JP2003185785A - Radioactive material containment vessel and radioactive material containment vessel storage facility - Google Patents

Radioactive material containment vessel and radioactive material containment vessel storage facility

Info

Publication number
JP2003185785A
JP2003185785A JP2001388686A JP2001388686A JP2003185785A JP 2003185785 A JP2003185785 A JP 2003185785A JP 2001388686 A JP2001388686 A JP 2001388686A JP 2001388686 A JP2001388686 A JP 2001388686A JP 2003185785 A JP2003185785 A JP 2003185785A
Authority
JP
Japan
Prior art keywords
container
dose
storage
radioactive substance
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001388686A
Other languages
Japanese (ja)
Inventor
Naoki Kumagai
直己 熊谷
Takashi Nishi
高志 西
Masashi Oda
将史 小田
Mamoru Kamoshita
守 鴨志田
Hitoshi Shimizu
清水  仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001388686A priority Critical patent/JP2003185785A/en
Publication of JP2003185785A publication Critical patent/JP2003185785A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost of constructing a storage facility by calculating the thickness needed for a shield member of the storage facility by use of neutron and gamma doses on the surface of a radioactive material containment vessel. <P>SOLUTION: The thickness of the ceiling or sidewall of a storage building is calculated using neutron and gamma doses on the surface of the radioactive material containment vessel so that dose rates at the boundary of the site of the storage building are not more than limit values and so that the thickness of the shield member shielding radiation from the surface of the radioactive material containment vessel is small for the outside of the storage building. The storing building is constructed using the result of the calculation. Because the thickness of the shield member of the storage building is determined while taking into consideration the neutron and gamma doses on the surface of the radioactive material containment vessel, the thickness of the shield member can be optimized compared with conventional methods and the cost of constructing the storage facility can be reduced. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高レベル放射性廃
棄物や原子力発電所から発生する使用済燃料等の発熱を
伴う放射性物質を収納する容器、および前記容器を貯蔵
する放射性物質収納容器貯蔵施設に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container for accommodating radioactive substances that generate heat such as high-level radioactive waste and spent fuel generated from a nuclear power plant, and a radioactive substance storage container storage facility for storing the container. It is related to.

【0002】[0002]

【従来の技術】原子力発電所から発生する使用済燃料集
合体は、ウラン及びプルトニウム等の再使用可能な核燃
料物質を回収するために再処理するが、このときに発生
する高レベル放射性廃棄物はガラス固化される。この放
射性廃棄物ガラス固化体は崩壊熱が発生するため、発熱
量が小さくなり処分が可能になるまでの間冷却しながら
貯蔵する必要がある。また、使用済燃料集合体は、再処
理されるまでの間原子力発電所内の貯蔵プールに保管さ
れるが、年々増大する使用済燃料集合体に原子力発電所
内の貯蔵プールが容量不足となり、長期間貯蔵可能な新
たな貯蔵施設の建設が望まれている。この貯蔵施設に
は、コストおよび長期に亘る安全性や実績から、遮へい
性能を持つ放射性物質収納容器による貯蔵が考えられて
いる。
BACKGROUND OF THE INVENTION Spent fuel assemblies generated from nuclear power plants are reprocessed to recover reusable nuclear fuel materials such as uranium and plutonium, but the high level radioactive waste generated at this time is Vitrified. Since this radioactive waste vitrified body generates decay heat, it must be stored while being cooled until the calorific value becomes small and disposal becomes possible. The spent fuel assemblies are stored in the storage pool in the nuclear power plant until they are reprocessed. Construction of a new storage facility that can store is desired. In this storage facility, storage in radioactive substance storage containers having shielding performance is considered from the viewpoint of cost, long-term safety, and track record.

【0003】この放射性物質収納容器を貯蔵するための
施設は、放射性物質収納容器からのガンマ線および中性
子線の遮へい性能の維持と、十分な構造強度が必要とさ
れる。
The facility for storing this radioactive substance storage container is required to maintain the shielding performance of gamma rays and neutron rays from the radioactive substance storage container and to have sufficient structural strength.

【0004】従来の放射性物質収納容器貯蔵施設の例と
しては、特開平9−26497号公報、特開2000−
180586号公報および特開平9−113679号公
報に記載された貯蔵施設がある。
Examples of conventional radioactive substance storage container storage facilities include Japanese Patent Laid-Open Nos. 9-26497 and 2000-2000.
There are storage facilities described in JP-A-180586 and JP-A-9-113679.

【0005】特開平9−26497号公報に示された放
射性物質収納容器貯蔵施設では、貯蔵建屋の天井部分
を、遮へい性能を有する脱着可能なハッチを設けてい
る。そして、ハッチの上に放射性物質収納容器搬送用の
門型クレーンを設け、その上を遮へい能力のない軽量上
屋で覆う構造となっている。
In the radioactive substance storage container storage facility disclosed in Japanese Unexamined Patent Publication No. 9-26497, the ceiling portion of the storage building is provided with a removable hatch having shielding performance. A gate-type crane for transporting radioactive material storage containers is provided on the hatch, and the structure is covered with a lightweight roof that does not have shielding ability.

【0006】また、特開2000−180586号公報
および特開平9−113679号公報に示された放射性
物質収納容器貯蔵施設では、貯蔵建屋天井の上側にブリ
ッジ型の搬送クレーンを設置し、貯蔵建屋天井が開閉式
となって貯蔵建屋内に放射性物質収納容器を搬入または
搬出する構造となっている。放射性物質収納容器からの
放射線は、十分な厚さを持つ貯蔵室の壁あるいは天井に
て遮へいを行う。
Further, in the radioactive substance storage container storage facility disclosed in Japanese Patent Laid-Open No. 2000-180586 and Japanese Patent Laid-Open No. 9-113679, a bridge-type transfer crane is installed above the ceiling of the storage building, and the ceiling of the storage building is installed. Is an openable and closable structure for loading and unloading radioactive material storage containers into the storage building. Radiation from the radioactive material storage container is shielded by the wall or ceiling of the storage room with sufficient thickness.

【0007】[0007]

【発明が解決しようとする課題】上記従来の放射性物質
収納容器貯蔵施設では、いずれも放射性物質収納容器を
貯蔵する貯蔵室の天井に開閉式の遮へい部材が設けられ
ている。この遮へい部材の材質については明記されてい
ないが、通常はコンクリートを用いるため、厚さは0.
5m ないし2mの厚さが必要となる。このため、貯蔵
建屋を建設するのに必要な部材の量は膨大なものとな
る。放射性物質収納容器についても、容器周囲で作業員
が作業可能なレベルまで線量率を低減する必要があるた
め、容器の製作に必要な金属、および中性子遮へい体の
量は膨大なものとなる。これらの部材の量が莫大なもの
となると、そのまま貯蔵建屋の建設費、および放射性物
質収納容器の製作費の増大を招くことになる。
In each of the conventional radioactive substance storage container storage facilities described above, an opening / closing shield member is provided on the ceiling of the storage room for storing the radioactive substance storage container. The material of this shield is not specified, but since concrete is usually used, the thickness is 0.
A thickness of 5 m to 2 m is required. Therefore, the amount of materials required to construct the storage building becomes enormous. As for the radioactive material storage container, the dose rate needs to be reduced to a level at which the worker can work around the container, so the amount of metal and neutron shield required for manufacturing the container becomes enormous. If the amount of these members becomes enormous, the construction cost of the storage building and the production cost of the radioactive substance storage container will be increased as they are.

【0008】従来では、放射性物質収納容器に必要な遮
へい厚さと、放射性物質収納容器の貯蔵建屋に必要な遮
へい厚さを各々別に設計していたため、必ずしもそれぞ
れの部材の量や費用が少ないものとはなっていなかっ
た。
Conventionally, since the shielding thickness required for the radioactive substance storage container and the shielding thickness required for the storage building of the radioactive substance storage container have been designed separately, the amount and cost of each member are not necessarily small. It wasn't

【0009】本発明の目的は、放射性物質収納容器表面
での中性子線量とガンマ線量の比、または容器表面での
中性子線量およびガンマ線量の値、または貯蔵する放射
性物質の中性子線量およびガンマ線量を用いて、放射性
物質収納容器貯蔵建屋の壁や貯蔵建屋の外部に対して前
記容器表面からの放射線を遮へいする遮へい部材に必要
な厚さを計算し製作することで、放射性物質収納容器貯
蔵施設の建設コストの低減を図ることにある。
The object of the present invention is to use the ratio of the neutron dose and the gamma dose on the surface of the radioactive substance storage container, the value of the neutron dose and the gamma dose on the surface of the container, or the neutron dose and the gamma dose of the radioactive substance to be stored. Then, the thickness of the shielding member that shields the radiation from the container surface to the wall of the radioactive substance storage container storage building and the outside of the storage building is calculated and manufactured to construct the radioactive substance storage container storage facility. It is to reduce the cost.

【0010】本発明の他の目的は、放射性物質収納容器
貯蔵建屋の外部に対して放射性物質収納容器表面からの
放射線を遮へいする遮へい部材の厚さや元素組成のデー
タを元に、放射性物質収納容器に必要な金属や中性子遮
へい体の厚さを計算し製作することで、放射性物質収納
容器の製作コストの低減を図ることにある。
Another object of the present invention is to store a radioactive substance storage container based on data on the thickness and elemental composition of a shielding member that shields the radiation from the surface of the radioactive substance storage container to the outside of the radioactive substance storage container storage building. It is intended to reduce the manufacturing cost of the radioactive material storage container by calculating and manufacturing the thickness of the metal and neutron shield necessary for manufacturing.

【0011】本発明の他の目的は、放射性物質収納容器
表面での中性子線量とガンマ線量の比、または容器表面
での中性子線量およびガンマ線量の値、または貯蔵する
放射性物質の中性子線量およびガンマ線量を用いて、放
射性物質収納容器に必要な金属や中性子遮へい体の厚さ
と、貯蔵建屋の外部に対して前記容器表面からの放射線
を遮へいする遮へい部材に必要な厚さを計算し製作する
ことで、放射性物質収納容器の製作コストと放射性物質
収納容器貯蔵施設の建設コストの両方の低減を図ること
にある。
Another object of the present invention is the ratio of the neutron dose to the gamma dose on the surface of the radioactive substance container, the value of the neutron dose and the gamma dose on the surface of the container, or the neutron dose and the gamma dose of the radioactive substance to be stored. By using, to calculate the thickness of the metal and neutron shield required for the radioactive material storage container, and the thickness required for the shielding member that shields the radiation from the container surface to the outside of the storage building , To reduce both the manufacturing cost of radioactive material storage containers and the construction cost of radioactive material storage container storage facilities.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成する請
求項1の発明の特徴は、放射性物質収納容器表面での放
射線量と、中性子線量とガンマ線量の比の値、または前
記容器表面での中性子線量およびガンマ線量の値、また
は貯蔵する放射性物質の中性子線量およびガンマ線量を
用いて、放射性物質収納容器貯蔵建屋の敷地境界での線
量率が制限値以下で、かつ貯蔵建屋の外部に対して放射
性物質収納容器表面からの放射線を遮へいする遮へい部
材の厚さが、あらかじめ設定した制限値以下となるよう
に、貯蔵建屋の外部に対して容器表面からの放射線を遮
へいする遮へい部材の厚さを計算し、その計算結果を用
いて放射性物質収納容器貯蔵建屋を建設することにあ
る。放射性物質収納容器表面での中性子線量とガンマ線
量を各々考慮して、貯蔵建屋の外部に対して放射性物質
収納容器表面からの放射線を遮へいする遮へい部材の厚
さを決めるため、従来よりも遮へい部材の厚さを最適化
することが可能となり、貯蔵施設の建設コストを低減す
ることができる。
The features of the invention of claim 1 for attaining the above object are that the radiation dose on the surface of the radioactive substance storage container and the value of the ratio of the neutron dose to the gamma dose, or the container surface. The neutron dose and gamma dose of the radioactive substance, or the neutron dose and gamma dose of the radioactive substance to be stored, and the dose rate at the site boundary of the radioactive substance storage container storage building is below the limit value and to the outside of the storage building. The thickness of the shielding member that shields the radiation from the container surface to the outside of the storage building so that the thickness of the shielding member that shields the radiation from the surface of the radioactive substance storage container is below a preset limit value. Is calculated and the calculated result is used to construct a radioactive substance storage container storage building. Since the neutron dose and gamma dose on the surface of the radioactive material storage container are taken into consideration, the thickness of the shielding member that shields the radiation from the surface of the radioactive material storage container to the outside of the storage building is determined. The thickness of the storage facility can be optimized, and the construction cost of the storage facility can be reduced.

【0013】上記の他の目的を達成する請求項2の発明
の特徴は、放射性物質収納容器を貯蔵する建屋の外部に
対して容器表面からの放射線を遮へいする遮へい部材の
厚さおよび元素組成の値を用いて、貯蔵建屋の敷地境界
での線量率が制限値以下で、かつ前記容器の総重量があ
らかじめ設定された制限値以下となるよう、前記容器の
金属と中性子遮へい体の各厚さを計算し、その計算結果
を用いて放射性物質収納容器を製作することにある。そ
れにより、容器の重量低減を図ることができ、ひいて
は、容器の製作コストを低減することができる。
The feature of the invention of claim 2 that achieves the above-mentioned other object is that the thickness and the elemental composition of the shielding member for shielding the radiation from the container surface to the outside of the building that stores the radioactive substance storage container are Using the values, the dose rate at the site boundary of the storage building is below the limit value, and the total weight of the container is below the preset limit value, each thickness of the metal and neutron shield of the container Is calculated and the radioactive substance storage container is manufactured using the calculated result. As a result, the weight of the container can be reduced, which in turn can reduce the manufacturing cost of the container.

【0014】上記の他の目的を達成する請求項3の発明
の特徴は、放射性物質収納容器を貯蔵する建屋の外部に
対して容器表面からの放射線を遮へいする遮へい部材の
厚さおよび元素組成の値を用いて、貯蔵建屋の敷地境界
での線量率が制限値以下で、かつ前記容器の中性子遮へ
い体の量があらかじめ設定された制限値以下となるよ
う、前記容器の金属と中性子遮へい体の各厚さを計算
し、その計算結果を用いて放射性物質収納容器を製作す
ることにある。それにより、比較的材料費の高い中性子
遮へい体の量の低減を図ることができる。また、伝熱性
能の悪い中性子遮へい体の厚さが低減されるため、容器
内の放射性物質の温度低減を図ることができる。
In order to achieve the above-mentioned other object, the feature of the invention of claim 3 is that the thickness and the elemental composition of the shielding member for shielding the radiation from the container surface to the outside of the building storing the radioactive substance storage container are controlled. Using the value, the dose rate at the site boundary of the storage building is below the limit value, and the amount of the neutron shield in the container is below the preset limit value, the metal of the container and the neutron shield Each thickness is calculated, and the radioactive substance storage container is manufactured using the calculation result. As a result, it is possible to reduce the amount of neutron shields, which have relatively high material costs. Moreover, since the thickness of the neutron shield having poor heat transfer performance is reduced, the temperature of the radioactive substance in the container can be reduced.

【0015】上記の他の目的を達成する請求項4の発明
の特徴は、放射性物質収納容器を貯蔵する建屋の外部に
対して容器表面からの放射線を遮へいする遮へい部材の
厚さおよび元素組成の値を用いて、貯蔵建屋の敷地境界
での線量率が制限値以下で、かつ前記容器表面の線量率
があらかじめ設定された制限値以下となるよう、前記容
器の金属と中性子遮へい体の各厚さを計算し、その計算
結果を用いて放射性物質収納容器を製作することにあ
る。それにより、貯蔵建屋内の放射線量が低減し、作業
員の被爆線量の低減を図ることができる。
In order to achieve the above-mentioned other object, the feature of the invention of claim 4 is that the thickness and the elemental composition of the shielding member for shielding the radiation from the container surface to the outside of the building storing the radioactive substance storage container Using the value, the dose rate at the site boundary of the storage building is below the limit value, and the dose rate on the container surface is below the preset limit value, so that the thickness of each metal and neutron shield of the container The purpose is to manufacture a container for radioactive material using the calculated result. As a result, the radiation dose inside the storage building is reduced, and the radiation dose to workers can be reduced.

【0016】上記の他の目的を達成する請求項5の発明
の特徴は、放射性物質収納容器の表面での放射線量と中
性子線量とガンマ線量の比、または放射性物質収納容器
表面での中性子線量およびガンマ線量の値、または貯蔵
する放射性物質の中性子線量およびガンマ線量を用い
て、貯蔵建屋の敷地境界での線量率が制限値以下で、か
つ放射性物質収納容器の厚さと、貯蔵建屋の外部に対し
て容器表面からの放射線を遮へいする遮へい部材の厚さ
の和が、あらかじめ与えられた制限値以下となるよう
に、容器の金属と中性子遮へい体の各厚さ、および貯蔵
建屋の外部に対して容器表面からの放射線を遮へいする
遮へい部材の厚さを計算し、その計算結果を用いて、放
射性物質収納容器と放射性物質収納容器貯蔵施設を製作
することにある。それにより、放射性物質収納容器の製
作および貯蔵施設の建設に必要な材料の量を低減するこ
とができる。
A feature of the invention of claim 5 for achieving the above-mentioned other object is that the ratio of the radiation dose to the neutron dose and the gamma dose on the surface of the radioactive substance storage container or the neutron dose on the surface of the radioactive substance storage container and Using the gamma dose value or the neutron dose and gamma dose of radioactive material to be stored, the dose rate at the site boundary of the storage building is below the limit value, and the thickness of the radioactive material storage container and the outside of the storage building are The metal thickness of the container and the neutron shield, and the outside of the storage building so that the sum of the thicknesses of the shielding members that shield the radiation from the container surface is less than or equal to the preset limit value. The thickness of the shielding member that shields the radiation from the container surface is calculated, and the calculated result is used to fabricate a radioactive substance storage container and a radioactive substance storage container storage facility. Thereby, the amount of material required for manufacturing the radioactive substance storage container and constructing the storage facility can be reduced.

【0017】上記の他の目的を達成する請求項6の発明
の特徴は、放射性物質収納容器の表面での放射線量と中
性子線量とガンマ線量の比、または放射性物質収納容器
表面での中性子線量およびガンマ線量の値、または貯蔵
する放射性物質の中性子線量およびガンマ線量を用い
て、貯蔵建屋の敷地境界での線量率が制限値以下で、か
つ容器の金属および中性子遮へい体の材料費と、貯蔵建
屋の外部に対して容器表面からの放射線を遮へいする遮
へい部材の材料費の和が、あらかじめ与えられた制限値
以下となるように、容器の金属と中性子遮へい体の各厚
さ、および貯蔵建屋の外部に対して容器表面からの放射
線を遮へいする遮へい部材の厚さを計算し、その計算結
果を用いて、放射性物質収納容器と放射性物質収納容器
貯蔵施設を製作することにある。それにより、放射性物
質収納容器の製作コストと貯蔵施設の建設コストの低減
を図ることができる。
The feature of the invention of claim 6 for achieving the above-mentioned other object is that the ratio of the radiation dose to the neutron dose and the gamma dose on the surface of the radioactive substance storage container or the neutron dose on the surface of the radioactive substance storage container and Using the gamma dose value or the neutron dose and gamma dose of radioactive material to be stored, the dose rate at the site boundary of the storage building is below the limit value, and the material cost of the container metal and neutron shield and the storage building The thickness of the metal and neutron shield of the container and the thickness of the storage building so that the sum of the material costs of the shielding members that shield the radiation from the surface of the container to the outside of the Calculate the thickness of the shielding member that shields the radiation from the container surface to the outside, and use the calculation result to fabricate a radioactive substance storage container and a radioactive substance storage container storage facility. In the door. Thereby, the manufacturing cost of the radioactive substance storage container and the construction cost of the storage facility can be reduced.

【0018】[0018]

【発明の実施の形態】(実施例1)本発明の好適な一実
施例を、図1〜図5を用いて説明する。本実施例は、請
求項1に係わるもので、貯蔵対象の放射性物質収納容器
に合わせて、放射性物質収納容器貯蔵施設に設けられて
いる遮へい体厚さを低減する方法を示すものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) A preferred embodiment of the present invention will be described with reference to FIGS. This embodiment relates to claim 1, and shows a method of reducing the thickness of the shield provided in the radioactive substance storage container storage facility according to the radioactive substance storage container to be stored.

【0019】本実施例に示す貯蔵施設は、図2に示すと
おり、内部に放射性物質2を収納し、主に放射性物質か
らのガンマ線を遮へいする役割を果たす金属部分3と、
その外側に位置し主に放射性物質2からの中性子線を遮
へいする役割を果たす中性子遮へい体4からなる、放射
性物質収納容器1を貯蔵する施設である。このような放
射性物質収納容器1に収納する放射性物質2として考え
られるものには、原子力発電所から発生した使用済核燃
料集合体、あるいは高レベル放射性廃液ガラス固化体、
あるいは放射能レベルの高い廃棄物を密封した容器等が
挙げられる。
As shown in FIG. 2, the storage facility shown in this embodiment contains a radioactive substance 2 inside, and a metal part 3 which mainly serves to shield gamma rays from the radioactive substance,
It is a facility for storing a radioactive substance storage container 1 which is located outside thereof and mainly comprises a neutron shield 4 which plays a role of shielding neutron rays from the radioactive substance 2. Possible radioactive substances 2 to be stored in such a radioactive substance storage container 1 include a spent nuclear fuel assembly generated from a nuclear power plant, or a high-level radioactive waste liquid vitrified body,
Alternatively, a container in which waste having a high radioactivity level is sealed may be used.

【0020】放射性物質2から発生する中性子線やガン
マ線は、放射性物質収納容器1により、作業員が放射線
の防護服なしで容器表面に接近できるレベルにまで遮へ
いされている。特に本容器が輸送容器の役割も兼ねる場
合、容器表面の線量率が2mSv/時、容器表面より1
m離れた場所での線量率が100μSv/時という制限
値が設けられている。しかし、貯蔵施設の敷地境界6に
おいては、最大50μSv/年という線量率の制限値が
存在するが、この制限値を満たすためには、放射性物質
収納容器1と貯蔵施設の敷地境界6の間に、さらに放射
線の遮へい体を追加する必要がある。そこで、放射性物
質収納容器1の貯蔵建屋の壁5を厚くすることで、敷地
境界6での放射線量を制限値以下に低減させる。この貯
蔵建屋の壁5には、主にコンクリートが用いられる。貯
蔵建屋の壁5の厚さにより、貯蔵建屋建設に必要なコン
クリート量が大きく影響するため、貯蔵建屋の壁5厚さ
をできるだけ薄くすることで、貯蔵施設の建設費を抑え
ることが可能となる。
Neutron rays and gamma rays generated from the radioactive substance 2 are shielded by the radioactive substance storage container 1 to a level at which an operator can access the container surface without radiation protective clothing. Especially when this container also serves as a transport container, the dose rate on the surface of the container is 2 mSv / hour, and the dose rate is 1 from the surface of the container.
There is a limit value of 100 μSv / hour for the dose rate at a distance of m. However, at the site boundary 6 of the storage facility, there is a limit value of the dose rate of 50 μSv / year at the maximum. To meet this limit value, between the radioactive substance storage container 1 and the site boundary 6 of the storage facility. , It is necessary to add an additional radiation shield. Therefore, by thickening the wall 5 of the storage building of the radioactive substance storage container 1, the radiation dose at the site boundary 6 is reduced below the limit value. Concrete is mainly used for the wall 5 of the storage building. Since the thickness of the wall 5 of the storage building greatly affects the amount of concrete required for the construction of the storage building, it is possible to reduce the construction cost of the storage facility by making the wall 5 of the storage building as thin as possible. .

【0021】前述のように、放射性物質収納容器1から
は、ガンマ線と中性子線の2種類の放射線が出ている。
貯蔵施設の敷地境界6に到達する放射線には、放射性物
質収納容器1から直接到達するガンマ線7と中性子線8
の他に、上空の気体分子やちりによって散乱されて到達
する、スカイシャインによるガンマ線9と中性子線10
があり、それぞれの放射線による線量率の和が、貯蔵施
設の敷地境界6での線量率となる。
As described above, the radioactive substance storage container 1 emits two types of radiation, gamma rays and neutron rays.
Radiation that reaches the site boundary 6 of the storage facility includes gamma rays 7 and neutron rays 8 that directly reach from the radioactive substance storage container 1.
In addition, gamma rays 9 and neutron rays 10 by skyshine, which are scattered and reached by gas molecules and dust in the sky
Therefore, the sum of the dose rates of each radiation is the dose rate at the site boundary 6 of the storage facility.

【0022】貯蔵建屋の壁5の遮へい効果は、放射線の
種類によって大きく異なる。このため、例えば、放射性
物質収納容器1表面より1m離れた位置での線量率が1
00μSv/時の場合でも、その線量率が中性子線によ
るものか、ガンマ線によるものかによって、貯蔵施設の
敷地境界6での線量率が制限値以下となるために必要な
貯蔵建屋の壁5厚さが異なってくる。図4には、放射性
物質収納容器1表面での中性子線とガンマ線の線量率の
比に対する、貯蔵施設の敷地境界6での線量率が制限値
以下となるために必要な貯蔵建屋の壁5厚さの関係を計
算した結果の例を示す。このように、容器表面での線量
率が同じでも、中性子線とガンマ線の比によって、貯蔵
建屋の壁5に必要な厚さが大きく変わることがわかる。
The shielding effect of the wall 5 of the storage building greatly differs depending on the type of radiation. Therefore, for example, the dose rate at a position 1 m away from the surface of the radioactive substance storage container 1 is 1
Even if it is 00 μSv / hour, the wall thickness of the storage building 5 is necessary to keep the dose rate at the site boundary 6 of the storage facility below the limit value, depending on whether the dose rate is due to neutron rays or gamma rays. Will be different. Fig. 4 shows the wall 5 thickness of the storage building necessary for the dose rate at the site boundary 6 of the storage facility to be less than the limit value with respect to the ratio of the dose rate of neutron rays to gamma rays on the surface of the radioactive substance storage container 1. An example of the result of calculating the relationship between the heights is shown. Thus, it can be seen that even if the dose rate on the surface of the container is the same, the thickness required for the wall 5 of the storage building greatly changes depending on the ratio of neutron rays to gamma rays.

【0023】そこで、放射性物質収納容器1表面での中
性子線とガンマ線の線量率の比も考慮に入れて、必要最
小限の貯蔵建屋の壁5厚さを求めることで、貯蔵建屋の
建設コストを大きく低減することができる。図1に、貯
蔵建屋の壁5厚さを求める方法の例を示している。ま
ず、放射性物質収納容器1表面での放射線量と、中性子
線とガンマ線の線量率の比、または放射性物質収納容器
1表面での中性子線とガンマ線のそれぞれの放射線量を
元に、貯蔵建屋の壁5厚さを仮定して、貯蔵施設の敷地
境界6に直接到達するガンマ線7と中性子線8,スカイ
シャインによるガンマ線9と中性子線10から、貯蔵施
設の敷地境界6での線量率を計算する。この計算値が制
限値よりも大きい場合には、計算前に仮定した貯蔵建屋
の壁5厚さを増加して、また、計算値が制限値よりも大
幅に小さい場合には、計算前に仮定した貯蔵建屋の壁5
厚さを減少して、再び貯蔵施設の敷地境界6での線量率
を計算する。そうして、計算値と制限値が等しくなった
ら、その時に仮定した貯蔵建屋の壁5厚さが、必要最小
限の貯蔵建屋壁5厚さとなる。実際には、計算誤差を踏
まえて、制限値よりも若干小さい値になるように貯蔵建
屋壁5厚さを決めることになる。
Therefore, the construction cost of the storage building can be reduced by taking into consideration the ratio of the dose rates of neutron rays and gamma rays on the surface of the radioactive substance storage container 1 and determining the minimum thickness of the wall 5 of the storage building. It can be greatly reduced. FIG. 1 shows an example of a method for obtaining the thickness of the wall 5 of the storage building. First, based on the ratio of the radiation dose on the surface of the radioactive material storage container 1 to the dose rate of neutron rays and gamma rays, or the radiation dose of each of the neutron rays and gamma rays on the surface of the radioactive material storage container 1, the wall of the storage building Assuming a thickness of 5, the dose rate at the site boundary 6 of the storage facility is calculated from the gamma ray 7 and the neutron beam 8 that directly reach the site boundary 6 of the storage facility, and the gamma ray 9 and the neutron beam 10 due to Skyshine. If this calculated value is larger than the limit value, increase the wall 5 thickness of the storage building assumed before calculation, and if the calculated value is significantly smaller than the limit value, assume before calculation. Wall 5 of the storage building
The thickness is reduced and the dose rate at site boundary 6 of the storage facility is calculated again. Then, when the calculated value and the limit value become equal, the wall 5 thickness of the storage building assumed at that time becomes the minimum necessary storage building wall 5 thickness. Actually, the thickness of the storage building wall 5 is determined so as to be a value slightly smaller than the limit value in consideration of the calculation error.

【0024】以上の例は、貯蔵建屋の壁5が放射線遮へ
いの役割を果たしている場合であるが、図3に示すよう
に、放射性物質収納容器1を貯蔵する場所と、放射性物
質収納容器1を移動させるためのクレーン11エリアと
の間に、開閉可能なプラグ12を設け、そのプラグ12
が放射線遮へいの役割を果たし、その上にある貯蔵建屋
の上屋13には放射線遮へい能力を持たさないような施
設の場合には、プラグ12の厚さが敷地境界での線量を
左右するため、図1と同様な方法で必要最小限のプラグ
12厚さを求めることとなる。図3の場合、貯蔵施設の
敷地境界6に直接到達するガンマ線7と中性子線8の計
算には、貯蔵建屋の壁5厚さを用いて計算し、スカイシ
ャインによるガンマ線9と中性子線10には、プラグ1
2厚さを用いて計算し、各々の必要最小限厚さを求める
ことになる。
The above example is the case where the wall 5 of the storage building plays a role of shielding radiation, but as shown in FIG. 3, the place for storing the radioactive substance storage container 1 and the radioactive substance storage container 1 are A plug 12 that can be opened and closed is provided between the crane 11 area for moving and the plug 12
Plays a role of radiation shielding, and in the case of a facility in which the warehouse 13 above it has no radiation shielding ability, the thickness of the plug 12 influences the dose at the site boundary. The required minimum thickness of the plug 12 is obtained by the same method as in FIG. In the case of FIG. 3, gamma rays 7 and neutron rays 8 that directly reach the site boundary 6 of the storage facility are calculated using the thickness of the wall 5 of the storage building, and gamma rays 9 and neutron rays 10 by skyshine are calculated. , Plug 1
Two thicknesses are used for the calculation, and the minimum necessary thickness for each is calculated.

【0025】また、放射性物質収納容器表面での線量率
が不明な場合は、図5に示す通り、放射性物質のガンマ
線と中性子線の放射線量データを用いて、容器と建屋を
一括して計算することも可能である。
When the dose rate on the surface of the radioactive substance storage container is unknown, the container and the building are collectively calculated using the radiation dose data of the gamma ray and neutron ray of the radioactive substance as shown in FIG. It is also possible.

【0026】(実施例2)本発明の他の実施例(実施例
2)を、図2および図6〜図10を用いて説明する。本
実施例は、請求項2ないし請求項4に係わるもので、貯
蔵施設は図2の通りであるが、本実施例では、放射性物
質収納容器の貯蔵建屋の壁厚さがあらかじめ決められて
いる場合に、放射性物質収納容器の厚さを最適にする方
法を示すものである。
(Embodiment 2) Another embodiment (Embodiment 2) of the present invention will be described with reference to FIGS. 2 and 6 to 10. This embodiment relates to claims 2 to 4, and the storage facility is as shown in Fig. 2. In this embodiment, the wall thickness of the storage building of the radioactive substance storage container is predetermined. In this case, a method for optimizing the thickness of the radioactive substance storage container is shown.

【0027】図6に、放射性物質収納容器1の総重量が
小さくなるように、容器の金属部分3および中性子遮へ
い体部分4のそれぞれの厚さの最適値を求める方法の例
を示している。最初に、放射性物質収納容器1表面およ
び表面より1m離れた位置での線量率の制限値を満たす
ように、放射性物質収納容器1の金属部分3と中性子遮
へい体部分4のそれぞれの厚みを求める。金属部分3と
中性子遮へい体部分4の厚さを仮定して、容器1表面と
表面より1m離れた位置での線量率を計算し、そのどち
らかが制限値に等しく、他方が制限値以下になるような
金属部分3および中性子遮へい体部分4の厚さを求め
る。
FIG. 6 shows an example of a method for obtaining the optimum values of the respective thicknesses of the metal part 3 and the neutron shield part 4 of the container so that the total weight of the radioactive substance storage container 1 becomes small. First, the respective thicknesses of the metal part 3 and the neutron shield part 4 of the radioactive substance storage container 1 are determined so as to satisfy the dose rate limit values at the surface of the radioactive substance storage container 1 and at a position 1 m away from the surface. Assuming the thicknesses of the metal part 3 and the neutron shield part 4, calculate the dose rate at the surface of the container 1 and at a position 1 m away from the surface, and one of them is equal to the limit value and the other is below the limit value. The thicknesses of the metal part 3 and the neutron shield part 4 are calculated as follows.

【0028】次に、貯蔵建屋の壁5厚さを用いて、実施
例1と同様に、貯蔵施設の敷地境界6での線量率を計算
する。ここで、計算値が制限値を越えている場合、貯蔵
建屋の壁5厚さはあらかじめ決められて変更できないた
め、放射性物質収納容器1の金属部分3および中性子遮
へい体部分4の厚さを再び変更して、容器1表面と表面
より1m離れた位置での線量率の制限値を満たす、金属
部分3および中性子遮へい体部分4の厚さの別の組み合
わせを求め、再び、貯蔵施設の敷地境界6での線量率を
計算する。これを次々繰り返して計算し、容器1表面と
表面より1m離れた位置での線量率と敷地境界6での線
量率の制限値を全て満たす、金属部分3および中性子遮
へい体部分4の厚さの組み合わせを求める。
Next, using the thickness of the wall 5 of the storage building, the dose rate at the site boundary 6 of the storage facility is calculated as in the first embodiment. Here, when the calculated value exceeds the limit value, the thickness of the wall 5 of the storage building is predetermined and cannot be changed. Therefore, the thicknesses of the metal part 3 and the neutron shield part 4 of the radioactive substance storage container 1 are changed again. Change to obtain another combination of the thickness of the metal part 3 and the neutron shield part 4 that satisfies the dose rate limit value at the surface of the container 1 and at a position 1 m away from the surface, and again, the site boundary of the storage facility Calculate the dose rate at 6. By repeating this calculation one after another, the thickness of the metal part 3 and the neutron shield part 4 that meet all the dose rate limits at the container 1 surface and at a position 1 m away from the surface and at the site boundary 6 Ask for a combination.

【0029】最後に、その組み合わせの中から、放射性
物質収納容器1の総重量が最も小さい組み合わせを見い
だせば、それが、放射性物質収納容器1の総重量に対す
る、放射性物質収納容器1の金属部分3と中性子遮へい
体部分4のそれぞれの厚みの最適値となる。
Finally, if the combination with the smallest total weight of the radioactive substance storage container 1 is found out of the combinations, it is the metal part 3 of the radioactive substance storage container 1 with respect to the total weight of the radioactive substance storage container 1. And the neutron shield part 4 have the optimum thickness values.

【0030】また、上記の方法を用いる前に、放射性物
質収納容器1表面および表面より1m離れた位置での線
量率の制限値を満たす、放射性物質収納容器1の金属部
分3と中性子遮へい体部分4のそれぞれの厚みの関係を
求めておくと便利である。図7は、放射性物質収納容器
1表面や表面より1m離れた位置での線量率の制限値を
満たすために必要な容器厚さを、容器の金属と中性子遮
へい体の厚さの比に対して示した概略図である。この図
をあらかじめ作成しておけば、両方の制限値を満たす容
器の最小厚さとそのときの金属と中性子遮へい体の厚さ
の比は、この図より読みとることができる。このよう
に、容器厚さを小さくするためには、金属と中性子遮へ
い体の厚さの比を最適にする必要がある。ただし、金属
と中性子遮へい体の厚さの比を変えた場合、容器1表面
や表面より1m離れた位置での線量率は等しくても、ガ
ンマ線と中性子線の比は異なるため、金属と中性子遮へ
い体の厚さの比によって、貯蔵施設の敷地境界6での線
量が異なることになる。
Before using the above method, the metal portion 3 and the neutron shield portion of the radioactive substance storage container 1 satisfying the limits of the dose rate at the surface of the radioactive substance storage container 1 and at a position 1 m away from the surface. It is convenient to find the relationship between the thicknesses of 4 above. FIG. 7 shows the container thickness required to meet the dose rate limit value at the surface of the radioactive substance storage container 1 and at a position 1 m away from the surface, with respect to the ratio of the metal of the container to the thickness of the neutron shield. It is the schematic shown. If this figure is created in advance, the minimum thickness of the container that satisfies both limit values and the ratio of the thickness of the metal and the neutron shield at that time can be read from this figure. Thus, in order to reduce the thickness of the container, it is necessary to optimize the ratio of the thickness of the metal to the thickness of the neutron shield. However, when the thickness ratio of metal and neutron shield is changed, the ratio of gamma ray and neutron ray is different even if the dose rate at the surface of the container 1 and at a position 1 m away from the surface is the same, so the metal and neutron shield are shielded. Depending on the body thickness ratio, the dose at the site boundary 6 of the storage facility will be different.

【0031】図7のような、容器1表面や表面より1m
離れた位置での線量率の制限値を満たす、放射性物質収
納容器1の金属部分3と中性子遮へい体部分4の厚みの
関係があらかじめ得られている場合、図6に示す方法は
図8のように書き換えることができる。容器1の金属部
分3と中性子遮へい体4の厚さの比を変えて、貯蔵施設
の敷地境界での線量率を計算し、その線量率が制限値以
下で、放射性物質収納容器1の総重量が最も小さくなる
組み合わせを求めれば、そのときの放射性物質収納容器
1の金属部分3と中性子遮へい体部分4のそれぞれの厚
みが、最適な厚みとなる。
As shown in FIG. 7, the surface of the container 1 or 1 m from the surface
When the relationship between the thickness of the metal portion 3 of the radioactive substance storage container 1 and the thickness of the neutron shield portion 4 that satisfies the limit value of the dose rate at the distant position is obtained in advance, the method shown in FIG. Can be rewritten as The dose ratio at the site boundary of the storage facility is calculated by changing the thickness ratio between the metal part 3 of the container 1 and the neutron shield 4, and the dose rate is below the limit value, and the total weight of the radioactive substance storage container 1 is calculated. If the combination that minimizes is obtained, the respective thicknesses of the metal part 3 and the neutron shield part 4 of the radioactive substance storage container 1 at that time become optimum thicknesses.

【0032】図9には、中性子遮へい体の重量が小さく
なるような、放射性物質収納容器1の金属部分3と中性
子遮へい体部分4の厚みを求める方法を示している。こ
れは図8に示す方法とほぼ同じであり、金属3と中性子
遮へい体4の厚さの比を選択する部分での判断材料が、
総重量の代わりに中性子遮へい体の重量や表面での線量
率となる事だけが異なる。
FIG. 9 shows a method for determining the thicknesses of the metal portion 3 and the neutron shield portion 4 of the radioactive substance storage container 1 so that the weight of the neutron shield is reduced. This is almost the same as the method shown in FIG. 8, and the judgment material in the part for selecting the thickness ratio of the metal 3 and the neutron shield 4 is
Only the weight of the neutron shield and the dose rate at the surface instead of the total weight are different.

【0033】図10には、放射性物質収納容器1表面で
の線量率が小さくなるような、放射性物質収納容器1の
金属部分3と中性子遮へい体部分4の厚みを求める方法
を示している。この場合、図8および図9とは異なり、
貯蔵施設の敷地境界線量を満たす容器厚さを先に計算
し、その中で容器1表面の線量率が最小となるものを求
めることになる。
FIG. 10 shows a method for obtaining the thicknesses of the metal portion 3 and the neutron shield portion 4 of the radioactive substance storage container 1 so that the dose rate on the surface of the radioactive substance storage container 1 becomes small. In this case, unlike FIGS. 8 and 9,
The container thickness that satisfies the site boundary dose of the storage facility is calculated first, and the one with the minimum dose rate on the surface of the container 1 is calculated.

【0034】(実施例3)本発明の他の実施例(実施例
3)を、図2および図11,図12を用いて説明する。
本実施例は、請求項5ないし請求項6に係わるもので、
貯蔵施設は図2の通りであるが、本実施例では、放射性
物質収納容器の厚さと、貯蔵建屋の壁厚さの両方を最適
にする方法を示すものである。
(Embodiment 3) Another embodiment (Embodiment 3) of the present invention will be described with reference to FIGS. 2, 11, and 12.
This embodiment relates to claims 5 to 6,
The storage facility is as shown in FIG. 2, but this embodiment shows a method for optimizing both the thickness of the radioactive substance storage container and the wall thickness of the storage building.

【0035】図11に、放射性物質収納容器の厚さと貯
蔵建屋の壁厚さの和が小さくなるような、放射性物質収
納容器の厚さおよび貯蔵建屋の壁厚さを求める方法を示
している。最初に、容器1表面および表面より1m離れ
た位置での線量率の制限値を満たしつつ、貯蔵容器1厚
さが小さくなるような、貯蔵容器1の金属部分3および
中性子遮へい体4の厚さを求めておき、次の段階で、敷
地境界6での線量率の制限値を満たしつつ、貯蔵容器の
壁5厚さが小さくなるような、貯蔵容器の壁5厚さを求
め、最後に放射性物質収納容器の厚さと貯蔵建屋の壁厚
さの和を求める。これを繰り返して、放射性物質収納容
器の厚さと貯蔵建屋の壁厚さの和が小さくなる条件を見
つければ、そのときの放射性物質収納容器1の金属部分
3と中性子遮へい体部分4の各厚さ、および貯蔵建屋の
壁厚さの最適値となる。これを、図12に示すように、
放射性物質収納容器の厚さと貯蔵建屋の壁厚さの和では
なく、材料費の和が小さくなる条件にすれば、放射性物
質収納容器と、その貯蔵建屋を合わせた総建設費の低減
に有効な容器厚さと貯蔵建屋の壁厚さを見いだすことが
できる。
FIG. 11 shows a method of obtaining the thickness of the radioactive substance storage container and the wall thickness of the storage building such that the sum of the thickness of the radioactive substance storage container and the wall thickness of the storage building becomes smaller. First, the thickness of the metal portion 3 of the storage container 1 and the neutron shield 4 such that the thickness of the storage container 1 is reduced while satisfying the dose rate limit value at the surface of the container 1 and at a position 1 m away from the surface. In the next step, the wall 5 thickness of the storage container is calculated so that the wall 5 thickness of the storage container becomes smaller while satisfying the dose rate limit value at the site boundary 6, and finally the radioactive Calculate the sum of the thickness of the substance storage container and the wall thickness of the storage building. Repeating this, if a condition that the sum of the thickness of the radioactive material storage container and the wall thickness of the storage building becomes small is found, the respective thicknesses of the metal part 3 and the neutron shield part 4 of the radioactive material storage container 1 at that time are found. , And the optimum value for the wall thickness of the storage building. As shown in FIG. 12,
It is effective to reduce the total construction cost of the radioactive material storage container and its storage building if the sum of the material costs is reduced, not the sum of the thickness of the radioactive material storage container and the wall thickness of the storage building. You can find the thickness of the container and the wall of the storage building.

【0036】[0036]

【発明の効果】請求項1の発明によれば、放射性物質収
納容器表面での放射線量と、中性子線量とガンマ線量の
比の値、または前記容器表面での中性子線量およびガン
マ線量の値、または貯蔵する放射性物質の中性子線量お
よびガンマ線量を用いて、放射性物質収納容器貯蔵建屋
の敷地境界での線量率が制限値以下で、かつ貯蔵建屋の
外部に対して放射性物質収納容器表面からの放射線を遮
へいする遮へい部材の厚さが、あらかじめ設定した制限
値以下となるように、貯蔵建屋の外部に対して容器表面
からの放射線を遮へいする遮へい部材の厚さを計算し、
その計算結果を用いて放射性物質収納容器貯蔵建屋を建
設することで、放射性物質収納容器表面での中性子線量
とガンマ線量の比を考慮して貯蔵建屋の外部に対して放
射性物質収納容器表面からの放射線を遮へいする遮へい
部材の厚さを決めるため、従来よりも遮へい部材の厚さ
を最適化することが可能となり、貯蔵施設の建設コスト
を低減することができる。
According to the invention of claim 1, the radiation dose on the surface of the radioactive substance storage container and the value of the ratio of the neutron dose and the gamma dose, or the value of the neutron dose and the gamma dose on the surface of the container, or Using the neutron dose and gamma dose of the radioactive material to be stored, the dose rate at the site boundary of the radioactive material storage container storage building is below the limit value, and the radiation from the surface of the radioactive material storage container is exposed to the outside of the storage building. Calculate the thickness of the shielding member that shields the radiation from the container surface to the outside of the storage building so that the thickness of the shielding member to be shielded is less than the preset limit value,
By constructing a radioactive substance storage container storage building using the calculated results, the ratio of neutron dose and gamma dose on the surface of the radioactive substance storage container is taken into consideration, and the radioactive substance storage container surface from the outside of the storage building is considered. Since the thickness of the shielding member that shields radiation is determined, it becomes possible to optimize the thickness of the shielding member as compared with the conventional case, and the construction cost of the storage facility can be reduced.

【0037】請求項2の発明によれば、放射性物質収納
容器を貯蔵する建屋の外部に対して容器表面からの放射
線を遮へいする遮へい部材の厚さおよび元素組成の値を
用いて、貯蔵建屋の敷地境界での線量率が制限値以下
で、かつ前記容器の総重量があらかじめ設定された制限
値以下となるよう、前記容器の金属と中性子遮へい体の
各厚さを計算し、その計算結果を用いて放射性物質収納
容器を製作することで、容器の重量低減を図ることがで
き、ひいては、容器の製作コストを低減することができ
る。
According to the invention of claim 2, the thickness of the shielding member for shielding the radiation from the container surface to the outside of the building for storing the radioactive substance storage container and the value of the elemental composition are used for the storage building. The dose rate at the site boundary is less than or equal to the limit value, and the total weight of the container is less than or equal to the preset limit value, and the thickness of the metal and neutron shield of the container is calculated, and the calculation result is By manufacturing a radioactive substance storage container using the container, the weight of the container can be reduced, and the manufacturing cost of the container can be reduced.

【0038】請求項3の発明によれば、放射性物質収納
容器を貯蔵する建屋の外部に対して容器表面からの放射
線を遮へいする遮へい部材の厚さおよび元素組成の値を
用いて、貯蔵建屋の敷地境界での線量率が制限値以下
で、かつ前記容器の中性子遮へい体の量があらかじめ設
定された制限値以下となるよう、前記容器の金属と中性
子遮へい体の各厚さを計算し、その計算結果を用いて放
射性物質収納容器を製作することで、比較的材料費の高
い中性子遮へい体の量の低減を図ることができる。ま
た、伝熱性能の悪い中性子遮へい体の厚さが低減される
ため、容器内の放射性物質の温度低減を図ることができ
る。
According to the third aspect of the present invention, the thickness of the shielding member for shielding the radiation from the container surface to the outside of the building for storing the radioactive substance storage container and the value of the elemental composition are used to determine the storage building. The dose rate at the site boundary is less than or equal to the limit value, and the amount of the neutron shield in the container is less than or equal to the preset limit value, and the thickness of each metal of the container and the neutron shield is calculated, By manufacturing the radioactive substance storage container using the calculation result, it is possible to reduce the amount of the neutron shield, which has a relatively high material cost. Moreover, since the thickness of the neutron shield having poor heat transfer performance is reduced, the temperature of the radioactive substance in the container can be reduced.

【0039】請求項4の発明によれば、放射性物質収納
容器を貯蔵する建屋の外部に対して容器表面からの放射
線を遮へいする遮へい部材の厚さおよび元素組成の値を
用いて、貯蔵建屋の敷地境界での線量率が制限値以下
で、かつ前記容器表面の線量率があらかじめ設定された
制限値以下となるよう、前記容器の金属と中性子遮へい
体の各厚さを計算し、その計算結果を用いて放射性物質
収納容器を製作することで、貯蔵建屋内の放射線量が低
減し、作業員の被爆線量の低減を図ることができる。
According to the invention of claim 4, the thickness of the shielding member for shielding the radiation from the container surface to the outside of the building for storing the radioactive substance storage container and the value of the elemental composition are used, and The dose rate at the site boundary is below the limit value, and the dose rate on the container surface is below the preset limit value, the thickness of the metal and neutron shield of the container is calculated, and the calculation result By manufacturing a radioactive substance storage container using, it is possible to reduce the radiation dose inside the storage building and to reduce the radiation dose to workers.

【0040】請求項5の発明によれば、放射性物質収納
容器の表面での放射線量と中性子線量とガンマ線量の
比、または放射性物質収納容器表面での中性子線量およ
びガンマ線量の値、または貯蔵する放射性物質の中性子
線量およびガンマ線量を用いて、貯蔵建屋の敷地境界で
の線量率が制限値以下で、かつ放射性物質収納容器の厚
さと、貯蔵建屋の外部に対して容器表面からの放射線を
遮へいする遮へい部材の厚さの和が、あらかじめ与えら
れた制限値以下となるように、容器の金属と中性子遮へ
い体の各厚さ、および貯蔵建屋の外部に対して容器表面
からの放射線を遮へいする遮へい部材の厚さを計算し、
その計算結果を用いて、放射性物質収納容器と放射性物
質収納容器貯蔵施設を製作することで、容器の製作およ
び貯蔵施設の建設に必要な材料の量を低減することがで
きる。
According to the invention of claim 5, the ratio of the radiation dose, the neutron dose and the gamma dose on the surface of the radioactive substance storage container, the value of the neutron dose and the gamma dose on the surface of the radioactive substance storage container, or the storage is performed. Using the neutron dose and gamma dose of radioactive material, the dose rate at the site boundary of the storage building is below the limit value, and the thickness of the radioactive material storage container and the radiation from the container surface to the outside of the storage building are shielded. The radiation from the container surface is shielded against the thickness of the metal and neutron shield of the container and the outside of the storage building so that the sum of the thicknesses of the shielding members to be used is less than the limit value given in advance. Calculate the thickness of the shielding material,
By manufacturing the radioactive substance storage container and the radioactive substance storage container storage facility using the calculation result, it is possible to reduce the amount of material required for manufacturing the container and constructing the storage facility.

【0041】請求項6の発明によれば、放射性物質収納
容器の表面での放射線量と中性子線量とガンマ線量の
比、または放射性物質収納容器表面での中性子線量およ
びガンマ線量の値、または貯蔵する放射性物質の中性子
線量およびガンマ線量を用いて、貯蔵建屋の敷地境界で
の線量率が制限値以下で、かつ容器の金属および中性子
遮へい体の材料費と、貯蔵建屋の外部に対して容器表面
からの放射線を遮へいする遮へい部材の材料費の和が、
あらかじめ与えられた制限値以下となるように、容器の
金属と中性子遮へい体の各厚さ、および貯蔵建屋の外部
に対して容器表面からの放射線を遮へいする遮へい部材
の厚さを計算し、その計算結果を用いて、放射性物質収
納容器と放射性物質収納容器貯蔵施設を製作すること
で、容器の製作コストと貯蔵施設の建設コストの低減を
図ることができる。
According to the invention of claim 6, the ratio of the radiation dose, the neutron dose and the gamma dose on the surface of the radioactive substance storage container, the value of the neutron dose and the gamma dose on the surface of the radioactive substance storage container, or the value is stored. Using the neutron dose and gamma dose of radioactive materials, the dose rate at the site boundary of the storage building is below the limit value, and the material cost of the container metal and neutron shield and the outside of the storage building from the container surface The sum of the material costs of the shielding members that shield the radiation of
Calculate the thickness of the metal and neutron shield of the container, and the thickness of the shield member that shields the radiation from the container surface to the outside of the storage building so that it will be less than the given limit value. By manufacturing the radioactive substance storage container and the radioactive substance storage container storage facility using the calculation result, it is possible to reduce the manufacturing cost of the container and the construction cost of the storage facility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の好適な一実施例を示すフロー図であ
る。
FIG. 1 is a flow chart showing a preferred embodiment of the present invention.

【図2】本発明の好適な一実施例である放射性物質収納
容器貯蔵施設の模式図である。
FIG. 2 is a schematic view of a radioactive substance storage container storage facility which is a preferred embodiment of the present invention.

【図3】本発明の好適な一実施例である放射性物質収納
容器貯蔵施設の模式図である。
FIG. 3 is a schematic diagram of a radioactive substance storage container storage facility according to a preferred embodiment of the present invention.

【図4】容器表面での中性子線とガンマ線の線量率比に
対する、貯蔵建屋の必要壁厚さの関係の一例を示した図
である。
FIG. 4 is a diagram showing an example of the relationship between the dose rate ratio of neutron rays and gamma rays on the container surface and the required wall thickness of the storage building.

【図5】本発明の好適な一実施例を示すフロー図であ
る。
FIG. 5 is a flowchart showing a preferred embodiment of the present invention.

【図6】本発明の好適な一実施例を示すフロー図であ
る。
FIG. 6 is a flowchart showing a preferred embodiment of the present invention.

【図7】容器表面および表面より1m離れた位置での線
量率の制限値を満たすために必要な容器厚さを、容器の
金属部分と中性子遮へい体の厚さの比に対して示した図
である。
FIG. 7 is a view showing the container thickness required to satisfy the dose rate limit value at the container surface and at a position 1 m away from the surface, with respect to the ratio of the metal portion of the container and the thickness of the neutron shield. Is.

【図8】本発明の好適な一実施例を示すフロー図であ
る。
FIG. 8 is a flowchart showing a preferred embodiment of the present invention.

【図9】本発明の好適な一実施例を示すフロー図であ
る。
FIG. 9 is a flowchart showing a preferred embodiment of the present invention.

【図10】本発明の好適な一実施例を示すフロー図であ
る。
FIG. 10 is a flowchart showing a preferred embodiment of the present invention.

【図11】本発明の好適な一実施例を示すフロー図であ
る。
FIG. 11 is a flowchart showing a preferred embodiment of the present invention.

【図12】本発明の好適な一実施例を示すフロー図であ
る。
FIG. 12 is a flowchart showing a preferred embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…放射性物質収納容器、2…放射性物質、3…放射性
物質収納容器の金属部分、4…放射性物質収納容器の中
性子遮へい体部分、5…放射性物質収納容器貯蔵建屋の
壁、6…放射性物質収納容器貯蔵施設の敷地境界、7…
敷地境界6に直接到達するガンマ線、8…敷地境界6に
直接到達する中性子線、9…ガンマ線スカイシャイン、
10…中性子線スカイシャイン、11…放射性物質収納
容器移送クレーン、12…プラグ、13…放射性物質収
納容器貯蔵建屋の壁(遮へい能力なし)。
1 ... Radioactive material storage container, 2 ... Radioactive material, 3 ... Radioactive material storage container metal part, 4 ... Radioactive material storage container neutron shield part, 5 ... Radioactive material storage container storage building wall, 6 ... Radioactive material storage Site boundary of container storage facility, 7 ...
Gamma rays that directly reach the site boundary 6, 8 ... Neutron rays that directly reach the site boundary 6, 9 ... Gamma ray skyshine,
10 ... Neutron beam skyshine, 11 ... Crane for transferring radioactive material storage container, 12 ... Plug, 13 ... Wall of storage building for radioactive material storage container (no shielding ability).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小田 将史 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 鴨志田 守 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 清水 仁 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masafumi Oda             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. (72) Inventor Mamoru Kamoshida             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. (72) Inventor Hitoshi Shimizu             3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Stock Association             Hitachi, Ltd. Nuclear Business Division

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】金属と中性子遮へい体によって形成され、
内部に放射性物質を密封収納した放射性物質収納容器を
貯蔵する貯蔵建屋において、前記容器の表面での放射線
量と中性子線量とガンマ線量の比、または前記容器表面
での中性子線量およびガンマ線量の値、または貯蔵する
放射性物質の中性子線量およびガンマ線量を用いて、前
記貯蔵建屋の敷地境界での線量率があらかじめ与えられ
た制限値以下となるよう、前記貯蔵建屋の壁厚さ、また
は前記貯蔵建屋の外部に対して前記容器表面からの放射
線を遮へいする遮へい部材の厚さを計算し、その計算結
果を用いて製作されたことを特徴とする放射性物質収納
容器貯蔵施設。
1. Formed by a metal and a neutron shield,
In a storage building that stores a radioactive substance storage container in which a radioactive substance is hermetically stored, the ratio of the radiation dose and the neutron dose and the gamma dose on the surface of the container, or the value of the neutron dose and the gamma dose on the surface of the container, Or, using the neutron dose and gamma dose of the radioactive material to be stored, the dose rate at the site boundary of the storage building is below a given limit value, the wall thickness of the storage building, or the storage building A radioactive substance storage container storage facility, characterized in that the thickness of a shielding member that shields the radiation from the surface of the container to the outside is calculated, and the calculated result is used to manufacture the container.
【請求項2】金属と中性子遮へい体によって形成され、
内部に放射性物質を密封収納した放射性物質収納容器に
おいて、前記容器を貯蔵する建屋の外部に対して前記容
器表面からの放射線を遮へいする遮へい部材の厚さおよ
び元素組成の値を用いて、前記貯蔵建屋の敷地境界での
線量率が制限値以下で、かつ前記容器の総重量があらか
じめ与えられた制限値よりも小さくなるよう、前記容器
の金属と中性子遮へい体の各厚さを計算し、その計算結
果を用いて製作されたことを特徴とする放射性物質収納
容器。
2. Formed by a metal and a neutron shield,
In a radioactive substance storage container in which a radioactive substance is hermetically stored, the thickness of the shielding member for shielding the radiation from the container surface to the outside of the building storing the container and the value of the elemental composition are used to store the radioactive substance. The dose rate at the site boundary of the building is less than or equal to the limit value, and the total weight of the container is smaller than the given limit value, the thickness of the metal of the container and the neutron shield are calculated, and the A radioactive substance storage container, which is manufactured using the calculation results.
【請求項3】金属と中性子遮へい体によって形成され、
内部に放射性物質を密封収納した放射性物質収納容器に
おいて、前記容器を貯蔵する建屋の外部に対して前記容
器表面からの放射線を遮へいする遮へい部材の厚さおよ
び元素組成の値を用いて、前記貯蔵建屋の敷地境界での
線量率が制限値以下で、かつ前記容器の中性子遮へい体
重量があらかじめ与えられた制限値よりも小さくなるよ
う、前記容器の金属と中性子遮へい体の各厚さを計算
し、その計算結果を用いて製作されたことを特徴とする
放射性物質収納容器。
3. Formed by a metal and a neutron shield,
In a radioactive substance storage container in which a radioactive substance is hermetically stored, the thickness of the shielding member for shielding the radiation from the container surface to the outside of the building storing the container and the value of the elemental composition are used to store the radioactive substance. The dose rate at the site boundary of the building is less than or equal to the limit value, and the weight of the neutron shield in the container is smaller than the given limit value, and the thicknesses of the metal and neutron shield in the container are calculated. , A radioactive substance storage container manufactured by using the calculation result.
【請求項4】金属と中性子遮へい体によって形成され、
内部に放射性物質を密封収納した放射性物質収納容器に
おいて、前記容器を貯蔵する建屋の外部に対して前記容
器表面からの放射線を遮へいする遮へい部材の厚さおよ
び元素組成の値を用いて、前記貯蔵建屋の敷地境界での
線量率が制限値以下で、かつ前記容器表面の線量率があ
らかじめ与えられた制限値よりも小さくなるよう、前記
容器の金属と中性子遮へい体の各厚さを計算し、その計
算結果を用いて製作されたことを特徴とする放射性物質
収納容器。
4. Formed by a metal and a neutron shield,
In a radioactive substance storage container in which a radioactive substance is hermetically stored, the thickness of the shielding member for shielding the radiation from the container surface to the outside of the building storing the container and the value of the elemental composition are used to store the radioactive substance. The dose rate at the site boundary of the building is less than or equal to the limit value, and the dose rate on the container surface is smaller than the given limit value, the thickness of each metal of the container and the neutron shield is calculated, A radioactive substance storage container manufactured by using the calculation result.
【請求項5】金属と中性子遮へい体によって形成され、
内部に放射性物質を密封収納した放射性物質収納容器、
および前記容器を貯蔵する貯蔵建屋において、前記容器
の表面での放射線量と中性子線量とガンマ線量の比、ま
たは前記容器表面での中性子線量およびガンマ線量の
値、または貯蔵する放射性物質の中性子線量およびガン
マ線量を用いて、前記貯蔵建屋の敷地境界での線量率が
制限値以下で、かつ前記容器の厚さと、前記貯蔵建屋の
外部に対して前記容器表面からの放射線を遮へいする遮
へい部材の厚さの和が、あらかじめ与えられた制限値よ
りも小さくなるように、前記容器の金属と中性子遮へい
体の各厚さ、および前記貯蔵建屋の外部に対して前記容
器表面からの放射線を遮へいする遮へい部材の厚さを計
算し、その計算結果を用いて製作されたことを特徴とす
る放射性物質収納容器および放射性物質収納容器貯蔵施
設。
5. Formed by a metal and a neutron shield,
A radioactive substance storage container that contains radioactive substances in a sealed manner,
And in a storage building that stores the container, the ratio of the radiation dose and the neutron dose and gamma dose on the surface of the container, or the value of the neutron dose and the gamma dose on the surface of the container, or the neutron dose of the radioactive material to be stored and Using gamma dose, the dose rate at the site boundary of the storage building is less than or equal to the limit value, and the thickness of the container, and the thickness of the shielding member that shields the radiation from the container surface to the outside of the storage building. The thickness of the metal and the neutron shield of the container, and a shield that shields the radiation from the container surface to the outside of the storage building so that the sum of the thicknesses is smaller than a given limit value. A radioactive substance storage container and a radioactive substance storage container storage facility, which are manufactured by calculating the thickness of a member and using the calculation result.
【請求項6】金属と中性子遮へい体によって形成され、
内部に放射性物質を密封収納した放射性物質収納容器、
および前記容器を貯蔵する貯蔵建屋において、前記容器
の表面での放射線量と中性子線量とガンマ線量の比、ま
たは前記容器表面での中性子線量およびガンマ線量の
値、または貯蔵する放射性物質の中性子線量およびガン
マ線量を用いて、前記貯蔵建屋の敷地境界での線量率が
制限値以下で、かつ前記容器の金属および中性子遮へい
体の材料費と、前記貯蔵建屋の外部に対して前記容器表
面からの放射線を遮へいする遮へい部材の材料費の和
が、あらかじめ与えられた制限値よりも小さくなるよう
に、前記容器の金属と中性子遮へい体の各厚さ、および
前記貯蔵建屋の外部に対して前記容器表面からの放射線
を遮へいする遮へい部材の厚さを計算し、その計算結果
を用いて製作されたことを特徴とする放射性物質収納容
器および放射性物質収納容器貯蔵施設。
6. Formed by a metal and a neutron shield,
A radioactive substance storage container that contains radioactive substances in a sealed manner,
And in a storage building that stores the container, the ratio of the radiation dose and the neutron dose and gamma dose on the surface of the container, or the value of the neutron dose and the gamma dose on the surface of the container, or the neutron dose of the radioactive material to be stored and Using gamma dose, the dose rate at the site boundary of the storage building is below the limit value, and the metal and neutron shield material cost of the container, and the radiation from the container surface to the outside of the storage building. The sum of the material costs of the shielding member for shielding the container, the thickness of each metal of the container and the neutron shield, and the surface of the container with respect to the outside of the storage building so that the sum is less than a given limit value. The thickness of the shielding member that shields the radiation from the plant was calculated, and the radioactive substance storage container and the radioactive substance collection characterized by being manufactured using the calculated results. Container storage facilities.
JP2001388686A 2001-12-21 2001-12-21 Radioactive material containment vessel and radioactive material containment vessel storage facility Pending JP2003185785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001388686A JP2003185785A (en) 2001-12-21 2001-12-21 Radioactive material containment vessel and radioactive material containment vessel storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001388686A JP2003185785A (en) 2001-12-21 2001-12-21 Radioactive material containment vessel and radioactive material containment vessel storage facility

Publications (1)

Publication Number Publication Date
JP2003185785A true JP2003185785A (en) 2003-07-03

Family

ID=27597115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388686A Pending JP2003185785A (en) 2001-12-21 2001-12-21 Radioactive material containment vessel and radioactive material containment vessel storage facility

Country Status (1)

Country Link
JP (1) JP2003185785A (en)

Similar Documents

Publication Publication Date Title
JP2003185785A (en) Radioactive material containment vessel and radioactive material containment vessel storage facility
Moon et al. Preliminary safety study of engineering-scale pyroprocess facility
Unsworth Decommissioning of the CANDU-PHW Reactor
Hardin et al. Assumptions for Evaluating Feasibility of Direct Geologic Disposal of Existing Dual-Purpose Canisters.
Hertzler et al. Depleted uranium management alternatives
Croff et al. Assessment of preferred depleted uranium disposal forms
JP2002257990A (en) Container for containing radioactive substance
Khoza Physics and engineering aspects of South Africa's proposed dry storage facility for spent nuclear fuel
Stuke et al. Storage and transport
Folga et al. High-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy eenvironmental management programmatic environmental impact statement
Miller et al. Assumptions for Evaluating Feasibility of Direct Geologic Disposal of Existing Dual-Purpose Canisters.
Cumberland et al. A review of multipurpose canister concepts for standardization in the waste management system
Hightower et al. Depleted uranium storage and disposal trade study: Summary report
JPS61195398A (en) Transport vessel for spent nuclear fuel
ELGIN Technical Basis Spent Nuclear Fuel (SNF) Project Radiation and Contamination Trending Program
Rozier et al. An evaluation of dual-purpose canisters in the Civilian Radioactive Waste Management System
JPS5812559B2 (en) Genshirosha Heikozo
Sutherland Preliminary high level waste conceptual cask designs and an assessment of a clad waste cask
Quapp DUCRETE TM Shielding Applications in the Yucca Mountain Repository
Woollam How will we manage the waste from reactor decommissioning?
Cumberland et al. A Review of Multipurpose Canister Concepts for Standardization in the Waste Management System–15563
Louthan et al. Disposal of aluminum based spent fuels in a repository
CARRELL Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR][Section 1 & 2]
SU MGDS SUBSURFACE RADIATION SHIELDING ANALYSIS
JPS6067900A (en) Method of filling radioactive waste