JP2003185423A - Method and apparatus for measuring inclination angle of array-shaped angle face - Google Patents

Method and apparatus for measuring inclination angle of array-shaped angle face

Info

Publication number
JP2003185423A
JP2003185423A JP2001383403A JP2001383403A JP2003185423A JP 2003185423 A JP2003185423 A JP 2003185423A JP 2001383403 A JP2001383403 A JP 2001383403A JP 2001383403 A JP2001383403 A JP 2001383403A JP 2003185423 A JP2003185423 A JP 2003185423A
Authority
JP
Japan
Prior art keywords
angle
array
test object
shaped
tilt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001383403A
Other languages
Japanese (ja)
Inventor
Masaaki Takai
雅明 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001383403A priority Critical patent/JP2003185423A/en
Publication of JP2003185423A publication Critical patent/JP2003185423A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus wherein an array-shaped optical element having a plurality of arbitrary angle faces is used as an object to be measured, a measurement error due to a change in the posture of a measuring drive mechanism is removed, and the inclination angle of each angle face can be measured and evaluated with high accuracy and in a short time. <P>SOLUTION: The measuring method for the inclination angle of an array- shaped angle face is provided with a process in which interference fringes on one side face from among side faces forming a vertical angle in an array-shaped specimen having a plurality of inherent angle faces are obtained, and in which each inclination angle on the side face of the specimen with reference to a measuring optical angle is obtained on the basis of an analytical result of the interference fringes; and a process in which a relative inclination amount of each angle face arranged on the specimen is measured on the basis of the obtained angle face on each side face of the specimen. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、任意角度面をアレイ
状に配した光学素子の各角度面の倒れ角度測定技術に関
するものであり、各角度面の倒れ角度をより高精度かつ
短時間で測定評価することができるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring a tilt angle of each angle surface of an optical element in which arbitrary angle surfaces are arranged in an array, and the tilt angle of each angle surface can be measured with higher accuracy and in a shorter time. It can be measured and evaluated.

【0002】[0002]

【従来技術】従来、光学素子の2つの面で形成される角
度を測定する技術として、特開平6−167325号公
報に記載されているものがある。これは、オートコリメ
ータを用いた角度測定の基本的な手法であり、回転機構
により光学素子を回転させ、オートコリメーションの原
理を利用して光学素子2つの被測定面の絶対角度を求め
ることで、頂角を自動測定するものである。また、特開
平11−183148号公報に記載されているものは、
任意角度面を持つ被検物の設置誤差を除去する目的で干
渉光学系を用いており、実際の頂角の角度測定は前記従
来技術と同様、対向して置かれたオートコリメータによ
り行われている。詳細には被検物の頂角を形成する2つ
の面のうちの1つの面を基準面、他の面を測定面とし
て、回転機構により回転させた角度をオートコリメータ
による測定量で補正する手法を用いている。しかし、上
記従来のものによって複数の面をもつアレイ状被検物の
頂角を測定する場合は、それぞれの頂角に対してその都
度被検物の姿勢を変化させて測定を行わなければなら
ず、測定誤差が大きくなってしまうという問題があり、
またそれぞれの頂角を同時には測定できないため測定時
間が長くなってしまうという問題もある。
2. Description of the Related Art Conventionally, as a technique for measuring an angle formed by two surfaces of an optical element, there is one described in Japanese Patent Laid-Open No. 6-167325. This is a basic method of angle measurement using an autocollimator, in which an optical element is rotated by a rotating mechanism, and the absolute angle between two measured surfaces of the optical elements is obtained by using the principle of autocollimation. The apex angle is automatically measured. Moreover, what is described in JP-A-11-183148 is
An interference optical system is used for the purpose of removing the installation error of the object having an arbitrary angle surface, and the actual angle measurement of the apex angle is performed by an autocollimator placed facing each other as in the prior art. There is. Specifically, one of the two surfaces forming the apex angle of the test object is used as a reference surface and the other surface is used as a measurement surface, and the angle rotated by the rotating mechanism is corrected by the amount measured by the autocollimator. Is used. However, when measuring the apex angle of an array-shaped test object having a plurality of surfaces by the above conventional method, the posture of the test object must be changed for each apex angle. However, there is a problem that the measurement error becomes large,
There is also a problem that the measurement time becomes long because the respective apex angles cannot be measured at the same time.

【0003】[0003]

【解決しようとする課題】そこで、本発明は、複数の任
意角度面を持ったアレイ状光学素子を測定対象物とし、
測定用駆動機構の姿勢変化に伴う測定誤差を除去して各
角度面の倒れ角度をより高精度かつ短時間で測定評価で
きるようにすることをその課題とするものである。
Therefore, in the present invention, an array optical element having a plurality of arbitrary angle surfaces is used as a measurement object,
It is an object of the present invention to eliminate a measurement error caused by a change in posture of a measurement drive mechanism so that the tilt angle of each angle surface can be measured and evaluated with higher accuracy and in a shorter time.

【0004】[0004]

【課題解決のために講じた手段】[Measures taken to solve the problem]

【解決手段1】(請求項1に対応)解決手段1は、固有
の角度面を複数有するアレイ状被検物において、頂角を
形成する側面のうちの1つの側面を、干渉光学系により
干渉縞を得て、その干渉縞の解析結果から測定光軸に対
する被検物側面の各々の傾斜角度を得る工程と、得られ
た被検物各側面の傾斜角度から、被検物に配列されてい
る各角度面の相対的な倒れ量を測定するアレイ状角度面
の倒れ角度測定方法である。
SOLUTION 1 (Corresponding to Claim 1) Solution 1 is an array-shaped object having a plurality of unique angled surfaces, and one of the side surfaces forming an apex angle is interfered by an interference optical system. Obtaining the fringes, the step of obtaining the tilt angle of each side surface of the test object with respect to the measurement optical axis from the analysis result of the interference fringes, and the tilt angle of each side surface of the test object thus obtained are arranged on the test object. This is a tilt angle measuring method for arrayed angle surfaces, which measures the relative tilt amount of each angle surface.

【作用】これにより、複数の任意角度面を持ったアレイ
状被検物の各角度面の倒れ角度を高精度かつ短時間で測
定できる。
As a result, the tilt angle of each angle surface of the array-shaped test object having a plurality of arbitrary angle surfaces can be measured with high accuracy and in a short time.

【0005】[0005]

【解決手段2】(請求項2に対応)解決手段2は、透過
型参照平面板を有した干渉光学系と、固有の角度面を有
するアレイ状被検物の保持手段と、アレイ状被検物の姿
勢調整機構と、干渉光学系と相対した各側面の干渉縞解
析を行う手段とを持つアレイ状角度面の倒れ角度測定装
置である。
SOLUTION 2 (corresponding to claim 2) Solution means 2 is an interference optical system having a transmission type reference plane plate, a holding means for an array-like object having a unique angle surface, and an array-like object. The tilt angle measuring device for an array of angled surfaces has a posture adjusting mechanism for an object and means for performing interference fringe analysis on each side face facing the interference optical system.

【作用】これにより、複数の任意角度面を持ったアレイ
状被検物の各角度面の倒れ角度を高精度かつ短時間に測
定することができる。
As a result, the tilt angle of each angle surface of the array-shaped test object having a plurality of arbitrary angle surfaces can be measured with high accuracy and in a short time.

【0006】[0006]

【実施態様1】(請求項3に対応)実施態様1は、解決
手段1の測定方法において、被検物を前記角度面とほぼ
同一の角度だけ回転させる工程と、同様に他方の側面の
測定光軸に対する各々の傾斜角度を得る工程とからな
り、得られた被検物各側面の傾斜角度から、被検物に配
列されている各角度面の相対的な倒れ量を測定するアレ
イ状角度面の倒れ角度測定方法としたことである。
(Embodiment 1) (corresponding to claim 3) Embodiment 1 is the measuring method of the solving means 1, in which the step of rotating the test object by an angle substantially the same as the angle surface and the measurement of the other side surface are also performed. An array angle for measuring the relative tilt amount of each angle surface arranged on the test object from the obtained tilt angle of each side surface of the test object. This is the method of measuring the tilt angle of the surface.

【0007】[0007]

【実施態様2】(請求項4に対応)実施態様2は、解決
手段2の測定装置において、測定光軸と直交する回転軸
を持った回転手段と、前記回転機構にて任意角度回転さ
せ、その回転前後の干渉光学系と相対した各側面の干渉
縞解析を行う手段を持つようにしたことである。
Embodiment 2 (corresponding to claim 4) Embodiment 2 is, in the measuring device of the solving means 2, rotating means having a rotating axis orthogonal to the measuring optical axis and rotating the rotating mechanism at an arbitrary angle, This means that a means for analyzing the interference fringes on each side facing the interference optical system before and after the rotation is provided.

【0008】[0008]

【解決手段3】(請求項5に対応)解決手段3は、固有
の角度面を有するアレイ状被検物の角度面倒れ測定にお
いて、被検物とほぼ同一角度面を有する原器光学ブロッ
クを利用して、頂角を形成する側面のうちの1つの側面
を、干渉光学系により上記原器光学ブロックと同一視野
内にて干渉縞を得て、その干渉縞の解析結果から原器光
学ブロック面に対する被検物側面の傾斜角度を得る工程
と、被検物を前記角度面とほぼ同一の角度だけ回転させ
る工程と、同様に他方の側面の原器光学ブロック面に対
する傾斜角度を得る工程とからなり、得られた被検面各
側面の傾斜角度から、原器光学ブロックを基準とした相
対的な被検物各角度面の倒れを測定するアレイ状角度面
の倒れ角度測定方法である。
SOLUTION: The solution means 3 (corresponding to claim 5) is a standard optical block having substantially the same angle plane as an object to be measured in an angle plane tilt measurement of an array-shaped object having a unique angle surface. Using one of the side surfaces forming the apex angle, an interference optics is used to obtain interference fringes in the same field of view as the prototype optical block, and the analysis results of the interference fringes are used to determine the prototype optical block. A step of obtaining an inclination angle of the side surface of the object to be inspected with respect to the surface, a step of rotating the object object by an angle substantially the same as the angle surface, and a step of similarly obtaining an inclination angle of the other side surface with respect to the prototype optical block surface. And a tilt angle measuring method of an array-shaped angle surface, which measures relative tilting of each angle surface of the test object relative to the prototype optical block from the obtained tilt angle of each side surface of the test surface.

【作用】これにより、複数の任意角度面を持ったアレイ
状被検物の各角度面の倒れ角度を原器基準で簡易的かつ
高精度に測定できる。
As a result, the tilt angle of each angle surface of the array-shaped test object having a plurality of arbitrary angle surfaces can be measured easily and accurately with reference to the prototype.

【0009】[0009]

【解決手段4】(請求項6に対応)解決手段4は、透過
型参照平面板を有した干渉光学系と、固有の角度面を有
するアレイ状被検物の保持手段と、アレイ状被検物の姿
勢調整機構と、測定光軸と直交する回転軸を持った回転
手段と、被検物とほぼ同一角度面を有する原器光学ブロ
ックを配置し、前記干渉光学系にて被検物と原器光学ブ
ロックを同一視野内で検出可能であり、かつ個別に干渉
縞解析が可能である処理手段とを持つことを特徴とした
アレイ状角度面の倒れ角度測定装置である。
SOLUTION 4 (corresponding to claim 6) The solution means 4 is an interference optical system having a transmission type reference plane plate, a holding means for an array-like object having a unique angle surface, and an array-like object. An attitude adjusting mechanism of an object, a rotating means having a rotation axis orthogonal to the measurement optical axis, and a prototype optical block having a surface substantially at the same angle as the object to be inspected are arranged, and the object to be inspected by the interference optical system An inclination angle measuring device for an array-shaped angle plane, characterized in that it has a processing means capable of detecting a prototype optical block within the same field of view and capable of individually analyzing interference fringes.

【作用】これにより、複数の任意角度面を持ったアレイ
状被検物の各角度面の倒れ角度を原器基準で簡易的かつ
高精度に測定することができる。
As a result, the tilt angle of each angle surface of the array-shaped test object having a plurality of arbitrary angle surfaces can be measured simply and highly accurately with reference to the prototype.

【0010】[0010]

【実施態様3】(請求項7に対応)実施態様3は、解決
手段1、解決手段3又は実施態様1の測定方法におい
て、前記アレイ状被検物をその配列方向へ移動する工程
を持ち、その移動の際に、同一視野内で検出する被検物
の複数側面のうちの1つ以上の側面を重複するように
し、その重複面を利用して測定結果を繋ぎ合わせて、ア
レイ状被検物の全面にわたって、前記移動による姿勢変
化に伴う測定誤差を生ぜずに個々の角度面の倒れ角度を
相対的に検出可能としたことである。
(Embodiment 3) (corresponding to claim 7) Embodiment 3 is a solution means 1, a solution means 3 or a measurement method according to embodiment 1, which has a step of moving the array-shaped test object in the arrangement direction thereof. At the time of the movement, one or more side surfaces of the plurality of side surfaces of the test object to be detected within the same field of view are made to overlap, and the measurement results are connected by using the overlapping surfaces to perform array-shaped test. The tilt angle of each angle surface can be relatively detected over the entire surface of the object without causing a measurement error due to the change in posture due to the movement.

【作用】これにより複数の任意角度面を持ったアレイ状
被検物の各角度面の倒れ角度を、送り駆動系の誤差を補
正して高精度に測定することが可能となる。
As a result, it becomes possible to measure the tilt angle of each angle surface of the array-shaped test object having a plurality of arbitrary angle surfaces with high accuracy by correcting the error of the feed drive system.

【0011】[0011]

【実施態様4】(請求項8に対応)実施態様4は、解決
手段2、解決手段4または実施態様2の測定装置におい
て、前記アレイ状被検物をその配列方向へ移動させる移
動機構と、同一視野内で検出された重複面を利用して、
前記移動機構の姿勢変化に伴う測定誤差を補正する処理
手段とを持つようにしたことである。
Embodiment 4 (corresponding to claim 8) Embodiment 4 is the solution device 2, the solution device 4 or the measuring device of embodiment 2, and a moving mechanism for moving the array-shaped test object in the arrangement direction thereof. Utilizing the overlapping planes detected in the same field of view,
And a processing means for correcting a measurement error due to a change in posture of the moving mechanism.

【作用】これにより複数の任意角度面を持ったアレイ状
被検物の各角度面の倒れ角度を、送り駆動系の誤差を補
正して高精度に測定することができる。
As a result, the tilt angle of each angle surface of the array-shaped test object having a plurality of arbitrary angle surfaces can be measured with high accuracy by correcting the error of the feed drive system.

【0012】[0012]

【実施態様5】(請求項9に対応)実施態様5は、解決
手段2、解決手段4又は実施態様2の測定装置におい
て、前記被検物の移動機構の姿勢変化を検出する変位検
出手段と、変位検出量をフィードバックして姿勢変化に
伴う測定誤差を補正する処理手段とを持つようにしたこ
とである。
Fifth Embodiment (corresponding to claim 9) A fifth embodiment is the solving means 2, the solving means 4 or the measuring device according to the second embodiment, wherein the displacement detecting means detects a posture change of the moving mechanism of the object. The processing means for feeding back the displacement detection amount and correcting the measurement error due to the posture change is provided.

【作用】これにより、複数の任意角度面を持ったアレイ
状被検物の各角度面の倒れ角度を、送り駆動系の誤差を
補正して高精度に測定することができる。
As a result, the tilt angle of each angle surface of the array-shaped test object having a plurality of arbitrary angle surfaces can be measured with high accuracy by correcting the error of the feed drive system.

【0013】[0013]

【実施態様6】(請求項10に対応)実施態様6は、解
決手段2、請求項4又は実施態様2、実施態様4、実施
態様5の測定装置において、前記干渉光学系における透
過型参照平面板の形状誤差を補正する演算処理手段を持
つようにしたことである。
(Embodiment 6) (corresponding to claim 10) Embodiment 6 is the measuring device of Solving means 2, Claim 4 or Embodiment 2, Embodiment 4, and Embodiment 5 in which the transmission type reference plane in the interference optical system is used. That is, the calculation processing means for correcting the shape error of the face plate is provided.

【作用】これにより、干渉光学系における透過型参照平
面板の形状誤差を補正して、アレイ状被検物における各
角度面の倒れ角度をより高精度に測定する装置が提供で
きる。
As a result, it is possible to provide a device for correcting the shape error of the transmission type reference plane plate in the interference optical system and measuring the tilt angle of each angle plane in the array-shaped test object with higher accuracy.

【0014】[0014]

【実施例】まず、干渉計の基本構成を図3を用いて説明
する。なお、この実施例ではフィゾー型干渉計を用いて
いる。レーザー光源11により発生したレーザー光は顕
微鏡対物レンズ12を透過後、コリメータレンズ14で
平行光に変換される。その平行光は、透過型参照平面板
17で反射された参照光と、被検物20への照射光とに
分岐される。さらに被検物40に照射した後に表面で反
射された反射光は、透過型参照平面板17を透過して同
光路を戻る。透過型参照平面板17で反射された参照光
と被検物40から反射してきた物体光はコリメータレン
ズ14で収束光となり、光路分岐手段13で直交方向に
分岐して干渉縞検出手段15に入射する。検出された干
渉縞は演算処理手段16で解析されて平面の形状測定結
果が求められる。以上がフィゾー型干渉計10の基本構
成である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the basic structure of an interferometer will be described with reference to FIG. A Fizeau interferometer is used in this embodiment. The laser light generated by the laser light source 11 passes through the microscope objective lens 12 and is then converted into parallel light by the collimator lens 14. The parallel light is split into the reference light reflected by the transmissive reference flat plate 17 and the irradiation light to the object 20 to be inspected. Further, the reflected light reflected on the surface after irradiating the test object 40 is transmitted through the transmissive reference flat plate 17 and returns to the same optical path. The reference light reflected by the transmissive reference plane plate 17 and the object light reflected by the object 40 are converged by the collimator lens 14, are branched in the orthogonal direction by the optical path branching unit 13, and enter the interference fringe detection unit 15. To do. The detected interference fringes are analyzed by the arithmetic processing means 16 to obtain a flat surface shape measurement result. The above is the basic configuration of the Fizeau interferometer 10.

【0015】測定項目である倒れ角度の定義を図1、図
2により説明する。プリズムアレイを例にすれば、図1
にある各プリズム面の横方向(配列方向)の倒れを倒れ
角度αとし、図2にある配列軸Xを回転中心とした倒れ
を倒れ角度βとする。
The definition of the tilt angle, which is a measurement item, will be described with reference to FIGS. 1 and 2. Taking a prism array as an example,
A tilt angle α of each prism surface in the lateral direction (arrangement direction) is defined as a tilt angle α, and a tilt about the array axis X in FIG. 2 as a rotation center is defined as a tilt angle β.

【0016】図3乃至図6に基づいて倒れ角度の測定方
式を説明する。被検物40は、例えば、直角プリズムの
ような被検物を想定した場合、その角度面は90度であ
り、その角度面がアレイ状に配されている。被検物40
は被検物保持部30に保持され、その角度面の一方の側
面がフィゾー型干渉計10の光軸すなわち測定光軸に対
向するように構成されている。なお、図4は図3の側面
図である。次に、測定手順を倒れ角度αの場合を例とし
て説明する。第一に、被検物40の一方の側面Aを測定
光軸に対向するように配置し、透過型参照平面板17に
よる参照光と側面Aからの反射光を干渉させて、それを
干渉縞検出手段15で検出し、演算処理手段16で解析
して側面Aの平面形状を求める。このとき得られた側面
Aの平面形状は、側面Aの姿勢誤差である測定光軸との
直交軸に対する傾きを含むものであり、その傾きはZeru
nike多項式等の収差解析により図5におけるX方向とY
方向に分離して得ることが可能である。図5下段左側は
得られた各側面のX方向傾きεa1〜εa4を示し、図
5下段右側のようにεa1を基準にその相対倒れ角度を
算出する。
A tilt angle measuring method will be described with reference to FIGS. Assuming that the inspection object 40 is an inspection object such as a right-angled prism, the angle surface is 90 degrees, and the angle surfaces are arranged in an array. Object 40
Is held by the object holding unit 30, and one side surface of the angle surface thereof is configured to face the optical axis of the Fizeau interferometer 10, that is, the measurement optical axis. Note that FIG. 4 is a side view of FIG. Next, the measurement procedure will be described by taking the case of the tilt angle α as an example. First, one side surface A of the object to be inspected 40 is arranged so as to face the measurement optical axis, and the reference light from the transmissive reference plane plate 17 and the reflected light from the side surface A are caused to interfere with each other to form an interference fringe. It is detected by the detection means 15 and analyzed by the arithmetic processing means 16 to obtain the plane shape of the side surface A. The plane shape of the side surface A obtained at this time includes the inclination with respect to the axis orthogonal to the measurement optical axis which is the attitude error of the side surface A, and the inclination is Zeru.
By the aberration analysis such as nike polynomial, X direction and Y in FIG.
It is possible to obtain them separately in the directions. The lower left side of FIG. 5 shows the obtained X-direction inclinations εa1 to εa4 of each side surface, and the relative tilt angle is calculated based on εa1 as in the lower right side of FIG.

【0017】その相対倒れ角度が、すなわちA1面を側
面に持つ角度面に対するA2,A3,A4の各面を側面
に持つ角度面の倒れ角度を表す。要するに、図6にある
ようにA1面の傾きが0(測定光軸と直交)になるよう
に被検物40の位置を調整した場合、A2面のX方向傾
きが、隣接するP1角度面に対するP2角度面の倒れ角
度αとなる。倒れ角度βの場合もほぼ同様の考え方で対
応できる。すなわち、図5におけるY方向の倒れに置き
換えてA1面のY方向傾きに対するA2面のY方向傾き
に√2を乗算すれば、隣接するP1角度面に対するP2
角度面の倒れ角度βを得ることができる。
The relative tilt angle, that is, the tilt angle of the angle plane having each side of A2, A3 and A4 with respect to the angle plane having the side A1 as its side surface. In short, when the position of the test object 40 is adjusted so that the inclination of the A1 plane becomes 0 (orthogonal to the measurement optical axis) as shown in FIG. 6, the inclination of the A2 plane in the X direction with respect to the adjacent P1 angle plane. The inclination angle α of the P2 angle plane is obtained. A similar approach can be applied to the case of the tilt angle β. That is, if the tilt in the Y direction in FIG. 5 is replaced and the Y direction tilt of the A2 plane with respect to the Y direction tilt of the A1 plane is multiplied by √2, P2 for the adjacent P1 angle plane is obtained.
The tilt angle β of the angle plane can be obtained.

【0018】次に実施例2について、図7、図8に基づ
いて説明する。この実施例では、前述の実施例に回転機
構31が設けられており、被検物40が回転可能な構成
となる。その回転角度は、被検物40の公称頂角に相当
する角度であり、その回転により今度は側面Bが測定光
軸に対向するように配置される。その後、上記説明で側
面Aで行ったのと同様の処理を行い、側面Bの相対傾斜
角度εbを得る。
Next, a second embodiment will be described with reference to FIGS. In this embodiment, the rotating mechanism 31 is provided in the above-described embodiment, and the object 40 is rotatable. The rotation angle is an angle corresponding to the nominal apex angle of the test object 40, and the rotation causes the side surface B to be arranged so as to face the measurement optical axis. Then, the same processing as that performed on the side surface A in the above description is performed to obtain the relative inclination angle εb of the side surface B.

【0019】本来、被検物40の各角度面の頂角が均一
であれば、A1面に対するA2面の傾きεaとB1面に
対するB2面の傾きεbは等しくなる。その値が異なる
ことは、頂角が異なっていることに相違無く、その際の
P1に対するP2の面倒れ角度αは、α=(εa+ε
b)/2となる。面倒れ角度βも同様の考え方で求める
ことが可能である。
Originally, if the apex angle of each angle surface of the object 40 is uniform, the inclination εa of the A2 surface with respect to the A1 surface and the inclination εb of the B2 surface with respect to the B1 surface are equal. The difference in the values must be different in the apex angle, and the plane tilt angle α of P2 with respect to P1 at that time is α = (εa + ε
b) / 2. The face tilt angle β can also be obtained in the same way.

【0020】次に実施例3について図10、図11に基
づき説明する。実施例1、実施例2と同様に、符号10
はフィゾー型干渉計、符号17は透過型参照平面板、符
号30は被検物保持部を示し、符号31は実施例2と同
様に、回転機構を示す。符号20は被検物、符号21は
原器ブロックであり、予め角度が判明しているものであ
る。この構成によればフィゾー型干渉計10の干渉縞検
出手段(図示せず)の同一視野にて原器ブロック21の
側面も観察できる構成になっており、前述の実施例1、
実施例2においてA1やB1面を基準に考えていたもの
を原器ブロック側面を基準に考えることが可能である。
なお、図10、図11では被検物としてアレイ状ではな
いプリズムを用いて説明したが、複数の角度面を有する
プリズムアレイでも被検物として測定することが可能で
ある。なお、図11における被検物A面は、被検物A
1,2,A3等を示し、被検物B面についても同様であ
り、個々の被検面(例えばA1とB1)に対して現器ブ
ロックと相対させるものである。
Next, a third embodiment will be described with reference to FIGS. As in the first and second embodiments, reference numeral 10
Is a Fizeau interferometer, reference numeral 17 is a transmission type reference flat plate, reference numeral 30 is an object holding portion, and reference numeral 31 is a rotating mechanism as in the second embodiment. Reference numeral 20 is an object to be inspected, reference numeral 21 is a prototype block, the angle of which is known in advance. According to this configuration, the side surface of the prototype block 21 can be observed in the same field of view of the interference fringe detection means (not shown) of the Fizeau interferometer 10, and the above-mentioned first embodiment,
It is possible to consider what was considered based on the A1 or B1 surface in the second embodiment as a reference on the side of the prototype block.
10 and 11, a prism that is not in the form of an array is used as the test object, but a prism array having a plurality of angle planes can also be measured as the test object. The surface of the inspection object A in FIG. 11 is the inspection object A.
1, 2, A3, and the like, and the same applies to the surface B of the object to be inspected, and the surfaces of the individual objects of inspection (for example, A1 and B1) are made to face the actual block.

【0021】次に実施例4について図12、図13に基
づいて説明する。本実施例では、図12に示すような多
くの頂角を持った光学素子を被検物40とし、その被検
物保持部30と、それらを被検物40の配列方向への移
動機構32と、移動機構32まで一体として回転させる
回転機構31とから構成されている。
Next, a fourth embodiment will be described with reference to FIGS. In this embodiment, an optical element having many apex angles as shown in FIG. 12 is used as the test object 40, the test object holding unit 30 and a moving mechanism 32 for moving the test object 40 in the arrangement direction of the test object 40. And a rotating mechanism 31 that integrally rotates the moving mechanism 32.

【0022】図に示すような複数の頂角を多くもつ被検
物40において、各頂角の隣接比較評価を行うために
は、各側面の隣接の比較評価が必要であり、したがっ
て、移動機構32により被検物40の送りを行う際の運
動誤差(真直度)が測定精度に大きく影響する。本実施
例はその影響を低減するためのものであり、その原理
は、図13に基づいて説明すれば、次のようなものであ
る。移動機構32により被検物40を視野xから視野y
に送ったとき、視野yは視野xに対して移動機構32の
運動誤差が含まれており、干渉縞の解析結果にも当然そ
の影響が現れる。そこで、図13に示す如く、複数の側
面Aの内の1面(図ではA4面)を重複するように被検
物20の送りを行うことで、前記運動誤差量を把握する
ことができ、したがって、その補正を行ってその影響を
低減することが可能となる。
In an object 40 having a large number of apexes as shown in the figure, in order to carry out an adjacency comparative evaluation of each apex angle, it is necessary to carry out an adjoining comparative evaluation of each side surface. A motion error (straightness) when the object 40 is fed by 32 has a great influence on the measurement accuracy. The present embodiment is for reducing the influence, and its principle is as follows, if explained based on FIG. The moving mechanism 32 allows the object 40 to be inspected from the visual field x to the visual field y.
, The visual field y includes a motion error of the moving mechanism 32 with respect to the visual field x, and the influence naturally appears in the analysis result of the interference fringes. Therefore, as shown in FIG. 13, the movement error amount can be grasped by feeding the test object 20 so that one surface (A4 surface in the drawing) of the plurality of side surfaces A is overlapped, Therefore, it is possible to perform the correction and reduce the influence.

【0023】すなわち、図13中段の模式図において、
側面A4の傾斜角度εa4とεa4´の差異は移動機構
32の運動誤差に起因するため、その差異を除去するよ
う視野yにおける解析結果εa5´からεa7´を補正
する。その補正によって、下段にあるようなεa1から
εa7までの測定結果を得られる。以上の処理を行うこ
とにより、前述の実施例と同様の面倒れ角度測定が可能
となる。
That is, in the schematic diagram in the middle part of FIG.
Since the difference between the inclination angles εa4 and εa4 ′ of the side surface A4 is caused by the motion error of the moving mechanism 32, the analysis results εa5 ′ to εa7 ′ in the visual field y are corrected so as to eliminate the difference. By the correction, the measurement results from εa1 to εa7 as shown in the lower stage can be obtained. By performing the above processing, it is possible to measure the same face tilt angle as in the above-described embodiment.

【0024】また、重複測定面を設定せず、移動機構3
2の運動誤差(真直度)を測定するための検出手段を別
途配置するようにしてもよい。このようにすれば重複測
定面を必要としないため、複数の頂角を多くもつプリズ
ムアレイを被検物とした場合でも、短時間の測定が可能
となる。
In addition, the moving mechanism 3 is used without setting the overlapping measurement surface.
You may make it arrange | position the detection means for measuring the movement error (straightness) of 2 separately. In this way, since no duplicate measurement surface is required, even when a prism array having a plurality of apexes is used as the test object, the measurement can be performed in a short time.

【0025】次に実施例5について図14に基づいて説
明する。干渉光学系を用いた全ての測定において、透過
型参照平面板17が実際には形状誤差を持っているため
その誤差がそのまま測定誤差となってしまう。すなわ
ち、図14で視野xで検出した干渉縞の解析結果はその
誤差を含んでいるが(下段右)、その補正を行うことで
正確な各側面の測定結果を得ることが可能である。よっ
て、被検物の面倒れ角度測定の更なる高精度化が可能と
なる。なお、透過型参照平面板の形状誤差の高精度な把
握方法として、フィゾー型干渉計を用いた3面合わせ法
などが知られている。
Next, a fifth embodiment will be described with reference to FIG. In all the measurements using the interference optical system, the transmission type reference flat plate 17 actually has a shape error, and the error directly becomes a measurement error. That is, although the analysis result of the interference fringes detected in the visual field x in FIG. 14 includes the error (lower right), it is possible to obtain the accurate measurement result of each side surface by correcting the error. Therefore, it is possible to further improve the accuracy of the surface tilt angle measurement of the test object. As a highly accurate method of grasping the shape error of the transmission type reference flat plate, a three-sided alignment method using a Fizeau interferometer is known.

【0026】[0026]

【効果】請求項1乃至請求項4の構成によれば、複数の
任意角度面を持ったアレイ状被検物の各角度面の倒れ角
度を高精度かつ短時間に測定することが可能になる。ま
た請求項5、請求項6の構成によれば、複数の任意角度
面を持ったアレイ状被検物の各角度面の倒れ角度を、原
器基準で簡易的かつ高精度に測定することが可能にな
る。
According to the constitutions of claims 1 to 4, it becomes possible to measure the tilt angle of each angular surface of the array-shaped test object having a plurality of arbitrary angular surfaces with high accuracy and in a short time. . According to the fifth and sixth aspects, the tilt angle of each angle surface of the array-shaped test object having a plurality of arbitrary angle surfaces can be easily and accurately measured with reference to the prototype. It will be possible.

【0027】請求項7乃至請求項9の構成によれば、複
数の任意角度面を持ったアレイ状被検物の各角度面の倒
れ角度を、送り駆動系の誤差を補正してより高精度に測
定することが可能になる。
According to the structures of claims 7 to 9, the tilt angle of each angle surface of the array-shaped test object having a plurality of arbitrary angle surfaces is corrected with higher accuracy by correcting the error of the feed drive system. It becomes possible to measure.

【0028】請求項10の構成によれば、干渉光学系に
おける透過型参照平面板の形状誤差を補正するため、ア
レイ状被検物における各角度面の倒れ角度をより高精度
に測定することが可能になる。
According to the structure of claim 10, in order to correct the shape error of the transmission type reference plane plate in the interference optical system, the tilt angle of each angle plane in the array-shaped test object can be measured with higher accuracy. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】はプリズムアレイの各面の配列方向の倒れ角度
である。
FIG. 1 is a tilt angle of each surface of a prism array in an array direction.

【図2】はプリズムアレイの各面の配列軸を回転中心と
した倒れ角度である。
FIG. 2 is a tilt angle with the array axis of each surface of the prism array as the center of rotation.

【図3】は本発明の実施例1に係る倒れ角度測定装置で
ある。
FIG. 3 is a tilt angle measuring device according to a first embodiment of the present invention.

【図4】は図3の側面図である。FIG. 4 is a side view of FIG.

【図5】は本発明の実施例1の原理を示す図である。FIG. 5 is a diagram showing the principle of Embodiment 1 of the present invention.

【図6】は本発明の実施例1の原理を示す図である。FIG. 6 is a diagram showing the principle of Embodiment 1 of the present invention.

【図7】は本発明の実施例2に係る倒れ角度測定装置で
ある。
FIG. 7 is a tilt angle measuring device according to a second embodiment of the present invention.

【図8】図7の側面図である。FIG. 8 is a side view of FIG. 7.

【図9】は本発明の実施例2の原理を示す図である。FIG. 9 is a diagram showing the principle of Embodiment 2 of the present invention.

【図10】は本発明の実施例3に係る倒れ角度測定装置
である。
FIG. 10 is a tilt angle measuring device according to a third embodiment of the present invention.

【図11】は本発明の実施例3の原理を示す図である。FIG. 11 is a diagram showing the principle of Embodiment 3 of the present invention.

【図12】は本発明の実施例4に係る倒れ角度測定装置
である。
FIG. 12 is a tilt angle measuring device according to a fourth embodiment of the present invention.

【図13】は本発明の実施例4の原理を示す図である。FIG. 13 is a diagram showing the principle of Embodiment 4 of the present invention.

【図14】は本発明の実施例5の原理を示す図である。FIG. 14 is a diagram showing the principle of Embodiment 5 of the present invention.

【符号の説明】[Explanation of symbols]

10:フィゾー型干渉計 11:レーザー光源 12:顕微鏡対物レンズ 13:光路分岐手段 14:コリメータレンズ 15:干渉縞検出手段 16:演算処理手段 17:透過型参照平面板 20,40:被検物 21:原器ブロック 30:被検物保持部 31:回転機構 32:移動機構 10: Fizeau interferometer 11: Laser light source 12: Microscope objective lens 13: Optical path branching means 14: Collimator lens 15: Interference fringe detection means 16: arithmetic processing means 17: Transmission type reference flat plate 20, 40: Object 21: prototype block 30: Object holding unit 31: Rotation mechanism 32: moving mechanism

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA31 AA35 AA37 BB22 BB25 CC21 DD06 EE05 FF52 FF61 FF65 GG04 HH03 LL12 LL37 LL46 PP12 PP13 PP24 QQ21 QQ25 QQ28 RR07 2G086 EE08    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F065 AA31 AA35 AA37 BB22 BB25                       CC21 DD06 EE05 FF52 FF61                       FF65 GG04 HH03 LL12 LL37                       LL46 PP12 PP13 PP24 QQ21                       QQ25 QQ28 RR07                 2G086 EE08

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】固有の角度面を複数有するアレイ状被検物
において、 頂角を形成する側面のうちの1つの側面を、干渉光学系
により干渉縞を得て、その干渉縞の解析結果から測定光
軸に対する被検物側面の各々の傾斜角度を得る工程と、
得られた被検物各側面の傾斜角度とから、被検物に配列
されている各角度面の相対的な倒れ量を測定するアレイ
状角度面の倒れ角度測定方法。
1. In an array-shaped test object having a plurality of unique angle surfaces, one of the side surfaces forming the apex angle is obtained by an interference optical system, and the interference fringes are analyzed. Obtaining a tilt angle of each side surface of the object with respect to the measurement optical axis,
A tilt angle measuring method for an array-shaped angle surface, which measures a relative tilt amount of each angle surface arranged on the test object from the obtained tilt angle of each side surface of the test object.
【請求項2】透過型参照平面板を有した干渉光学系と、
固有の角度面を有するアレイ状被検物の保持手段と、ア
レイ状被検物の姿勢調整機構と、干渉光学系と相対した
各側面の干渉縞解析を行う手段とを持つアレイ状角度面
の倒れ角度測定装置。
2. An interference optical system having a transmissive reference plane plate,
An array of angled surfaces having a holding means for the arrayed object having a unique angle surface, a posture adjusting mechanism for the arrayed object, and means for performing interference fringe analysis on each side facing the interference optical system. Tilt angle measuring device.
【請求項3】請求項1の測定方式において、 被検物を前記角度面とほぼ同一の角度だけ回転させる工
程と、同様に他方の側面の測定光軸に対する各々の傾斜
角度を得る工程とからなり、 得られた被検物各側面の傾斜角度から、被検物に配列さ
れている各角度面の相対的な倒れ量を測定するアレイ状
角度面の倒れ角度測定方法。
3. The measuring method according to claim 1, wherein the step of rotating the test object by substantially the same angle as the angle plane and the step of similarly obtaining the respective inclination angles with respect to the measurement optical axis of the other side surface. The method of measuring the tilt angle of an array-shaped angle surface, wherein the relative tilt amount of each angle surface arranged on the test object is measured from the obtained tilt angle of each side surface of the test object.
【請求項4】請求項2の測定装置において、 測定光軸と直交する回転軸を持った回転手段と、前記回
転機構にて任意角度回転させ、その回転前後の干渉光学
系と相対した各側面の干渉縞解析を行う手段とを持つア
レイ状角度面の倒れ角度測定装置。
4. The measuring device according to claim 2, wherein the rotation means has a rotation axis orthogonal to the measurement optical axis, and each side surface is rotated by the rotation mechanism at an arbitrary angle and faces the interference optical system before and after the rotation. A tilt angle measuring device for arrayed angle planes with a means for performing interference fringe analysis.
【請求項5】固有の角度面を有するアレイ状被検物の角
度面倒れ測定において、 被検物とほぼ同一角度面を有する原器光学ブロックを利
用して、頂角を形成する側面のうちの1つの側面を、干
渉光学系により上記原器光学ブロックと同一視野内にて
干渉縞を得て、その干渉縞の解析結果から原器光学ブロ
ック面に対する被検物側面の傾斜角度を得る工程と、被
検物を前記角度面とほぼ同一の角度だけ回転させる工程
と、同様に他方の側面の原器光学ブロック面に対する傾
斜角度を得る工程とからなり、 得られた被検面各側面の傾斜角度から、原器光学ブロッ
クを基準とした相対的な被検物各角度面の倒れを測定す
るアレイ状角度面の倒れ角度測定方法。
5. An angle plane tilt measurement of an array-shaped test object having a unique angle surface, wherein a prototype optical block having substantially the same angle surface as the test object is used to form a vertical angle. Interference fringes on one side surface of the prototype optical block in the same visual field as the prototype optical block, and from the analysis result of the interference fringes, the inclination angle of the side surface of the object with respect to the prototype optical block surface is obtained. And a step of rotating the test object by substantially the same angle as the angle plane, and a step of similarly obtaining an inclination angle with respect to the prototype optical block surface of the other side surface. A tilt angle measuring method for an array-shaped angle surface, which measures the tilt of each angle surface of a test object relative to the prototype optical block from the tilt angle.
【請求項6】透過型参照平面板を有した干渉光学系と、
固有の角度面を有するアレイ状被検物の保持手段と、ア
レイ状被検物の姿勢調整機構と、測定光軸と直交する回
転軸を持った回転手段と、被検物とほぼ同一角度面を有
する原器光学ブロックとを配置し、 前記干渉光学系にて被検物と原器光学ブロックを同一視
野内で検出可能であり、かつ個別に干渉縞解析が可能で
ある処理手段を持つことを特徴としたアレイ状角度面の
倒れ角度測定装置。
6. An interference optical system having a transmission type reference plane plate,
An array-shaped object holding means having a unique angle surface, an attitude adjustment mechanism of the array-shaped object, a rotating means having a rotation axis orthogonal to the measurement optical axis, and an angle surface substantially the same as the object. And a processing unit capable of detecting the object to be inspected and the prototype optical block in the same field of view by the interference optical system, and capable of individually performing interference fringe analysis. A tilt angle measuring device for arrayed angled surfaces.
【請求項7】請求項1、請求項3又は請求項5の測定方
法において、 前記アレイ状被検物をその配列方向へ移動する工程を持
ち、 その移動の際に、同一視野内で検出する被検物の複数側
面のうちの1つ以上の側面を重複するようにし、 その重複面を利用して測定結果を繋ぎ合わせて、アレイ
状被検物の全面にわたって、前記移動による姿勢変化に
伴う測定誤差を生ぜずに個々の角度面の倒れ角度を相対
的に検出可能であることを特徴とするアレイ状角度面の
倒れ角度測定方法。
7. The measuring method according to claim 1, 3, or 5, further comprising a step of moving the array-shaped test object in the array direction, and detecting the same in the same field of view during the moving. One or more side surfaces of the plurality of side surfaces of the test object are made to overlap with each other, and the measurement results are connected by using the overlapping surfaces, and the posture changes due to the movement over the entire surface of the array-shaped test object. A tilt angle measuring method for an array-shaped angle surface, which is capable of relatively detecting the tilt angle of each angle surface without causing a measurement error.
【請求項8】請求項2、請求項4又は請求項6の測定装
置において、 前記アレイ状被検物をその配列方向へ移動させる移動機
構と、同一視野内で検出された重複面を利用して、前記
移動機構の姿勢変化に伴う測定誤差を補正する処理手段
とを持つことを特徴とするアレイ状角度面の倒れ角度測
定装置。
8. The measuring apparatus according to claim 2, 4 or 6, wherein a moving mechanism for moving the array-shaped test object in the array direction and an overlapping surface detected in the same visual field are used. And a processing unit that corrects a measurement error caused by a change in the posture of the moving mechanism.
【請求項9】請求項2、請求項4又は請求項6の測定装
置において、 前記アレイ状被検物をその配列方向へ移動させる移動機
構の姿勢変化を検出する変位検出手段と、 変位検出量をフィードバックして姿勢変化に伴う測定誤
差を補正する処理手段とを持つことを特徴とするアレイ
状角度面の倒れ角度測定装置。
9. The displacement measuring device according to claim 2, 4, or 6, wherein the displacement detecting means detects a posture change of a moving mechanism that moves the array-shaped test object in the array direction, and a displacement detection amount. And a processing unit that corrects a measurement error due to a posture change by feeding back the angle.
【請求項10】請求項2、請求項4、請求項6、請求項
8又は請求項9の測定装置において、 前記干渉光学系における透過型参照平面板の形状誤差を
補正する演算処理手段を持つことを特徴とするアレイ状
角度面の倒れ角度測定装置。
10. The measuring device according to claim 2, claim 4, claim 6, claim 8 or claim 9, further comprising arithmetic processing means for correcting a shape error of a transmission type reference plane plate in the interference optical system. A tilt angle measuring device for an array-shaped angle surface, which is characterized in that
JP2001383403A 2001-12-17 2001-12-17 Method and apparatus for measuring inclination angle of array-shaped angle face Pending JP2003185423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001383403A JP2003185423A (en) 2001-12-17 2001-12-17 Method and apparatus for measuring inclination angle of array-shaped angle face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383403A JP2003185423A (en) 2001-12-17 2001-12-17 Method and apparatus for measuring inclination angle of array-shaped angle face

Publications (1)

Publication Number Publication Date
JP2003185423A true JP2003185423A (en) 2003-07-03

Family

ID=27593458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383403A Pending JP2003185423A (en) 2001-12-17 2001-12-17 Method and apparatus for measuring inclination angle of array-shaped angle face

Country Status (1)

Country Link
JP (1) JP2003185423A (en)

Similar Documents

Publication Publication Date Title
JP2010519541A (en) Equipment for measuring defects in sheet glass
US10371511B2 (en) Device and method for geometrically measuring an object
KR20140048824A (en) Calibration apparatus, calibration method, and measurement apparatus
JP2009069151A (en) Means and method for determining space position of transfer element in coordinate measuring device
JP2008505328A (en) Measuring device having a plurality of distance sensors, calibration means for the measuring device and method for determining the shape of the surface
JP4427632B2 (en) High-precision 3D shape measuring device
US20060238773A1 (en) Interferometer optical element alignment
EP2577266B1 (en) Apparatus and method for compensating for sample misalignment
JP5290038B2 (en) Measuring apparatus and measuring method
JP2007298281A (en) Measuring method and device of surface shape of specimen
JP2003185423A (en) Method and apparatus for measuring inclination angle of array-shaped angle face
JP3845286B2 (en) Shape measuring apparatus and shape measuring method
JP5601699B2 (en) Calibration device
JP5208681B2 (en) Calibration method of measurement sensitivity in oblique incidence interferometer
JP2003057191A (en) Apparatus for measuring shape of cylindrical article to be measured and method of adjusting the apparatus for measuring shape of cylindrical article to be measured, as well as method for processing signal
JP2008032669A (en) Optical scanning type planal visual inspecting apparatus
JP5010964B2 (en) Angle measuring method and apparatus
JP4011205B2 (en) Sample inspection equipment
JP2005049141A (en) Apparatus and method for measuring squareness and record medium recording the method
JP4488710B2 (en) Lens characteristic inspection method and apparatus
JP5950760B2 (en) Calibration method of interference shape measuring mechanism
JP2002296007A (en) Squareness measuring instrument, squareness measuring method, squareness measuring program, and computer- readable storage medium for storing the same program
JP5217327B2 (en) Angle measuring method and angle measuring device
JP2009041982A (en) Apparatus for recording values related to zero-point errors of multi-point probe
JP2004325120A (en) Probe scanning type shape-measuring apparatus provided with straightness correction function