JP2003185612A - Gas detector using semiconductor gas sensor - Google Patents

Gas detector using semiconductor gas sensor

Info

Publication number
JP2003185612A
JP2003185612A JP2001385145A JP2001385145A JP2003185612A JP 2003185612 A JP2003185612 A JP 2003185612A JP 2001385145 A JP2001385145 A JP 2001385145A JP 2001385145 A JP2001385145 A JP 2001385145A JP 2003185612 A JP2003185612 A JP 2003185612A
Authority
JP
Japan
Prior art keywords
load resistance
gas
resistance value
gas sensor
detection output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001385145A
Other languages
Japanese (ja)
Other versions
JP3742588B2 (en
Inventor
Mitsuji Kira
満治 吉良
Kazuo Okinaga
一夫 翁長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIS Inc
Original Assignee
FIS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIS Inc filed Critical FIS Inc
Priority to JP2001385145A priority Critical patent/JP3742588B2/en
Publication of JP2003185612A publication Critical patent/JP2003185612A/en
Application granted granted Critical
Publication of JP3742588B2 publication Critical patent/JP3742588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas detector using a semiconductor gas sensor capable of detecting gas with high accuracy. <P>SOLUTION: A microcomputer 2 takes in detection output in such a state the load resistors connected to the gas-sensitive bodies 8a and 8b of semiconductor gas sensors 1A and 1B are only R5 and R7 in the first place of a sampling period to subject the same to A/D conversion by the A/D converter build in the microcomputer and sets the load resistors connected to the gas-sensitive bodies 8a and 8b to a parallel circuit of R5 and R6 and a parallel circuit of R7 and R8 when the A/D conversion is completed to lower load resistance values and takes in the detection output in such a state that the load resistance values are lowered to subject the same to A/D conversion by the built-in A/D converter. The microcomputer 2 employs detection output capable of ensuring accuracy among the detection output in a case such that the load resistance values are high, and the detection output in a case such that the load resistance values are low to use the same in the operation of the similarity degree F and intensity S of a smell. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ガスセンサ
を用いたガス検知装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas detector using a semiconductor gas sensor.

【0002】[0002]

【従来の技術】従来半導体ガスセンサの感ガス体とに負
荷抵抗を直列接続してその接続点の電圧を検出出力とし
て用い、ガス検知を行う場合、感ガス体の抵抗値の変化
領域が広く、例えば負荷抵抗値の10倍以上又は10分
の1以下に変化する場合は、出力が0V又は回路電圧に
近づき、十分な分解能が得られない。例えば良く用いら
れるマイクロコンピュータ内蔵の8ビットA/D変換器
では顕著に分解能、ひいては精度が悪くなる領域があ
り、この対策として負荷抵抗を切り換える方法が用いら
れる。
2. Description of the Related Art Conventionally, a load resistance is connected in series with a gas sensitive body of a semiconductor gas sensor and the voltage at the connection point is used as a detection output to detect a gas. For example, when the load resistance value changes 10 times or more or 1/10 or less, the output approaches 0 V or the circuit voltage, and sufficient resolution cannot be obtained. For example, an 8-bit A / D converter with a built-in microcomputer, which is often used, has a region in which the resolution and accuracy are remarkably deteriorated. As a countermeasure against this, a method of switching the load resistance is used.

【0003】[0003]

【発明が解決しようとする課題】ところで半導体ガスセ
ンサによっては負荷抵抗依存性を持つものがあり、例え
ば負荷抵抗値を大きくすると、センサ抵抗値が大きくな
り、また負荷抵抗値を小さくするとセンサ抵抗値が小さ
くなる。このため負荷抵抗値を切り換えるとかえって精
度を悪くしてしまうという問題があった。
Some semiconductor gas sensors have a load resistance dependency. For example, when the load resistance value is increased, the sensor resistance value increases, and when the load resistance value is decreased, the sensor resistance value increases. Get smaller. For this reason, there is a problem that the accuracy is rather deteriorated when the load resistance value is switched.

【0004】本発明は、上記の点に鑑みて為されたもの
で、その目的とするところは、高い精度でガス検知が行
える半導体ガスセンサを用いたガス検知装置を提供する
ことにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a gas detection device using a semiconductor gas sensor capable of detecting gas with high accuracy.

【0005】[0005]

【課題を解決するための手段】請求項1の発明では、半
導体ガスセンサと、この半導体ガスセンサの感ガス体に
直列に接続される負荷抵抗と、半導体ガスセンサの感ガ
ス体と負荷抵抗との直列回路に電圧を印加する電圧源
と、半導体ガスセンサの感ガス体と負荷抵抗との接続点
の電圧を検出出力としてサンプリングし、このサンプリ
ングした電圧をA/D変換し、このA/D変換された電
圧値に基づいて求められた半導体ガスセンサの感ガス体
の抵抗値と予め被検知ガスを含まない空気の雰囲気下で
求めた当該半導体ガスセンサの感ガス体の抵抗値とから
被検知ガスの濃度を検知するガス検知手段とを備えた半
導体ガスセンサを用いたガス検知装置において、半導体
ガスセンサの感ガス体に接続する負荷抵抗の負荷抵抗値
を、検出出力をサンプリングするときにガス検知手段に
よるA/D変換に必要な時間のみ所望の検出精度が得ら
れる負荷抵抗値に、通常時の負荷抵抗値から切り換え、
ガス検知手段によるA/D変換後通常の負荷抵抗値に戻
す負荷抵抗切り替え手段とを設けたことを特徴とする。
According to a first aspect of the present invention, a semiconductor gas sensor, a load resistance connected in series to a gas sensitive body of the semiconductor gas sensor, and a series circuit of the gas sensitive body of the semiconductor gas sensor and the load resistance. The voltage at the connection point between the gas sensitive body of the semiconductor gas sensor and the load resistance is sampled as a detection output, the sampled voltage is A / D converted, and the A / D converted voltage The concentration of the gas to be detected is detected from the resistance value of the gas sensor of the semiconductor gas sensor obtained based on the value and the resistance value of the gas sensor of the semiconductor gas sensor previously obtained in an atmosphere of air that does not contain the gas to be detected. In a gas detection device using a semiconductor gas sensor, the load resistance value of the load resistance connected to the gas-sensitive body of the semiconductor gas sensor is used as a detection output. The load resistance value desired detection accuracy only time necessary for A / D conversion by the gas detecting means is obtained when the ring, the switching from the load resistance of the normal,
Load resistance switching means for returning to a normal load resistance value after A / D conversion by the gas detection means is provided.

【0006】請求項2の発明では、請求項1の発明にお
いて、負荷抵抗切り替え手段は、通常時の負荷抵抗値と
は異なる複数の負荷抵抗値にA/D変換に必要な時間の
み順次切り換え、最後の負荷抵抗値に切り替え後通常の
負荷抵抗値に戻し、ガス検知手段は、負荷抵抗切り替え
手段による切り替え開始直前において通常の負荷抵抗値
による検出出力を、負荷抵抗切り替え開始後において順
次切り替えられる各負荷抵抗値による検出出力を夫々サ
ンプリングし、負荷抵抗切り替え終了後に被検知ガスの
濃度を検知するための検知出力として最適な精度が得ら
れる負荷抵抗値時の検出出力を採用することを特徴とす
る。
According to a second aspect of the present invention, in the first aspect of the present invention, the load resistance switching means sequentially switches to a plurality of load resistance values different from the normal load resistance value only during a time required for A / D conversion, After switching to the final load resistance value, the normal load resistance value is restored, and the gas detection unit sequentially switches the detection output based on the normal load resistance value immediately before the switching by the load resistance switching unit, and after the load resistance switching starts. The detection output based on the load resistance value is sampled, and the detection output at the time of the load resistance value that provides the optimum accuracy is adopted as the detection output for detecting the concentration of the gas to be detected after the load resistance switching is completed. .

【0007】[0007]

【発明の実施の形態】以下本発明を実施形態により説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to embodiments.

【0008】本発明の半導体ガスセンサを用いたガス検
知装置を採用した実施形態たる匂い検知器の回路構成を
図1に示す。本匂い検知器は、エタノール(EtOH)
に高い感度を示す第1の半導体ガスセンサ1Aと、キシ
レンに高い感度を示す第2の半導体ガスセンサ1Bをセ
ンサ室(図示せず)内に配置し、センサ室内にポンプP
で外部より被検知ガスを吸引し、被検知ガスを両半導体
ガスセンサ1A,1Bさせたときに発生する検出出力に
基づいて匂い強度(Classification)及
び検出される匂いが何れの匂い物質に近いかを判断する
ための匂い類度とをマイクロコンピュータ(以下マイコ
ンと略する)2で判定するようになっている。
FIG. 1 shows a circuit configuration of an odor detector which is an embodiment employing a gas detection device using the semiconductor gas sensor of the present invention. This odor detector is ethanol (EtOH)
A first semiconductor gas sensor 1A exhibiting high sensitivity and a second semiconductor gas sensor 1B exhibiting high sensitivity to xylene are arranged in a sensor chamber (not shown), and a pump P is installed in the sensor chamber.
Suction the detected gas from the outside, and determine which odor substance is close to the odor intensity (Classification) and the detected odor based on the detection output generated when both the semiconductor gas sensors 1A and 1B are set to the detected gas. The degree of odor for determination is determined by a microcomputer (hereinafter abbreviated as microcomputer) 2.

【0009】具体的には上記半導体ガスセンサ1A,1
Bの検出出力を電圧値として取り込んで匂い強度及び匂
い類度とを判定するためのA/D変換器内蔵の上記マイ
コン2と、測定結果等を表示させるため表示部3と、測
定結果の履歴を保存するための記憶部4と、コンピュー
タ等の外部機器へデータを送信するためのRS232C
のような汎用の通信部5と、上記ポンプPと、キー操作
部11と、電子ブザーBZと、電源等とにより構成され
る。
Specifically, the above semiconductor gas sensors 1A, 1
The microcomputer 2 with a built-in A / D converter for taking in the detection output of B as a voltage value and determining the odor intensity and the degree of odor, the display unit 3 for displaying the measurement results, and the history of the measurement results Storage unit 4 for storing data, and RS232C for transmitting data to an external device such as a computer
A general-purpose communication unit 5 such as the above, the pump P, a key operation unit 11, an electronic buzzer BZ, a power supply, and the like.

【0010】電源は、バッテリ6若しくは外部のACア
ダプター(図示せず)を用い、半導体ガスセンサ1A,
1Bに内蔵せるヒートクリーニング用のヒーターHや電
子ブザーBZに印加するための電源電圧Vccとして、
バッテリ6使用時にはその電圧を、またACアダプター
使用時にはACアダプターの出力電圧を定電圧回路7に
よりバッテリ6の電圧と同等の電圧に変換した電圧を使
用する。また半導体ガスセンサ1A,1Bの感ガス体8
a,8bに負荷抵抗を介して印加する電圧や、マイコン
2や記憶部4用の電源電圧VDDを得ている。
The battery 6 or an external AC adapter (not shown) is used as the power source, and the semiconductor gas sensor 1A,
As a power supply voltage Vcc for applying to the heater H for heat cleaning incorporated in 1B and the electronic buzzer BZ,
When the battery 6 is used, the voltage is used, and when the AC adapter is used, the voltage obtained by converting the output voltage of the AC adapter into a voltage equivalent to the voltage of the battery 6 by the constant voltage circuit 7 is used. In addition, the gas sensitive body 8 of the semiconductor gas sensors 1A and 1B
The voltage applied to a and 8b via the load resistance and the power supply voltage V DD for the microcomputer 2 and the storage unit 4 are obtained.

【0011】バッテリ6は、定電圧回路7からの出力電
圧がある場合、つまりACアダプタがジャックJKに接
続されるとオフし、出力電圧が無い場合、つまりACア
ダプタが接続されていない状態でオンするMOSFET
からなるスイッチング素子Q1及び電源スイッチSW1
を介して電源として回路へ接続されるようになってい
る。尚ダイオードD1,D2は逆流防止用ダイオードで
ある。
The battery 6 turns off when there is an output voltage from the constant voltage circuit 7, that is, when the AC adapter is connected to the jack JK, and turns on when there is no output voltage, that is, when the AC adapter is not connected. MOSFET
Switching element Q1 and power switch SW1
It is designed to be connected to the circuit as a power source via. The diodes D1 and D2 are backflow prevention diodes.

【0012】マイコン2は、匂い検知器の全体の制御と
信号処理を行う機能を備えたものであり、半導体ガスセ
ンサ1A、1Bの検知出力をサンプリングして取り込み
内蔵A/D変換器でその検知出力をA/D変換した後、
このA/D変換した検知出力から各半導体ガスセンサ1
A,1Bの感ガス体8a,8bの抵抗値Ra,Rbを求
めた上で、更にこの抵抗値Ra,Rbから求まる被検知
ガスに対する感度Ra0/Ra、Rb0/Rbを求め、
更にこの感度Ra0/Ra、Rb0/Rbより後述する
ように匂い類度及び匂いの強度Sを求める演算機能と、
この演算機能の働きにより求まった匂い類度F、匂い強
度Sを表示部3で表示させるための表示制御機能と、匂
い類度F、匂い強度Sの測定データを後述するように記
憶部4に保存させ、読み出し要求に応じて読み出す処理
を行う機能と、コンピュータ等の外部機器との間で測定
中の測定データや記憶部4に保存している測定データを
通信部5を通じて送信させる機能と、半導体ガスセンサ
1A,1Bの負荷抵抗値を切り換える制御機能と、更に
スイッチ受付けを示すための音を発するための電子ブザ
ーBZを制御する機能と、ポンプPを駆動させて、セン
サ室内に被検知ガスを吸引するとともに残留ガスを排気
させるポンプ制御機能と、キー操作部11からの操作信
号を入力してその操作内容を判断する機能等がプログラ
ムによって実現されている。
The microcomputer 2 is provided with a function of controlling the odor detector as a whole and performing signal processing. The detection output of the semiconductor gas sensors 1A, 1B is sampled and taken in by the built-in A / D converter. After A / D conversion of
From each A / D converted detection output, each semiconductor gas sensor 1
After obtaining the resistance values Ra and Rb of the A and 1B gas sensitive bodies 8a and 8b, the sensitivities Ra0 / Ra and Rb0 / Rb to the detected gas obtained from the resistance values Ra and Rb are further obtained.
Further, a calculation function for obtaining the odor similarity and the odor intensity S from the sensitivities Ra0 / Ra and Rb0 / Rb as described later,
The display control function for displaying the odor intensity F and odor intensity S obtained by the operation of this calculation function on the display unit 3, and the measurement data of the odor intensity F and odor intensity S are stored in the storage unit 4 as described later. A function of storing and reading according to a read request, and a function of transmitting measurement data being measured with an external device such as a computer or measurement data stored in the storage unit 4 through the communication unit 5. A control function for switching the load resistance values of the semiconductor gas sensors 1A and 1B, a function for controlling an electronic buzzer BZ for emitting a sound for indicating switch acceptance, and a pump P for driving a gas to be detected in the sensor chamber. A program realizes a pump control function of sucking and exhausting residual gas and a function of inputting an operation signal from the key operation unit 11 to judge the operation content. To have.

【0013】各半導体ガスセンサ1A,1Bは、感ガス
体8a,8bのグランド側電極とヒーターHの一方の電
極とを兼用した3端子構造のもので、ヒーターHに通電
することで感ガス体8a、8bをヒートクリーニングす
るようになっている。
Each of the semiconductor gas sensors 1A and 1B has a three-terminal structure in which the ground side electrodes of the gas sensitive bodies 8a and 8b and one of the electrodes of the heater H are also used. , 8b are heat-cleaned.

【0014】トランジスタQ2,Q3はPNP形のトラ
ンジスタにより構成され、そのベースをマイコン2のポ
ートP10,P11に抵抗R1、コンデンサC1の直列
回路若しくは抵抗R2,コンデンサC2の直列回路を介
して接続し、また各コレクタをマイコン2のポートR4
2,R52に接続しており、電源投入時において、一定
時間マイコン2がポートP10,P11、R42,R5
2の出力を制御することにより、トランジスタQ2,Q
3を介して半導体ガスセンサ1A,1BのヒーターHに
印加される電圧をPWM制御してヒーターHを発熱さ
せ、感ガス体8a,8bのヒートクリーニングを行わせ
る。本実施形態の場合、PWM制御によりヒートークリ
ーニングを行う期間において、ヒーターHに印加される
平均電圧が高い期間と、低い期間とを設定するようにな
っている。
The transistors Q2 and Q3 are PNP type transistors, and their bases are connected to the ports P10 and P11 of the microcomputer 2 through a series circuit of a resistor R1 and a capacitor C1 or a series circuit of a resistor R2 and a capacitor C2. Also, connect each collector to port R4 of microcomputer 2.
2 and R52, and when the power is turned on, the microcomputer 2 keeps the ports P10, P11, R42, and R5 for a certain period of time.
2 by controlling the output of the transistor Q2, Q
The voltage applied to the heaters H of the semiconductor gas sensors 1A and 1B via PWM is PWM-controlled to heat the heaters H and heat-sensing the gas sensitive bodies 8a and 8b. In the case of the present embodiment, in the period in which the heat cleaning is performed by the PWM control, a period in which the average voltage applied to the heater H is high and a period in which the average voltage is low are set.

【0015】さて一方の半導体ガスセンサ1Aは感ガス
体8aに負荷抵抗R5又は負荷抵抗R5と負荷抵抗R6
の並列回路を介して電源電圧VDDが印加されるようにな
っており、負荷抵抗回路と感ガス体8aとの接続点の抵
抗比で決まる電圧が検出出力としてマイコン2のポート
R40に取り込まれる。
In the semiconductor gas sensor 1A, the load resistance R5 or the load resistance R5 and the load resistance R6 are provided on the gas sensitive body 8a.
The power supply voltage V DD is applied through the parallel circuit of the above, and the voltage determined by the resistance ratio of the connection point between the load resistance circuit and the gas sensitive body 8a is taken in the port R40 of the microcomputer 2 as a detection output. .

【0016】同様に半導体ガスセンサ1Bは感ガス体8
bに負荷抵抗R7又は負荷抵抗R7と負荷抵抗R8の並
列回路を介して電源電圧VDDが印加されるようになって
おり、負荷抵抗回路と感ガス体8bとの接続点の抵抗比
で決まる電圧が検出出力としてマイコン2のポートR5
0に取り込まれる。
Similarly, the semiconductor gas sensor 1B has a gas sensitive body 8
The power supply voltage V DD is applied to b through the load resistance R7 or a parallel circuit of the load resistance R7 and the load resistance R8, and is determined by the resistance ratio of the connection point between the load resistance circuit and the gas sensing body 8b. The voltage is detected output as port R5 of the microcomputer 2.
It is taken into 0.

【0017】ここで負荷抵抗R5に対して負荷抵抗R6
はスイッチとして用いるノットゲートNT1を介して並
列接続され、同様に負荷抵抗R7に対して負荷抵抗R8
はスイッチとして用いるノットゲートNT2を介して並
列接続される。
Here, the load resistance R6 is different from the load resistance R6.
Are connected in parallel via a knot gate NT1 used as a switch, and similarly the load resistance R8 is connected to the load resistance R8.
Are connected in parallel via a knot gate NT2 used as a switch.

【0018】マイコン2はノットゲートNT1、NT2
の入力端をポートR41,51に接続し、ポートR4
1,R51を”L”とすることで負荷抵抗R6,R8を
ノットゲートNT1,NT2を通じて電源電圧VDDに接
続し、つまり負荷抵抗R5,R7に夫々を並列接続して
対応する半導体ガスセンサ1A,1Bの感ガス体8a,
8bに接続する負荷抵抗値を抵抗R5,R7単独の高い
抵抗値の場合と、R5とR6,R7とR8の並列回路に
よる低い抵抗値の場合とに切り換える。
The microcomputer 2 has knot gates NT1 and NT2.
Connect the input end of the port to ports R41 and 51, and
By setting L1 and R51 to "L", the load resistors R6 and R8 are connected to the power supply voltage V DD through the knot gates NT1 and NT2, that is, the load resistors R5 and R7 are connected in parallel, respectively, and the corresponding semiconductor gas sensor 1A, 1B gas sensitive body 8a,
The load resistance value connected to 8b is switched between a high resistance value of the resistors R5 and R7 alone and a low resistance value due to the parallel circuit of R5 and R6 and R7 and R8.

【0019】具体的にはマイコン2は通常の状態で負荷
抵抗R5,R7のみを半導体ガスセンサ1A,1Bの感
ガス体8a,8bに接続するようにポートR41,R5
1を”H”とし、半導体ガスセンサ1A,1Bの検出出
力を取り込む際に、まずこの負荷抵抗R5、R7のみを
接続している高抵抗状態で検出出力を取り込み、この取
り込んだ検出出力のA/D変換終了後、ポート41,5
1を”L”として負荷抵抗R5に負荷抵抗R6を、負荷
抵抗R7に負荷抵抗R8を夫々並列に接続して低い負荷
抵抗値の負荷抵抗接続状態に切り換えて半導体ガスセン
サ1a,1Bの検知出力を取り込み、この取り込んだ検
出出力のA/D変換後、ポート41,51を”H”に戻
して負荷抵抗R5,R7のみを接続した状態に戻すよう
になっている。
More specifically, the microcomputer 2 in normal state has ports R41 and R5 so that only the load resistors R5 and R7 are connected to the gas sensing bodies 8a and 8b of the semiconductor gas sensors 1A and 1B.
When 1 is set to “H” and the detection output of the semiconductor gas sensors 1A and 1B is taken in, first, the detection output is taken in the high resistance state in which only the load resistors R5 and R7 are connected, and the detected output A / After D conversion, ports 41, 5
1 is set to "L", the load resistance R6 is connected in parallel to the load resistance R5, and the load resistance R8 is connected in parallel to the load resistance R7 to switch to the load resistance connection state of the low load resistance value to detect the detection outputs of the semiconductor gas sensors 1a and 1B. After fetching and A / D converting the fetched detection output, the ports 41 and 51 are returned to "H" and only the load resistors R5 and R7 are connected.

【0020】つまり各半導体ガスセンサ1A,1Bの負
荷抵抗切り替え手段はノットゲートNT1、NT2とマ
イコン2によって構成される。
That is, the load resistance switching means of each semiconductor gas sensor 1A, 1B is composed of knot gates NT1, NT2 and the microcomputer 2.

【0021】図2は本実施形態に用いるの二つの半導体
ガスセンサ1A,1Bの感度とガス濃度の関係を示して
おり、この図2で分かるようにエタノールに対する感度
は半導体ガスセンサ1Aの感度(I)が半導体ガスセン
サ1Bの感度(II)に対して高く、キシレンに対する感度
は半導体ガスセンサ1Aの感度(III)が半導体ガスセン
サ1Bの感度(IV)より低いことを示しており、この2
つの異なる特性の半導体ガスセンサ1A,1Bを利用し
て本実施形態では匂い類度と匂いの強度を測定する。
FIG. 2 shows the relationship between the sensitivity and gas concentration of the two semiconductor gas sensors 1A and 1B used in this embodiment. As can be seen from FIG. 2, the sensitivity to ethanol is the sensitivity (I) of the semiconductor gas sensor 1A. Is higher than the sensitivity (II) of the semiconductor gas sensor 1B, and the sensitivity to xylene is lower than the sensitivity (IV) of the semiconductor gas sensor 1A.
In the present embodiment, the odor intensity and the odor intensity are measured using the semiconductor gas sensors 1A and 1B having three different characteristics.

【0022】ここで図3に示すように半導体ガスセンサ
1Aの感度Ra0/RaをEとし、半導体ガスセンサ1
Bの感度Rb0/RbをXとした場合、匂い類度Fは、
F=E/Xとして定義される。一方匂いの強度Sは、S
=(X2+E21/2 ( 又はX×E)と定義される。尚
図3においてイはエタノールの匂い類度F、ロはキシレ
ンの匂い類度F,ニはエタノールの匂い強度S、ホはキ
シレンの匂い強度を示す。マイコン2は測定によって求
められる感度X,Eとに基づいて上記のように定義され
る匂い類度Fと、匂い強度Sとを演算する演算機能がプ
ログラムされている。
Here, the sensitivity Ra0 / Ra of the semiconductor gas sensor 1A is set to E as shown in FIG.
When the sensitivity Rb0 / Rb of B is X, the odor degree F is
It is defined as F = E / X. On the other hand, the odor intensity S is S
= (X 2 + E 2 ) 1/2 (or X × E). In FIG. 3, "a" indicates the odor intensity F of ethanol, "b" indicates the odor intensity of xylene, "d" indicates the odor intensity S of ethanol, and "e" indicates the odor intensity of xylene. The microcomputer 2 is programmed with a calculation function for calculating the odor intensity F defined as described above and the odor intensity S based on the sensitivities X and E obtained by measurement.

【0023】記憶部4は上述したように測定データを保
存するための記憶部であって、実施形態ではSRAMに
より構成され、バッテリ6若しくはACアダプタが接続
されている場合には、トランジスタQ4を通じて記憶部
4に電源電圧VDDが印加されて電源供給を受け、電源ス
イッチSWのオフ時やACアダプタが外されたり、バッ
テリ6の電圧が低下したときにはボタン電池9から電源
供給を受けてバックアップされるようになっている。つ
まりPNP型のトランジスタQ4のベースには抵抗R9
を介してノットゲートNT3の出力を接続し、このノッ
トゲートNT3の入力に電源電圧Vccが印加されてい
るときには、ノットゲートNT3の出力が”L”となっ
てトランジスタQ4がオンし、電源電圧Vccがノット
ゲートNT3の入力の閾値以下となった場合にはノット
ゲートNT3の出力が”H”となってトランジスタQ4
がオフすることで、記憶部4の電源供給が切り替わるよ
うになっている。尚D3は逆流防止用のダイオードであ
る。
The storage unit 4 is a storage unit for storing the measurement data as described above. In the embodiment, the storage unit 4 is configured by SRAM, and when the battery 6 or the AC adapter is connected, the storage unit 4 stores the data through the transistor Q4. The power supply voltage V DD is applied to the section 4 to receive power supply, and when the power switch SW is turned off, the AC adapter is removed, or the voltage of the battery 6 drops, power is supplied from the button battery 9 to be backed up. It is like this. That is, the resistor R9 is provided at the base of the PNP transistor Q4.
When the power supply voltage Vcc is applied to the input of the knot gate NT3, the output of the knot gate NT3 becomes "L" and the transistor Q4 is turned on to turn on the power supply voltage Vcc. Is below the input threshold of the knot gate NT3, the output of the knot gate NT3 becomes "H" and the transistor Q4
Is turned off, the power supply of the storage unit 4 is switched. D3 is a diode for preventing backflow.

【0024】通信部5はRS232Cの汎用の通信部で
あって、外部のコンピュータ等の外部機器とコネクタ1
0を介して接続され、マイコン2の制御下で、現在測定
されている測定データや、記憶部4に保存されている測
定データを外部機器の要求に応じて送出するために用い
られる。
The communication unit 5 is a general-purpose communication unit of RS232C, and is connected to an external device such as an external computer and the connector 1.
It is connected via 0, and is used under the control of the microcomputer 2 to send the measurement data currently measured or the measurement data stored in the storage unit 4 in response to a request from an external device.

【0025】電子ブザーBZは、スイッチ受付け時に”
L”レベルとなるマイコン2のポートP12を通じて電
源電圧Vccによる電流が流れてスイッチ受付け音を発
するようになっている。
When receiving the switch, the electronic buzzer BZ "
A current due to the power supply voltage Vcc flows through the port P12 of the microcomputer 2 which is at the L "level to emit a switch receiving sound.

【0026】ポンプPは、トランジスタQ5を介して電
源電圧Vccに接続されており、マイコン2は半導体ガ
スセンサ1A,1Bの検出出力をサンプリングする期間
に、トランジスタQ5のベースを接続しているポートP
13を”L”にしてトランジスタQ5をオンさせ、ポン
プPに通電する。
The pump P is connected to the power supply voltage Vcc through the transistor Q5, and the microcomputer 2 is connected to the port P to which the base of the transistor Q5 is connected while sampling the detection outputs of the semiconductor gas sensors 1A and 1B.
13 is set to "L", the transistor Q5 is turned on, and the pump P is energized.

【0027】キー操作部11には検出出力のサンプリン
グをリアルタイム(1秒間隔)で行うか、例えば1秒間
隔でサンプリングを行いながら所定の間隔でデータ保存
を行うかを選択設定するためのキースイッチS1と、測
定値のピークホールドのオン/オフを指示するキースイ
ッチS2と、ゼロ点調整、測定中止及び記憶部4への測
定データの記憶処理の中止を指示するキースイッチS3
と、エンターキーS4の4つのキースイッチを備えてい
る。
The key operation unit 11 is provided with a key switch for selectively setting whether the detection output is sampled in real time (1 second interval) or for example, data is stored at a predetermined interval while sampling at 1 second intervals. S1, a key switch S2 for instructing on / off of peak hold of the measured value, and a key switch S3 for instructing zero point adjustment, measurement suspension, and suspension of measurement data storage processing in the storage unit 4.
And four key switches of the enter key S4.

【0028】尚図1中、12はマイコン2に基準クロッ
クを与えるための基準クロック発生回路、13は基準電
圧を与えるための基準電圧発生回路、14はリセット回
路である。
In FIG. 1, reference numeral 12 is a reference clock generation circuit for giving a reference clock to the microcomputer 2, 13 is a reference voltage generation circuit for giving a reference voltage, and 14 is a reset circuit.

【0029】而して本実施形態の匂い検知器は、バッテ
リ6若しくはACアダプタが接続されている状態で電源
スイッチSWがオンされて、電源電圧Vccが所定電圧
に上昇すると、マイコン2はリセット回路14によるリ
セット状態が解除されて動作を開始する。
In the odor detector of this embodiment, when the power switch SW is turned on while the battery 6 or the AC adapter is connected and the power supply voltage Vcc rises to a predetermined voltage, the microcomputer 2 resets the circuit. The reset state of 14 is released and the operation is started.

【0030】動作を開始するとまずマイコン2はポート
P10,P11の出力を制御することで、各半導体ガス
センサ1A,1BのヒーターHにトランジスタQ2,Q
3を介して印加する電圧をPWM制御する。このPWM
制御による電圧が印加されたヒーターHは発熱して、感
ガス体8a、8bをヒートクリーニングする。このヒー
トクリーニングの期間及び安定待ち時間はほぼ2分程度
とする。
When the operation is started, first, the microcomputer 2 controls the outputs of the ports P10 and P11 so that the transistors Q2 and Q are connected to the heater H of each semiconductor gas sensor 1A and 1B.
PWM control is applied to the voltage applied via the circuit 3. This PWM
The heater H to which a voltage is applied by control generates heat and heat-cleans the gas sensitive bodies 8a and 8b. The heat cleaning period and the stabilization waiting time are about 2 minutes.

【0031】このヒートクリーニングが終了すると、マ
イコン2はその時点の検出出力に基づいて被検知ガスを
含まない空気に対する感ガス体8a,8bの抵抗値Ra
0,Rb0を、感度を求める際の空気に対応した抵抗値
として保存するゼロ点調整を行う。この後、周期が1秒
のリアルタイムサンプリング動作に移り、準備完了を表
示部3で表示する。
Upon completion of this heat cleaning, the microcomputer 2 determines the resistance value Ra of the gas sensitive bodies 8a and 8b to the air not containing the gas to be detected based on the detection output at that time.
Zero point adjustment is performed in which 0 and Rb0 are stored as resistance values corresponding to air when the sensitivity is obtained. Then, the real-time sampling operation with a cycle of 1 second is started, and the display unit 3 displays the preparation completion.

【0032】ここでリアルタイムサンプリング動作に移
行後キースイッチS1を操作すると、サンプリング周期
の変更を行うモードに入り、このモード下では操作毎に
予め設定されている複数のサンプリング周期をサイクリ
ックに切り換えることができ、その切り換えに応じてマ
イコン2はそのサンプリング周期と、記憶部4のデータ
保存可能容量から求まる測定可能時間を表示部3により
表示させる。尚本実施形態ではリアルタイムサンプリン
グ時にはデータを保存しないため測定可能時間の表示は
行わない。そして最後のサンプリング周期に切り換えた
後、更にキースイッチS1を操作するとリアルタイムサ
ンプリングの選択に戻るようになっている。この切り換
え操作によって選択表示されたサンプリング周期或いは
リアルタイムサンプリングはエンターキーS4の操作が
あると確定される。
When the key switch S1 is operated after shifting to the real-time sampling operation, a mode for changing the sampling cycle is entered. Under this mode, a plurality of preset sampling cycles are cyclically switched for each operation. In response to the switching, the microcomputer 2 causes the display unit 3 to display the sampling period and the measurable time calculated from the data storable capacity of the storage unit 4. In the present embodiment, the measurable time is not displayed because data is not stored during real-time sampling. When the key switch S1 is further operated after switching to the last sampling cycle, the real-time sampling is selected again. The sampling cycle or real-time sampling that is selectively displayed by this switching operation is confirmed when the enter key S4 is operated.

【0033】マイコン2は1秒周期で各半導体ガスセン
サ1A,1Bの検出出力をポートR40,R50に取り
込むサンプリング動作を開始する。
The microcomputer 2 starts a sampling operation in which the detection outputs of the semiconductor gas sensors 1A and 1B are taken into the ports R40 and R50 at a cycle of 1 second.

【0034】このサンプリング動作では、まずマイコン
2は、サンプリング期間の最初に各半導体ガスセンサ1
A,1Bの感ガス体8a,8bに接続している負荷抵抗
が夫々R5、R7のみの状態で検知出力を取り込み、こ
の検知出力をポートR40,R50より取り込んで内蔵
A/D変換器でA/D変換する。そしてA/D変換が終
了すると、次にポートR41,R51を”L”にするこ
とで、ノットゲートNT1,NT2の出力を”H”と
し、各感ガス体8a,8bに接続する負荷抵抗を夫々R
5、R6の並列回路、R7,R8の並列回路とする。こ
れにより負荷抵抗値が低くなり、この負荷抵抗値が低い
状態で上記検出出力をポートR40,R50より取り込
んで内蔵A/D変換器でA/D変換する。このA/D変
換に最小限必要とする時間が経過すると、マイコン2は
ポートR41,R51を”H”とし、各感ガス体8a,
8bに接続する負荷抵抗を夫々R5、R7のみに戻すと
ともに検出出力を取り込む動作を終了する。
In this sampling operation, the microcomputer 2 first determines that each semiconductor gas sensor 1 is at the beginning of the sampling period.
The detection outputs are taken in when the load resistances connected to the gas sensing bodies 8a and 8b of A and 1B are only R5 and R7, respectively, and the detection outputs are taken in from the ports R40 and R50 and the built-in A / D converter A / D conversion. Then, when the A / D conversion is completed, the outputs of the knot gates NT1 and NT2 are set to "H" by setting the ports R41 and R51 to "L", and the load resistances connected to the respective gas sensing bodies 8a and 8b are set. R respectively
5 and R6 are parallel circuits, and R7 and R8 are parallel circuits. As a result, the load resistance value becomes low, and when the load resistance value is low, the detection output is taken in from the ports R40, R50 and A / D converted by the built-in A / D converter. When the minimum time required for this A / D conversion elapses, the microcomputer 2 sets the ports R41 and R51 to "H", and the respective gas sensing bodies 8a,
The load resistances connected to 8b are returned to only R5 and R7, respectively, and the operation of capturing the detection output is completed.

【0035】さてマイコン2は、負荷抵抗値が高い場合
の検出出力と、負荷抵抗値が低い場合の検出出力の内、
精度が確保できる検出出力が何れかを判断して、確保で
きる検出出力を採用する処理をサンプリングの都度行
い、採用された側の検出出力のA/D変換値、つまり電
圧値から上述したように感ガス体8a,8bの抵抗値R
a,Rbを求め、更に予め設定してある空気中の抵抗値
Ra0,Rb0と抵抗値Ra,Rbとの比Ra0/R
a,Rb0/Rb、つまり未知のガスに対するガスセン
サ1A,1Bの感度E,Xを求める。
Now, the microcomputer 2 selects one of the detection output when the load resistance value is high and the detection output when the load resistance value is low,
The detection output that can secure the accuracy is determined, and the processing that adopts the detection output that can be secured is performed every sampling, and the A / D conversion value of the detection output on the adopted side, that is, the voltage value is used as described above. Resistance value R of gas-sensitive body 8a, 8b
a, Rb are obtained, and the ratio Ra0 / R between the preset resistance values Ra0, Rb0 in air and the resistance values Ra, Rb is further determined.
a, Rb0 / Rb, that is, the sensitivities E and X of the gas sensors 1A and 1B with respect to an unknown gas are obtained.

【0036】そしてこれら感度E,Xに基づいて上記の
ように定義した匂い類度F及び匂い強度Sを夫々求める
のである。
Then, based on these sensitivities E and X, the odor intensity F and odor intensity S defined as above are respectively obtained.

【0037】この演算が終了すると、その演算によって
求まった匂い類度F及び匂い強度Sを表示部3で表示
し、リアルタイムサンプリング以外は、データ保存周期
の度にデータが保存されることになる。尚メモリオーバ
ーを未然に防ぐために、本実施形態では表示部3により
測定経過時間を表示して使用者にメモリオーバーに対す
る注意喚起を行うとともに、メモリオーバー時には表示
部3で時刻を点滅表示させてデータの取り出し或いはメ
モリのクリアを促すようになっている。メモリクリア
は、例えばキースイッチS1とキースイッチS3とを同
時に押し操作しながら、電源スイッチSW1をオンする
操作があるとマイコン2が保存データをクリアする動作
を行うようになっている。
When this calculation is finished, the odor intensity F and the odor intensity S obtained by the calculation are displayed on the display unit 3, and the data is stored at every data storage cycle except for the real-time sampling. In addition, in order to prevent the memory overflow, in the present embodiment, the display unit 3 displays the measurement elapsed time to alert the user to the memory overflow, and at the time of the memory overflow, the display unit 3 blinks the time to display the data. It is designed to prompt you to take out the memory or clear the memory. For memory clear, for example, when the power switch SW1 is turned on while the key switch S1 and the key switch S3 are pressed at the same time, the microcomputer 2 clears the stored data.

【0038】またリアルタイムサンプリング以外のサン
プリングによる表示部3での匂い類度F及び匂い強度S
の表示は、リアルタイムサンプリングと同じ周期のサン
プリング結果に基づいたデータによって行うようになっ
ている。
Further, the odor intensity F and the odor intensity S on the display unit 3 obtained by sampling other than real-time sampling.
Is displayed by the data based on the sampling result of the same cycle as the real-time sampling.

【0039】ところで、上記サンプリング周期の切り換
え選択の動作下では、該動作に入る前の周期でマイコン
2はサンプリング動作を行っており、このサンプリング
動作によるデータ保存や匂い類度F及び匂い強度Sの表
示は継続される。そしてこのサンプリング切り換え選択
の動作下で、キースイッチS3、S4が操作されると、
マイコン2は、また測定データの保存動作を停止し、リ
アルタイムサンプリングに移行する。
By the way, under the operation of selecting and switching the sampling cycle, the microcomputer 2 performs the sampling operation in the cycle before the operation is started, and the data saving and the odor intensity F and the odor intensity S of the sampling operation are performed. The display will continue. When the key switches S3 and S4 are operated under this sampling switching selection operation,
The microcomputer 2 also stops the storage operation of the measurement data and shifts to real-time sampling.

【0040】またサンプリング動作中において、キース
イッチS2が操作されると、マイコン2はピークホール
ド動作を開始し、匂い強度Sの最大値1点とその時の匂
い類度Fの表示をホールドする。このホールド動作は再
度キースイッチS2が操作されると、解除される。
When the key switch S2 is operated during the sampling operation, the microcomputer 2 starts the peak hold operation and holds the maximum value of the odor intensity S of 1 point and the odor intensity F at that time. This hold operation is released when the key switch S2 is operated again.

【0041】尚上記実施形態ではサンプリング時に半導
体ガスセンサ1A,1Bの感ガス体8a,8bに接続す
る負荷抵抗値の高い状態の場合の検出出力と、低い状態
の検出出力とを夫々取り込み、高い精度が取れる側の検
出出力を採用するようにしているが、検出出力をサンプ
リングするときにA/D変換に必要な時間のみ所望の検
出精度が得られる負荷抵抗値に、通常時の負荷抵抗値か
ら切り換えてその切り換えた負荷抵抗値の状態で検出出
力を取り込み、A/D変換後通常の負荷抵抗値に戻すよ
うにしても良い。この切り換え時の負荷抵抗値としては
無限大の抵抗値、つまり開放状態を含むことは言うまで
もない。
In the above embodiment, the detection output in the case of a high load resistance value connected to the gas sensitive bodies 8a, 8b of the semiconductor gas sensors 1A, 1B at the time of sampling and the detection output in the low state are respectively taken in to obtain high accuracy. Although the detection output on the side that can take the value is adopted, the load resistance value at which the desired detection accuracy can be obtained only during the time required for A / D conversion when sampling the detection output is It is also possible to switch and load the detection output in the state of the switched load resistance value, and restore the normal load resistance value after A / D conversion. It goes without saying that the load resistance value at the time of switching includes an infinite resistance value, that is, an open state.

【0042】[0042]

【発明の効果】請求項1の発明では、半導体ガスセンサ
と、この半導体ガスセンサの感ガス体に直列に接続され
る負荷抵抗と、半導体ガスセンサの感ガス体と負荷抵抗
との直列回路に電圧を印加する電圧源と、半導体ガスセ
ンサの感ガス体と負荷抵抗との接続点の電圧を検出出力
としてサンプリングし、このサンプリングした電圧をA
/D変換し、このA/D変換された電圧値に基づいて求
められた半導体ガスセンサの感ガス体の抵抗値と予め被
検知ガスを含まない空気の雰囲気下で求めた当該半導体
ガスセンサの感ガス体の抵抗値とから被検知ガスの濃度
を検知するガス検知手段とを備えた半導体ガスセンサを
用いたガス検知装置において、半導体ガスセンサの感ガ
ス体に接続する負荷抵抗の負荷抵抗値を、検出出力をサ
ンプリングするときにガス検知手段によるA/D変換に
必要な時間のみ所望の検出精度が得られる負荷抵抗値
に、通常時の負荷抵抗値から切り換え、ガス検知手段に
よるA/D変換後通常の負荷抵抗値に戻す負荷抵抗切り
替え手段とを設けたので、負荷抵抗値の切り換えによる
半導体ガスセンサの感ガス体の抵抗値のドリフトを押さ
えることができ、その結果半導体ガスセンサの感ガス体
の抵抗値の変化領域が広くても、使用するA/D変換器
の分解能を悪くすることなく、高精度のガス検知が行え
るという効果がある。
According to the first aspect of the present invention, a voltage is applied to the semiconductor gas sensor, the load resistance connected in series to the gas sensitive body of the semiconductor gas sensor, and the series circuit of the gas sensitive body and the load resistance of the semiconductor gas sensor. The voltage at the connection point of the semiconductor gas sensor, the gas sensitive body of the semiconductor gas sensor, and the load resistance is sampled as a detection output, and the sampled voltage is A
/ D conversion, and the resistance value of the gas-sensitive body of the semiconductor gas sensor obtained based on the voltage value obtained by the A / D conversion and the gas-sensitive gas of the semiconductor gas sensor obtained in advance in an atmosphere of air containing no gas to be detected. In a gas detection device using a semiconductor gas sensor equipped with a gas detection means for detecting the concentration of a gas to be detected from the resistance value of the body, the load resistance value of the load resistance connected to the gas sensitive body of the semiconductor gas sensor is detected and output. When sampling, the load resistance value is switched from a normal load resistance value to a load resistance value that gives a desired detection accuracy only during the time required for the A / D conversion by the gas detection means, and after the A / D conversion by the gas detection means, the normal Since the load resistance switching means for returning to the load resistance value is provided, it is possible to suppress the drift of the resistance value of the gas sensitive body of the semiconductor gas sensor due to the switching of the load resistance value. Results widely varying region of the resistance value of the gas-sensitive material of the semiconductor gas sensor without deteriorating the resolution of the A / D converter to be used, there is an effect that allows the gas detection with high accuracy.

【0043】請求項2の発明では、請求項1の発明にお
いて、負荷抵抗切り替え手段は、通常時の負荷抵抗値と
は異なる複数の負荷抵抗値にA/D変換に必要な時間の
み順次切り換え、最後の負荷抵抗値に切り替え後通常の
負荷抵抗値に戻し、ガス検知手段は、負荷抵抗切り替え
手段による切り替え開始直前において通常の負荷抵抗値
による検出出力を、負荷抵抗切り替え開始後において順
次切り替えられる各負荷抵抗値による検出出力を夫々サ
ンプリングし、負荷抵抗切り替え終了後に被検知ガスの
濃度を検知するための検知出力として最適な精度が得ら
れる負荷抵抗値時の検出出力を採用するので、常に最適
な精度が得られる負荷抵抗値による検出出力を選択で
き、より高精度なガス検知が行えるという効果がある。
According to a second aspect of the present invention, in the first aspect of the present invention, the load resistance switching means sequentially switches to a plurality of load resistance values different from the normal load resistance value only during a time required for A / D conversion, After switching to the final load resistance value, the normal load resistance value is restored, and the gas detection unit sequentially switches the detection output based on the normal load resistance value immediately before the switching by the load resistance switching unit, and after the load resistance switching starts. Since the detection output based on the load resistance value is sampled and the detection output at the time of the load resistance value that gives the optimum accuracy is obtained as the detection output for detecting the concentration of the gas to be detected after switching the load resistance, it is always optimal. It is possible to select the detection output based on the load resistance value with which the accuracy can be obtained, and it is possible to detect the gas with higher accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を採用した匂い検知器の回路図である。FIG. 1 is a circuit diagram of an odor detector adopting the present invention.

【図2】同上の匂い検知器に使用する半導体ガスセンサ
の感度と、被検知ガスの濃度との関係説明図である。
FIG. 2 is an explanatory diagram showing the relationship between the sensitivity of the semiconductor gas sensor used in the odor detector and the concentration of the gas to be detected.

【図3】同上の匂い検知器で測定する匂い類度及び匂い
強度と使用する半導体ガスセンサの感度の関係説明図で
ある。
FIG. 3 is an explanatory diagram showing the relationship between the odor intensity and odor intensity measured by the odor detector and the sensitivity of the semiconductor gas sensor used.

【符号の説明】[Explanation of symbols]

1A,1B 半導体ガスセンサ 2 マイクロコンピュータ 8a,8b 感ガス体 R5〜R8 負荷抵抗 1A, 1B Semiconductor gas sensor 2 microcomputer 8a, 8b Sensitive gas body R5 to R8 load resistance

フロントページの続き Fターム(参考) 2G046 AA23 AA24 DB02 DB05 DC02 DC09 DC14 DC16 DC17 DC18 DD01 EB01 EB06 FB01 2G060 AA01 AB19 AB21 AB26 AE19 AF07 BA01 BB02 BB08 BC03 HA01 HB02 HB06 HC07 HC13 HC19 HC21 HC22 HC26 HD02 HE01 HE02 KA01 Continued front page    F term (reference) 2G046 AA23 AA24 DB02 DB05 DC02                       DC09 DC14 DC16 DC17 DC18                       DD01 EB01 EB06 FB01                 2G060 AA01 AB19 AB21 AB26 AE19                       AF07 BA01 BB02 BB08 BC03                       HA01 HB02 HB06 HC07 HC13                       HC19 HC21 HC22 HC26 HD02                       HE01 HE02 KA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体ガスセンサと、この半導体ガスセン
サの感ガス体に直列に接続される負荷抵抗と、半導体ガ
スセンサの感ガス体と負荷抵抗との直列回路に電圧を印
加する電圧源と、半導体ガスセンサの感ガス体と負荷抵
抗との接続点の電圧を検出出力としてサンプリングし、
このサンプリングした電圧をA/D変換し、このA/D
変換された電圧値に基づいて求められた半導体ガスセン
サの感ガス体の抵抗値と予め被検知ガスを含まない空気
の雰囲気下で求めた当該半導体ガスセンサの感ガス体の
抵抗値とから被検知ガスの濃度を検知するガス検知手段
とを備えた半導体ガスセンサを用いたガス検知装置にお
いて、半導体ガスセンサの感ガス体に接続する負荷抵抗
の負荷抵抗値を、検出出力をサンプリングするときにガ
ス検知手段によるA/D変換に必要な時間のみ所望の検
出精度が得られる負荷抵抗値に、通常時の負荷抵抗値か
ら切り換え、ガス検知手段によるA/D変換後通常の負
荷抵抗値に戻す負荷抵抗切り替え手段とを設けたことを
特徴とする半導体ガスセンサを用いたガス検知装置。
1. A semiconductor gas sensor, a load resistance connected in series to a gas sensitive body of the semiconductor gas sensor, a voltage source for applying a voltage to a series circuit of the gas sensitive body of the semiconductor gas sensor and the load resistance, and the semiconductor gas sensor. The voltage at the connection point between the gas-sensing body and the load resistance of is sampled as the detection output,
This sampled voltage is A / D converted and this A / D
The gas to be detected from the resistance value of the gas sensitive body of the semiconductor gas sensor obtained based on the converted voltage value and the resistance value of the gas sensitive body of the semiconductor gas sensor previously obtained in an atmosphere of air not containing the gas to be detected In a gas detection device using a semiconductor gas sensor provided with a gas detection means for detecting the concentration of, the load resistance value of the load resistance connected to the gas-sensitive body of the semiconductor gas sensor is determined by the gas detection means when sampling the detection output. Load resistance switching means for switching from a normal load resistance value to a load resistance value for which desired detection accuracy can be obtained only during the time required for A / D conversion, and for returning to a normal load resistance value after A / D conversion by the gas detection means A gas detection device using a semiconductor gas sensor, characterized by being provided with.
【請求項2】負荷抵抗切り替え手段は、通常時の負荷抵
抗値とは異なる複数の負荷抵抗値にA/D変換に必要な
時間のみ順次切り換え、最後の負荷抵抗値に切り替え後
通常の負荷抵抗値に戻し、ガス検知手段は、負荷抵抗切
り替え手段による切り替え開始直前において通常の負荷
抵抗値による検出出力を、負荷抵抗切り替え開始後にお
いて順次切り替えられる各負荷抵抗値による検出出力を
夫々サンプリングし、負荷抵抗切り替え終了後に被検知
ガスの濃度を検知するための検知出力として最適な精度
が得られる負荷抵抗値時の検出出力を採用することを特
徴とする請求項1記載の半導体ガスセンサを用いたガス
検知装置。
2. The load resistance switching means sequentially switches to a plurality of load resistance values different from the normal load resistance value only during a time required for A / D conversion, and after switching to the last load resistance value, the normal load resistance value. The gas detection means samples the detection output by the normal load resistance value immediately before the start of switching by the load resistance switching means and the detection output by each load resistance value that is sequentially switched after the start of the load resistance switching, respectively. 2. The gas detection using the semiconductor gas sensor according to claim 1, wherein a detection output at a load resistance value that provides optimum accuracy is adopted as a detection output for detecting the concentration of the gas to be detected after the resistance switching is completed. apparatus.
JP2001385145A 2001-12-18 2001-12-18 Gas detector using semiconductor gas sensor Expired - Fee Related JP3742588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001385145A JP3742588B2 (en) 2001-12-18 2001-12-18 Gas detector using semiconductor gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001385145A JP3742588B2 (en) 2001-12-18 2001-12-18 Gas detector using semiconductor gas sensor

Publications (2)

Publication Number Publication Date
JP2003185612A true JP2003185612A (en) 2003-07-03
JP3742588B2 JP3742588B2 (en) 2006-02-08

Family

ID=27594682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385145A Expired - Fee Related JP3742588B2 (en) 2001-12-18 2001-12-18 Gas detector using semiconductor gas sensor

Country Status (1)

Country Link
JP (1) JP3742588B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089092A (en) * 2012-10-30 2014-05-15 Shimadzu Corp Control device for analyzing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089092A (en) * 2012-10-30 2014-05-15 Shimadzu Corp Control device for analyzing device

Also Published As

Publication number Publication date
JP3742588B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
TWI465733B (en) Electrical apparatus capable of measuring electrical resistance, method of controlling output current in an electronic apparatus capable of measuring electrical resistance, and appartus for measuring resistance
JP2008175819A (en) Salinity sensor using ion conductivity, and salinity measuring system and method
JPH09170997A (en) Apparatus for judging active state of air-fuel ratio sensor
JP3742588B2 (en) Gas detector using semiconductor gas sensor
JP2805048B2 (en) Gas detector
JP2000041952A (en) Biological information detector
JP2850514B2 (en) PH meter with life expectancy display
JP2005257702A (en) Co detector
JP3897327B2 (en) Portable gas detector
JPH07198644A (en) Gas sensor and method of detecting gas
JPH1033631A (en) Meridian point detecting device
US6174290B1 (en) Ovulation period detecting apparatus and ovulation period detecting method for mammals
JP3547102B2 (en) Gas detector and its setting method
JP4669146B2 (en) Gas detector
JP2005061879A (en) Resistance measuring instrument
JP3999891B2 (en) Gas detection method and apparatus
JP2569878B2 (en) Temperature sensor circuit disconnection detection method
JPS62190427A (en) Electronic clinical thermometer
JPS6113114A (en) Electronic clinical thermometer
JPS6242359Y2 (en)
JPS6353462A (en) Method and device for detecting stand-by state of oxygen measuring sensor
RU2241980C1 (en) Device for determining thermal characteristics of soil
JPH06314389A (en) Gas detecting device and adjusting method for the same
JP2000051642A (en) Air cleaner
JPH095283A (en) Gas concentration detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051111

R150 Certificate of patent or registration of utility model

Ref document number: 3742588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees