2 (0.70 when set to initial 1), red pixel is 11 cd /
m 2 (0.69 when the initial value is 1), and the luminance of the organic EL element is 140 cd / m 2 (0.70 when the initial value is 1)
Met. Further, the deterioration of the luminance of the organic EL element when the organic EL element was sealed with a normal inert gas such as dry nitrogen was 0.73 when the initial driving condition was 1. From this, it was found that there was almost no decrease in efficiency of the color conversion layer (Table 1), and even if the oxygen supply layer was arranged, the oxygen blocking layer was arranged, so there was almost no effect on the organic EL element.

【0060】実施例2(実施形態1型) 実施例1において、酸素供給層として酸素を過剰にした
乾燥空気(露点−50℃、酸素40%、窒素60%)と
したこと(該乾燥空気を循環させたグローブボックス内
にてTFT基板と色変換基板を貼りあわせた)以外は、
同様に有機EL発光装置(図1)を作製した。その下部
電極(ITO/Cr)と上部電極(IZO)にDC7V
の電圧を印加(下部電極:(+)、上部電極:(−))
したところ、各電極の交差部分(画素)が発光した。発
光輝度は、色彩色差計(CS100,ミノルタ製)に
て、青色カラーフィルタ部(青色画素)で15cd/m
でCIE色度座標は、X=0.15、Y=0.16の青
色の発光、緑色変換層/緑色カラーフィルタ部(緑色画
素)で42cd/mでCIE色度座標は、X=0.2
7、Y=0.67の緑色の発光、赤色変換層/赤色カラ
ーフィルタ部(赤色画素)で14cd/mでCIE色
度座標は、X=0.64、Y=0.35の赤色の発光が得
られ、光の三原色が得られた。尚、その時の有機EL素
子の発光輝度は200cd/mでCIE色度座標は、
X=0.17、Y=0.28の青色の発光であった。
Example 2 (Embodiment 1) In Example 1, as the oxygen supply layer, oxygen-excess dry air (dew point −50 ° C., oxygen 40%, nitrogen 60%) was used. Except that the TFT substrate and the color conversion substrate were attached in the circulated glove box)
Similarly, an organic EL light emitting device (FIG. 1) was produced. DC7V for the lower electrode (ITO / Cr) and upper electrode (IZO)
Voltage (lower electrode: (+), upper electrode: (-))
Then, the intersection (pixel) of each electrode emitted light. The emission brightness is 15 cd / m in a blue color filter (blue pixel) with a colorimeter (CS100, manufactured by Minolta).
2 , CIE chromaticity coordinates are X = 0.15, Y = 0.16, blue emission, 42 cd / m 2 in the green conversion layer / green color filter section (green pixel), CIE chromaticity coordinates are X = 0.2
7. Green emission of Y = 0.67, CIE chromaticity coordinates of 14 cd / m 2 in the red conversion layer / red color filter section (red pixel), X = 0.64, Y = 0.35 of red Luminescence was obtained and the three primary colors of light were obtained. In addition, the emission luminance of the organic EL element at that time is 200 cd / m 2 and the CIE chromaticity coordinate is
The emission was blue at X = 0.17 and Y = 0.28.

【0061】次に、この駆動条件で、室温22℃で10
00時間駆動させたところ、青色画素が11cd/m
(初期1とした時0.73)、緑色画素が29cd/m
(初期1とした時0.69)、赤色画素が10cd/
(初期1とした時0.71)であり、有機EL素子
の輝度は144cd/m(初期1とした時0.72)
であった。また、有機EL素子を通常の乾燥窒素のよう
な不活性気体にて封止した場合の有機EL素子の輝度劣
化は、この駆動条件は、初期を1とした時に0.73で
あった。これより、ほとんど色変換層の効率低下がなく
(表1)、酸素供給層を配置しても、酸素遮断層を配置
したので、有機EL素子にほとんど影響がないことが分
かった。
Next, under these driving conditions, room temperature is 22 ° C. for 10 minutes.
When driven for 00 hours, the blue pixel is 11 cd / m 2
(0.73 when set to initial 1), green pixel is 29 cd / m
2 (0.69 when initial 1), red pixel is 10 cd /
m 2 (0.71 when the initial value is 1), and the luminance of the organic EL element is 144 cd / m 2 (0.72 when the initial value is 1).
Met. Further, the deterioration of the luminance of the organic EL element when the organic EL element was sealed with a normal inert gas such as dry nitrogen was 0.73 when the initial driving condition was 1. From this, it was found that there was almost no decrease in efficiency of the color conversion layer (Table 1), and even if the oxygen supply layer was arranged, the oxygen blocking layer was arranged, so there was almost no effect on the organic EL element.

【0062】実施例3(実施形態3型) 112mm×143mm×0.1mmの支持基板として
酸素透過性基板(ポリエーテルスルホン樹脂:住友ベー
クライト製:酸素透過量457cc/m・day)を
用いて、実施例1と同様に色変換基板を作製した。尚、
この際、P/H=45.7であった。次に、平坦化膜と
してアクリル系熱硬化性樹脂(V259PH:新日鉄化
学社製)を先の基板上にスピンコートし、180℃でベ
ークして、平坦化膜(膜厚5μm)を形成した。次に、
酸素遮断層として、透明無機膜としてSiOxNy(O
/O+N=50%:Atomic ratio)を低温
CVDにより200nmの厚さで成膜した。酸素透過量
は0.1cc/m・day未満であった。
Example 3 (Embodiment 3) An oxygen-permeable substrate (polyethersulfone resin: Sumitomo Bakelite: oxygen transmission rate 457 cc / m 2 · day) was used as a 112 mm × 143 mm × 0.1 mm supporting substrate. A color conversion substrate was prepared in the same manner as in Example 1. still,
At this time, P / H was 45.7. Next, an acrylic thermosetting resin (V259PH: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated on the above substrate as a flattening film and baked at 180 ° C. to form a flattening film (film thickness 5 μm). next,
As an oxygen barrier layer, SiOxNy (O
/ O + N = 50%: Atomic ratio) was formed into a film with a thickness of 200 nm by low temperature CVD. The amount of oxygen permeation was less than 0.1 cc / m 2 · day.

【0063】次に、IZO(インジウム亜鉛酸化物)を
スパッタリングにより200nm膜厚で成膜した。次
に、この基板上にポジ型レジスト(HPR204:富士
フィルムアーチ製)をスピンコートし、90μmライ
ン、20μmギャップのストライプ状のパターンになる
ようなフォトマスクを介して、色変換層又はカラーフィ
ルタパターンと重なるように位置合わせをして紫外線露
光し、TMAH(テトラメチルアンモニウムヒドロキシ
ド)の現像液で現像し、130℃でベークして、レジス
トパターンを得た。次に、5%蓚酸水溶液からなるIZ
Oエッチャントにて、露出している部分のIZOをエッ
チングした。次に、レジストをエタノールアミンを主成
分とする剥離液(N303:長瀬産業製)で処理して、
IZOパターン(下部電極:陽極、ライン数960本)
を得た。
Next, IZO (indium zinc oxide) was formed into a film with a thickness of 200 nm by sputtering. Next, a positive type resist (HPR204: manufactured by Fuji Film Arch) is spin-coated on this substrate, and a color conversion layer or a color filter pattern is formed through a photomask having a stripe pattern of 90 μm lines and 20 μm gaps. Was exposed to ultraviolet rays, developed with a developer of TMAH (tetramethylammonium hydroxide), and baked at 130 ° C. to obtain a resist pattern. Next, IZ composed of a 5% oxalic acid aqueous solution
The exposed portion of IZO was etched with an O etchant. Next, the resist is treated with a stripping solution (N303: Nagase & Co., Ltd.) containing ethanolamine as a main component,
IZO pattern (lower electrode: anode, number of lines 960)
Got

【0064】次に、第一の層間絶縁膜として、ネガ型レ
ジスト(V259PA:新日鉄化学社製)をスピンコー
トし、フォトマスクを介して、紫外線露光し、TMAH
(テトラメチルアンモニウムヒドロキシド)の現像液で
現像した。次に、180℃でベークして、IZOパター
ンのエッジを被覆した(IZOの開口部が70μm×2
90μm)層間絶縁膜を形成した。次に、第二の層間絶
縁膜(隔壁)として、ネガ型レジスト(ZPN110
0:日本ゼオン製)をスピンコートし、20μmライ
ン、310μmギャップのストライプパターンになるよ
うなフォトマスクを介して、紫外線露光後、さらに露光
後ベークを行なった。次に、TMAH(テトラメチルア
ンモニウムヒドロキシド)の現像液でネガレジストを現
像し、IZOストライプに直交した有機膜の第二の層間
絶縁膜(隔壁)を形成した。
Next, as a first interlayer insulating film, a negative resist (V259PA: Nippon Steel Chemical Co., Ltd.) was spin-coated, exposed to ultraviolet light through a photomask, and TMAH.
It was developed with a developing solution of (tetramethylammonium hydroxide). Next, it was baked at 180 ° C. to cover the edges of the IZO pattern (the opening of IZO was 70 μm × 2).
90 μm) An interlayer insulating film was formed. Next, as a second interlayer insulating film (partition wall), a negative resist (ZPN110
0: manufactured by Zeon Corporation) was spin-coated and exposed to ultraviolet rays through a photomask having a stripe pattern of 20 μm lines and a gap of 310 μm, followed by post-exposure bake. Next, the negative resist was developed with a developer of TMAH (tetramethylammonium hydroxide) to form a second interlayer insulating film (partition wall) of an organic film orthogonal to the IZO stripe.

【0065】このようにして得られた基板を純水及びイ
ソプロピルアルコール中で超音波洗浄し、Airブロー
にて乾燥後とUV洗浄した。有機蒸着装置(日本真空技
術製)に移動し、基板ホルダーに基板を固定した。尚、
予め、それぞれのモリブテン製の加熱ボートに、正孔注
入材料として、4,4’,4’’−トリス[N−(3−
メチルフェニル)−N−フェニルアミノ]トリフェニル
アミン(MTDATA)、4,4’−ビス[N−(1−
ナフチル)−N−フェニルアミノ]ビフェニル(NP
D)、発光材料のホストとして、4,4’−ビス(2,
2−ジフェニルビニル)ビフェニル(DPVBi)、ド
ーパントとして、1,4−ビス[4−(N,N−ジフェ
ニルアミノスチリルベンゼン)](DPAVB)、電子
注入材料として、トリス(8−キノリノール)アルミニ
ウム(Alq)とLiを、さらに陰極としてAlを、そ
れぞれ仕込んだ。
The substrate thus obtained was ultrasonically cleaned in pure water and isopropyl alcohol, dried by Air blow, and then UV-cleaned. The substrate was moved to an organic vapor deposition device (manufactured by Nippon Vacuum Technology) and fixed on a substrate holder. still,
In advance, 4,4 ′, 4 ″ -tris [N- (3-
Methylphenyl) -N-phenylamino] triphenylamine (MTDATA), 4,4′-bis [N- (1-
Naphthyl) -N-phenylamino] biphenyl (NP
D), 4,4'-bis (2,4) as a host of the light emitting material
2-diphenylvinyl) biphenyl (DPVBi), 1,4-bis [4- (N, N-diphenylaminostyrylbenzene)] (DPAVB) as a dopant, and tris (8-quinolinol) aluminum (Alq) as an electron injection material. ) And Li, and also Al as a cathode.

【0066】その後、真空槽を5×10−7torrま
で減圧にしたのち、以下の順序で正孔注入層から陰極ま
で途中で真空を破らず一回の真空引きで順次積層した。
まず、正孔注入層としては、MTDATAを蒸着速度
0.1〜0.3nm/秒、膜厚60nm及び、NPDを蒸
着速度0.1〜0.3nm/秒、膜厚20nm、発光層と
しては、DPVBiとDPAVBをそれぞれ蒸着速度
0.1〜0.3nm/秒、蒸着速度0.03〜0.05nm
/秒を共蒸着して膜厚50nm、電子注入層としては、
Alqを蒸着速度0.1〜0.3nm/秒、膜厚20n
m、AlqとLiをそれぞれ蒸着速度0.1〜0.3nm
/秒、0.005nm/秒で共蒸着して、膜厚20n
m、陰極としてAlを蒸着速度0.1〜0.3nm/秒、
膜厚150nmとし、有機EL素子を作製した。
Then, the vacuum chamber was evacuated to 5 × 10 −7 torr, and the layers from the hole injecting layer to the cathode were sequentially laminated by one evacuation without breaking the vacuum in the following order.
First, as the hole injecting layer, MTDATA has a vapor deposition rate of 0.1 to 0.3 nm / sec and a film thickness of 60 nm, and NPD has a vapor deposition rate of 0.1 to 0.3 nm / sec and a film thickness of 20 nm. , DPVBi and DPAVB have a vapor deposition rate of 0.1 to 0.3 nm / sec and a vapor deposition rate of 0.03 to 0.05 nm.
/ Second is co-evaporated to a film thickness of 50 nm, and the electron injection layer is
Alq vapor deposition rate 0.1-0.3 nm / sec, film thickness 20n
m, Alq, and Li are vapor deposition rates of 0.1 to 0.3 nm, respectively.
/ Sec, 0.005 nm / sec.
m, Al as a cathode, vapor deposition rate of 0.1 to 0.3 nm / sec,
An organic EL device was manufactured with a film thickness of 150 nm.

【0067】次に、この基板を乾燥窒素(露点−50
℃)を循環したグローブボックス内に移動し、102m
m×133mm×1.1mmの青板ガラスにて表示部を
被覆し、表示部周辺部はカチオン硬化製の接着剤(TB
3102:スリーボンド製)で光硬化させて貼り合わ
せ、パッシブ型有機EL表示装置(図3)を作製した。
その下部電極(IZO)と上部電極(Al)に、Dut
y=1/120にて、15Vの電圧を印加(下部電極:
(+)、上部電極:(−))したところ、各電極の交差
部分(画素)が発光した。発光輝度は、色彩色差計(C
S100,ミノルタ製)にて、青色カラーフィルタ部
(青色画素)で16cd/mでCIE色度座標は、X
=0.15、Y=0.16の青色の発光、緑色変換層/緑
色カラーフィルタ部(緑色画素)で45cd/mでC
IE色度座標は、X=0.27、Y=0.67の緑色の発
光、赤色変換層/赤色カラーフィルタ部(赤色画素)で
15cd/mでCIE色度座標は、X=0.64、Y
=0.35の赤色の発光が得られ、光の三原色が得られ
た。尚、その時の有機EL素子の発光輝度は200cd
/m(全画素発光に相当)でCIE色度座標は、X=
0.17、Y=0.28の青色の発光であった。
Next, this substrate was dried nitrogen (dew point -50).
Moved into the glove box that circulated (° C), 102m
The display part is covered with a blue sheet glass of m × 133 mm × 1.1 mm, and the periphery of the display part is a cationic hardening adhesive (TB.
3102: manufactured by ThreeBond Co., Ltd.) and light-cured to bond them to each other to manufacture a passive organic EL display device (FIG. 3).
The lower electrode (IZO) and the upper electrode (Al) are
At y = 1/120, a voltage of 15V is applied (lower electrode:
(+), Upper electrode: (-) When, the intersection (pixel) of each electrode emitted light. The emission brightness is measured by a color difference meter (C
S100, manufactured by Minolta), the CIE chromaticity coordinate is X at 16 cd / m 2 in the blue color filter section (blue pixel).
= 0.15, Y = 0.16 blue emission, C at 45 cd / m 2 in the green conversion layer / green color filter section (green pixel)
The IE chromaticity coordinates are X = 0.27, Y = 0.67, green emission, and 15 cd / m 2 in the red conversion layer / red color filter section (red pixel), and the CIE chromaticity coordinates are X = 0. 64, Y
A red emission of 0.35 was obtained, and the three primary colors of light were obtained. In addition, the emission brightness of the organic EL element at that time is 200 cd.
/ M 2 (corresponding to light emission of all pixels), the CIE chromaticity coordinate is X =
The emission was blue at 0.17 and Y = 0.28.

【0068】次に、この駆動条件で、室温22℃で10
00時間駆動させたところ、青色画素が10cd/m
(初期1とした時0.67)、緑色画素が27cd/m
(初期1とした時0.60)、赤色画素が9cd/m
(初期1とした時0.60)であり、有機EL素子の
輝度は126cd/m(初期1とした時0.63)で
あった。また、有機EL素子を通常の乾燥窒素のような
不活性気体にて封止した場合の有機EL素子の輝度劣化
は、この駆動条件は、初期を1とした時に0.65であ
った。これより、ほとんど色変換層の効率低下がなく
(表1)、酸素供給層を配置して、酸素遮断層を配置し
たので、有機EL素子にほとんど影響がないことが分か
った。
Next, under these driving conditions, room temperature is 22 ° C. for 10 minutes.
When driven for 00 hours, the blue pixel is 10 cd / m 2
(0.67 when set to initial 1), green pixel is 27 cd / m
2 (0.60 when initial 1), red pixel is 9 cd / m
2 (0.60 when the initial value was 1), and the luminance of the organic EL element was 126 cd / m 2 (0.63 when the initial value was 1). In addition, the deterioration of the luminance of the organic EL element when the organic EL element was sealed with an inert gas such as normal dry nitrogen was 0.65 when the driving condition was 1 at the initial stage. From this, it was found that the efficiency of the color conversion layer was hardly reduced (Table 1), and the oxygen supply layer and the oxygen barrier layer were arranged, so that the organic EL element was hardly affected.

【0069】比較例1(酸素供給層なし) 実施例1において、真空脱気を行ったフッ化炭化水素
(フロリナートFC72:住友スリーエム社製、酸素溶
解量は、常圧、25℃で<1ml/100ml)を貼り
あわせの隙間部分から注入し、隙間部分を封止して、酸
素供給層としたこと以外は、同様に、有機EL発光装置
を作製した。その下部電極(ITO/Cr)と上部電極
(IZO)にDC7Vの電圧を印加(下部電極:
(+)、上部電極:(−))したところ、各電極の交差
部分(画素)が発光した。初期の発光輝度は、実施例1
と同様であった。即ち、色彩色差計(CS100,ミノ
ルタ製)にて、青色カラーフィルタ部(青色画素)で1
7cd/mでCIE色度座標は、X=0.15、Y=
0.16の青色の発光、緑色変換層/緑色カラーフィル
タ部(緑色画素)で47cd/mでCIE色度座標
は、X=0.27、Y=0.67の緑色の発光、赤色変換
層/赤色カラーフィルタ部(赤色画素)で16cd/m
でCIE色度座標は、X=0.64、Y=0.35の赤
色の発光が得られ、光の三原色が得られた。尚、その時
の有機EL素子の発光輝度は200cd/m(全画素
発光に相当)でCIE色度座標は、X=0.17、Y=
0.28の青色の発光であった。
Comparative Example 1 (No Oxygen Supply Layer) In Example 1, a vacuum degassed fluorohydrocarbon (Fluorinert FC72, manufactured by Sumitomo 3M Limited, oxygen dissolution amount was <1 ml / at 25 ° C. and atmospheric pressure). (100 ml) was injected from the bonded gap portion, and the gap portion was sealed to form an oxygen supply layer, and an organic EL light emitting device was similarly prepared. A voltage of DC7V is applied to the lower electrode (ITO / Cr) and the upper electrode (IZO) (lower electrode:
(+), Upper electrode: (-) When, the intersection (pixel) of each electrode emitted light. The initial emission brightness is as in Example 1.
Was similar to. That is, in the color difference meter (CS100, made by Minolta), the blue color filter section (blue pixel) is set to 1
CIE chromaticity coordinates at 7 cd / m 2 are X = 0.15, Y =
0.16 blue emission, green conversion layer / green color filter (green pixel) 47 cd / m 2 CIE chromaticity coordinates, X = 0.27, Y = 0.67 green emission, red conversion Layer / red color filter section (red pixel) 16 cd / m
In 2 , CIE chromaticity coordinates were X = 0.64, Y = 0.35, and red light emission was obtained, and the three primary colors of light were obtained. At that time, the light emission luminance of the organic EL element was 200 cd / m 2 (corresponding to light emission of all pixels), and the CIE chromaticity coordinates were X = 0.17, Y =
It had a blue emission of 0.28.

【0070】次に、この駆動条件で、室温22℃で10
00時間駆動させたところ、青色画素が12cd/m
(初期1とした時0.71)、緑色画素が28cd/m
(初期1とした時0.60)、赤色画素が5cd/m
(初期1とした時0.31)であり、有機EL素子の
輝度は140cd/m(初期1とした時0.70)で
あった。また、有機EL素子を通常の乾燥窒素のような
不活性気体にて封止した場合の有機EL素子の輝度劣化
は、この駆動条件は、初期を1とした時に0.73であ
った。この結果、緑色、赤色変換層の効率低下が認めら
れ(表1)、特に赤色変換層の劣化が著しかった。これ
は、酸素供給層を配置しなかったので、色変換層が劣化
したものと考えられる。
Next, under these driving conditions, room temperature is 22 ° C. for 10 minutes.
When driven for 00 hours, the blue pixel is 12 cd / m 2
(0.71 when the initial value is 1), the green pixel is 28 cd / m
2 (0.60 when initial 1), red pixel is 5 cd / m
2 (0.31 when the initial value was 1), and the luminance of the organic EL element was 140 cd / m 2 (0.70 when the initial value was 1). Further, the deterioration of the luminance of the organic EL element when the organic EL element was sealed with a normal inert gas such as dry nitrogen was 0.73 when the initial driving condition was 1. As a result, a decrease in efficiency of the green and red conversion layers was recognized (Table 1), and the deterioration of the red conversion layer was particularly remarkable. It is considered that this is because the color conversion layer deteriorated because the oxygen supply layer was not arranged.

【0071】比較例2(酸素透過性基板なし) 実施例3において、酸素透過性基板の代わりに、ガラス
基板(OA2ガラス、日本電気硝子(株)製:酸素透過
量:<0.1cc/m・day)を用いたこと以外は
同様に、有機EL発光装置を作製した。この際、P/H
<0.01であった。その下部電極(IZO)と上部電
極(Al)に、Duty=1/120にて、15Vの電
圧を印加(下部電極:(+)、上部電極:(−))した
ところ、各電極の交差部分(画素)が発光した。初期の
発光輝度は、実施例3と同様であった。即ち、色彩色差
計(CS100,ミノルタ製)にて、青色カラーフィル
タ部(青色画素)で16cd/mでCIE色度座標
は、X=0.15、Y=0.16の青色の発光、緑色変換
層/緑色カラーフィルタ部(緑色画素)で45cd/m
でCIE色度座標は、X=0.27、Y=0.67の緑
色の発光、赤色変換層/赤色カラーフィルタ部(赤色画
素)で15cd/mでCIE色度座標は、X=0.6
4、Y=0.35の赤色の発光が得られ、光の三原色が
得られた。尚、その時の有機EL素子の発光輝度は20
0cd/m(全画素発光に相当)でCIE色度座標
は、X=0.17、Y=0.28の青色の発光であった。
Comparative Example 2 (without oxygen permeable substrate) In Example 3, instead of the oxygen permeable substrate, a glass substrate (OA2 glass, manufactured by Nippon Electric Glass Co., Ltd.): Oxygen permeation amount: <0.1 cc / m An organic EL light emitting device was produced in the same manner except that 2 · day) was used. At this time, P / H
<0.01. A voltage of 15 V was applied to the lower electrode (IZO) and the upper electrode (Al) at Duty = 1/120 (lower electrode: (+), upper electrode: (−)), and the intersection of each electrode (Pixel) emitted light. The initial emission brightness was similar to that of Example 3. That is, a CIE chromaticity coordinate is 16 cd / m 2 in a blue color filter section (blue pixel) with a colorimeter (CS100, manufactured by Minolta), and blue light emission of X = 0.15 and Y = 0.16, 45 cd / m in green conversion layer / green color filter section (green pixel)
2 , the CIE chromaticity coordinate is X = 0.27, Y = 0.67, green emission, and the red conversion layer / red color filter unit (red pixel) is 15 cd / m 2 , the CIE chromaticity coordinate is X = 0.6
4, red emission of Y = 0.35 was obtained, and the three primary colors of light were obtained. The emission brightness of the organic EL element at that time is 20.
At 0 cd / m 2 (corresponding to light emission from all pixels), CIE chromaticity coordinates were blue light emission with X = 0.17 and Y = 0.28.

【0072】次に、この駆動条件で、室温22℃で10
00時間駆動させたところ、青色画素が10cd/m
(初期1とした時0.67)、緑色画素が24cd/m
(初期1とした時0.53)、赤色画素が5cd/m
(初期1とした時0.33)であり、有機EL素子の
輝度は126cd/m(初期1とした時0.63)で
あった。また、有機EL素子を通常の乾燥窒素のような
不活性気体にて封止した場合の有機EL素子の輝度劣化
は、この駆動条件は、初期を1とした時に0.65であ
った。この結果、緑色、赤色変換層の効率低下が認めら
れ(表1)、特に赤色変換層の劣化が著しかった。これ
は、酸素透過性基板を配置しなかったので、色変換層が
劣化したものと考えられる。
Next, under these driving conditions, the temperature is 10 ° C. at room temperature of 22 ° C.
When driven for 00 hours, the blue pixel is 10 cd / m 2
(0.67 when set to initial 1), green pixel is 24 cd / m
2 (0.53 when initial 1), red pixel is 5 cd / m
2 (0.33 when the initial value was 1), and the luminance of the organic EL element was 126 cd / m 2 (0.63 when the initial value was 1). In addition, the deterioration of the luminance of the organic EL element when the organic EL element was sealed with an inert gas such as normal dry nitrogen was 0.65 when the driving condition was 1 at the initial stage. As a result, a decrease in efficiency of the green and red conversion layers was recognized (Table 1), and the deterioration of the red conversion layer was particularly remarkable. It is considered that this is because the color conversion layer was deteriorated because the oxygen permeable substrate was not arranged.

【0073】色変換効率の変化を表1にまとめる。Table 1 summarizes the changes in color conversion efficiency.

【表1】 [Table 1]

【0074】[0074]

【発明の効果】本発明によれば、色変換層の劣化を抑制
できる有機EL発光装置を提供できる。
According to the present invention, it is possible to provide an organic EL light emitting device capable of suppressing deterioration of the color conversion layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態による有機EL発光装置を
示す模式図である。
FIG. 1 is a schematic view showing an organic EL light emitting device according to an embodiment of the present invention.

【図2】本発明の他の実施形態による有機EL発光装置
を示す模式図である。
FIG. 2 is a schematic view showing an organic EL light emitting device according to another embodiment of the present invention.

【図3】本発明のさらに他の実施形態による有機EL発
光装置を示す模式図である。
FIG. 3 is a schematic view showing an organic EL light emitting device according to still another embodiment of the present invention.

【図4】ポリシリコンTFTの形成工程を示す図であ
る。
FIG. 4 is a diagram showing a process of forming a polysilicon TFT.

【図5】ポリシリコンTFTを含む電気スイッチ接続構
造を示す回路図である。
FIG. 5 is a circuit diagram showing an electric switch connection structure including a polysilicon TFT.

【図6】ポリシリコンTFTを含む電気スイッチ接続構
造を示す平面透視図である。
FIG. 6 is a plan perspective view showing an electric switch connection structure including a polysilicon TFT.

【符号の説明】[Explanation of symbols]

100,200,300 有機EL発光装置 16 有機EL素子 20 酸素遮断層 22 酸素供給層 26 色変換層 30 酸素透過性基板 100,200,300 Organic EL light emitting device 16 Organic EL device 20 oxygen barrier 22 Oxygen supply layer 26 color conversion layers 30 oxygen permeable substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細川 地潮 千葉県袖ヶ浦市上泉1280番地 Fターム(参考) 3K007 AB03 AB04 AB12 BB06 DB03 FA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hosokawa Gideo             1280 Kamizumi, Sodegaura, Chiba Prefecture F-term (reference) 3K007 AB03 AB04 AB12 BB06 DB03                       FA02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 有機エレクトロルミネッセンス素子と、 前記有機エレクトロルミネッセンス素子の発する光を異
なる波長の光に変換する色変換層と、 前記色変換層に酸素を供給するための酸素供給層とを含
む有機エレクトロルミネッセンス発光装置。
1. An organic electroluminescence device, an organic electroluminescence device, a color conversion layer for converting light emitted from the organic electroluminescence device into light of different wavelengths, and an oxygen supply layer for supplying oxygen to the color conversion layer. Electroluminescent light emitting device.
【請求項2】 前記酸素供給層と、前記有機エレクトロ
ルミネッセンス素子との間に酸素遮断層を有する請求項
1に記載の有機EL発光装置。
2. The organic EL light emitting device according to claim 1, further comprising an oxygen blocking layer between the oxygen supply layer and the organic electroluminescence element.
【請求項3】 前記酸素供給層と、前記色変換層とを積
層したことを特徴とする請求項1又は2に記載の有機エ
レクトロルミネッセンス発光装置。
3. The organic electroluminescence light emitting device according to claim 1, wherein the oxygen supply layer and the color conversion layer are laminated.
【請求項4】 前記酸素供給層と、前記色変換層とを並
置したことを特徴とする請求項1又は2に記載の有機エ
レクトロルミネッセンス発光装置。
4. The organic electroluminescence light-emitting device according to claim 1, wherein the oxygen supply layer and the color conversion layer are arranged side by side.
【請求項5】 有機エレクトロルミネッセンス素子と、 前記有機エレクトロルミネッセンス素子の発する光を異
なる波長の光に変換する色変換層と、 外部から前記色変換層へ酸素を透過させる酸素透過性基
板とを含む有機エレクトロルミネッセンス発光装置。
5. An organic electroluminescence device, a color conversion layer for converting light emitted from the organic electroluminescence device into light of different wavelengths, and an oxygen-permeable substrate for transmitting oxygen from the outside to the color conversion layer. Organic electroluminescence light emitting device.
【請求項6】 前記色変換層の膜厚をH(μm)、前記
酸素透過性基板の酸素透過量をP(cc/m・da
y)としたとき、P/H>0.03である請求項5に記
載の有機エレクトロルミネッセンス発光装置。
6. The film thickness of the color conversion layer is H (μm), and the oxygen permeation amount of the oxygen permeable substrate is P (cc / m 2 · da).
The organic electroluminescent light emitting device according to claim 5, wherein P / H> 0.03 when y).
【請求項7】 前記色変換層の表面積の50%以上が、
前記酸素透過性基板に接している請求項5又は6に記載
の有機エレクトロルミネッセンス発光装置。
7. The surface area of the color conversion layer is 50% or more,
The organic electroluminescence light-emitting device according to claim 5, which is in contact with the oxygen-permeable substrate.
【請求項8】 前記酸素透過性基板と前記有機エレクト
ロルミネッセンス素子との間に酸素遮断層を有する請求
項5〜7のいずれか一項に記載の有機エレクトロルミネ
ッセンス発光装置。
8. The organic electroluminescent light emitting device according to claim 5, further comprising an oxygen blocking layer between the oxygen permeable substrate and the organic electroluminescent element.
【請求項9】 前記酸素透過性基板が、光学的に透明で
ある請求項5〜8のいずれか一項に記載の有機エレクト
ロルミネッセンス発光装置。
9. The organic electroluminescent light emitting device according to claim 5, wherein the oxygen permeable substrate is optically transparent.
【請求項10】 前記酸素透過性基板が多孔質ガラスか
らなる請求項5〜9のいずれか一項に記載の有機エレク
トロルミネッセンス発光装置。
10. The organic electroluminescence light emitting device according to claim 5, wherein the oxygen permeable substrate is made of porous glass.
JP2001384241A 2001-12-18 2001-12-18 Organic electroluminescent device Pending JP2003187975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384241A JP2003187975A (en) 2001-12-18 2001-12-18 Organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384241A JP2003187975A (en) 2001-12-18 2001-12-18 Organic electroluminescent device

Publications (1)

Publication Number Publication Date
JP2003187975A true JP2003187975A (en) 2003-07-04

Family

ID=27594018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384241A Pending JP2003187975A (en) 2001-12-18 2001-12-18 Organic electroluminescent device

Country Status (1)

Country Link
JP (1) JP2003187975A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099311A1 (en) * 2004-04-05 2005-10-20 Idemitsu Kosan Co., Ltd. Organic electroluminescence display device
WO2005114622A1 (en) * 2004-05-20 2005-12-01 Fuji Photo Film Co., Ltd. Color light-emitting element array and exposure apparatus
JP2005353288A (en) * 2004-06-08 2005-12-22 Canon Inc Organic light-emitting element
US7166959B2 (en) 2003-12-26 2007-01-23 Sanyo Electric Co., Ltd. Display device having microresonator structure
JP2007134153A (en) * 2005-11-10 2007-05-31 Seiko Epson Corp Electroluminescent device, and electronic equipment
JP2007157550A (en) * 2005-12-06 2007-06-21 Fuji Electric Holdings Co Ltd Color conversion membrane, and organic multi-colored light emitting el device
JPWO2005098802A1 (en) * 2004-03-30 2008-02-28 出光興産株式会社 Organic electroluminescence display device
US7498738B2 (en) 2003-09-30 2009-03-03 Sanyo Electric Co., Ltd. Organic EL element and organic EL panel
US7510455B2 (en) 2003-12-26 2009-03-31 Sanyo Electric Co., Ltd. Method for manufacturing display device with conductive resonator spacer layers having different total thicknesses
US7531958B2 (en) 2003-09-30 2009-05-12 Sanyo Electric Co., Ltd. Organic EL element and organic EL panel having microresonator and color filter
US7586257B2 (en) 2003-09-30 2009-09-08 Sanyo Electric Co., Ltd. Organic el panel with organic layer for emitting light of a specific color and organic layer for emitting white light
KR101370484B1 (en) * 2006-08-03 2014-03-06 샤프 가부시키가이샤 Method of manufacturing a patterned color conversion layer, and methods of manufacturing a color conversion filter and an organic el display that use a color conversion layer obtained by the method
JP2014063086A (en) * 2012-09-24 2014-04-10 Dainippon Printing Co Ltd Color filter substrate and display device
KR101407584B1 (en) * 2008-06-10 2014-06-16 삼성디스플레이 주식회사 Organic light emitting display apparatus and method for manufacturing the same
KR101945499B1 (en) * 2017-02-28 2019-02-11 한국생산기술연구원 Quantum dot display device and method for manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839084B2 (en) 2003-09-30 2010-11-23 Sanyo Electric Co., Ltd. Organic EL element and organic EL panel
US7498738B2 (en) 2003-09-30 2009-03-03 Sanyo Electric Co., Ltd. Organic EL element and organic EL panel
US7531958B2 (en) 2003-09-30 2009-05-12 Sanyo Electric Co., Ltd. Organic EL element and organic EL panel having microresonator and color filter
US7586257B2 (en) 2003-09-30 2009-09-08 Sanyo Electric Co., Ltd. Organic el panel with organic layer for emitting light of a specific color and organic layer for emitting white light
US7166959B2 (en) 2003-12-26 2007-01-23 Sanyo Electric Co., Ltd. Display device having microresonator structure
US7510455B2 (en) 2003-12-26 2009-03-31 Sanyo Electric Co., Ltd. Method for manufacturing display device with conductive resonator spacer layers having different total thicknesses
JP4832292B2 (en) * 2004-03-30 2011-12-07 出光興産株式会社 Organic electroluminescence display device
JPWO2005098802A1 (en) * 2004-03-30 2008-02-28 出光興産株式会社 Organic electroluminescence display device
WO2005099311A1 (en) * 2004-04-05 2005-10-20 Idemitsu Kosan Co., Ltd. Organic electroluminescence display device
WO2005114622A1 (en) * 2004-05-20 2005-12-01 Fuji Photo Film Co., Ltd. Color light-emitting element array and exposure apparatus
JP2005353288A (en) * 2004-06-08 2005-12-22 Canon Inc Organic light-emitting element
JP2007134153A (en) * 2005-11-10 2007-05-31 Seiko Epson Corp Electroluminescent device, and electronic equipment
JP4692257B2 (en) * 2005-12-06 2011-06-01 富士電機ホールディングス株式会社 Color conversion film and multicolor organic EL device using the same
JP2007157550A (en) * 2005-12-06 2007-06-21 Fuji Electric Holdings Co Ltd Color conversion membrane, and organic multi-colored light emitting el device
KR101370484B1 (en) * 2006-08-03 2014-03-06 샤프 가부시키가이샤 Method of manufacturing a patterned color conversion layer, and methods of manufacturing a color conversion filter and an organic el display that use a color conversion layer obtained by the method
KR101407584B1 (en) * 2008-06-10 2014-06-16 삼성디스플레이 주식회사 Organic light emitting display apparatus and method for manufacturing the same
JP2014063086A (en) * 2012-09-24 2014-04-10 Dainippon Printing Co Ltd Color filter substrate and display device
KR101945499B1 (en) * 2017-02-28 2019-02-11 한국생산기술연구원 Quantum dot display device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
TWI280815B (en) Organic EL display and its production method
US20080001528A1 (en) Color conversion substrate and color display
KR100773674B1 (en) Organic el display device
TWI272866B (en) Organic electroluminescent display and method for manufacturing same
US20080036367A1 (en) Organic El Display Device
US7550914B2 (en) Organic electroluminescence display device
EP1176850A1 (en) Organic electroluminescence display unit and production method therefor
JP2003115377A (en) Light emitting element, its manufacturing method, and display equipment using this
JP3627707B2 (en) Color conversion filter substrate, organic multicolor EL display panel using the same, and manufacturing method thereof
JP2005123089A (en) Color organic el display and its manufacturing method
JP2003187975A (en) Organic electroluminescent device
JP2006278082A (en) Manufacturing method of full-color organic electroluminescent display device and optical processor for the manufacture
JP2008059824A (en) Active matrix type organic el panel and its manufacturing method
JP2003243153A (en) Organic el display
JP2006294454A (en) Organic el element and its manufacturing method
JPWO2005046291A1 (en) Barrier film for light emitting display device and manufacturing method thereof
JP4618562B2 (en) Manufacturing method of organic EL display
JP2003264081A (en) Red fluorescence-converting filter and organic light- emitting element using the same
JP2003297547A (en) Organic el display device
JP3861821B2 (en) Organic EL display panel and manufacturing method thereof
WO2008001660A1 (en) Color conversion substrate and color display
JP2008108515A (en) Manufacturing method of organic el display
JP2006302656A (en) Color conversion filter and organic el display using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612