JP2003185480A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JP2003185480A
JP2003185480A JP2001381809A JP2001381809A JP2003185480A JP 2003185480 A JP2003185480 A JP 2003185480A JP 2001381809 A JP2001381809 A JP 2001381809A JP 2001381809 A JP2001381809 A JP 2001381809A JP 2003185480 A JP2003185480 A JP 2003185480A
Authority
JP
Japan
Prior art keywords
vortex
flow
filter
conduit
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001381809A
Other languages
Japanese (ja)
Other versions
JP3675759B2 (en
Inventor
Atsushi Tanimoto
淳 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP2001381809A priority Critical patent/JP3675759B2/en
Publication of JP2003185480A publication Critical patent/JP2003185480A/en
Application granted granted Critical
Publication of JP3675759B2 publication Critical patent/JP3675759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vortex flowmeter having filters which have no need of feeding separate purge flows and a small number of replacing times. <P>SOLUTION: A vortex agitator 2 is provided against a flow of a fluid under test in a pipeline 1. A conduit composed of a bypass pipe 10, branching pipes 7ab, 7cd, a bypass pipe 10' and branching pipes 4a, 4b has pressure guide holes 3a, 3b on or near both sides of the vortex agitator 2 and an inlet (branch) 11 opened upstream the agitator 2 and communicates with the pressure guide holes 3a, 3b from the inlet 11 formed in a flow pipe wall of a high pressure part 1' of a flow pipe 1. A sensor 6ab disposed in the conduit detects a vortex caused by the agitator 2 to measure the flow rate or the flow velocity of the fluid under test. The conduit has filters 8ab (8cd) in the branching pipes 7ab, 7cd upstream the sensor 6ab. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、渦流量計に関し、
より詳細には、被測定流体中の不純物を取り除くための
フィルタを備えた渦流量計に関する。
TECHNICAL FIELD The present invention relates to a vortex flowmeter,
More specifically, the present invention relates to a vortex flowmeter equipped with a filter for removing impurities in a fluid to be measured.

【0002】[0002]

【従来の技術】一般に渦流量計は、管路に配設した渦発
生体により被測定流体にカルマン渦列を発生させ、この
カルマン渦列の渦を適宜な手段によって検出計数するこ
とにより流速或いは流量を知るように構成されている。
したがって、管路中に臨まれる機械的構成部材は、渦発
生体のみであり、構造が簡単であるため塵埃,固型物な
どの不純物を含有した気体,液体などの流量測定用に供
することができると共に、測定精度も極めて高いので最
近に至り広く実施されている。
2. Description of the Related Art In general, a vortex flowmeter generates a Karman vortex train in a fluid to be measured by a vortex generator arranged in a pipe line, and detects or counts the vortex of the Karman vortex train by an appropriate means to measure a flow velocity or It is configured to know the flow rate.
Therefore, the mechanical constituent member exposed in the conduit is only the vortex generator, and since the structure is simple, it can be used for flow rate measurement of gas, liquid, etc. containing impurities such as dust and solid matter. Since it is possible and the measurement accuracy is extremely high, it has been widely implemented recently.

【0003】ところで、この渦流量計の渦計測手段につ
いて、本出願人は特許第1241887号明細書におい
て、分流されたバイパス管内におけるバイアス流のカル
マン渦影響による圧力変動をサーミスタのようなセンサ
で敏感に検出して極めて高感度、高精度の流量計が得ら
れる技術を記載した。現在、渦の検出素子としては、小
型で安価という理由で熱線,金属箔,サーミスタ等の熱
検出素子が多用されており、これらは定電圧,定電流源
に接続されて加熱される。加熱された熱検出素子は、渦
による流れ変動により放熱され、これにより生ずる抵抗
値の変化を、ブリッジ回路等により電流、電圧変換する
ものであるが、変換された信号値は、同一流体で、流体
温度,流量が等しい場合、一定電流又は電圧値が得られ
るが、流体が同一であっても、流体温度が変化したり、
流体に含まれる塵埃の付着等による放熱係数の変化によ
り変化する。同特許に係る渦流量計においては、分流手
段を用いているので、被計測流体中の粗大塵埃など流量
測定に重大な支障を与える固型物は完全に排除でき、不
純物を混有する流体用として極めて有効であるが、微細
な固型物がバイアス流内に混在することを避けることは
不可能である。したがって、バイアス流を濾過するフィ
ルタを設けても、どうしても目詰りを伴い次第に出力低
下の傾向を生じ、遂には出力停止という状態に至る不都
合が予測される。
With respect to the vortex measuring means of the vortex flowmeter, the applicant of the present invention has disclosed in Japanese Patent No. 1241887 that a pressure fluctuation due to a Karman vortex effect of a bias flow in a diverted bypass pipe is sensitive to a sensor such as a thermistor. The technology that can obtain a flowmeter with extremely high sensitivity and high accuracy by detecting it was described. Currently, as the eddy detecting element, a heat detecting element such as a heat wire, a metal foil, or a thermistor is widely used because it is small and inexpensive, and these are heated by being connected to a constant voltage or constant current source. The heated heat detection element radiates heat due to flow fluctuations due to vortices, and changes in resistance value caused thereby are converted into current and voltage by a bridge circuit or the like, but the converted signal value is the same fluid, When the fluid temperature and flow rate are equal, a constant current or voltage value is obtained, but even if the fluid is the same, the fluid temperature changes,
It changes depending on the change of the heat dissipation coefficient due to the adhesion of dust contained in the fluid. Since the vortex flowmeter according to the same patent uses the flow dividing means, it is possible to completely eliminate solid matter such as coarse dust in the fluid to be measured, which seriously hinders the flow rate measurement, and is suitable for fluids containing impurities. Although extremely effective, it is impossible to avoid the inclusion of fine solid matter in the bias flow. Therefore, even if a filter for filtering the bias flow is provided, it is inevitable that the output will tend to gradually decrease due to clogging and eventually the output will be stopped.

【0004】このような不都合に対しては、フィルタの
浄化,交換によって対処できるが、問題は、フィルタ点
検時期の適切な検知或いは報知である。本出願人はこの
問題を解消するために、実公昭61−43207号公報
に記載の発明においてフィルタの目詰りを検知,報知
し、カルマン渦の検出感度の低下、計測不良などの不都
合を未然に防止してたえず適正な計測状態の下に保持で
きるようにした渦流量計におけるフィルタ目詰検知装置
を提供した。
Such inconvenience can be dealt with by cleaning and replacing the filter, but the problem is proper detection or notification of the filter inspection time. In order to solve this problem, the present applicant detects and reports the clogging of the filter in the invention described in Japanese Utility Model Publication No. 61-43207, thereby causing problems such as a decrease in Karman vortex detection sensitivity and measurement failure. (EN) Provided is a filter clogging detection device for a vortex flowmeter, which can be prevented and constantly kept under an appropriate measurement condition.

【0005】図3は、従来技術によるフィルタを備えた
渦流量計の構成例を示す図で、実公昭61−43207
号公報に記載のフィルタ目詰検知装置を備えた渦流量計
の構成例を示す図である。図中、1は被測定流体(被計
測流体)の流れる流路(管路)、2は管路1中に配設し
た断面形状が二等辺三角形を備えた渦発生体、20は管
路1の渦発生体2の上流側の流入口21で一端を開口し
たバイパス管、17ab,17cdはバイパス管20と
分流点で分流される分流管、4a,4bは分流管17a
bの分流管、4c,4dは分流管17cdの分流管であ
る。分流管4a,4b,4c,4dの端は、渦発生体2
の流れに対向する面を前面として渦発生体2の両側面で
導圧口3a,3b,3c,3dとして開口して形成して
ある。なお、導圧口3a,3bは渦発生体2の両側面の
同じ位置に形成されており、導圧口3c,3dについて
も同様である。管路1内を流れる被測定流体の内、バイ
パス管20内に流入した流体は、分流点でその流れが二
分されそれぞれ分流管17ab,17cdを通って、さ
らに分流管4a,4b,4c,4d内に流入し渦発生体
2の後部両側に開口した導圧口3a,3b,3c,3d
を経て管路1内に帰流する。分流管4a,4b(4c,
4d)には、分流管17ab(17cd)との交叉位置
近傍にサーミスタのようなセンサ6ab(6cd)が配
設されている。分流管17ab,17cdには各々異な
る網目を備えた取外交換自在のフィルタ18ab,18
cdが配設されている。各分流管4a,4b,4c,4
d,17ab,17cdには各々バルブ5a,5b,5
c,5d,19ab,19cdが設けられており、フィ
ルタ交換を行う際に所定の分流管への被測定流体の流入
を防ぐ。今、仮にフィルタ18abがフィルタ18cd
より網目が小さく形成されていれば、フィルタ18ab
の方がフィルタ18cdよりも早く目詰まりすることと
なり、両フィルタ18ab,18cdの目詰まり時間、
すなわち、ダストの付着時間に差をもたせることとな
る。
FIG. 3 is a diagram showing an example of the structure of a vortex flowmeter equipped with a filter according to the prior art.
It is a figure which shows the structural example of the vortex flowmeter provided with the filter clogging detection apparatus of the publication. In the figure, 1 is a flow path (pipe) through which a fluid to be measured (fluid to be measured) flows, 2 is a vortex generator having a cross-sectional shape of an isosceles triangle, and 20 is a pipeline 1. Of the vortex generator 2 of which one end is opened at the inlet 21 on the upstream side, 17ab and 17cd are the bypass pipes 20 and the diversion pipes 4a and 4b are the diversion pipes 17a.
The diversion pipe 4b and 4c and 4d are diversion pipes of the diversion pipe 17cd. The ends of the flow dividing pipes 4a, 4b, 4c, 4d are attached to the vortex generator 2
The surface opposite to the flow of the above is formed as the pressure guide ports 3a, 3b, 3c, 3d on both side faces of the vortex generator 2 as the front face. The pressure guide ports 3a and 3b are formed at the same positions on both side surfaces of the vortex generator 2, and the same applies to the pressure guide ports 3c and 3d. Of the fluid to be measured flowing in the pipe line 1, the fluid that has flowed into the bypass pipe 20 is divided into two at the diversion points, passes through the diversion pipes 17ab and 17cd, respectively, and is further divided into the diversion pipes 4a, 4b, 4c and 4d. Pressure inlets 3a, 3b, 3c, 3d that flow into the inside of the vortex generator 2 and open on both sides of the rear part of the vortex generator 2.
And return to the inside of the pipeline 1. Flow dividing pipes 4a, 4b (4c,
4d), a sensor 6ab (6cd) such as a thermistor is arranged in the vicinity of the intersection with the flow dividing pipe 17ab (17cd). The flow dividing pipes 17ab and 17cd are provided with different meshes and are removable filters 18ab and 18d.
cd is provided. Each flow dividing pipe 4a, 4b, 4c, 4
The valves 5a, 5b, 5 are provided on d, 17ab, 17cd, respectively.
c, 5d, 19ab, 19cd are provided to prevent the fluid to be measured from flowing into a predetermined flow dividing pipe when the filter is replaced. Now, assume that the filter 18ab is the filter 18cd
If the mesh is made smaller, the filter 18ab
Will cause clogging faster than the filter 18cd, and the clogging time of both filters 18ab and 18cd,
That is, there is a difference in the dust adhesion time.

【0006】図4は、図3の渦流量計におけるフィルタ
目詰検知装置の詳細な構成を示す図で、図中、22a
b,22cdは各々センサ6ab,6cdのプリアン
プ、23ab,23cdは周波数−電流変換器、又は周
波数−電圧変換器のような変換器、24は両変換器23
ab,23cdよりの出力信号を比較判別する比較器、
25は警報信号出力端子、26は両変換器23ab,2
3cdよりの信号を切換えることができる切換スイッ
チ、27はパルス信号出力端子である。なお、比較器2
4は偏差警報を発信できるようになっている。
FIG. 4 is a diagram showing the detailed structure of the filter clogging detection device in the vortex flowmeter of FIG.
b and 22cd are preamplifiers of the sensors 6ab and 6cd, 23ab and 23cd are converters such as frequency-current converters or frequency-voltage converters, and 24 is both converters 23.
a comparator for comparing and discriminating output signals from ab and 23 cd,
25 is an alarm signal output terminal, 26 is both converters 23ab, 2
A changeover switch capable of changing over the signal from 3 cd, 27 is a pulse signal output terminal. In addition, the comparator 2
No. 4 can send a deviation warning.

【0007】管路1内を流れる被測定流体は、渦発生体
2の前面を横切ると渦発生体2の下流両側に交互にカル
マン渦を生成する。この渦発生体2の側面に交互に生じ
るカルマン渦の生成分離は圧力変動のため、バイパス管
内のバイアス流の管路との合流端である開口部3a,3
b(3c,3d)における負荷変動として作用し、バイ
アス流の流速変化をカルマン渦周期と同期して発生させ
るものとなり、この流速変化は分流管4a,4b(4
c,4d)に伝達され、センサ6ab(6cd)が敏感
に検知し、プリアンプ22ab(22cd),変換器2
3ab(23cd)を経て、出力信号を取り出し、これ
により管路1内を流れる流体の流速或いは流量を間接的
に知ることができる。
When the fluid to be measured flowing in the conduit 1 crosses the front surface of the vortex generator 2, it produces Karman vortices alternately on both downstream sides of the vortex generator 2. Due to the pressure fluctuation, the generation and separation of the Karman vortices alternately generated on the side surface of the vortex generator 2 are the openings 3a, 3 which are the merging ends of the bias flow in the bypass pipe and the conduit.
It acts as a load change in b (3c, 3d), and causes a flow velocity change of the bias flow to be generated in synchronism with the Karman vortex period.
c, 4d), the sensor 6ab (6cd) sensitively detects the preamplifier 22ab (22cd), the converter 2
An output signal is taken out through 3ab (23 cd), and thereby the flow velocity or flow rate of the fluid flowing in the pipe line 1 can be indirectly known.

【0008】なお、図示されていないが、例えば両セン
サ6ab,6cdは、各々が、一対のサーミスタとして
ブリッジ回路を構成するものであり、定電流電源により
きわめて微弱な電流で加熱されており、流体が流れてい
ない時はバイアス流路に流れが生じないため各々のブリ
ッジは平衡を保って発信することがないが、流れが生ず
るとバイアス流路のサーミスタセンサに流速変化が生じ
て一対のサーミスタは差動的に抵抗変化を生ずるのでブ
リッジ回路の平衡がくずれ一対の渦発生毎に一サイクル
の交番電圧が発生し、これを増幅することにより渦の周
波数に等しいほぼ正弦波に近い出力を得ることができ、
この信号を検知して流速,流量を測定できる。このよう
な流速,流量測定において、バイパス流路の分流管には
それぞれ網目の大きさの異なるフィルタ18ab,18
cdを配設してあり、分流された流体内の塵埃などを濾
過しているので、次第に目詰まり現象を伴う。しかし、
二個のフィルタ18ab,18cdはそれぞれ網目の大
きさを異にしているので塵埃の付着時間には差を生ずる
ことができる。しかも、偏差警報器24によって両フィ
ルタ18ab,18cdの目詰まり現象の感度低下をき
わめて敏感に検知できる。ことに網目の小さいフィルタ
18abは、網目の大きいフィルタ18cdより早く目
詰まりすることは明らかであり、したがってフィルタ1
8ab側のセンサ6abの方が早目に感度低下あるいは
検出不能を起こす恐れがあるが、他のフィルタ18cd
側のセンサ6cdは未だ十分に正常な動作を継続してい
るので、フィルタ18abを交換するのに必要なバルブ
4a,4b,19abを閉塞してフィルタ18abを浄
化、交換するなどの適切な処置を施すことにより連続計
測中にて再び正常な動作に復帰することができる。
Although not shown, for example, each of the sensors 6ab and 6cd constitutes a bridge circuit as a pair of thermistors, and is heated by a constant current power source with an extremely weak current. When there is no flow, each bridge does not transmit in equilibrium because there is no flow in the bias flow path, but when a flow occurs, the flow velocity changes in the thermistor sensor in the bias flow path and the pair of thermistors Since the resistance changes differentially, the balance of the bridge circuit is lost, and an alternating voltage of one cycle is generated every time a pair of vortices is generated, and by amplifying this, an output close to a sine wave equal to the frequency of the vortex is obtained. Can
The flow velocity and flow rate can be measured by detecting this signal. In such flow velocity and flow rate measurement, filters 18ab and 18 having different mesh sizes are provided in the flow dividing pipes of the bypass flow passages.
Since the cd is provided to filter dust and the like in the divided fluid, a clogging phenomenon is gradually caused. But,
Since the two filters 18ab and 18cd have different mesh sizes, the dust adhesion time can be different. In addition, the deviation alarm 24 can very sensitively detect the decrease in the sensitivity of the clogging phenomenon of the filters 18ab and 18cd. In particular, it is clear that the smaller mesh filter 18ab will clog faster than the larger mesh filter 18cd, and thus filter 1
The sensor 6ab on the 8ab side may have a lower sensitivity or may be undetectable earlier, but the other filter 18cd
Since the sensor 6cd on the side still continues to operate normally sufficiently, appropriate measures such as closing the valves 4a, 4b, 19ab necessary for replacing the filter 18ab to clean and replace the filter 18ab are taken. By performing this, it is possible to return to normal operation again during continuous measurement.

【0009】一方、フィルタを用いずにセンサを保護す
るパージ式の渦流量計も多数提案されている。上述した
ように渦の検出素子として多用される小型で安価な熱
線,金属箔,サーミスタ等の熱検出素子は、流体が同一
であっても、流体に含まれる塵埃の付着等による放熱係
数の変化により変化するが、これは、熱検出素子が直接
流体に接触していることにより必然的に起こるものとも
いえる。このような問題を解決するために、渦変動圧力
により変化する清浄な空気,窒素ガスのパージ流の変化
としてパージ流を検出するパージ式渦流量計が用いられ
る。被測定流体の替わりにパージ流を測定することで検
出センサが被測定流体に直接接触しなくなり、通常は測
定不能なダーティな流体や高温,低温流体を測定するこ
とが可能となる。センサにて得られる検出信号の品質
は、センサ表面を流れるパージ流量にも依存し、本管の
流量が大きい程(カルマン渦による交番差圧が大きい
程)センサ部は大きなパージ流量を必要とし、逆に本管
の流量が低い程(カルマン渦による交番差圧が小さい
程)センサ部のパージ流量は低くする必要がある。すな
わち安定且つ良好なセンサ検出信号を得るためには本管
の流量に同期してパージ流量も制御する必要がある。
On the other hand, a large number of purge type vortex flowmeters have been proposed which protect the sensor without using a filter. As described above, heat detection elements such as small and inexpensive heat wires, metal foils, thermistors, etc., which are often used as eddy detection elements, change the heat dissipation coefficient due to adhesion of dust contained in the fluid even if the fluid is the same. It can be said that this is necessarily caused by the fact that the heat detecting element is in direct contact with the fluid. In order to solve such a problem, a purge type vortex flowmeter is used which detects a purge flow as a change in the purge flow of clean air and nitrogen gas which changes due to vortex fluctuation pressure. By measuring the purge flow instead of the fluid to be measured, the detection sensor does not come into direct contact with the fluid to be measured, and it is possible to measure a dirty fluid or a high temperature or low temperature fluid that cannot be normally measured. The quality of the detection signal obtained by the sensor also depends on the purge flow rate flowing on the sensor surface, and the higher the flow rate of the main pipe (the greater the alternating differential pressure due to Karman vortex), the larger the purge flow rate required by the sensor, On the contrary, the lower the flow rate of the main pipe (the smaller the alternating differential pressure due to the Karman vortex), the lower the purge flow rate of the sensor unit needs to be. That is, in order to obtain a stable and favorable sensor detection signal, it is necessary to control the purge flow rate in synchronization with the flow rate of the main pipe.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上述し
たフィルタを備えた渦流量計においては、バイパス管の
全長が短いものを想定している。これは、渦発生体の上
流遠方にバイパス管の流入口を設置した場合、或いは渦
発生体近くに流入口を設けたとしてもバイパス管自体を
長くした場合、フィルタ及びバイパス管路の摩擦や形状
による抵抗により多大な圧力損失を生じ、結果としてバ
イパス管に流れ込む被測定流体が少なくなり、パージ式
渦流量計に関して説明したような流管の流量に応じたパ
イパス流の変化が生じにくくなり、流量の広い範囲に亘
って優れたS/Nの渦信号を得ることができないことか
ら理解できる。すなわち、上述のフィルタ付き渦流量計
においては、渦発生体前後の小さな差圧に対応するだけ
の形状をもつパイパス管しか設けられず、したがってフ
ィルタを渦発生体近傍に設置する必要があり、大容量の
フィルタを設置できず、フィルタの目詰まりが早くなり
フィルタ交換の手間がかかる。さらに渦流量計の構成と
して、フィルタをその内部に設置することとなり、フィ
ルタ交換が面倒となる。
However, in the vortex flowmeter provided with the above-mentioned filter, it is assumed that the bypass pipe has a short total length. This is because when the inlet of the bypass pipe is installed far upstream of the vortex generator, or when the bypass pipe itself is lengthened even if the inlet is provided near the vortex generator, the friction and shape of the filter and the bypass pipe line. As a result, a large amount of pressure loss is generated due to the resistance due to the flow rate, and as a result, the measured fluid flowing into the bypass pipe is reduced, making it difficult for the bypass flow to change according to the flow rate of the flow tube as described for the purge type vortex flowmeter. It can be understood from the fact that an excellent S / N eddy signal cannot be obtained over a wide range. That is, in the above-described vortex flowmeter with a filter, only a bypass tube having a shape corresponding to a small differential pressure before and after the vortex generator is provided, and therefore the filter needs to be installed in the vicinity of the vortex generator. Since it is not possible to install a filter with a large capacity, the filter will become clogged quickly and it will take time and effort to replace the filter. Further, as a configuration of the vortex flowmeter, a filter is installed inside the vortex flowmeter, which makes it difficult to replace the filter.

【0011】一方、パージ式渦流量計は、N2ガス等の
高価なガスを測定期間中常に供給していなければなら
ず、コストがかかる上に、環境面でも好ましくない。通
常、こうした渦流量計は、24時間操業の電力設備等の
プラントに設置されることも多く、パージ式の場合、ラ
インを止めるとパージ流の供給も止めなければならず面
倒であり、コスト高,環境への影響をも考慮した場合、
パージ式の渦流量計は採用しにくい。
On the other hand, the purge type vortex flowmeter must constantly supply an expensive gas such as N 2 gas during the measurement period, which is costly and environmentally unfavorable. Usually, such a vortex flowmeter is often installed in a plant such as a power facility that operates for 24 hours, and in the case of the purge type, it is troublesome because the supply of the purge flow must be stopped when the line is stopped. , When considering the impact on the environment,
It is difficult to use a purge type vortex flowmeter.

【0012】本発明は、上述のごとき実状に鑑みてなさ
れたものであり、別途パージ流の供給を必要とせず、ま
た交換回数の少ないフィルタを備え、被測定流体に含ま
れる塵埃等の不純物によるカルマン渦の検出感度の低
下,計測不良などの不都合を未然に防止してたえず適正
な計測状態の下に保持することが可能な渦流量計を提供
することをその目的とする。
The present invention has been made in view of the above situation, and does not require a separate supply of a purge flow and is provided with a filter with a small number of replacements, and is made by impurities such as dust contained in the fluid to be measured. It is an object of the present invention to provide a vortex flowmeter that can prevent inconveniences such as a decrease in Karman vortex detection sensitivity and measurement failure, and can be maintained under appropriate measurement conditions.

【0013】また、本発明は、上述の渦流量計におい
て、フィルタの目詰まりを検知することが可能な渦流量
計を提供することを他の目的とする。
Another object of the present invention is to provide a vortex flowmeter which can detect clogging of a filter in the above vortex flowmeter.

【0014】[0014]

【課題を解決するための手段】第1の技術手段は、被測
定流体が流通する流管内に、流れに対向して設けられた
渦発生体と、該渦発生体の両側面又は両側面近傍に導圧
口をもち、該渦発生体の上流側に開口した流入口をも
ち、該流入口から各導圧口に連通する導管とを備え、該
導管に配設したセンサに前記渦発生体で発生する渦を検
出させて被測定流体の流量又は流速を測定する渦流量計
であって、前記導管は前記センサの上流側に並列な複数
のフィルタを配設し、前記流入口は前記流管内の高圧部
に位置することを特徴としたものである。
A first technical means is to provide a vortex generator provided in a flow tube through which a fluid to be measured flows so as to face the flow, and both side surfaces of the vortex generator or near both side surfaces. A vortex generator having a pressure guide port, an inlet opening at the upstream side of the vortex generator, and a conduit communicating from the inlet to each pressure guide port. Is a vortex flowmeter for measuring the flow rate or flow velocity of the fluid to be measured by detecting the vortex generated in the above, wherein the conduit is provided with a plurality of parallel filters on the upstream side of the sensor, and the inflow port is the flow channel. It is characterized in that it is located in the high pressure portion in the pipe.

【0015】第2の技術手段は、第1の技術手段におい
て、各フィルタは、各々異なる網目をもつことを特徴と
したものである。
The second technical means is characterized in that, in the first technical means, each filter has a different mesh.

【0016】第3の技術手段は、被測定流体が流通する
流管内に、流れに対向して設けられた渦発生体と、該渦
発生体の両側面又は両側面近傍に導圧口をもち、該渦発
生体の上流側に開口した流入口をもち、該流入口から各
導圧口に連通する複数の導管とを備え、該導管に配設し
たセンサに前記渦発生体で発生する渦を検出させて被測
定流体の流量又は流速を測定する渦流量計であって、各
導管は前記センサの上流側に1つ又は並列な複数のフィ
ルタを配設し、前記流入口は前記流管内の高圧部に位置
することを特徴としたものである。
A third technical means has a vortex generator provided opposite to the flow in a flow tube through which the fluid to be measured flows, and a pressure guide port on both side surfaces of the vortex generator or in the vicinity of both side surfaces. A vortex generated by the vortex generator in a sensor arranged in the conduit, the conduit having an inlet opening on the upstream side of the vortex generator and communicating from the inlet to each pressure guide port. Is a vortex flowmeter for detecting a flow rate or a flow velocity of a fluid to be measured, wherein each conduit is provided with one or a plurality of filters in parallel on the upstream side of the sensor, and the inflow port is provided in the flow tube. It is characterized in that it is located in the high pressure part of the.

【0017】第4の技術手段は、第3の技術手段におい
て、各フィルタは、各導管の各々で又は各導管内の各々
で異なる網目をもつことを特徴としたものである。
A fourth technical means is the third technical means characterized in that each filter has a different mesh in each of the respective conduits or in each of the respective conduits.

【0018】第5の技術手段は、第1乃至第4のいずれ
か1の技術手段において、前記導管は、各フィルタの上
流側及び下流側に、フィルタ交換用のバルブを配設した
ことを特徴としたものである。
A fifth technical means is the one according to any one of the first to fourth technical means, characterized in that the conduit is provided with valves for filter replacement on the upstream side and the downstream side of each filter. It is what

【0019】第6の技術手段は、被測定流体が流通する
流管内に、流れに対向して設けられた渦発生体と、該渦
発生体の両側面又は両側面近傍に導圧口をもち、該渦発
生体の上流側に開口した流入口をもち、該流入口から各
導圧口に連通する複数の導管とを備え、該導管に配設し
たセンサに前記渦発生体で発生する渦を検出させて被測
定流体の流量又は流速を測定する渦流量計であって、前
記導管は前記センサの上流側に各導管ごとに網目の異な
るフィルタを配設し、前記流入口は前記流管内の高圧部
に位置し、当該渦流量計は、各導管に配設したセンサの
検出信号を比較する比較器と、該比較器により比較した
各導管のセンサの検出信号の差が所定の閾値を越えた時
に、警報信号を発信してフィルタの目詰まりを報知する
フィルタ目詰報知器とをさらに備えることを特徴とした
ものである。
A sixth technical means has a vortex generator provided opposite to the flow in a flow tube through which the fluid to be measured flows, and pressure guide ports on both side surfaces of the vortex generator or in the vicinity of both side surfaces. A vortex generated by the vortex generator in a sensor arranged in the conduit, the conduit having an inlet opening on the upstream side of the vortex generator and communicating from the inlet to each pressure guide port. Is a vortex flowmeter for detecting the flow rate or flow velocity of the fluid to be measured, wherein the conduit has a filter with a mesh different from each other on the upstream side of the sensor, and the inlet has the inside of the flow pipe. The vortex flowmeter is located in the high pressure section of the pipe, and the vortex flowmeter has a comparator for comparing the detection signals of the sensors arranged in the respective conduits, and the difference between the detection signals of the sensors of the respective conduits compared by the comparator has a predetermined threshold value. When it exceeds, the alarm signal is sent to notify the filter clogging. It is obtained by further comprising and.

【0020】[0020]

【発明の実施の形態】図1は、本発明の一実施形態に係
る渦流量計の構成例を示す図である。本発明の一実施形
態に係る渦流量計は、被測定流体が流通する流管1内
に、流れに対向して渦発生体2が設けられているものと
する。さらにこの渦流量計は1つの導管、すなわち1つ
のバイパス管を備えるものとする。この導管は、バイパ
ス管10,分流管7ab,分流管7cd,バイパス管1
0′,分流管4a,4bからなり、渦発生体2の両側面
又は両側面近傍に対となる導圧口3a,3bと、渦発生
体2の上流側に開口した流入口(分流)11とをもち、
流入口11から各導圧口3a,3bに連通している。バ
イパス管10は管路1の渦発生体2の上流側の流入口1
1で一端を開口した導管で、分流管7ab,7cdはバ
イパス管10から分流点で分流し、各々後述のフィルタ
8ab,8cdを経て合流点で合流する導管、バイパス
管10′は分流管7ab,7cdの合流点から分流管4
a,4bへの分流点まで連通し、そこで分流する導管、
分流管4a,4bはバイパス管10′から分流点で分流
した導管であり、分流管4a,4bの端は渦発生体2の
流れに対向する面を前面として渦発生体2の両側面で、
各々導圧口3a,3bとして開口して形成してある。な
お、導圧口3a,3bは渦発生体2の両側面の同じ位置
に形成されている。流路1内を流れる被測定流体の内、
バイパス管10内に流入した流体は、分流点でその流れ
が二分され、各々分流管7ab,7cdを通って、合流
点でバイパス管10′に流入し、さらに分流管4a,4
b内に流入し、渦発生体2の後部両側に開口した導圧口
3a,3bを経て管路1内に帰流する。
FIG. 1 is a diagram showing a configuration example of a vortex flowmeter according to an embodiment of the present invention. In the vortex flowmeter according to one embodiment of the present invention, it is assumed that a vortex generator 2 is provided in a flow tube 1 through which a fluid to be measured flows so as to face the flow. Furthermore, this vortex flowmeter shall be provided with one conduit, that is, one bypass pipe. This conduit includes a bypass pipe 10, a diversion pipe 7ab, a diversion pipe 7cd, and a bypass pipe 1.
0 ', the flow dividing pipes 4a, 4b, and pressure introducing ports 3a, 3b which are paired on both side surfaces of the vortex generating body 2 or in the vicinity of both side surfaces, and an inlet port (diverting flow) 11 opened on the upstream side of the vortex generating body 2. With
The inlet 11 communicates with the pressure guide ports 3a and 3b. The bypass pipe 10 is the inlet 1 on the upstream side of the vortex generator 2 in the pipeline 1.
1 is a conduit whose one end is open, and the diversion pipes 7ab and 7cd divert from the bypass pipe 10 at the diversion point, and are joined at the confluence points through filters 8ab and 8cd described later, and the bypass pipe 10 'is the diversion pipe 7ab, Dividing pipe 4 from the confluence of 7 cd
a conduit that connects to the diversion point to a and 4b and diverts there
The flow dividing pipes 4a and 4b are conduits branched from the bypass pipe 10 'at the flow dividing point, and the ends of the flow dividing pipes 4a and 4b are both side surfaces of the vortex generator 2 with the surface facing the flow of the vortex generator 2 as the front surface.
The pressure guide ports 3a and 3b are formed so as to open. The pressure guide ports 3a and 3b are formed at the same positions on both side surfaces of the vortex generator 2. Of the fluid to be measured flowing in the flow path 1,
The fluid that has flowed into the bypass pipe 10 is divided into two parts at the diversion points, passes through the diversion pipes 7ab and 7cd, flows into the bypass pipe 10 ′ at the confluence points, and is further divided into the diversion pipes 4a and 4a.
It flows into the inside of b, and returns to the inside of the conduit 1 through the pressure introducing ports 3a and 3b which are opened on both sides of the rear part of the vortex generator 2.

【0021】流入口11は流管1に設けた高圧部1′に
位置するものとする。ここで流管1の高圧部1′とは、
流入口11を渦発生体2の十分上流側の流管壁又は流管
壁近傍に設けるのであれば、流管1の形状を変えて管路
抵抗を生じさせた部分であり、例えば直径の大きな流管
から渦発生体2を設ける小さな直径をもつ流管1とを継
ぐレデューザ,同径の流管と流管1とを継ぐエルボ等の
管継手、オリフィス等の差圧発生機構などが挙げられ
る。また、圧力タップや温度タップを設ける場合には、
その上流を高圧部1′として採用できる。さらには流入
口11を渦発生体2の十分上流側に動圧を生じさせるよ
うに設けるだけでもよく、その場合流入口11が被測定
流体の流れをせき止めるような位置及び形状をもってい
ればよい。流入口11、すなわちフィルタの上流側での
被測定流体の圧力が、導圧口3a,3bでの被測定流体
の圧力に比べて、流入口11から導圧口3a,3bに至
る流管1の管壁による管路抵抗で生ずる減圧分だけでな
く、さらに高い圧力を必要とし、その圧力を得るために
高圧部1′が設けられている。ただし、いずれの構成で
高圧部1′を作り出した場合にも、高圧部1′から流れ
が安定する距離だけ渦発生体2を離間しておく必要があ
る。この距離は整流効果をもつ管により短くすることは
可能である。また、流入口11に高圧部を設けなくと
も、フィルタの上流側のバイパス管10などにポンプを
配設して被測定流体を汲み上げても同様の効果が得られ
る。
It is assumed that the inflow port 11 is located in the high pressure section 1'provided in the flow tube 1. Here, the high pressure portion 1'of the flow tube 1 is
If the inflow port 11 is provided sufficiently upstream of the vortex generator 2 or in the vicinity of the flow tube wall, it is a portion in which the shape of the flow tube 1 is changed to generate the line resistance, and for example, the diameter is large. A reducer that connects the flow tube 1 with the vortex generator 2 and a flow tube 1 having a small diameter, a pipe joint such as an elbow that connects the flow tube with the same diameter and the flow tube 1, a differential pressure generating mechanism such as an orifice, etc. . Also, when installing a pressure tap or temperature tap,
The upstream thereof can be adopted as the high pressure section 1 '. Further, the inflow port 11 may only be provided so as to generate a dynamic pressure sufficiently upstream of the vortex generator 2, and in that case, the inflow port 11 may have a position and a shape that stop the flow of the fluid to be measured. The pressure of the fluid to be measured at the inflow port 11, that is, the upstream side of the filter is higher than the pressure of the fluid to be measured at the pressure guiding ports 3a and 3b, and the flow pipe 1 from the inflow port 11 to the pressure guiding ports 3a and 3b. A high pressure portion 1'is provided in order to obtain a higher pressure as well as a decompression amount caused by the resistance of the pipe wall due to the pipe wall. However, regardless of which structure is used to create the high-pressure portion 1 ', it is necessary to separate the vortex generator 2 from the high-pressure portion 1'by a distance at which the flow is stable. This distance can be shortened by a tube having a rectifying effect. Even if a high-pressure portion is not provided at the inflow port 11, the same effect can be obtained even if a pump is arranged in the bypass pipe 10 or the like on the upstream side of the filter to pump up the fluid to be measured.

【0022】この渦流量計は、導管(バイパス管)に配
設したセンサ6abに渦発生体2で発生する渦を検出さ
せて被測定流体の流量又は流速を測定する。すなわち、
渦発生体2から発生する渦の信号を、渦変動圧力に応じ
て流動する導管内を通る被測定流体の流量又は流速の変
動信号として検出する。センサ6ab、渦の検出、及び
流量又は流速の測定に関する詳細な説明は省略する。ま
た、導管にはセンサ6abの上流側に並列なフィルタ8
ab,8cdが配設されているものとする。フィルタ付
きの導管に流動する浄化された流体(ここでは被測定流
体)で、渦発生体2で発生する渦を検出することから、
本発明に係る渦流量計は自己パージ式の渦流量計ともい
える。図1で例示する渦流量計においては、分流管4
a,4bにおいてバイパス管10′との交叉位置近傍に
サーミスタのようなセンサ6abが配設されている。フ
ィルタ8ab,8cdは、各々異なる網目を備え、取外
交換自在のフィルタとし、各々分流管7ab,7cdに
配設されている。また、各分流管7ab,7cdには、
その各フィルタ8ab,8cdの上流側及び下流側に、
各々上流側バルブ9ab,9cd,下流側バルブ5a
b,5cdが設けられており、フィルタ交換を行う際に
所定の分流管への被測定流体の流入を防ぐ。2つの分流
管7ab,7cdのうち一方のみを被測定流体の流管と
して利用するように、他方の分流管のバルブを閉じてお
けばよい。両方の分流管を使用して被測定流体を流動さ
せる場合、仮にフィルタ8abがフィルタ8cdより網
目が小さく形成されていれば、フィルタ8abの方がフ
ィルタ8cdよりも早く目詰まりすることとなり、両フ
ィルタ8ab,8cdの目詰まり時間、すなわち、ダス
トの付着時間に差をもたせることが可能となる。本実施
形態によれば、センサが1箇所でも、バルブを閉めるこ
とによりフィルタ8ab,8cdのいずれかを計測中
(運転中)に交換することが可能となる。さらに、フィ
ルタ8ab,8cdを交互に使用することも可能であ
る。
In this vortex flowmeter, a sensor 6ab provided in a conduit (bypass pipe) detects the vortex generated in the vortex generator 2 to measure the flow rate or flow velocity of the fluid to be measured. That is,
The signal of the vortex generated from the vortex generator 2 is detected as a fluctuation signal of the flow rate or flow velocity of the fluid to be measured passing through the conduit flowing according to the vortex fluctuation pressure. Detailed description regarding the sensor 6ab, vortex detection, and flow rate or flow velocity measurement is omitted. In addition, a filter 8 parallel to the upstream side of the sensor 6ab is provided in the conduit.
It is assumed that ab and 8 cd are provided. Since the vortex generated in the vortex generator 2 is detected by the purified fluid (here, the fluid to be measured) flowing through the conduit with the filter,
The vortex flowmeter according to the present invention can be said to be a self-purging vortex flowmeter. In the vortex flowmeter illustrated in FIG. 1, the flow dividing pipe 4
A sensor 6ab such as a thermistor is disposed in the vicinity of the crossing position with the bypass pipe 10 'in a and 4b. The filters 8ab and 8cd are provided with different meshes, are removable filters, and are arranged in the flow dividing pipes 7ab and 7cd, respectively. Further, in each of the flow dividing pipes 7ab and 7cd,
On the upstream side and the downstream side of each of the filters 8ab and 8cd,
Upstream valves 9ab and 9cd, respectively, downstream valve 5a
b and 5 cd are provided to prevent the fluid to be measured from flowing into a predetermined flow dividing pipe when the filter is replaced. The valve of the other flow dividing pipe may be closed so that only one of the two flow dividing pipes 7ab and 7cd is used as the flow pipe of the fluid to be measured. When the fluid to be measured is caused to flow using both of the flow dividing pipes, if the filter 8ab has a mesh smaller than the filter 8cd, the filter 8ab will be clogged earlier than the filter 8cd, and both filters will be clogged. It is possible to make a difference in the clogging time of 8ab and 8cd, that is, the dust adhesion time. According to the present embodiment, it is possible to replace any one of the filters 8ab and 8cd during measurement (during operation) by closing the valve even if there is only one sensor. Further, the filters 8ab and 8cd can be used alternately.

【0023】また、上述した渦流量計は、測定流体すべ
てが流量計の測定管を通過するような流量計としてもよ
いし、大口径の流管における流量を測定する場合に好適
なように流管内に小口径の渦流量計を挿入し、その部分
流速から全流量を求める挿入形渦流量計としてもよい。
さらに渦発生体の形状も、図1で例示した三角柱状でな
くとも渦発生体の両側で流れが剥離しカルマン渦が交番
発生するような形状であればよい。
The vortex flowmeter described above may be a flowmeter in which all of the measurement fluid passes through the measurement tube of the flowmeter, or a flowmeter suitable for measuring the flow rate in a large-diameter flow tube. A small vortex flowmeter may be inserted in the pipe, and the insertion type vortex flowmeter may be used to obtain the total flow rate from the partial flow velocity.
Further, the shape of the vortex generator is not limited to the triangular prism shape illustrated in FIG. 1, but may be any shape as long as the flow separates on both sides of the vortex generator and a Karman vortex is alternately generated.

【0024】図2は、本発明の他の実施形態に係る渦流
量計の構成例を示す図である。本発明の他の実施形態に
係る渦流量計は、図1に基づいて説明した実施形態に係
る渦流量計では1つの導管を用いていたのに対し、複数
の導管の各々に少なくとも1つのフィルタを設けた点が
異なり、その他の構成は同様であり説明を省略する。
FIG. 2 is a diagram showing a configuration example of a vortex flowmeter according to another embodiment of the present invention. A vortex flowmeter according to another embodiment of the present invention uses one conduit in the vortex flowmeter according to the embodiment described with reference to FIG. 1, whereas at least one filter is provided in each of the plurality of conduits. Is different and the other configurations are the same, and the description thereof is omitted.

【0025】本発明の他の実施形態に係る渦流量計は複
数の導管、すなわち複数のバイパス管を備えるものとす
る。バイパス管10,分流管7ab,分流管4a,4b
からなる第1の導管は、渦発生体2の両側面又は両側面
近傍に対となる導圧口3a,3bと、渦発生体2の上流
側に開口した流入口(分流)11とをもち、流入口11
から各導圧口3a,3bに連通している。同様に、バイ
パス管10,分流管7cd,分流管4c,4dからなる
第2の導管は、導圧口3c,3dと流入口(分岐)11
とをもち、流入口11から各導圧口3c,3dに連通し
ている。すなわち、バイパス管10は管路1の渦発生体
2の上流側の流入口11で一端を開口した導管で、分流
管7ab,7cdはバイパス管10から分流点で分流す
る導管、分流管4a,4bは分流管7abから分流点で
分流する導管、分流管4c,4dは分流管7cdから分
流点で分流する導管であり、分流管4a,4b,4c,
4dの端は渦発生体2の流れに対向する面を前面として
渦発生体2の両側面で、各々導圧口3a,3b,3c,
3dとして開口して形成してある。なお、導圧口3a,
3bは渦発生体2の両側面の同じ位置に形成されてお
り、導圧口3c,3dについても同様である。流路1内
を流れる被測定流体の内、バイパス管10内に流入した
流体は、分流点でその流れが二分されそれぞれ分流管7
ab,7cdを通って、さらに分流管4a,4b,4
c,4d内に流入し、渦発生体2の後部両側に開口した
導圧口3a,3b,3c,3dを経て管路1内に帰流す
る。
A vortex flowmeter according to another embodiment of the present invention includes a plurality of conduits, that is, a plurality of bypass pipes. Bypass pipe 10, diversion pipe 7ab, diversion pipes 4a, 4b
Has a pair of pressure inlets 3a, 3b on both side surfaces of the vortex generator 2 or in the vicinity of both side surfaces thereof, and an inflow port (shunt) 11 opened on the upstream side of the vortex generator 2. , Inlet 11
To the pressure guide ports 3a and 3b. Similarly, the second conduit consisting of the bypass pipe 10, the flow dividing pipe 7cd, and the flow dividing pipes 4c, 4d includes pressure introducing ports 3c, 3d and a flow inlet (branch) 11.
And has communication with the pressure guide ports 3c and 3d from the inflow port 11. That is, the bypass pipe 10 is a conduit whose one end is opened at the inflow port 11 on the upstream side of the vortex generator 2 in the conduit 1, and the flow dividing pipes 7ab and 7cd are the pipes dividing the bypass pipe 10 at the flow dividing point, and the flow dividing pipe 4a, Reference numeral 4b is a conduit for branching from the branch pipe 7ab at a branch point, and branch tubes 4c, 4d are conduits for branching from the branch tube 7cd at a branch point, and the branch tubes 4a, 4b, 4c,
The end of 4d is the both sides of the vortex generator 2 with the surface facing the flow of the vortex generator 2 as the front surface, and the pressure guide ports 3a, 3b, 3c,
The opening is formed as 3d. In addition, the pressure guide port 3a,
3b are formed at the same position on both side surfaces of the vortex generator 2, and the same applies to the pressure guide ports 3c and 3d. Of the fluid to be measured flowing in the flow path 1, the fluid flowing into the bypass pipe 10 is divided into two parts at the diversion point, and each of the diversion pipes 7
After passing through ab, 7cd, further dividing pipes 4a, 4b, 4
c, 4d, and returns to the pipe line 1 through the pressure guide ports 3a, 3b, 3c, 3d opened on both sides of the rear part of the vortex generator 2.

【0026】この渦流量計は、各導管(バイパス管)に
各々配設したセンサ6ab,6cdに渦発生体2で発生
する渦を検出させて被測定流体の流量又は流速を測定す
る。また、第1の導管(第2の導管)にはセンサ6ab
(6cd)の上流側にフィルタ8ab(8cd)が配設
されているものとする。分流管7ab,7cdに各々配
設されたフィルタ8ab,8cdは、取外交換自在のフ
ィルタとする。各分流管7ab,7cdには各々上流側
バルブ9ab,9cd、下流側バルブ5a及び5b,5
c及び5dが設けられており、フィルタ交換を行う際に
所定の分流管への被測定流体の流入を防ぐ。フィルタ8
abとフィルタ8cdとを各々異なる網目を備えてダス
トの付着時間に差をもたせることにより、バルブの閉鎖
を行い、フィルタ8ab,8cdのいずれかを計測中
(運転中)に交換することを可能としてもよい。なお、
図1で説明した実施形態と図2で説明した実施形態とを
組み合わせた形態も採り得る。
This vortex flowmeter measures the flow rate or flow velocity of the fluid to be measured by detecting the vortices generated in the vortex generator 2 by the sensors 6ab and 6cd respectively arranged in the respective conduits (bypass pipes). Further, the sensor 6ab is provided in the first conduit (second conduit).
It is assumed that the filter 8ab (8cd) is arranged on the upstream side of (6cd). The filters 8ab and 8cd arranged on the flow dividing pipes 7ab and 7cd are detachable and replaceable filters. Each of the flow dividing pipes 7ab, 7cd has an upstream valve 9ab, 9cd and a downstream valve 5a, 5b, 5c.
c and 5d are provided to prevent the fluid to be measured from flowing into a predetermined flow dividing pipe when the filter is replaced. Filter 8
The ab and the filter 8cd are provided with different meshes so that the dust adhering time has a difference, thereby closing the valve and making it possible to replace either the filter 8ab or 8cd during measurement (during operation). Good. In addition,
A form in which the embodiment described in FIG. 1 and the embodiment described in FIG. 2 are combined can also be adopted.

【0027】また、図2を参照して説明した渦流量計、
特にフィルタが各導管ごとに網目の異なるフィルタであ
る渦流量計において、各導管に配設したセンサの検出信
号を比較する比較器と、比較器により比較した各導管の
センサの検出信号の差が所定の閾値を越えた時に、警報
信号を発信してフィルタの目詰まりを報知するフィルタ
目詰報知器とを備えるようにしてもよい。この比較器及
びフィルタ目詰報知器は、図4のフィルタ目詰検知装置
における比較器及び偏差警報器の説明を参照することに
より理解可能であり、説明を省略する。
Further, the vortex flowmeter described with reference to FIG.
In particular, in a vortex flowmeter in which the filter is a filter with a different mesh for each conduit, the difference between the detection signal of the sensor of each conduit compared by the comparator that compares the detection signal of the sensor arranged in each conduit A filter clogging annunciator may be provided to issue a warning signal to notify the clogging of the filter when the predetermined threshold is exceeded. The comparator and the filter clogging indicator can be understood by referring to the description of the comparator and the deviation alarm in the filter clogging detection device of FIG. 4, and the description thereof will be omitted.

【0028】[0028]

【発明の効果】本発明によれば、渦流量計において、別
途、N2ガス等の高価なガスによるパージ流の供給を必
要とせず、また少ないフィルタ交換回数で長期間連続し
て流管に流れる被測定流体の流速,流量を測定すること
が可能となる。すなわち本発明に係る渦流量計では、大
容量のフィルタを備えることが可能であり、かなりの割
合の目詰まりが生じてもフィルタを交換することなしに
測定が可能であり、さらに渦流量計本体の外部にフィル
タを設けてフィルタ交換を簡単にすることも可能であ
り、そのようなフィルタを設けることにより被測定流体
に含まれる塵埃等の不純物によるカルマン渦の検出感度
の低下,計測不良などの不都合を未然に防止してたえず
適正な計測状態の下に保持することが可能となる。
According to the present invention, in the vortex flowmeter, it is not necessary to separately supply a purge flow with an expensive gas such as N 2 gas, and the flow pipe is continuously used for a long period of time with a small number of filter replacements. It becomes possible to measure the flow velocity and flow rate of the fluid to be measured. That is, the vortex flowmeter according to the present invention can be provided with a large-capacity filter, and even if a large proportion of clogging occurs, measurement can be performed without replacing the filter, and further, the vortex flowmeter main body It is also possible to provide a filter outside the unit to simplify the filter replacement. By providing such a filter, impurities such as dust contained in the fluid to be measured may lower the detection sensitivity of Karman vortices and cause poor measurement. It is possible to prevent inconvenience in advance and keep it under proper measurement conditions.

【0029】また、本発明によれば、上述の効果に加え
てフィルタの目詰まりを検知することが可能となる。
Further, according to the present invention, it becomes possible to detect the clogging of the filter in addition to the above-mentioned effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態に係る渦流量計の構成例
を示す図である。
FIG. 1 is a diagram showing a configuration example of a vortex flowmeter according to an embodiment of the present invention.

【図2】 本発明の他の実施形態に係る渦流量計の構成
例を示す図である。
FIG. 2 is a diagram showing a configuration example of a vortex flowmeter according to another embodiment of the present invention.

【図3】 従来技術によるフィルタを備えた渦流量計の
構成例を示す図である。
FIG. 3 is a diagram showing a configuration example of a vortex flowmeter provided with a filter according to a conventional technique.

【図4】 図3の渦流量計におけるフィルタ目詰検知装
置の詳細な構成を示す図である。
4 is a diagram showing a detailed configuration of a filter clogging detection device in the vortex flowmeter of FIG.

【符号の説明】[Explanation of symbols]

1…流管、1′…高圧部、2…渦発生体、3a,3b,
3c,3d…導圧口、4a,4b,4c,4d,7a
b,7cd…分流管、5a,5b,5c,5d,9a
b,9cd…バルブ、6ab,6cd…センサ、8a
b,8cd…フィルタ、10,10′…バイパス管、1
1…流入口。
1 ... Flow tube, 1 '... High pressure part, 2 ... Vortex generator, 3a, 3b,
3c, 3d ... Pressure guide port 4a, 4b, 4c, 4d, 7a
b, 7 cd ... Flow dividing pipes 5a, 5b, 5c, 5d, 9a
b, 9cd ... Valve, 6ab, 6cd ... Sensor, 8a
b, 8 cd ... Filter, 10, 10 '... Bypass pipe, 1
1 ... Inlet.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被測定流体が流通する流管内に、流れに
対向して設けられた渦発生体と、該渦発生体の両側面又
は両側面近傍に導圧口をもち、該渦発生体の上流側に開
口した流入口をもち、該流入口から各導圧口に連通する
導管とを備え、該導管に配設したセンサに前記渦発生体
で発生する渦を検出させて被測定流体の流量又は流速を
測定する渦流量計であって、前記導管は前記センサの上
流側に並列な複数のフィルタを配設し、前記流入口は前
記流管内の高圧部に位置することを特徴とする渦流量
計。
1. A vortex generator provided opposite to a flow in a flow tube through which a fluid to be measured circulates, and pressure guide ports on both side surfaces or both side surfaces of the vortex generator, and the vortex generator. And a conduit communicating from the inlet to each pressure guide port, and a sensor disposed in the conduit detects a vortex generated in the vortex generator to measure the fluid to be measured. Is a vortex flowmeter for measuring the flow rate or flow velocity of the sensor, wherein the conduit has a plurality of filters arranged in parallel upstream of the sensor, and the inlet is located at a high pressure portion in the flow tube. A vortex flow meter.
【請求項2】 各フィルタは、各々異なる網目をもつこ
とを特徴とする請求項1記載の渦流量計。
2. The vortex flowmeter according to claim 1, wherein each filter has a different mesh.
【請求項3】 被測定流体が流通する流管内に、流れに
対向して設けられた渦発生体と、該渦発生体の両側面又
は両側面近傍に導圧口をもち、該渦発生体の上流側に開
口した流入口をもち、該流入口から各導圧口に連通する
複数の導管とを備え、該導管に配設したセンサに前記渦
発生体で発生する渦を検出させて被測定流体の流量又は
流速を測定する渦流量計であって、各導管は前記センサ
の上流側に1つ又は並列な複数のフィルタを配設し、前
記流入口は前記流管内の高圧部に位置することを特徴と
する渦流量計。
3. A vortex generator provided opposite to the flow in a flow tube through which a fluid to be measured flows, and pressure guide ports on both side surfaces of the vortex generator or in the vicinity of both side surfaces thereof. And a plurality of conduits communicating from the inlets to the respective pressure guide ports, and a sensor arranged in the conduits is used to detect vortices generated in the vortex generator and A vortex flowmeter for measuring a flow rate or a flow velocity of a measurement fluid, wherein each conduit has one or a plurality of filters arranged in parallel upstream of the sensor, and the inlet is located at a high pressure portion in the flow tube. A vortex flowmeter characterized by:
【請求項4】 各フィルタは、各導管の各々で又は各導
管内の各々で異なる網目をもつことを特徴とする請求項
3記載の渦流量計。
4. The vortex flowmeter of claim 3, wherein each filter has a different mesh in each of the conduits or in each of the conduits.
【請求項5】 前記導管は、各フィルタの上流側及び下
流側に、フィルタ交換用のバルブを配設したことを特徴
とする請求項1乃至4のいずれか1記載の渦流量計。
5. The vortex flowmeter according to any one of claims 1 to 4, wherein the conduit is provided with valves for filter replacement on the upstream side and the downstream side of each filter.
【請求項6】 被測定流体が流通する流管内に、流れに
対向して設けられた渦発生体と、該渦発生体の両側面又
は両側面近傍に導圧口をもち、該渦発生体の上流側に開
口した流入口をもち、該流入口から各導圧口に連通する
複数の導管とを備え、該導管に配設したセンサに前記渦
発生体で発生する渦を検出させて被測定流体の流量又は
流速を測定する渦流量計であって、前記導管は前記セン
サの上流側に各導管ごとに網目の異なるフィルタを配設
し、前記流入口は前記流管内の高圧部に位置し、当該渦
流量計は、各導管に配設したセンサの検出信号を比較す
る比較器と、該比較器により比較した各導管のセンサの
検出信号の差が所定の閾値を越えた時に、警報信号を発
信してフィルタの目詰まりを報知するフィルタ目詰報知
器とをさらに備えることを特徴とする渦流量計。
6. A vortex generator provided opposite to the flow in a flow tube through which a fluid to be measured flows, and pressure guide ports on both side surfaces or both side surfaces of the vortex generator, and the vortex generator. And a plurality of conduits communicating from the inlets to the respective pressure guide ports, and a sensor arranged in the conduits is used to detect vortices generated in the vortex generator and A vortex flowmeter for measuring the flow rate or flow velocity of a measurement fluid, wherein the conduit is provided with a filter having a different mesh for each conduit upstream of the sensor, and the inlet is located at a high pressure portion in the flow tube. However, the vortex flowmeter gives an alarm when the difference between the detection signal of the sensor of each conduit compared by the comparator that compares the detection signals of the sensors arranged in each conduit exceeds a predetermined threshold value. And a filter clogging indicator for transmitting a signal to notify the clogging of the filter. A vortex flowmeter characterized by that.
JP2001381809A 2001-12-14 2001-12-14 Vortex flow meter Expired - Fee Related JP3675759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381809A JP3675759B2 (en) 2001-12-14 2001-12-14 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381809A JP3675759B2 (en) 2001-12-14 2001-12-14 Vortex flow meter

Publications (2)

Publication Number Publication Date
JP2003185480A true JP2003185480A (en) 2003-07-03
JP3675759B2 JP3675759B2 (en) 2005-07-27

Family

ID=27592366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381809A Expired - Fee Related JP3675759B2 (en) 2001-12-14 2001-12-14 Vortex flow meter

Country Status (1)

Country Link
JP (1) JP3675759B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907002A (en) * 2019-11-18 2020-03-24 青岛奥利普自动化控制系统有限公司 Flow measuring equipment for intelligent manufacturing equipment and flow measuring method based on intelligent manufacturing
CN112082611A (en) * 2020-08-28 2020-12-15 王红伍 Industrial piston positive displacement water meter
CN114046830A (en) * 2021-11-10 2022-02-15 海默科技(集团)股份有限公司 Flowmeter metering parameter detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907002A (en) * 2019-11-18 2020-03-24 青岛奥利普自动化控制系统有限公司 Flow measuring equipment for intelligent manufacturing equipment and flow measuring method based on intelligent manufacturing
CN112082611A (en) * 2020-08-28 2020-12-15 王红伍 Industrial piston positive displacement water meter
CN114046830A (en) * 2021-11-10 2022-02-15 海默科技(集团)股份有限公司 Flowmeter metering parameter detection system
CN114046830B (en) * 2021-11-10 2024-03-08 海默科技(集团)股份有限公司 Flow meter metering parameter detection system

Also Published As

Publication number Publication date
JP3675759B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
AU2008224760B2 (en) Bi-directional oscillating jet flowmeter
RU2006137564A (en) SIMPLIFIED MEASUREMENT OF FLUID PROPERTIES
EP0277121A1 (en) Fluid flowmeter.
US8429983B2 (en) Insertion type flow measuring device for measuring characteristics of a flow within a pipe
EP2074432B1 (en) Arrangement for measuring fluid flow velocity
JP3675759B2 (en) Vortex flow meter
US6904810B2 (en) Purge type vortex flowmeter
JP6533878B1 (en) Flowmeter
JPS6143207Y2 (en)
CN216899062U (en) Fluid transfer pipeline
JP4336022B2 (en) Gas meter
Kopp et al. Vortex and Fluidic Flowmeters
JPH10293054A (en) Flowmeter
JP2002214002A (en) Flow meter
JP3757009B2 (en) Split flow meter
JP2009243943A (en) Flow meter
CN114563053A (en) Fluid transfer pipeline and flow measurement method
JP4666245B2 (en) Vortex flow meter
JPH08247807A (en) Flowmeter
JP3491185B2 (en) Vortex flow meter
JPH03239916A (en) Wrong piping detection system of differential flow rate measuring instrument
JPH1114413A (en) Orifice reversible flowmeter
KR20010059327A (en) System for measuring flow rate
KOPP et al. 2.30 Vortex and Fluidic Flowmeters
JPH07209042A (en) Vibration type flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050426

R150 Certificate of patent or registration of utility model

Ref document number: 3675759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees