JP2003184556A - Cooling system controller for internal combustion engine - Google Patents

Cooling system controller for internal combustion engine

Info

Publication number
JP2003184556A
JP2003184556A JP2001381016A JP2001381016A JP2003184556A JP 2003184556 A JP2003184556 A JP 2003184556A JP 2001381016 A JP2001381016 A JP 2001381016A JP 2001381016 A JP2001381016 A JP 2001381016A JP 2003184556 A JP2003184556 A JP 2003184556A
Authority
JP
Japan
Prior art keywords
cooling water
water temperature
internal combustion
combustion engine
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001381016A
Other languages
Japanese (ja)
Other versions
JP4127471B2 (en
Inventor
Masateru Nishiyama
征輝 西山
Shigeru Kamio
神尾  茂
Eizo Takahashi
栄三 高橋
Zenichi Shinpo
善一 新保
Shigetaka Yoshikawa
重孝 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2001381016A priority Critical patent/JP4127471B2/en
Publication of JP2003184556A publication Critical patent/JP2003184556A/en
Application granted granted Critical
Publication of JP4127471B2 publication Critical patent/JP4127471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an early warm-up performance by enhancing an engine preheating effect by hot water supplied from a heat accumulator to an engine, and also to improve reliability in the detection of the temperature of cooling water at the time of starting. <P>SOLUTION: When an operator operates an IG switch from an OFF position to an ON position, a bypass valve 19 is closed to shut off a bypass passage 17, a flow control valve 18 is kept in a state in which a passage of a radiator 13 is shut off, and an electric water pump 25 is activated to supply the hot water stored in the heat accumulator 24 into the engine 11 to preheat the engine 11. Then, when the operator starts the engine 11 by operating the IG switch from the ON position to a start position, the electric water pump 25 is turned off and the supply of the hot water into the engine 11 is ended at the time when an engine speed has reached or exceeded a predetermined starting completion speed or at the time when a predetermined time has passed from the start of the supply of the hot water. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関で温めら
れた冷却水を保温状態で貯溜してこれを次の始動前に内
燃機関に供給する蓄熱器を備えた内燃機関の冷却系制御
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system control device for an internal combustion engine, which is provided with a regenerator for storing cooling water warmed by the internal combustion engine in a heat retaining state and supplying this to the internal combustion engine before the next start. It is about.

【0002】[0002]

【従来の技術】近年、車両用の内燃機関においては、始
動時の早期暖機性能を高めて排気エミッション低減と燃
費低減を実現するために、内燃機関の停止時に、それま
でに内燃機関で温められた冷却水(温水)を蓄熱器に回
収し、次の始動前に電動ポンプで蓄熱器内の温水を内燃
機関に供給して内燃機関を予熱することで、内燃機関を
早期に暖機することが提案されている(特開2001−
132447号公報参照)。
2. Description of the Related Art In recent years, in an internal combustion engine for a vehicle, in order to improve early warm-up performance at the time of starting to reduce exhaust emission and fuel consumption, when the internal combustion engine is stopped, it is warmed by that time. The cooling water (hot water) collected is collected in the heat storage device, and the hot water in the heat storage device is supplied to the internal combustion engine by the electric pump before the next start to preheat the internal combustion engine, thereby warming up the internal combustion engine early. Have been proposed (Japanese Patent Laid-Open No. 2001-2001
No. 132447).

【0003】また、始動後に内燃機関の暖機が完了する
までは、内燃機関からの冷却水がラジエータに流れない
ようにするために、内燃機関とラジエータとをつなぐ冷
却水循環回路中に、ラジエータと並列にバイパス流路を
設けると共に、冷却水循環回路とバイパス流路との接続
部分に、ラジエータへの流路とバイパス流路との間で冷
却水の流れを切り換えるサーモスタットバルブを設け、
冷却水の温度が暖機完了に相当する所定温度よりも低い
ときには、サーモスタットバルブによってラジエータへ
の流路を遮断してバイパス流路を開放し、内燃機関から
の冷却水をバイパス流路に流して循環させるようにした
ものがある。
In addition, in order to prevent the cooling water from the internal combustion engine from flowing to the radiator until the internal combustion engine is warmed up after the start-up, a radiator is installed in the cooling water circulation circuit connecting the internal combustion engine and the radiator. A bypass flow path is provided in parallel, and a thermostat valve that switches the flow of cooling water between the flow path to the radiator and the bypass flow path is provided at the connection between the cooling water circulation circuit and the bypass flow path.
When the temperature of the cooling water is lower than the predetermined temperature corresponding to the completion of warming up, the thermostat valve shuts off the flow passage to the radiator to open the bypass flow passage, and the cooling water from the internal combustion engine is caused to flow to the bypass flow passage. There are things that are made to circulate.

【0004】[0004]

【発明が解決しようとする課題】しかし、始動前に蓄熱
器から内燃機関に温水を供給するときに、この温水が内
燃機関から冷却水循環回路に流れ込んで、冷却水循環回
路中に設置した水温センサの周辺に温水が流れてしまう
と、始動時の水温センサの検出値の信頼性の低下を招
く。すなわち、この場合には、水温センサが実際の内燃
機関の温度よりも高温の温水の温度を検出してしまい、
実際の内燃機関の温度がまだ低いのに、内燃機関の温度
が高くなっていると誤検出されてしまう。このため、始
動時に水温センサの検出値に基づいて燃料噴射量を補正
すると、実際の内燃機関の温度よりも高い温度を基準に
した噴射補正が行われてしまい、その結果、始動時の燃
料噴射量が適正値よりも少なくなって、始動時の空燃比
が目標空燃比よりもリーン側にずれてしまい、始動時の
空燃比制御性が悪くなるという欠点が発生する。
However, when hot water is supplied from the heat accumulator to the internal combustion engine before starting, this hot water flows from the internal combustion engine into the cooling water circulation circuit, and the water temperature sensor installed in the cooling water circulation circuit is used. If hot water flows around, the reliability of the detection value of the water temperature sensor at the time of start-up will be reduced. That is, in this case, the water temperature sensor detects the temperature of hot water that is higher than the actual temperature of the internal combustion engine,
Although the actual temperature of the internal combustion engine is still low, it is erroneously detected that the temperature of the internal combustion engine is high. Therefore, if the fuel injection amount is corrected based on the detection value of the water temperature sensor at the time of starting, the injection correction will be performed based on a temperature higher than the actual temperature of the internal combustion engine, and as a result, the fuel injection at the time of starting will be performed. The amount becomes smaller than the appropriate value, the air-fuel ratio at the time of starting shifts to the lean side from the target air-fuel ratio, and the disadvantage that the air-fuel ratio controllability at the time of starting deteriorates occurs.

【0005】本発明は、このような欠点を解決すること
を目的とする発明であり、従って、本発明の目的は、始
動時に冷却水循環回路中の水温センサが実際の内燃機関
の温度よりも高温の温水の温度を検出することを防止し
て、始動時の水温センサの検出値の信頼性を向上するこ
とができる内燃機関の冷却系制御装置を提供することで
ある。
The present invention is an object of solving the above drawbacks. Therefore, the object of the present invention is to make the water temperature sensor in the cooling water circulation circuit have a higher temperature than the actual temperature of the internal combustion engine at the time of starting. It is an object of the present invention to provide a cooling system control device for an internal combustion engine, which can prevent the detection of the temperature of the hot water and improve the reliability of the detection value of the water temperature sensor at the time of starting.

【0006】[0006]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の請求項1の内燃機関の冷却系制御装
置は、内燃機関とラジエータとの間で冷却水を循環させ
る冷却水循環回路と、この冷却水循環回路中に前記ラジ
エータをバイパスするように設けられたバイパス流路
と、内燃機関で温められた冷却水(以下「温水」とい
う)を保温状態で貯溜してこれを次の始動前に内燃機関
に供給する蓄熱器と、前記冷却水循環回路及び/又は前
記バイパス流路に設けられたバルブを制御して始動前に
前記蓄熱器から内燃機関に温水を供給するときに前記バ
ルブを内燃機関から前記バイパス流路への冷却水の流れ
を遮断する状態に切り換える冷却水循環制御手段とを備
えたものにおいて、冷却水の温度を検出する水温センサ
を、前記冷却水循環回路のうちの内燃機関の冷却水出口
側で且つ前記蓄熱器からの温水が循環しない位置に設置
したものである。このようにすれば、始動前に蓄熱器か
ら内燃機関に温水を供給するときに、その温水が水温セ
ンサの周辺に流れることを防止できるため、始動時に水
温センサが実際の内燃機関の温度よりも高温の温水の温
度を検出することを防止できて、始動時の水温センサの
検出値の信頼性を向上することができる。
In order to achieve the first object, a cooling system control device for an internal combustion engine according to claim 1 of the present invention is a cooling system for circulating cooling water between the internal combustion engine and a radiator. A water circulation circuit, a bypass flow passage provided so as to bypass the radiator in the cooling water circulation circuit, and cooling water (hereinafter referred to as "hot water") warmed by the internal combustion engine is stored in a heat-retaining state and then stored. When a hot water is supplied from the heat storage device to the internal combustion engine before starting by controlling a heat storage device to be supplied to the internal combustion engine before starting and a valve provided in the cooling water circulation circuit and / or the bypass passage. A cooling water circulation control means for switching the valve to a state in which the flow of cooling water from the internal combustion engine to the bypass flow passage is shut off, and a water temperature sensor for detecting the temperature of cooling water is used as the cooling water circulation circuit. And hot water from the heat accumulator in the cooling water outlet side of the internal combustion engine of are those installed at a position that does not circulate. In this way, when hot water is supplied from the heat storage device to the internal combustion engine before starting, it is possible to prevent the hot water from flowing around the water temperature sensor, so that the water temperature sensor is less than the actual temperature of the internal combustion engine at startup. It is possible to prevent detection of the temperature of hot water of high temperature and improve the reliability of the detection value of the water temperature sensor at the time of starting.

【0007】更に、請求項2のように、始動時にバイパ
ス流路を開放して内燃機関から流出する冷却水を該バイ
パス流路に流して循環させると共に、始動時に水温セン
サで検出した冷却水温に基づいて燃料噴射制御手段によ
り燃料噴射量を補正するようにすると良い。つまり、始
動時にバイパス流路を開放して内燃機関から流出する冷
却水を該バイパス流路に流して循環させると、内燃機関
から流出する冷却水を水温センサの周辺に流すことがで
きるため、始動時に実際の内燃機関の温度に対応した冷
却水温を水温センサで精度良く検出することができる。
その結果、始動時に水温センサで検出した冷却水温に基
づいて燃料噴射量を補正すれば、始動時に実際の内燃機
関の温度に応じた燃料噴射量の補正を行うことができ
て、始動時の燃料噴射量を適正化することができ、始動
時の空燃比制御性を向上することができる。
Further, as claimed in claim 2, at the time of starting, the bypass flow passage is opened to allow the cooling water flowing out of the internal combustion engine to flow through the bypass flow passage to be circulated, and at the same time, the cooling water temperature detected by the water temperature sensor at the time of start is set. Based on this, the fuel injection control means may correct the fuel injection amount. That is, when the cooling water flowing out from the internal combustion engine is made to circulate by opening the bypass flow path at the time of starting, the cooling water flowing out from the internal combustion engine can be made to flow around the water temperature sensor. Sometimes, the cooling water temperature corresponding to the actual temperature of the internal combustion engine can be accurately detected by the water temperature sensor.
As a result, if the fuel injection amount is corrected based on the cooling water temperature detected by the water temperature sensor at the time of starting, it is possible to correct the fuel injection amount according to the actual temperature of the internal combustion engine at the time of starting, and The injection amount can be optimized, and the air-fuel ratio controllability at the time of starting can be improved.

【0008】また、請求項3のように、蓄熱器から内燃
機関への温水供給開始から所定期間経過後の水温センサ
の検出値と温水供給開始前の水温センサの検出値との差
に基づいてバイパスバルブが開き放しになる開固着の有
無を開固着判定手段により判定するようにしても良い。
もし、バイパスバルブの開固着が発生すると、始動前に
蓄熱器から内燃機関に温水を供給するときに、その温水
が内燃機関から冷却水循環回路中の水温センサの周辺に
流れ込んでしまうため、その温水の影響を受けて、水温
センサで検出する冷却水温が実際の内燃機関の温度より
も高くなってしまい、その結果、温水供給開始から時間
が経過するに従って水温センサの検出値と温水供給開始
前の水温センサの検出値との差が大きくなる。この関係
から、温水供給開始からある程度の時間が経過した後の
水温センサの検出値と温水供給開始前の水温センサの検
出値との差が所定の開固着判定値よりも大きいか否か
で、バイパスバルブの開固着の有無を判定することがで
きる。
According to a third aspect of the present invention, based on the difference between the detected value of the water temperature sensor after a lapse of a predetermined period from the start of hot water supply from the heat storage device to the internal combustion engine and the detected value of the water temperature sensor before the start of hot water supply. The presence / absence of open fixation in which the bypass valve is left open may be determined by the open fixation determination means.
If the bypass valve opens and sticks, the hot water will flow from the internal combustion engine to the vicinity of the water temperature sensor in the cooling water circulation circuit when the hot water is supplied from the heat storage device to the internal combustion engine before starting. As a result, the cooling water temperature detected by the water temperature sensor becomes higher than the actual temperature of the internal combustion engine, and as a result, as the time elapses from the start of hot water supply, the detected value of the water temperature sensor and The difference from the detection value of the water temperature sensor becomes large. From this relationship, whether the difference between the detection value of the water temperature sensor after a certain amount of time has elapsed from the start of the hot water supply and the detection value of the water temperature sensor before the start of the hot water supply is greater than a predetermined open sticking determination value, Whether or not the bypass valve is stuck open can be determined.

【0009】この場合、請求項4のように、バイパスバ
ルブが開固着していると判定された場合に、始動から所
定期間が経過するまで、温水供給開始前の水温センサの
検出値と始動後経過時間に基づいて冷却水温を推定し、
その推定冷却水温に基づいて燃料噴射量を補正するよう
にすると良い。もし、バイパスバルブが開固着した状態
になっていると、始動時の水温センサの検出値が始動前
に蓄熱器から供給された温水の影響を受けて実際の内燃
機関の温度よりも高い温度になっているため、温水供給
開始前の水温センサの検出値と始動後経過時間に基づい
て冷却水温を推定した方が水温センサの検出値よりも実
際の内燃機関の温度に近い温度を求めることができる。
従って、バイパスバルブが開固着している場合に、この
推定冷却水温に基づいて燃料噴射量を補正すれば、水温
センサの検出値に基づいて燃料噴射量を補正する場合と
比べて、燃料噴射量を精度良く補正することができる。
In this case, when it is determined that the bypass valve is stuck open, the detected value of the water temperature sensor before the start of hot water supply and after the start until a predetermined period elapses from the start. Estimate the cooling water temperature based on the elapsed time,
It is advisable to correct the fuel injection amount based on the estimated cooling water temperature. If the bypass valve is stuck open, the value detected by the water temperature sensor during startup will be affected by the hot water supplied from the regenerator before startup, and will be higher than the actual internal combustion engine temperature. Therefore, estimating the cooling water temperature based on the detected value of the water temperature sensor before the start of hot water supply and the elapsed time after the start can give a temperature closer to the actual internal combustion engine temperature than the detected value of the water temperature sensor. it can.
Therefore, if the fuel injection amount is corrected based on this estimated cooling water temperature when the bypass valve is stuck open, the fuel injection amount will be greater than when the fuel injection amount is corrected based on the detection value of the water temperature sensor. Can be accurately corrected.

【0010】尚、バイパスバルブが開固着している場合
でも、始動後の時間経過に伴って、内燃機関の温度が高
くなるに従って、水温センサの検出値が実際の内燃機関
の温度に近付いていくため、両者の温度差がある程度小
さくなるまでの所定期間が経過した後は、推定冷却水温
に代えて、水温センサの検出値を用いて燃料噴射量を補
正するようにすれば良い。このようにすれば、バイパス
バルブが開固着している場合に、推定冷却水温と水温セ
ンサの検出値とのうちの信頼性の高い方を用いて燃料噴
射量を補正することができ、空燃比制御性の悪化を回避
することができる。
Even when the bypass valve is stuck open, the detected value of the water temperature sensor approaches the actual temperature of the internal combustion engine as the temperature of the internal combustion engine rises with the lapse of time after starting. Therefore, after a lapse of a predetermined period until the temperature difference between the two becomes small to some extent, the fuel injection amount may be corrected using the detection value of the water temperature sensor instead of the estimated cooling water temperature. With this configuration, when the bypass valve is stuck open, the fuel injection amount can be corrected by using the reliable one of the estimated cooling water temperature and the detected value of the water temperature sensor, and the air-fuel ratio can be corrected. It is possible to avoid deterioration of controllability.

【0011】この場合、燃料噴射量の補正に用いる推定
冷却水温と水温センサの検出値との切り換えのタイミン
グは、始動後の経過時間等で判断しても良いが、請求項
5のように、バイパスバルブが開固着していると判定さ
れた場合に、推定冷却水温と始動後の前記水温センサの
検出値との差が所定値以下になるまで推定冷却水温を用
いて燃料噴射量を補正し、その後は、水温センサの検出
値を用いて燃料噴射量を補正するようにしても良い。こ
のようにすれば、始動後の内燃機関の運転状態や外気温
等によって始動後の内燃機関の温度上昇速度が変化して
も、それに応じた適正なタイミングで、燃料噴射量の補
正に用いる冷却水温情報を推定冷却水温から水温センサ
の検出値に切り換えることができる。
In this case, the timing of switching between the estimated cooling water temperature used for correcting the fuel injection amount and the detection value of the water temperature sensor may be determined by the elapsed time after the start, but as in claim 5, When it is determined that the bypass valve is stuck open, the estimated cooling water temperature is used to correct the fuel injection amount until the difference between the estimated cooling water temperature and the detected value of the water temperature sensor after the start is equal to or less than a predetermined value. After that, the fuel injection amount may be corrected using the detection value of the water temperature sensor. With this configuration, even if the temperature rising speed of the internal combustion engine after the start changes due to the operating state of the internal combustion engine after the start, the outside temperature, etc., the cooling used for correcting the fuel injection amount at an appropriate timing accordingly. The water temperature information can be switched from the estimated cooling water temperature to the detection value of the water temperature sensor.

【0012】また、請求項6のように、冷却水循環回路
の冷却水の流れをラジエータとバイパス流路との間で切
り換える機能又は両者の流量比を制御する機能を有する
制御バルブと、バイパス流路中に設けたバイパスバルブ
とを備えたシステムにおいては、蓄熱器から内燃機関に
温水を供給するときに、制御バルブをラジエータへの冷
却水の流れを遮断する状態に維持し、且つ、バイパスバ
ルブを閉弁してバイパス流路を遮断するようにすれば良
い。この場合、制御バルブは、ラジエータとバイパス流
路にそれぞれ流れる冷却水の流量比を制御することがで
きる電磁バルブを用いても良いし、或は、ラジエータと
バイパス流路との間で冷却水の流れを切り換える三方切
換弁を用いても良い。いずれの場合も、バイパス流路中
にバイパスバルブを設けることで、本発明を実現するこ
とができる。
According to a sixth aspect of the present invention, a control valve having a function of switching the flow of the cooling water in the cooling water circulation circuit between the radiator and the bypass passage or a function of controlling the flow rate ratio between the radiator and the bypass passage, and the bypass passage. In a system provided with a bypass valve provided inside, when supplying hot water from the heat storage device to the internal combustion engine, the control valve is maintained in a state of blocking the flow of the cooling water to the radiator, and the bypass valve is It suffices to close the bypass passage by closing the valve. In this case, the control valve may be an electromagnetic valve capable of controlling the flow rate ratio of the cooling water flowing through the radiator and the bypass flow passage, or may be the cooling water flowing between the radiator and the bypass flow passage. A three-way switching valve that switches the flow may be used. In any case, the present invention can be realized by providing a bypass valve in the bypass flow passage.

【0013】また、請求項7のように、始動から所定期
間経過後の水温センサの検出値と温水供給開始前(又は
始動当初)の水温センサの検出値との差に基づいてバイ
パスバルブが閉じ放しになる閉固着の有無を閉固着判定
手段により判定するようにしても良い。もし、バイパス
バルブの閉固着が発生すると、始動後も、始動前の内燃
機関への温水供給中と同じく、バイパスバルブと制御バ
ルブによってバイパス流路及びラジエータへの冷却水の
流れが遮断された状態に維持されるため、始動からある
程度の時間が経過して内燃機関の暖機が終了しても、内
燃機関の冷却水が冷却水循環回路中の水温センサの周辺
に流れず、水温センサの検出値が温水供給開始前(又は
始動当初)の水温センサの検出値とあまり変化しない状
態となる。そのため、バイパスバルブの閉固着発生時に
は、実際に内燃機関の暖機が終了しても、水温センサの
検出値が暖機完了に相当する水温まで上昇しないため、
暖機前と誤判定されてしまい、その結果、暖機後も、制
御バルブによってラジエータへの流路が遮断された状態
に維持されて、水温センサで検出する冷却水温の上昇が
少ない状態が続くことになる。この関係から、始動から
所定期間経過後の水温センサの検出値と温水供給開始前
(又は始動当初)の水温センサの検出値との差が所定の
閉固着判定値よりも小さいか否かで、バイパスバルブの
閉固着の有無を判定することができる。
Further, as described in claim 7, the bypass valve is closed based on the difference between the detected value of the water temperature sensor after a lapse of a predetermined period from the start and the detected value of the water temperature sensor before the start of hot water supply (or at the beginning of start). The presence / absence of closed sticking that is left may be determined by the closed sticking determination means. If the bypass valve closes and sticks, after the engine is started, the flow of cooling water to the bypass passage and radiator is blocked by the bypass valve and control valve, just as during hot water supply to the internal combustion engine. Therefore, even if the internal combustion engine warms up after a certain amount of time has passed since the engine started, the cooling water of the internal combustion engine does not flow around the water temperature sensor in the cooling water circulation circuit, and the detected value of the water temperature sensor Indicates a state in which there is not much change from the detection value of the water temperature sensor before the start of hot water supply (or at the beginning of startup). Therefore, when the bypass valve is closed and stuck, even if the internal combustion engine is actually warmed up, the detected value of the water temperature sensor does not rise to the water temperature corresponding to the completion of warming up.
It was erroneously determined that it was not warmed up, and as a result, even after it was warmed up, the flow path to the radiator was blocked by the control valve, and the increase in the cooling water temperature detected by the water temperature sensor continued to be small. It will be. From this relationship, whether or not the difference between the detection value of the water temperature sensor after a lapse of a predetermined period from the start and the detection value of the water temperature sensor before the start of hot water supply (or at the beginning of the start) is smaller than a predetermined closed sticking determination value, Whether or not the bypass valve is stuck closed can be determined.

【0014】この場合、請求項8のように、バイパスバ
ルブが閉固着していると判定された場合には、制御バル
ブをラジエータに冷却水を流すように切り換えるように
すると良い。このようにすれば、バイパスバルブが閉固
着している場合でも、その閉固着が検出された時点で、
内燃機関から冷却水を冷却水循環回路中の水温センサの
周辺に流すことができて、水温センサで実際の内燃機関
の温度に対応した冷却水温を検出することができ、冷却
水温の検出精度を確保することができる。
In this case, when it is determined that the bypass valve is closed and stuck, the control valve may be switched so that the cooling water flows to the radiator. By doing this, even when the bypass valve is stuck firmly, when the stuck tightness is detected,
Cooling water can be flowed from the internal combustion engine to the vicinity of the water temperature sensor in the cooling water circulation circuit, and the cooling water temperature corresponding to the actual temperature of the internal combustion engine can be detected by the water temperature sensor, ensuring the cooling water temperature detection accuracy. can do.

【0015】[0015]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。まず、図1に基づいて冷却系全体
の構成を説明する。内燃機関であるエンジン11の冷却
水通路(ウォータジャケット)の入口には、エンジン1
1の動力によって駆動される機械式ウォータポンプ12
が設けられている。このエンジン11の冷却水通路の出
口とラジエータ13の入口とが冷却水循環パイプ14に
よって接続され、ラジエータ13の出口と機械式ウォー
タポンプ12の吸込み口とが冷却水循環パイプ15によ
って接続されている。これにより、エンジン11の冷却
水通路→冷却水循環パイプ14→ラジエータ13→冷却
水循環パイプ15→機械式ウォータポンプ12→エンジ
ン11の冷却水通路の経路で冷却水が循環する冷却水循
環回路16が構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. First, the configuration of the entire cooling system will be described with reference to FIG. At the inlet of the cooling water passage (water jacket) of the engine 11 which is an internal combustion engine, the engine 1
Mechanical water pump 12 driven by power of 1
Is provided. The outlet of the cooling water passage of the engine 11 and the inlet of the radiator 13 are connected by a cooling water circulation pipe 14, and the outlet of the radiator 13 and the suction port of the mechanical water pump 12 are connected by a cooling water circulation pipe 15. As a result, a cooling water circulation circuit 16 in which the cooling water circulates through the cooling water passage of the engine 11 → the cooling water circulation pipe 14 → the radiator 13 → the cooling water circulation pipe 15 → the mechanical water pump 12 → the cooling water passage of the engine 11 is configured. ing.

【0016】この冷却水循環回路16には、ラジエータ
13と並列にバイパス流路17が設けられ、このバイパ
ス流路17の両端が冷却水循環パイプ14,15の途中
に接続されている。そして、バイパス流路17と冷却水
循環パイプ15との合流部に流量制御バルブ18(制御
バルブに相当)が設けられている。この流量制御バルブ
18は、ラジエータ13とバイパス流路17にそれぞれ
流れる冷却水の流量比を制御することができる電磁バル
ブにより構成されている。更に、バイパス流路17の途
中にはバイパスバルブ19が設けられている。このバイ
パスバルブ19は、例えば常開型の電磁バルブにより構
成されており、単に開弁と閉弁とを切り換えるだけで、
弁開度(バイパス流量)を制御する機能は持たない。
The cooling water circulation circuit 16 is provided with a bypass passage 17 in parallel with the radiator 13, and both ends of the bypass passage 17 are connected in the middle of the cooling water circulation pipes 14 and 15. A flow rate control valve 18 (corresponding to a control valve) is provided at the confluence of the bypass passage 17 and the cooling water circulation pipe 15. The flow rate control valve 18 is composed of an electromagnetic valve capable of controlling the flow rate ratio of the cooling water flowing through the radiator 13 and the bypass flow passage 17, respectively. Further, a bypass valve 19 is provided in the middle of the bypass passage 17. This bypass valve 19 is composed of, for example, a normally open electromagnetic valve, and by simply switching between open and closed valves,
It has no function to control the valve opening (bypass flow rate).

【0017】また、エンジン11に対して、暖房用の温
水回路20と蓄熱用の温水回路21とが並列に設けられ
ている。暖房用の温水回路20中には、電磁バルブ22
と暖房用のヒータコア23とが直列に接続され、蓄熱用
の温水回路21中には、保温材(断熱材)で形成された
保温構造の蓄熱器24と電動式ウォータポンプ25とが
直列に接続されている。
A hot water circuit 20 for heating and a hot water circuit 21 for heat storage are provided in parallel with the engine 11. An electromagnetic valve 22 is provided in the hot water circuit 20 for heating.
And a heater core 23 for heating are connected in series, and in the hot water circuit 21 for heat storage, a regenerator 24 having a heat retaining structure formed of a heat retaining material (insulating material) and an electric water pump 25 are connected in series. Has been done.

【0018】エンジン11の運転中に車室内を暖房する
ときは、電磁バルブ22を開放してエンジン11から流
れ出る温水(冷却水)の一部をヒータコア23に流し、
このヒータコア23の放熱によって空調装置(図示せ
ず)の送風空気を加熱する。また、イグニッションスイ
ッチ(以下「IGスイッチ」と表記する)をOFFして
エンジン11を停止させるときには、電動式ウォータポ
ンプ25を起動してエンジン11内の温水を蓄熱器24
内に回収し、保温状態で貯溜する。
When the passenger compartment is to be heated while the engine 11 is operating, the electromagnetic valve 22 is opened to allow a part of the warm water (cooling water) flowing out of the engine 11 to flow to the heater core 23.
The heat released from the heater core 23 heats the blown air from the air conditioner (not shown). Further, when the ignition switch (hereinafter referred to as “IG switch”) is turned off to stop the engine 11, the electric water pump 25 is activated to store hot water in the engine 11 in the heat storage unit 24.
It is collected inside and stored in a warm state.

【0019】一方、冷却水温を検出する水温センサ26
は、冷却水循環回路16のうちのエンジン11の冷却水
出口側で且つ蓄熱器24からの温水が循環しない位置に
設置されている。この水温センサ26の出力信号は、制
御回路27(ECU)に入力される。この制御回路27
は、マイクロコンピュータを主体として構成され、その
ROM(記憶媒体)に記憶された図2乃至図4の冷却系
制御ルーチンを実行することで、冷却系の各バルブ(流
量制御バルブ18、バイパスバルブ19)の動作を制御
すると共に、蓄熱用の温水回路21中の電動式ウォータ
ポンプ25の起動/停止を制御する。
On the other hand, a water temperature sensor 26 for detecting the cooling water temperature
Is installed on the cooling water outlet side of the engine 11 in the cooling water circulation circuit 16 and at a position where hot water from the heat storage device 24 does not circulate. The output signal of the water temperature sensor 26 is input to the control circuit 27 (ECU). This control circuit 27
Is mainly composed of a microcomputer, and executes the cooling system control routines of FIGS. 2 to 4 stored in the ROM (storage medium) of the microcomputer, so that each valve of the cooling system (flow control valve 18, bypass valve 19). ) And the start / stop of the electric water pump 25 in the hot water circuit 21 for heat storage.

【0020】ここで、図2乃至図4の冷却系制御ルーチ
ンによる冷却系の制御の概要を図5のタイムチャートに
基づいて説明する。運転者がIGスイッチをOFF位置
からON位置に操作すると、バイパスバルブ19を閉弁
してバイパス流路17を遮断した状態(バイパス流量=
0%)にすると共に、流量制御バルブ18をラジエータ
13の流路を遮断した状態(ラジエータ流量=0%)に
維持し、且つ、電動式ウォータポンプ25を起動して、
蓄熱器24内に貯溜されている温水をエンジン11内に
図1に破線矢印で示すように始動後のエンジン11内の
冷却水の循環方向とは逆方向に流してエンジン11を予
熱する。
Here, the outline of the control of the cooling system by the cooling system control routine of FIGS. 2 to 4 will be described based on the time chart of FIG. When the driver operates the IG switch from the OFF position to the ON position, the bypass valve 19 is closed and the bypass flow path 17 is shut off (bypass flow rate =
0%), the flow control valve 18 is maintained in a state in which the flow path of the radiator 13 is blocked (radiator flow rate = 0%), and the electric water pump 25 is activated.
The warm water stored in the heat storage unit 24 is preheated in the engine 11 by flowing in the engine 11 in a direction opposite to the circulation direction of the cooling water in the engine 11 after starting, as indicated by a dashed arrow in FIG.

【0021】その後、運転者がIGスイッチをON位置
からスタート位置に操作してスタータ(図示せず)を起
動してエンジン11を始動すると、エンジン回転速度N
eが所定の始動完了回転速度(例えば400rpm)以
上に上昇した時点で、エンジン11の始動が完了したと
判断して、電動式ウォータポンプ25をOFFして、エ
ンジン11への温水供給を終了する。
After that, when the driver operates the IG switch from the ON position to the start position to start the starter (not shown) and starts the engine 11, the engine rotation speed N
When e has risen above a predetermined start completion rotation speed (for example, 400 rpm), it is determined that the engine 11 has been started, the electric water pump 25 is turned off, and the hot water supply to the engine 11 is terminated. .

【0022】尚、図5に示すように、エンジン11への
温水供給開始からエンジン11の始動が完了するまでの
時間が所定時間(例えば7秒間)を越えた場合は、ま
だ、エンジン11の始動が完了していなくても、エンジ
ン11の冷却水通路が温水で満たされたと判断して、電
動式ウォータポンプ25をOFFし、エンジン11への
温水供給を終了する。
As shown in FIG. 5, when the time from the start of supplying hot water to the engine 11 to the completion of starting the engine 11 exceeds a predetermined time (for example, 7 seconds), the engine 11 is still started. Even if is not completed, it is determined that the cooling water passage of the engine 11 is filled with hot water, the electric water pump 25 is turned off, and the hot water supply to the engine 11 is terminated.

【0023】そして、電動式ウォータポンプ25をOF
Fした時点(エンジン11への温水供給を終了した時
点)で、バイパスバルブ19を開弁してバイパス流路1
7を開放する。この後は、エンジン11の暖機が完了す
るまで、エンジン11からバイパス流路17のみに冷却
水を循環させ、暖機完了後は、水温センサ26で検出し
た冷却水温がエンジン運転状態に応じて設定された目標
水温に一致するように流量制御バルブ18の制御量をフ
ィードバック制御して、バイパス流路17への冷却水流
量(バイパス流量)とラジエータ13への冷却水流量
(ラジエータ流量)との流量比を制御する。
Then, the electric water pump 25 is OF
At the time point F (when the hot water supply to the engine 11 is completed), the bypass valve 19 is opened to bypass the bypass passage 1
Open 7. After that, the cooling water is circulated from the engine 11 only to the bypass passage 17 until the warming up of the engine 11 is completed, and after the warming up is completed, the cooling water temperature detected by the water temperature sensor 26 is changed according to the engine operating state. The control amount of the flow rate control valve 18 is feedback-controlled so as to match the set target water temperature, and the cooling water flow rate to the bypass flow path 17 (bypass flow rate) and the cooling water flow rate to the radiator 13 (radiator flow rate) are controlled. Control the flow rate ratio.

【0024】尚、エンジン11の運転中に車室内を暖房
するときは、暖房用の温水回路20中の電磁バルブ22
を開放してエンジン11から流れ出る温水(冷却水)の
一部をヒータコア23に流し、このヒータコア23の放
熱によって空調装置(図示せず)の送風空気を加熱す
る。
When heating the passenger compartment while the engine 11 is operating, the electromagnetic valve 22 in the hot water circuit 20 for heating is used.
Is opened and a part of the warm water (cooling water) flowing out from the engine 11 is made to flow to the heater core 23, and the heat radiation of the heater core 23 heats the blown air of the air conditioner (not shown).

【0025】その後、運転者がIGスイッチをON位置
からOFF位置に操作して、エンジン11の運転を停止
すると、直ちに、蓄熱用の温水回路21中の電動式ウォ
ータポンプ25を起動して、図1に破線矢印で示すよう
にエンジン11内の温水をエンジン運転中の冷却水の循
環方向とは逆方向に流して、その温水を蓄熱器24内に
回収する。これにより、次のエンジン始動時まで、蓄熱
器24内に温水が保温状態で貯溜される。
After that, when the driver operates the IG switch from the ON position to the OFF position to stop the operation of the engine 11, immediately the electric water pump 25 in the hot water circuit 21 for heat storage is started, 1, hot water in the engine 11 flows in a direction opposite to the circulation direction of the cooling water during engine operation, and the hot water is collected in the heat storage unit 24. As a result, hot water is stored in the heat storage unit 24 in a heat retaining state until the next engine start.

【0026】その後、蓄熱器24内への温水の回収を開
始してから蓄熱器24内に十分な温水が蓄えられるまで
の所定時間(例えば7秒間)が経過した時点で、電動式
ウォータポンプ25を停止して、蓄熱器24内への温水
の回収を終了する。
After that, when a predetermined time (for example, 7 seconds) from the start of collecting hot water in the heat storage unit 24 to the time when sufficient hot water is stored in the heat storage unit 24 has passed, the electric water pump 25 To stop collecting hot water in the heat storage unit 24.

【0027】以上説明した冷却系の制御を実行する図2
乃至図4の冷却系制御ルーチンは、IGスイッチのON
後に所定時間毎(例えば16m秒毎)に起動され、特許
請求の範囲でいう冷却水循環制御手段としての役割を果
たす。本ルーチンが起動されると、まずステップ101
で、IGスイッチがOFF位置からON位置に操作され
た直後であるか否かを判定し、ON位置に操作された直
後であれば、ステップ102に進み、水温センサ26で
検出した現在の冷却水温THWを温水供給前の冷却水温
THWint(冷却水温の初期値)としてセットし、次
のステップ103で、電動式ウォータポンプ25の駆動
フラグXEWPをON(駆動)にセットして、電動式ウ
ォータポンプ25を起動し、蓄熱器24内に貯溜されて
いる温水をエンジン11内に供給してエンジン11を予
熱する。
FIG. 2 for executing the control of the cooling system described above
Through the cooling system control routine of FIG. 4, the IG switch is turned on.
Afterwards, it is activated every predetermined time (for example, every 16 msec), and plays a role as a cooling water circulation control means in the claims. When this routine is started, first, step 101
Then, it is determined whether or not the IG switch has just been operated from the OFF position to the ON position, and if it is immediately after being operated to the ON position, the process proceeds to step 102, where the current cooling water temperature detected by the water temperature sensor 26 is detected. THW is set as the cooling water temperature THWint (initial value of the cooling water temperature) before hot water supply, and in the next step 103, the drive flag XEWP of the electric water pump 25 is set to ON (drive) to set the electric water pump 25. Is started and the hot water stored in the heat storage unit 24 is supplied into the engine 11 to preheat the engine 11.

【0028】更に、次のステップ104で、常開型のバ
イパスバルブ19の駆動フラグXBIPをON(閉弁)
にセットしてバイパスバルブ19を閉弁し、バイパス流
路17を遮断し、続くステップ105で、流量制御バル
ブ18の制御量TQを0%にセットして、流量制御バル
ブ18をラジエータ13の流路を遮断する状態に維持す
る。これにより、始動前に蓄熱器24からエンジン11
に供給される温水が冷却水循環回路16に流れ込むこと
を防止する。
Further, in the next step 104, the drive flag XBIP of the normally open type bypass valve 19 is turned on (closed).
Is set to 0, the bypass valve 19 is closed, the bypass flow path 17 is shut off, and in the following step 105, the control amount TQ of the flow control valve 18 is set to 0%, and the flow control valve 18 is set to the flow of the radiator 13. Keep the road blocked. As a result, before starting the engine 11
The hot water supplied to the cooling water circulation circuit 16 is prevented from flowing into the cooling water circulation circuit 16.

【0029】以上説明したステップ102〜105の処
理は、IGスイッチがOFF位置からON位置に操作さ
れた直後に1回のみ実行する初期化処理であり、これ以
外の時期に本ルーチンが起動されたときには、これらの
初期化処理(ステップ102〜105)を飛び越してス
テップ106に進む。
The processing of steps 102 to 105 described above is an initialization processing which is executed only once immediately after the IG switch is operated from the OFF position to the ON position, and this routine is started at other times. Sometimes, these initialization processes (steps 102 to 105) are skipped and the process proceeds to step 106.

【0030】そして、このステップ106で、IGスイ
ッチがONかOFFかを判別し、ONされていれば、ス
テップ107に進み、IGスイッチON後の経過時間を
カウントするON時間カウンタCIGONをインクリメ
ントし、次のステップ108で、IGスイッチOFF後
の経過時間をカウントするOFF時間カウンタCIGO
FFを0にリセットする。反対に、IGスイッチがOF
Fされていれば、ステップ109に進み、ON時間カウ
ンタCIGONを0にリセットし、次のステップ110
で、OFF時間カウンタCIGOFFをインクリメント
する。
In step 106, it is determined whether the IG switch is ON or OFF. If the IG switch is ON, the process proceeds to step 107, where the ON time counter CIGON for counting the elapsed time after the IG switch is turned ON is incremented, In the next step 108, an OFF time counter CIGO that counts the elapsed time after the IG switch is turned off
Reset FF to 0. On the contrary, the IG switch is OF
If it is F, the process proceeds to step 109, the ON time counter CIGON is reset to 0, and the next step 110
Then, the OFF time counter CIGOFF is incremented.

【0031】この後、図3のステップ111に進み、O
N時間カウンタCIGONのカウント値が所定時間(例
えば7秒)以上になったか否かを判定することで、温水
供給開始から所定時間(例えば7秒)以上経過したか否
かを判定し、所定時間以上経過していれば、ステップ1
13に進み、電動式ウォータポンプ25の駆動フラグX
EWPをOFF(停止)にセットして、電動式ウォータ
ポンプ25を停止してエンジン11への温水供給を終了
すると共に、常開型のバイパスバルブ19の駆動フラグ
XBIPをOFF(開弁)にセットしてバイパスバルブ
19を開弁し、バイパス流路17を開放する。
After that, the process proceeds to step 111 of FIG.
By determining whether or not the count value of the N-hour counter CIGON has reached a predetermined time (for example, 7 seconds) or more, it is determined whether or not a predetermined time (for example, 7 seconds) has elapsed from the start of hot water supply, and the predetermined time If so, step 1
13, the drive flag X of the electric water pump 25
The EWP is set to OFF (stop), the electric water pump 25 is stopped to end the hot water supply to the engine 11, and the drive flag XBIP of the normally open type bypass valve 19 is set to OFF (open). Then, the bypass valve 19 is opened and the bypass flow path 17 is opened.

【0032】一方、ON時間カウンタCIGONのカウ
ント値が所定時間(例えば7秒)に達していない場合
は、ステップ111からステップ112に進み、エンジ
ン回転速度Neが所定の始動完了回転速度(例えば40
0rpm)以上に上昇したか否かで、エンジン11の始
動が完了したか否かを判定し、エンジン11の始動が完
了したと判定されれば、ステップ113に進み、電動式
ウォータポンプ25を停止して、エンジン11への温水
供給を終了すると共に、バイパスバルブ19を開弁して
バイパス流路17を開放する。
On the other hand, when the count value of the ON time counter CIGON has not reached the predetermined time (for example, 7 seconds), the routine proceeds from step 111 to step 112, where the engine rotation speed Ne is the predetermined start completion rotation speed (for example, 40 seconds).
0 rpm) or more, it is determined whether or not the engine 11 has been started. If it is determined that the engine 11 has been started, the process proceeds to step 113, and the electric water pump 25 is stopped. Then, the hot water supply to the engine 11 is terminated, and the bypass valve 19 is opened to open the bypass flow passage 17.

【0033】上記ステップ111、112でいずれも
「No」と判定されときに、エンジン11への温水供給
中であれば、そのまま温水供給を継続し、IGスイッチ
のOFF直後であれば、後述する図4のステップ118
以降の処理により、エンジン11内の温水を蓄熱器24
内に回収する。
When it is determined to be "No" in both steps 111 and 112, if the hot water is being supplied to the engine 11, the hot water supply is continued as it is, and if it is immediately after the IG switch is turned off, the operation described later. Step 4 of 4
By the subsequent processing, the warm water in the engine 11 is stored
Collect in.

【0034】上記ステップ113の処理によりエンジン
11への温水供給を終了した場合は、ステップ114に
進み、水温センサ26で検出した冷却水温THWが所定
温度(例えば80℃)以上に上昇したか否かで、エンジ
ン11の暖機が完了したか否かを判定し、暖機完了前と
判定されれば、ステップ117に進み、流量制御バルブ
18の制御量TQを0%にセットして、流量制御バルブ
18をラジエータ13の流路を遮断する状態に維持す
る。これにより、暖機完了前は、エンジン11から流れ
出る冷却水がラジエータ13を流れずにバイパス流路1
7を通って循環し、ラジエータ13で冷却水の温度が低
下することが回避される。
When the hot water supply to the engine 11 has been completed by the processing of step 113, the routine proceeds to step 114, where it is determined whether or not the cooling water temperature THW detected by the water temperature sensor 26 has risen above a predetermined temperature (for example, 80 ° C.). Then, it is determined whether or not the warm-up of the engine 11 is completed, and if it is determined that the warm-up is not completed, the routine proceeds to step 117, where the control amount TQ of the flow control valve 18 is set to 0%, and the flow control is performed. The valve 18 is maintained in a state of blocking the flow path of the radiator 13. As a result, before the completion of warming up, the cooling water flowing out from the engine 11 does not flow through the radiator 13 and the bypass passage 1
Circulation through 7 prevents the radiator 13 from lowering the temperature of the cooling water.

【0035】一方、上記ステップ114で、暖機完了後
(冷却水温THW≧所定温度)と判定された場合は、ス
テップ115に進み、現在のエンジン運転状態(例えば
エンジン回転速度Ne、吸入空気量GN)に応じてマッ
プ又は数式により目標水温THWTGを算出する。この
後、ステップ116に進み、水温センサ26で検出した
冷却水温THWが目標水温THWTGに一致するように
流量制御バルブ18の制御量TQをフィードバック制御
する。これにより、暖機後は、水温センサ26で検出し
た冷却水温THWが目標水温THWTGよりも高けれ
ば、ラジエータ13への冷却水流量(ラジエータ流量)
を増加させてバイパス流路17への冷却水流量(バイパ
ス流量)を減少させ、反対に、水温センサ26で検出し
た冷却水温THWが目標水温THWTGよりも低けれ
ば、ラジエータ13への冷却水流量(ラジエータ流量)
を減少させてバイパス流路17への冷却水流量(バイパ
ス流量)を増加させるように流量制御バルブ18の制御
量TQをフィードバック制御する。
On the other hand, if it is determined in the above step 114 that the warm-up is completed (cooling water temperature THW ≧ predetermined temperature), the routine proceeds to step 115, where the current engine operating state (for example, engine rotation speed Ne, intake air amount GN). ), The target water temperature THWTG is calculated by a map or a mathematical formula. Thereafter, the routine proceeds to step 116, where the control amount TQ of the flow rate control valve 18 is feedback-controlled so that the cooling water temperature THW detected by the water temperature sensor 26 matches the target water temperature THWTG. As a result, after warm-up, if the cooling water temperature THW detected by the water temperature sensor 26 is higher than the target water temperature THWTG, the cooling water flow rate to the radiator 13 (radiator flow rate).
To decrease the cooling water flow rate to the bypass passage 17 (bypass flow rate), and conversely, if the cooling water temperature THW detected by the water temperature sensor 26 is lower than the target water temperature THWTG, the cooling water flow rate to the radiator 13 ( Radiator flow rate)
Is controlled to increase the cooling water flow rate (bypass flow rate) to the bypass flow path 17 by feedback control of the control amount TQ of the flow rate control valve 18.

【0036】その後、図4のステップ118に進み、I
GスイッチがON位置からOFF位置に操作された直後
(エンジン停止直後)であるか否かを判定し、OFF位
置に操作された直後であれば、ステップ119に進み、
電動式ウォータポンプ25の駆動フラグXEWPをON
(駆動)にセットして、電動式ウォータポンプ25を起
動する。これにより、エンジン停止直後にエンジン11
内の温水を蓄熱器24内に回収する。
After that, the process proceeds to step 118 of FIG.
It is determined whether or not it is immediately after the G switch is operated from the ON position to the OFF position (immediately after the engine is stopped). If it is immediately after the G switch is operated to the OFF position, the process proceeds to step 119.
Turns on the drive flag XEWP of the electric water pump 25
(Drive) to start the electric water pump 25. As a result, immediately after the engine is stopped
The hot water inside is collected in the heat storage unit 24.

【0037】この後、ステップ120に進み、OFF時
間カウンタCIGOFFのカウント値が所定時間(例え
ば7秒)以上になったか否かを判定することで、温水回
収開始から所定時間(例えば7秒)以上経過したか否か
を判定し、所定時間以上経過していれば、ステップ12
1に進み、電動式ウォータポンプ25の駆動フラグXE
WPをOFF(停止)にセットして、電動式ウォータポ
ンプ25を停止して、蓄熱器24への温水回収を終了す
る。
After that, the routine proceeds to step 120, where it is determined whether or not the count value of the OFF time counter CIGOFF has become a predetermined time (for example, 7 seconds) or more, so that it is a predetermined time (for example, 7 seconds) or more from the start of hot water recovery. It is determined whether or not the time has passed, and if the predetermined time or more has passed, step 12
1, the drive flag XE of the electric water pump 25
WP is set to OFF (stop), the electric water pump 25 is stopped, and hot water recovery to the heat storage unit 24 is completed.

【0038】また、制御回路27は、ROMに記憶され
た図6のバイパスバルブ開固着判定ルーチンを実行する
ことで、エンジン11への温水供給開始から所定時間
(例えば3〜7秒)経過後の水温センサ26の検出値T
HWと温水供給開始前の水温センサ26の検出値THW
intとの差に基づいてバイパスバルブ19が開き放し
になる開固着の有無を判定する。
Further, the control circuit 27 executes the bypass valve open / sticking determination routine of FIG. 6 stored in the ROM so that a predetermined time (for example, 3 to 7 seconds) has elapsed from the start of supplying hot water to the engine 11. Detection value T of the water temperature sensor 26
HW and detection value THW of the water temperature sensor 26 before the start of hot water supply
Based on the difference from int, it is determined whether or not there is open sticking that leaves the bypass valve 19 open.

【0039】もし、バイパスバルブ19の開固着が発生
すると、始動前に蓄熱器24からエンジン11に温水を
供給するときに、その温水がエンジン11から冷却水循
環回路16中の水温センサ26の周辺に流れ込んでしま
うため、その温水の影響を受けて、水温センサ26で検
出する冷却水温THWが実際のエンジン11の温度より
も高くなってしまう。その結果、バイパスバルブ19の
開固着発生時には、図7に示すように、温水供給開始か
ら時間が経過するに従って水温センサ26の検出値TH
Wと温水供給開始前の水温センサ26の検出値THWi
nt(正常時の冷却水温)との差が大きくなる。この関
係から、温水供給開始からある程度の時間が経過した後
の水温センサ16の検出値THWと温水供給開始前の水
温センサ26の検出値THWintとの差(絶対値)が
所定の開固着判定値よりも大きいか否かで、バイパスバ
ルブ19の開固着の有無を判定することができる。
If the bypass valve 19 is stuck open, when hot water is supplied from the heat storage unit 24 to the engine 11 before starting, the hot water flows from the engine 11 to the vicinity of the water temperature sensor 26 in the cooling water circulation circuit 16. Since it flows in, the cooling water temperature THW detected by the water temperature sensor 26 becomes higher than the actual temperature of the engine 11 due to the influence of the hot water. As a result, when the bypass valve 19 is stuck open, as shown in FIG. 7, the detection value TH of the water temperature sensor 26 increases as time elapses from the start of hot water supply.
W and the detection value THWi of the water temperature sensor 26 before the start of hot water supply
The difference from nt (normal cooling water temperature) becomes large. From this relationship, the difference (absolute value) between the detection value THW of the water temperature sensor 16 after a certain amount of time from the start of the hot water supply and the detection value THWint before the start of the hot water supply is a predetermined open sticking determination value. It is possible to determine whether or not the open valve of the bypass valve 19 is stuck.

【0040】尚、本実施形態では、開固着判定の信頼性
を高めるために、温水供給開始から所定時間経過後に、
水温センサ16の検出値THWと温水供給開始前の水温
センサ26の検出値THWintとの差|THW−TH
Wint|が所定の開固着判定値よりも大きいか否かを
判定する処理を所定周期で繰り返し、その結果、|TH
W−THWint|が開固着判定値よりも大きいと判定
される状態が所定回数連続したときに、バイパスバルブ
19の開固着と判定して、バイパスバルブ開固着フラグ
を「1」にセットするようにしている。
In this embodiment, in order to increase the reliability of the open sticking determination, after a predetermined time has elapsed from the start of hot water supply,
Difference between detection value THW of water temperature sensor 16 and detection value THWint of water temperature sensor 26 before starting hot water supply | THW-TH
The process of determining whether Wint | is larger than a predetermined open-sticking determination value is repeated in a predetermined cycle, and as a result, | TH
When the state where W-THWint | is determined to be larger than the open sticking determination value continues for a predetermined number of times, it is determined that the bypass valve 19 is open stuck, and the bypass valve open sticking flag is set to "1". ing.

【0041】以上説明したバイパスバルブ19の開固着
判定を実行する図6のバイパスバルブ開固着判定ルーチ
ンは、IGスイッチのON後に所定時間毎(例えば16
m秒毎)に起動され、特許請求の範囲でいう開固着判定
手段としての役割を果たす。本ルーチンが起動される
と、まずステップ201で、開固着判定実行条件が成立
しているか否かを、図2のステップ107でインクリメ
ントされるON時間カウンタCIGONのカウント値が
例えば3秒から7秒までの範囲内で、且つ、始動前であ
るか否かによって判定する。つまり、エンジン11への
温水供給開始後の経過時間が例えば3秒から7秒までの
期間で、且つ、始動前であれば、開固着判定実行条件が
成立し、それ以外の場合は、開固着判定実行条件が不成
立となり、以降の処理を行うことなく、本ルーチンを終
了する。
The bypass valve open / fixed determination routine of FIG. 6 for executing the open / closed determination of the bypass valve 19 described above is performed at predetermined intervals (for example, 16 times) after the IG switch is turned on.
It is activated every m seconds) and functions as an open sticking determination means in the claims. When this routine is started, first, at step 201, whether the open sticking determination execution condition is satisfied or not is incremented at step 107 of FIG. 2 and the count value of the ON time counter CIGON is, for example, 3 seconds to 7 seconds. Within the range up to and before starting. That is, if the elapsed time after the start of supplying hot water to the engine 11 is, for example, a period from 3 seconds to 7 seconds and before the start, the open sticking determination execution condition is satisfied, and in other cases, the open sticking is performed. The determination execution condition is not satisfied, and this routine is terminated without performing the subsequent processing.

【0042】一方、開固着判定実行条件が成立していれ
ば、ステップ202に進み、現在の水温センサ16の検
出値THWと温水供給開始前の水温センサ26の検出値
THWintとの差|THW−THWint|が所定の
開固着判定値よりも大きいか否かを判定し、|THW−
THWint|が開固着判定値以下であれば、バイパス
バルブ19の開固着が発生していないと判断して、ステ
ップ203に進み、開固着カウンタを「0」にリセット
し、次のステップ204で、バイパスバルブ開固着フラ
グを「0」にリセットして本ルーチンを終了する。
On the other hand, if the open sticking determination execution condition is satisfied, the routine proceeds to step 202, where the difference | THW- between the current detected value THW of the water temperature sensor 16 and the detected value THWint of the water temperature sensor 26 before the start of hot water supply. It is determined whether THWint | is larger than a predetermined open sticking determination value, and | THW-
If THWint | is less than or equal to the open sticking determination value, it is determined that the open sticking of the bypass valve 19 has not occurred, the process proceeds to step 203, the open sticking counter is reset to “0”, and in the next step 204, The bypass valve open fixation flag is reset to "0" and this routine ends.

【0043】これに対し、上記ステップ202で、|T
HW−THWint|が開固着判定値よりも大きいと判
定された場合は、バイパスバルブ19の開固着が発生し
ている可能性があるため、ステップ205に進み、開固
着カウンタをインクリメントして、次のステップ206
で、開固着カウンタの値が所定値を越えたか否かを判定
する。その結果、開固着カウンタの値が所定値以下であ
れば、まだ、開固着と判定せずに本ルーチンを終了す
る。
On the other hand, in step 202, | T
If it is determined that HW-THWint | is larger than the open sticking determination value, there is a possibility that open sticking of the bypass valve 19 has occurred, so the routine proceeds to step 205, where the open sticking counter is incremented, and Step 206
Then, it is determined whether or not the value of the open sticking counter exceeds a predetermined value. As a result, if the value of the open sticking counter is equal to or less than the predetermined value, the routine is finished without determining the open sticking.

【0044】もし、ステップ206で、開固着カウンタ
の値が所定値を越えていると判定されれば、最終的に開
固着と判断して、ステップ207に進み、バイパスバル
ブ開固着フラグを「1」にセットして本ルーチンを終了
する。
If it is determined in step 206 that the value of the open sticking counter exceeds the predetermined value, it is finally determined that the sticking is open, and the process proceeds to step 207, in which the bypass valve open sticking flag is set to "1". “” To end this routine.

【0045】また、制御回路27は、ROMに記憶され
た図8のバイパスバルブ閉固着判定ルーチンを実行する
ことで、始動から所定時間経過後の水温センサ26の検
出値THWと温水供給開始前の水温センサ26の検出値
THWintとの差に基づいてバイパスバルブ19が閉
じ放しになる閉固着の有無を判定する。
Further, the control circuit 27 executes the bypass valve closed / sticking determination routine stored in the ROM shown in FIG. 8 to detect the detected value THW of the water temperature sensor 26 after a predetermined time has elapsed from the start and before starting the hot water supply. Based on the difference from the detected value THWint of the water temperature sensor 26, it is determined whether or not there is a closed sticking condition in which the bypass valve 19 is left closed.

【0046】もし、バイパスバルブ19の閉固着が発生
すると、図9に示すように、始動後も、始動前のエンジ
ン11への温水供給中と同じく、バイパスバルブ19と
流量制御バルブ18によってバイパス流路17及びラジ
エータ13への冷却水の流れが遮断された状態に維持さ
れるため、始動からある程度の時間が経過してエンジン
11の暖機が終了しても、エンジン11の冷却水が冷却
水循環回路16中の水温センサ26の周辺に流れず、水
温センサ26の検出値THWが温水供給開始前の水温セ
ンサ26の検出値THWintとあまり変化しない状態
となる。そのため、バイパスバルブ19の閉固着発生時
には、図9に示すように、実際にエンジン11の暖機が
終了しても、水温センサ26の検出値THWが暖機完了
に相当する水温まで上昇しないため、暖機前と誤判定さ
れてしまい、その結果、暖機後も、流量制御バルブ18
によってラジエータ13への冷却水の流れが遮断された
状態に維持されて、水温センサ26で検出する冷却水温
THWの上昇が少ない状態が続くことになる。この関係
から、始動から所定時間経過後の水温センサ26の検出
値THWと温水供給開始前の水温センサ26の検出値T
HWintとの差が所定の閉固着判定値よりも小さいか
否かで、バイパスバルブ19の閉固着の有無を判定する
ことができる。
If the bypass valve 19 is stuck closed, as shown in FIG. 9, the bypass flow by the bypass valve 19 and the flow rate control valve 18 is the same as that during the hot water supply to the engine 11 before the start as shown in FIG. Since the flow of the cooling water to the passage 17 and the radiator 13 is maintained in a blocked state, the cooling water of the engine 11 circulates in the cooling water even if the engine 11 is warmed up after a certain time has passed from the start. There is no flow around the water temperature sensor 26 in the circuit 16, and the detection value THW of the water temperature sensor 26 does not change much from the detection value THWint of the water temperature sensor 26 before the start of hot water supply. Therefore, when the bypass valve 19 is stuck closed, as shown in FIG. 9, the detected value THW of the water temperature sensor 26 does not rise to the water temperature corresponding to the completion of warming up, even if the engine 11 has actually warmed up. It is erroneously determined that the flow control valve 18 has not been warmed up.
As a result, the flow of the cooling water to the radiator 13 is maintained in a blocked state, and the state in which the increase in the cooling water temperature THW detected by the water temperature sensor 26 is small continues. From this relationship, the detected value THW of the water temperature sensor 26 after a lapse of a predetermined time from the start and the detected value T of the water temperature sensor 26 before the start of hot water supply
Whether or not the bypass valve 19 is stuck closed can be determined based on whether or not the difference from HWint is smaller than a predetermined closed sticking determination value.

【0047】そして、バイパスバルブ19が閉固着して
いると判定された場合には、流量制御バルブ18をエン
ジン11からの冷却水が全てラジエータ13に流れるよ
うに強制的に切り換える。このようにすれば、バイパス
バルブ13が閉固着している場合でも、その閉固着が検
出された時点で、エンジン11から冷却水を冷却水循環
回路16中の水温センサ26の周辺に流すことができ
て、水温センサ26で実際のエンジン11の温度に対応
した冷却水温を検出することができる。
When it is determined that the bypass valve 19 is closed and stuck, the flow control valve 18 is forcibly switched so that all the cooling water from the engine 11 flows to the radiator 13. By doing so, even when the bypass valve 13 is stuck and closed, the cooling water can be caused to flow from the engine 11 to the vicinity of the water temperature sensor 26 in the cooling water circulation circuit 16 when the close and sticking is detected. Thus, the water temperature sensor 26 can detect the cooling water temperature corresponding to the actual temperature of the engine 11.

【0048】尚、本実施形態では、閉固着判定の信頼性
を高めるために、始動から所定時間(例えば10〜30
秒)経過後に、水温センサ16の検出値THWと温水供
給開始前の水温センサ26の検出値THWintとの差
|THW−THWint|が所定の閉固着判定値よりも
小さいか否かを判定する処理を所定周期で繰り返し、そ
の結果、|THW−THWint|が閉固着判定値より
も小さいと判定される状態が所定回数連続したときに、
バイパスバルブ19の閉固着と判定して、バイパスバル
ブ閉固着フラグを「1」にセットするようにしている。
In this embodiment, in order to improve the reliability of the closed sticking determination, a predetermined time (for example, 10 to 30) from the start.
Seconds), a process of determining whether the difference | THW-THWint | between the detection value THW of the water temperature sensor 16 and the detection value THWint of the water temperature sensor 26 before the start of hot water supply is smaller than a predetermined closed fixation determination value. Is repeated at a predetermined cycle, and as a result, | THW-THWint | is determined to be smaller than the closed sticking determination value for a predetermined number of times consecutively,
When it is determined that the bypass valve 19 is stuck closed, the bypass valve closed sticking flag is set to "1".

【0049】以上説明したバイパスバルブ19の閉固着
判定を実行する図8のバイパスバルブ開固着判定ルーチ
ンは、IGスイッチのON後に所定時間毎(例えば16
m秒毎)に起動され、特許請求の範囲でいう閉固着判定
手段としての役割を果たす。本ルーチンが起動される
と、まずステップ301で、エンジン回転速度Neが所
定の始動完了回転速度(例えば400rpm)以上に上
昇し、且つスタータがOFFされたか否かによって、始
動後であるか否かを判定し、始動後でないと判定されれ
ば、ステップ302に進み、始動後の経過時間をカウン
トする始動後カウンタを「0」にリセットする。一方、
始動後と判定されれば、ステップ303に進み、始動後
カウンタをインクリメントする。
The bypass valve open / fixed determination routine of FIG. 8 for executing the closed / closed determination of the bypass valve 19 described above is performed every predetermined time (for example, 16 times) after the IG switch is turned on.
It is activated every m seconds) and functions as the closed sticking determination means in the claims. When this routine is started, first, at step 301, it is determined whether or not the engine has been started after the engine speed Ne has risen above a predetermined start completion speed (for example, 400 rpm) and whether or not the starter has been turned off. If it is determined that it has not been started yet, the routine proceeds to step 302, where a post-start counter that counts the elapsed time after the start is reset to "0". on the other hand,
If it is determined that the engine has been started, the routine proceeds to step 303, where the after-start counter is incremented.

【0050】この後、ステップ304に進み、始動後カ
ウンタのカウント値(始動後の経過時間)が例えば10
秒から30秒までの範囲内であるか否かによって、閉固
着判定期間であるか否かを判定し、閉固着判定期間でな
ければ、以降の処理を行うことなく、本ルーチンを終了
する。
After this, the routine proceeds to step 304, where the count value of the post-start counter (elapsed time after start) is, for example, 10
Whether or not it is the closed sticking determination period is determined depending on whether it is within the range from 2 seconds to 30 seconds. If it is not the closed sticking determination period, the present routine is terminated without performing the subsequent processing.

【0051】これに対し、閉固着判定期間であれば、ス
テップ305に進み、現在の水温センサ16の検出値T
HWと温水供給開始前の水温センサ26の検出値THW
intとの差|THW−THWint|が所定の閉固着
判定値よりも小さいか否かを判定し、|THW−THW
int|が閉固着判定値以上であれば、バイパスバルブ
19の閉固着が発生していないと判断して、ステップ3
06に進み、閉固着カウンタを「0」にリセットし、次
のステップ307で、バイパスバルブ閉固着フラグを
「0」にリセットして本ルーチンを終了する。
On the other hand, if it is the closed sticking determination period, the routine proceeds to step 305, where the current detected value T of the water temperature sensor 16 is reached.
HW and detection value THW of the water temperature sensor 26 before the start of hot water supply
It is determined whether the difference | THW-THWint | from the int is smaller than a predetermined closed sticking determination value, and | THW-THW
If int | is greater than or equal to the closed sticking determination value, it is determined that the closed sticking of the bypass valve 19 has not occurred, and step 3
In step 06, the closed sticking counter is reset to "0", and in the next step 307, the bypass valve closed sticking flag is reset to "0", and this routine ends.

【0052】これに対し、上記ステップ305で、|T
HW−THWint|が閉固着判定値よりも小さいと判
定された場合は、バイパスバルブ19の閉固着が発生し
ている可能性があるため、ステップ308に進み、閉固
着カウンタをインクリメントして、次のステップ309
で、閉固着カウンタの値が所定値を越えたか否かを判定
する。その結果、閉固着カウンタの値が所定値以下であ
れば、まだ、閉固着と判定せずに本ルーチンを終了す
る。
On the other hand, in step 305, | T
If it is determined that HW-THWint | is smaller than the closed sticking determination value, there is a possibility that closed sticking of the bypass valve 19 has occurred, so the routine proceeds to step 308, where the closed sticking counter is incremented, and Step 309
Then, it is determined whether or not the value of the closed sticking counter exceeds a predetermined value. As a result, if the value of the closed sticking counter is equal to or smaller than the predetermined value, the routine is finished without determining the closed sticking.

【0053】もし、ステップ309で、閉固着カウンタ
の値が所定値を越えていると判定されれば、最終的に閉
固着と判断して、ステップ310に進み、バイパスバル
ブ閉固着フラグを「1」にセットすると共に、流量制御
バルブ18の制御量TQを100%にセットして、流量
制御バルブ18をエンジン11からの冷却水が全てラジ
エータ13に流れるように切り換える。
If it is determined in step 309 that the value of the closed sticking counter exceeds the predetermined value, it is finally determined that the sticking is closed, and the process proceeds to step 310 to set the bypass valve closed sticking flag to "1". ", And the control amount TQ of the flow rate control valve 18 is set to 100%, and the flow rate control valve 18 is switched so that all the cooling water from the engine 11 flows to the radiator 13.

【0054】また、制御回路27は、ROMに記憶され
た図10の燃料噴射制御ルーチンを実行することで、水
温センサ26で検出した冷却水温又は推定水温に応じて
燃料噴射量を補正して最終噴射量を求める。
Further, the control circuit 27 executes the fuel injection control routine of FIG. 10 stored in the ROM to correct the fuel injection amount according to the cooling water temperature detected by the water temperature sensor 26 or the estimated water temperature, and finally. Calculate the injection amount.

【0055】ところで、バイパスバルブ19が開固着し
た状態になっていると、図11に示すように、始動時の
水温センサ26の検出値THWが蓄熱器24から供給さ
れる温水の影響を受けて実際のエンジン11の温度より
も高い温度になっているため、温水供給開始前の水温セ
ンサ26の検出値THWintと始動後経過時間に基づ
いて冷却水温を推定した方が水温センサ26の検出値T
HWよりも実際のエンジン11の温度に近い温度を求め
ることができる。従って、バイパスバルブ19が開固着
している場合には、この推定冷却水温に基づいて燃料噴
射量を補正すれば、水温センサ26の検出値THWに基
づいて燃料噴射量を補正する場合と比べて、燃料噴射量
を精度良く補正することができる。
By the way, when the bypass valve 19 is in the open and fixed state, as shown in FIG. 11, the detection value THW of the water temperature sensor 26 at the time of starting is affected by the hot water supplied from the heat storage unit 24. Since the temperature is higher than the actual temperature of the engine 11, it is better to estimate the cooling water temperature based on the detection value THWint of the water temperature sensor 26 before the start of the hot water supply and the elapsed time after the start of the detection value T of the water temperature sensor 26.
A temperature closer to the actual temperature of the engine 11 than HW can be obtained. Therefore, when the bypass valve 19 is stuck open, if the fuel injection amount is corrected based on this estimated cooling water temperature, compared to the case where the fuel injection amount is corrected based on the detection value THW of the water temperature sensor 26. The fuel injection amount can be accurately corrected.

【0056】尚、バイパスバルブ19が開固着している
場合でも、始動後の時間経過に伴って、エンジン11の
温度が高くなるに従って、水温センサ26の検出値TH
Wが実際のエンジン11の温度に近付いていくため、両
者の温度差がある程度小さくなってからは、推定冷却水
温に代えて、水温センサ26の検出値THWを用いて燃
料噴射量を補正する。このようにすれば、バイパスバル
ブ19が開固着している場合に、推定冷却水温と水温セ
ンサ26の検出値THWとのうちの信頼性の高い方を用
いて燃料噴射量を補正することができ、空燃比制御性の
悪化を回避することができる。
Even if the bypass valve 19 is stuck open, the detected value TH of the water temperature sensor 26 increases as the temperature of the engine 11 increases with the lapse of time after the start.
Since W approaches the actual temperature of the engine 11, the fuel injection amount is corrected using the detected value THW of the water temperature sensor 26 instead of the estimated cooling water temperature after the temperature difference between the two has decreased to some extent. With this configuration, when the bypass valve 19 is stuck open, the fuel injection amount can be corrected by using the reliable one of the estimated cooling water temperature and the detected value THW of the water temperature sensor 26. It is possible to avoid deterioration of air-fuel ratio controllability.

【0057】以上説明した燃料噴射制御を実行する図1
0の燃料噴射制御ルーチンは、IGスイッチのON後に
所定時間毎(例えば16m秒毎)に起動され、特許請求
の範囲でいう燃料噴射制御手段としての役割を果たす。
本ルーチンが起動されると、まずステップ401で、前
記図8のステップ301でインクリメントされる始動後
カウンタのカウント値(始動後の経過時間)が所定時間
K1以下であるか否かを判定する。ここで、所定時間K
1は、エンジン11の冷却水出口側の冷却水温(以下
「エンジン出口冷却水温」という)ETHWが温水供給
開始前の水温センサ26の検出値THWintと等しい
と仮定する期間を設定するためのものである。従って、
始動後カウンタのカウント値が所定時間K1以下であれ
ば、エンジン出口冷却水温ETHWとして温水供給開始
前の水温センサ26の検出値THWintを用いる。
FIG. 1 for executing the fuel injection control described above
The fuel injection control routine of 0 is activated every predetermined time (for example, every 16 msec) after the IG switch is turned on, and functions as a fuel injection control means in the claims.
When this routine is started, first, at step 401, it is judged if the count value of the post-start counter (elapsed time after start) incremented at step 301 of FIG. 8 is less than or equal to the predetermined time K1. Here, the predetermined time K
1 is for setting a period in which it is assumed that the cooling water temperature on the cooling water outlet side of the engine 11 (hereinafter referred to as "engine outlet cooling water temperature") ETHW is equal to the detected value THWint of the water temperature sensor 26 before the start of hot water supply. is there. Therefore,
If the count value of the after-start counter is less than or equal to the predetermined time K1, the detection value THWint of the water temperature sensor 26 before the start of hot water supply is used as the engine outlet cooling water temperature ETHW.

【0058】これに対し、始動後カウンタのカウント値
が所定時間K1を越えていれば、ステップ403に進
み、バイパスバルブ開固着フラグが「1」であるか否か
で、バイパスバルブ19の開固着が発生しているか否か
を判定し、開固着が発生していない場合(バイパスバル
ブ開固着フラグ=0の場合)は、エンジン出口冷却水温
ETHWと水温センサ26の検出値THWとがほぼ一致
するため、ステップ406に進み、水温センサ26の検
出値THWをそのままエンジン出口冷却水温ETHWと
して用いる。
On the other hand, if the count value of the counter after starting exceeds the predetermined time K1, the routine proceeds to step 403, where it is determined whether or not the bypass valve open / sticking flag is "1" and the bypass valve 19 is open / fixed. When the open sticking has not occurred (when the bypass valve open sticking flag = 0), the engine outlet cooling water temperature ETHW and the detection value THW of the water temperature sensor 26 substantially match. Therefore, the process proceeds to step 406, and the detected value THW of the water temperature sensor 26 is used as it is as the engine outlet cooling water temperature ETHW.

【0059】一方、バイパスバルブ19の開固着が発生
している場合(バイパスバルブ開固着フラグ=1の場
合)は、エンジン出口冷却水温ETHWと水温センサ2
6の検出値THWとが一致しないため、ステップ404
に進み、エンジン出口冷却水温ETHWを次式により推
定する。 ETHW(i) =ETHW(i-1) +C
On the other hand, when the bypass valve 19 is stuck open (bypass valve open flag = 1), the engine outlet cooling water temperature ETHW and the water temperature sensor 2 are detected.
Since the detected value THW of 6 does not match, step 404
Then, the engine outlet cooling water temperature ETHW is estimated by the following equation. ETHW (i) = ETHW (i-1) + C

【0060】ここで、ETHW(i) は今回のエンジン出
口冷却水温推定値、ETHW(i-1)は前回のエンジン出
口冷却水温推定値、Cは演算周期当たりの水温上昇量で
ある。この演算周期当たりの水温上昇量Cは、演算処理
の簡略化のために固定値としても良いが、エンジン運転
状態、外気温、前回のエンジン出口冷却水温ETHW(i
-1) 等に応じてマップ又は数式により演算周期当たりの
水温上昇量Cを算出するようにしても良い。上式におい
て、エンジン出口冷却水温ETHWの初期値は、ステッ
プ402で記憶した温水供給開始前の水温センサ26の
検出値THWintとなるため、上式によるエンジン出
口冷却水温ETHWの推定は、温水供給開始前の水温セ
ンサ26の検出値THWintと始動後経過時間(始動
後の演算回数)等に基づいて行われることになる。
Here, ETHW (i) is the current engine outlet cooling water temperature estimated value, ETHW (i-1) is the previous engine outlet cooling water temperature estimated value, and C is the water temperature increase amount per calculation cycle. The water temperature increase amount C per calculation cycle may be a fixed value in order to simplify the calculation process, but the engine operating state, the outside air temperature, the previous engine outlet cooling water temperature ETHW (i
-1) or the like, the water temperature increase amount C per calculation cycle may be calculated by a map or a mathematical formula. In the above equation, the initial value of the engine outlet cooling water temperature ETHW becomes the detection value THWint stored in step 402 before the hot water supply starts, and therefore the engine outlet cooling water temperature ETHW is estimated by the above equation. It is performed based on the previous detection value THWint of the water temperature sensor 26, the elapsed time after start (the number of calculations after start), and the like.

【0061】エンジン出口冷却水温ETHWの推定後、
ステップ405に進み、始動後カウンタのカウント値
(始動後の経過時間)が所定時間K2以上になったか、
又は、推定したエンジン出口冷却水温ETHWと現在
の水温センサ26の検出値THWとの差|ETHW−T
HW|が所定値以下になったか否かを判定する。ここ
で、所定時間K2は、バイパスバルブ19の開固着発生
時にエンジン出口冷却水温ETHWと水温センサ26の
検出値THWとの差が小さくなる(所定値以下になる)
までに要する始動後経過時間であり、予め実験等で測定
して設定されている。この所定時間K2は、演算処理の
簡略化のために固定値としても良いが、エンジン運転状
態、外気温等に応じてマップ又は数式により所定時間K
2を算出するようにしても良い。
After estimating the engine outlet cooling water temperature ETHW,
Whether the count value of the post-start counter (elapsed time after start) has become equal to or greater than the predetermined time K2 in step 405,
Alternatively, the difference between the estimated engine outlet cooling water temperature ETHW and the current detected value THW of the water temperature sensor 26 | ETHW-T
It is determined whether HW | has become equal to or less than a predetermined value. Here, in the predetermined time K2, the difference between the engine outlet cooling water temperature ETHW and the detection value THW of the water temperature sensor 26 becomes small (becomes less than or equal to the predetermined value) when the bypass valve 19 is stuck open.
It is the elapsed time after startup required up to and is set by being measured in advance by experiments or the like. The predetermined time K2 may be a fixed value in order to simplify the calculation process, but the predetermined time K2 may be a map or a mathematical expression according to the engine operating state, the outside temperature, and the like.
2 may be calculated.

【0062】上記ステップ405で、始動後カウンタ
のカウント値が所定時間K2以上になった場合、又は、
推定したエンジン出口冷却水温ETHWと現在の水温
センサ26の検出値THWとの差|ETHW−THW|
が所定値以下になった場合のいずれかに該当すれば、エ
ンジン出口冷却水温ETHWの推定を終了し、ステップ
406に進み、水温センサ26の検出値THWをエンジ
ン出口冷却水温ETHWとして用いる(つまりエンジン
出口冷却水温ETHWを水温センサ26で検出する)。
一方、上記ステップ405で、、のいずれにも該当
しない場合は、ステップ404で推定したエンジン出口
冷却水温ETHWをそのまま用いる。
In step 405, if the count value of the counter after starting exceeds the predetermined time K2, or
Difference between estimated engine outlet cooling water temperature ETHW and current detection value THW of water temperature sensor 26 | ETHW-THW |
If either of the values falls below a predetermined value, the estimation of the engine outlet cooling water temperature ETHW is ended, the process proceeds to step 406, and the detected value THW of the water temperature sensor 26 is used as the engine outlet cooling water temperature ETHW (that is, the engine outlet cooling water temperature ETHW). The outlet cooling water temperature ETHW is detected by the water temperature sensor 26).
On the other hand, in step 405, if neither of the above conditions is met, the engine outlet cooling water temperature ETHW estimated in step 404 is used as it is.

【0063】以上のようにしてエンジン出口冷却水温E
THWを推定値又は検出値のいずれかに決定した後、ス
テップ407に進み、エンジン出口冷却水温ETHWに
基づいて燃料噴射量に対する補正係数efase1、e
fase2、FWLをマップ又は数式により算出する。
As described above, the engine outlet cooling water temperature E
After THW is determined to be either the estimated value or the detected value, the routine proceeds to step 407, where correction factors ephase1, e for the fuel injection amount are based on the engine outlet cooling water temperature ETHW.
face2 and FWL are calculated by a map or a mathematical formula.

【0064】この後、ステップ408に進み、燃料噴射
量TAUを次式により算出する。 TAU=基本噴射量×α×(1+FWL+efase1
+efase2) ここで、基本噴射量は、エンジン運転状態(例えばエン
ジン回転速度、吸入空気量等)に応じてマップ等により
算出される基本的な燃料噴射量である。αは、空燃比フ
ィードバック補正係数、学習補正係数、加減速補正係数
等の各種の補正係数である。
After that, the routine proceeds to step 408, where the fuel injection amount TAU is calculated by the following equation. TAU = basic injection amount × α × (1 + FWL + ephase1
+ Efase2) Here, the basic injection amount is a basic fuel injection amount calculated by a map or the like according to the engine operating state (for example, engine rotation speed, intake air amount, etc.). α is various correction coefficients such as an air-fuel ratio feedback correction coefficient, a learning correction coefficient, and an acceleration / deceleration correction coefficient.

【0065】尚、上記ステップ407では、エンジン出
口冷却水温ETHWに応じて3種類の補正係数efas
e1、efase2、FWLを算出するようにしたが、
これら3種類の補正係数を1つの補正係数に統合して算
出するようにしても良い。
In step 407, three kinds of correction coefficients efas are set according to the engine outlet cooling water temperature ETHW.
e1, efase2, and FWL are calculated,
These three types of correction coefficients may be integrated into one correction coefficient for calculation.

【0066】以上説明した図2乃至図4の冷却系制御ル
ーチンによって、始動前に蓄熱器24内の温水をエンジ
ン11に供給するときに、流量制御バルブ18とバイパ
スバルブ19によってラジエータ13及びバイパス流路
17への冷却水の流れが遮断される。
According to the cooling system control routine of FIGS. 2 to 4 described above, when the hot water in the heat storage unit 24 is supplied to the engine 11 before starting, the radiator 13 and the bypass flow are controlled by the flow rate control valve 18 and the bypass valve 19. The flow of cooling water to the passage 17 is cut off.

【0067】以上説明した本実施形態では、バイパス流
路17中にバイパスバルブ19を設け、始動前に蓄熱器
24内の温水をエンジン11に供給するときに、バイパ
スバルブ19を閉弁してバイパス流路17を遮断し、更
に、ラジエータ13の流路を流量制御バルブ18によっ
て遮断するようにしたので、始動前に蓄熱器24からエ
ンジン11に供給した温水が冷却水循環回路16に流れ
込むことを防止できて、温水による内エンジン11の予
熱効果が低下するのを防止でき、始動時の早期暖機性能
を向上することができる。
In the present embodiment described above, the bypass valve 19 is provided in the bypass passage 17, and when the hot water in the heat storage unit 24 is supplied to the engine 11 before starting, the bypass valve 19 is closed to bypass. Since the flow passage 17 is cut off and the flow passage of the radiator 13 is cut off by the flow control valve 18, the hot water supplied to the engine 11 from the heat storage device 24 before starting is prevented from flowing into the cooling water circulation circuit 16. As a result, it is possible to prevent the preheating effect of the inner engine 11 from being reduced by the hot water, and to improve the early warm-up performance at the time of starting.

【0068】しかも、始動前に蓄熱器24内の温水をエ
ンジン11に供給するときに、その温水が冷却水循環回
路16中の水温センサ26の周辺に流れることを防止で
きるため、始動前に水温センサ26の検出水温が上昇す
ることを防止できて、始動時に水温センサ26が実際の
エンジン11の温度よりも高温の温水の温度を検出する
ことを防止でき、始動時の水温センサ26の検出値の信
頼性を向上することができる。その結果、始動時に水温
センサ26で検出した冷却水温に基づいて燃料噴射量を
補正しても、始動時に空燃比が目標空燃比よりもリーン
になってしまうことを防止できて、空燃比を目標空燃比
付近で安定させることができ、エンジン回転変動を小さ
くできる。
Moreover, when the hot water in the heat storage unit 24 is supplied to the engine 11 before starting, it is possible to prevent the hot water from flowing around the water temperature sensor 26 in the cooling water circulation circuit 16, so that the water temperature sensor before starting. It is possible to prevent the detected water temperature of 26 from rising and prevent the water temperature sensor 26 from detecting a temperature of hot water that is higher than the actual temperature of the engine 11 at the time of starting. The reliability can be improved. As a result, even if the fuel injection amount is corrected based on the cooling water temperature detected by the water temperature sensor 26 at the time of starting, it is possible to prevent the air-fuel ratio from becoming leaner than the target air-fuel ratio at the time of starting, and to set the target air-fuel ratio. It can be stabilized near the air-fuel ratio, and engine speed fluctuations can be reduced.

【0069】尚、従来の冷却系では、始動前に蓄熱器2
4からエンジン11に供給した温水が冷却水循環回路1
6に流れ込んで、冷却水循環回路16中に設置した水温
センサ26の周辺に温水が流れてしまうため、図12に
示すように、始動前から水温センサ26の検出水温が上
昇して実際のエンジン11の温度よりも高温の温水の温
度を検出してしまい、実際のエンジン11の温度がまだ
低いのに、エンジン11の温度が高くなっていると誤検
出されてしまう。このため、始動時に水温センサ26の
検出値に基づいて燃料噴射量を補正すると、実際のエン
ジン11の温度よりも高い温度を基準にした噴射補正が
行われてしまい、その結果、図12に示すように、始動
時の燃料噴射量が適正値よりも少なくなって、始動時の
空燃比が目標空燃比よりもリーン側にずれてしまい、空
燃比が不安定でエンジン回転変動が大きくなるという欠
点がった。
In the conventional cooling system, the heat accumulator 2 is set before starting.
The hot water supplied to the engine 11 from the cooling water circulation circuit 1
6, and the hot water flows around the water temperature sensor 26 installed in the cooling water circulation circuit 16, as shown in FIG. 12, the water temperature detected by the water temperature sensor 26 rises from before the start, and the actual engine 11 The temperature of hot water that is higher than the temperature is detected, and the actual temperature of the engine 11 is still low, but it is erroneously detected that the temperature of the engine 11 is high. Therefore, if the fuel injection amount is corrected based on the detection value of the water temperature sensor 26 at the time of starting, the injection correction will be performed based on a temperature higher than the actual temperature of the engine 11, and as a result, it will be shown in FIG. As described above, the fuel injection amount at the time of starting becomes smaller than the appropriate value, the air-fuel ratio at the time of starting deviates to the lean side from the target air-fuel ratio, and the air-fuel ratio becomes unstable, resulting in large engine speed fluctuations. I got angry.

【0070】一方、本実施形態では、蓄熱器24からエ
ンジン11への温水の供給を開始してからある程度の時
間が経過した後の水温センサ26の検出値と温水供給開
始前の水温センサ26の検出値との差が所定の開固着判
定値よりも大きいか否かで、バイパスバルブ19の開固
着の有無を判定するようにしたので、バイパスバルブ1
9の開固着が発生したときに適宜のフェールセーフ処理
を行うことができる。
On the other hand, in the present embodiment, the detected value of the water temperature sensor 26 after a certain amount of time has elapsed from the start of the supply of hot water from the heat storage unit 24 to the engine 11 and the water temperature sensor 26 before the start of hot water supply. The presence or absence of open fixation of the bypass valve 19 is determined based on whether or not the difference from the detected value is larger than a predetermined open fixation determination value.
An appropriate fail-safe process can be performed when the open fixation of 9 occurs.

【0071】本実施形態では、バイパスバルブ19の開
固着が発生すると、始動時の水温センサ26の検出値が
始動前に蓄熱器24から供給された温水の影響を受けて
実際のエンジン11の温度よりも高い温度になっている
ことを考慮して、バイパスバルブ19が開固着している
と判定された場合に、始動から所定期間が経過するま
で、温水供給開始前の水温センサ26の検出値と始動後
経過時間に基づいて冷却水温を推定し、その推定冷却水
温に基づいて燃料噴射量を補正するようにしたので、バ
イパスバルブ19の開固着発生時に水温センサ26の検
出値に基づいて燃料噴射量を補正する場合と比べて、燃
料噴射量を精度良く補正することができ、空燃比がリー
ン側にずれることを防止できる。
In this embodiment, when the bypass valve 19 is stuck open, the actual temperature of the engine 11 is affected by the detected value of the water temperature sensor 26 at the time of starting, which is affected by the hot water supplied from the heat accumulator 24 before starting. When it is determined that the bypass valve 19 is stuck open in consideration of the fact that the temperature is higher than the above temperature, the detected value of the water temperature sensor 26 before the start of the hot water supply is started until a predetermined period elapses from the start. Since the cooling water temperature is estimated based on the elapsed time after startup and the fuel injection amount is corrected based on the estimated cooling water temperature, the fuel is detected based on the detection value of the water temperature sensor 26 when the bypass valve 19 is stuck open. Compared with the case where the injection amount is corrected, the fuel injection amount can be corrected more accurately, and the air-fuel ratio can be prevented from shifting to the lean side.

【0072】また、本実施形態では、始動から所定期間
経過後の水温センサ26の検出値と温水供給開始前の水
温センサ26の検出値との差が所定の閉固着判定値より
も小さいか否かで、バイパスバルブ19の閉固着の有無
を判定するようにしたので、バイパスバルブ19の閉固
着が発生したときに適宜のフェールセーフ処理を行うこ
とができる。
Further, in the present embodiment, whether the difference between the detected value of the water temperature sensor 26 after a lapse of a predetermined period from the start and the detected value of the water temperature sensor 26 before the start of hot water supply is smaller than a predetermined closed sticking determination value. Therefore, the presence or absence of the closed sticking of the bypass valve 19 is determined. Therefore, when the closed sticking of the bypass valve 19 occurs, an appropriate fail-safe process can be performed.

【0073】この場合、バイパスバルブ19が閉固着し
ていると判定されたときに、流量制御バルブ18をラジ
エータ13に冷却水を流すように強制的に切り換えるよ
うにしたので、バイパスバルブ19が閉固着している場
合でも、その閉固着が検出された時点で、エンジン11
から冷却水を冷却水循環回路16中の水温センサ26の
周辺に流すことができて、水温センサ26で実際のエン
ジン11の温度に対応した冷却水温を検出することがで
き、冷却水温の検出精度を確保することができる。
In this case, when it is determined that the bypass valve 19 is closed and stuck, the flow control valve 18 is forcibly switched to flow the cooling water to the radiator 13, so that the bypass valve 19 is closed. Even when the engine 11 is stuck, the engine 11
The cooling water can be caused to flow around the water temperature sensor 26 in the cooling water circulation circuit 16, and the cooling water temperature corresponding to the actual temperature of the engine 11 can be detected by the water temperature sensor 26. Can be secured.

【0074】尚、始動から所定期間経過後の水温センサ
26の検出値と始動当初の水温センサ26の検出値との
差が所定の閉固着判定値よりも小さいか否かで、バイパ
スバルブ19の閉固着の有無を判定するようにしても良
い。
The bypass valve 19 determines whether the difference between the detected value of the water temperature sensor 26 after a lapse of a predetermined period from the start and the detected value of the water temperature sensor 26 at the beginning of the start is smaller than a predetermined closed sticking determination value. It may be possible to determine the presence or absence of closed sticking.

【0075】また、本実施形態で用いた流量制御バルブ
18は、ラジエータ13とバイパス流路17にそれぞれ
流れる冷却水の流量比を制御することができる電磁バル
ブにより構成されているが、ラジエータ13とバイパス
流路17との間で冷却水の流れを切り換える三方切換弁
を用いても良い。
The flow control valve 18 used in the present embodiment is composed of an electromagnetic valve capable of controlling the flow rate ratio of the cooling water flowing through the radiator 13 and the bypass flow passage 17, respectively. A three-way switching valve that switches the flow of cooling water to and from the bypass passage 17 may be used.

【0076】或は、バイパスバルブ19を設ける代わり
に、冷却水循環パイプ14中の水温センサ26の上流側
又は下流側に電磁バルブを設け、始動前に蓄熱器24内
の温水をエンジン11に供給するときに、この電磁バル
ブを閉弁することで、ラジエータ13及びバイパス流路
17への冷却水の流れを遮断するようにしても良い。こ
の場合は、バイパス流路17中にバイパスバルブ19を
設ける必要はない。
Alternatively, instead of providing the bypass valve 19, an electromagnetic valve is provided upstream or downstream of the water temperature sensor 26 in the cooling water circulation pipe 14 to supply the hot water in the heat storage unit 24 to the engine 11 before starting. At this time, the flow of the cooling water to the radiator 13 and the bypass passage 17 may be blocked by closing this electromagnetic valve. In this case, it is not necessary to provide the bypass valve 19 in the bypass passage 17.

【0077】また、本実施形態で用いるバイパスバルブ
19は、開弁と閉弁とを単純に切り換えることができれ
ば良く、バイパスバルブ19の開度(バイパス流量)を
制御する機能は必要としないが、バイパスバルブ19を
開度制御可能な電磁バルブで構成した場合は、流量制御
バルブ18に代えて、ラジエータ13の入口側又は出口
側に開度制御可能な電磁バルブを設け、これら2個の開
度制御可能な電磁バルブの開度を制御することで、本実
施形態の流量制御バルブ18と同様の流量制御を行うよ
うにしても良い。
Further, the bypass valve 19 used in the present embodiment is only required to be able to simply switch between the open valve and the closed valve, and the function of controlling the opening degree (bypass flow rate) of the bypass valve 19 is not required. When the bypass valve 19 is composed of an electromagnetic valve whose opening degree can be controlled, an electromagnetic valve whose opening degree can be controlled is provided on the inlet side or the outlet side of the radiator 13 instead of the flow rate control valve 18, and these two opening degrees are controlled. By controlling the opening of the controllable electromagnetic valve, the same flow rate control as the flow rate control valve 18 of the present embodiment may be performed.

【0078】また、本実施形態では、運転者がIGスイ
ッチをOFF位置からON位置に操作したときに、バイ
パスバルブ19を閉弁して、電動式ウォータポンプ25
を起動して、蓄熱器24からエンジン11への温水の供
給を開始するようにしたが、例えば、駐車中に車外から
運転席のドアが開放されたとき(ドアスイッチのON
時)に、バイパスバルブ19を閉弁して、電動式ウォー
タポンプ25を起動して蓄熱器24からエンジン11へ
の温水の供給を開始するようにしても良く、要は、エン
ジン11が始動される可能性が高いことを何等かの方法
で察知した時点で、エンジン11への温水供給を開始す
るようにすれば良い。
Further, in this embodiment, when the driver operates the IG switch from the OFF position to the ON position, the bypass valve 19 is closed and the electric water pump 25
Was started to start the supply of hot water from the heat storage device 24 to the engine 11. For example, when the door of the driver's seat is opened from the outside of the vehicle during parking (the door switch is turned on).
At the time), the bypass valve 19 may be closed to start the electric water pump 25 to start supplying hot water from the heat storage device 24 to the engine 11. In short, the engine 11 is started. The hot water supply to the engine 11 may be started at some point when it is detected that there is a high possibility that it will occur.

【0079】また、本実施形態では、流量制御バルブ1
8を用いているが、流量制御バルブ18に代えてサーモ
スタットバルブを用いても良い。その他、本発明は、上
述した各種の機能の一部を省略して実施しても良いこと
は言うまでもない。
Further, in this embodiment, the flow control valve 1
8 is used, a thermostat valve may be used instead of the flow control valve 18. In addition, it goes without saying that the present invention may be implemented by omitting some of the various functions described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態における冷却系の構成を概
略的に示すブロック図
FIG. 1 is a block diagram schematically showing a configuration of a cooling system according to an embodiment of the present invention.

【図2】冷却系制御ルーチンの処理の流れを示すフロー
チャート(その1)
FIG. 2 is a flowchart showing a processing flow of a cooling system control routine (part 1).

【図3】冷却系制御ルーチンの処理の流れを示すフロー
チャート(その2)
FIG. 3 is a flowchart (part 2) showing a processing flow of a cooling system control routine.

【図4】冷却系制御ルーチンの処理の流れを示すフロー
チャート(その3)
FIG. 4 is a flowchart showing a processing flow of a cooling system control routine (part 3).

【図5】冷却系制御ルーチンによる制御例を示すタイム
チャート
FIG. 5 is a time chart showing an example of control by a cooling system control routine.

【図6】バイパスバルブ開固着判定ルーチンの処理の流
れを示すフローチャート
FIG. 6 is a flowchart showing a processing flow of a bypass valve open / sticking determination routine.

【図7】バイパスバルブの開固着発生時の制御例を示す
タイムチャート
FIG. 7 is a time chart showing an example of control when an open sticking of a bypass valve occurs.

【図8】バイパスバルブ閉固着判定ルーチンの処理の流
れを示すフローチャート
FIG. 8 is a flowchart showing a processing flow of a bypass valve closed / sticking determination routine.

【図9】バイパスバルブの閉固着発生時の制御例を示す
タイムチャート
FIG. 9 is a time chart showing an example of control when the bypass valve is stuck closed.

【図10】燃料噴射制御ルーチンの処理の流れを示すフ
ローチャート
FIG. 10 is a flowchart showing a flow of processing of a fuel injection control routine.

【図11】燃料噴射制御ルーチンによる制御例を示すタ
イムチャート
FIG. 11 is a time chart showing an example of control by a fuel injection control routine.

【図12】本実施形態の効果を従来と比較して説明する
ためのタイムチャート
FIG. 12 is a time chart for explaining the effect of the present embodiment in comparison with the related art.

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、12…機械式ウォータポ
ンプ、13…ラジエータ、16…冷却水循環回路、17
…バイパス流路、18…流量制御バルブ(制御バル
ブ)、19…バイパスバルブ、23…ヒータコア、24
…蓄熱器、25…電動式ウォータポンプ、26…制御回
路(冷却水循環制御手段,燃料噴射制御手段,開固着判
定手段,閉固着判定手段)。
11 ... Engine (internal combustion engine), 12 ... Mechanical water pump, 13 ... Radiator, 16 ... Cooling water circulation circuit, 17
... bypass passage, 18 ... flow rate control valve (control valve), 19 ... bypass valve, 23 ... heater core, 24
... heat storage device, 25 ... electric water pump, 26 ... control circuit (cooling water circulation control means, fuel injection control means, open sticking determination means, closed sticking determination means).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02N 17/06 F02N 17/06 D 17/08 17/08 E (72)発明者 神尾 茂 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 高橋 栄三 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 新保 善一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 吉川 重孝 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G084 BA09 BA13 BA28 CA01 CA02 DA04 DA09 DA12 EA07 FA07 FA20 FA33 FA36 3G301 HA01 JA08 JA20 KA01 LB01 MA11 PA01Z PE01Z PE08Z─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02N 17/06 F02N 17/06 D 17/08 17/08 E (72) Inventor Shigeru Kamio Kariya city, Aichi prefecture 1-chome, Showa-cho, DENSO Co., Ltd. (72) Inventor, Eizo Takahashi 1-1-chome, Showa-cho, Kariya City, Aichi Prefecture Automobile Co., Ltd. (72) Inventor Shigetaka Yoshikawa 1 Toyota-cho, Toyota-shi, Aichi F-Term (To be referred to) Toyota Automobile Co., Ltd. (reference) 3G084 BA09 BA13 BA28 CA01 CA02 DA04 DA09 DA12 EA07 FA07 FA20 FA33 FA36 3G301 HA01 JA08 JA20 KA01 LB01 MA11 PA01Z PE01Z PE08Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関とラジエータとの間で冷却水を
循環させる冷却水循環回路と、この冷却水循環回路中に
前記ラジエータをバイパスするように設けられたバイパ
ス流路と、内燃機関で温められた冷却水(以下「温水」
という)を保温状態で貯溜してこれを次の始動前に内燃
機関に供給する蓄熱器と、前記冷却水循環回路及び/又
は前記バイパス流路に設けられたバルブを制御して始動
前に前記蓄熱器から内燃機関に温水を供給するときに前
記バルブを内燃機関から前記バイパス流路への冷却水の
流れを遮断する状態に切り換える冷却水循環制御手段と
を備えた内燃機関の冷却系制御装置において、 冷却水の温度を検出する水温センサを、前記冷却水循環
回路のうちの内燃機関の冷却水出口側で且つ前記蓄熱器
からの温水が循環しない位置に設置したことを特徴とす
る内燃機関の冷却系制御装置。
1. A cooling water circulation circuit for circulating cooling water between an internal combustion engine and a radiator, a bypass flow passage provided in the cooling water circulation circuit so as to bypass the radiator, and a cooling passage heated by the internal combustion engine. Cooling water (hereinafter "warm water"
Is stored in a heat retaining state and supplies it to the internal combustion engine before the next start, and a valve provided in the cooling water circulation circuit and / or the bypass flow path is controlled to store the heat before starting. In a cooling system control device for an internal combustion engine, comprising: a cooling water circulation control means for switching the valve to a state in which the flow of the cooling water from the internal combustion engine to the bypass flow passage is cut off when hot water is supplied from the reactor to the internal combustion engine, A cooling system for an internal combustion engine, wherein a water temperature sensor for detecting the temperature of cooling water is installed at a cooling water outlet side of the internal combustion engine in the cooling water circulation circuit and at a position where hot water from the heat accumulator does not circulate. Control device.
【請求項2】 前記冷却水循環制御手段は、始動時に前
記バイパス流路を開放して内燃機関から流出する冷却水
を該バイパス流路に流して循環させ、 始動時に前記水温センサで検出した冷却水温に基づいて
燃料噴射量を補正する燃料噴射制御手段を備えているこ
とを特徴とする請求項1に記載の内燃機関の冷却系制御
装置。
2. The cooling water circulation control means opens the bypass flow passage at the time of start-up and causes the cooling water flowing out of the internal combustion engine to flow through the bypass flow passage to be circulated, and the cooling water temperature detected by the water temperature sensor at the time of start-up. 2. The cooling system control device for an internal combustion engine according to claim 1, further comprising fuel injection control means for correcting the fuel injection amount based on the above.
【請求項3】 前記蓄熱器から内燃機関への温水供給開
始から所定期間経過後の前記水温センサの検出値と温水
供給開始前の前記水温センサの検出値との差に基づいて
前記バイパスバルブが開き放しになる開固着の有無を判
定する開固着判定手段を備えていることを特徴とする請
求項1又は2に記載の内燃機関の冷却系制御装置。
3. The bypass valve is based on a difference between a detection value of the water temperature sensor after a lapse of a predetermined period from the start of hot water supply from the heat storage device to the internal combustion engine and a detection value of the water temperature sensor before start of hot water supply. The cooling system control device for an internal combustion engine according to claim 1 or 2, further comprising open sticking determination means for determining whether there is open sticking that is left open.
【請求項4】 前記開固着判定手段で前記バイパスバル
ブが開固着していると判定された場合に、始動から所定
期間が経過するまで、温水供給開始前の前記水温センサ
の検出値と始動後経過時間に基づいて冷却水温を推定
し、その推定冷却水温に基づいて燃料噴射量を補正する
手段を備えていることを特徴とする請求項3に記載の内
燃機関の冷却系制御装置。
4. The detection value of the water temperature sensor before the start of hot water supply and after the start until a predetermined period elapses from the start when the open sticking determination means determines that the bypass valve is stuck open. 4. The cooling system control device for an internal combustion engine according to claim 3, further comprising means for estimating the cooling water temperature based on the elapsed time and correcting the fuel injection amount based on the estimated cooling water temperature.
【請求項5】 前記開固着判定手段で前記バイパスバル
ブが開固着していると判定された場合に、始動後に温水
供給開始前の前記水温センサの検出値と始動後経過時間
に基づいて冷却水温を推定し、その推定冷却水温と始動
後の前記水温センサの検出値との差が所定値以下になる
まで推定冷却水温に基づいて燃料噴射量を補正する手段
を備えていることを特徴とする請求項3に記載の内燃機
関の冷却系制御装置。
5. The cooling water temperature based on the detection value of the water temperature sensor before starting hot water supply after starting and the elapsed time after starting when the bypass sticking determining means determines that the bypass valve is stuck open. And a means for correcting the fuel injection amount based on the estimated cooling water temperature until the difference between the estimated cooling water temperature and the detected value of the water temperature sensor after starting becomes less than a predetermined value. The cooling system control device for an internal combustion engine according to claim 3.
【請求項6】 前記冷却水循環回路の冷却水の流れを前
記ラジエータと前記バイパス流路との間で切り換える機
能又は両者の流量比を制御する機能を有する制御バルブ
と、前記バイパス流路中に設けたバイパスバルブとを備
え、 前記冷却水循環制御手段は、前記蓄熱器から内燃機関に
温水を供給するときに前記制御バルブを前記ラジエータ
への冷却水の流れを遮断する状態に維持し、且つ、前記
バイパスバルブを閉弁して前記バイパス流路を遮断する
ことを特徴とする請求項1乃至5のいずれかに記載の内
燃機関の冷却系制御装置。
6. A control valve having a function of switching the flow of cooling water in the cooling water circulation circuit between the radiator and the bypass passage or a function of controlling a flow rate ratio between the radiator and the bypass passage, and a control valve provided in the bypass passage. And a bypass valve, wherein the cooling water circulation control means maintains the control valve in a state of blocking the flow of cooling water to the radiator when supplying hot water from the heat storage device to the internal combustion engine, and 6. The cooling system control device for an internal combustion engine according to claim 1, wherein a bypass valve is closed to shut off the bypass flow passage.
【請求項7】 始動から所定期間経過後の前記水温セン
サの検出値と温水供給開始前又は始動当初の前記水温セ
ンサの検出値との差に基づいて前記バイパスバルブが閉
じ放しになる閉固着の有無を判定する閉固着判定手段を
備えていることを特徴とする請求項6に記載の内燃機関
の冷却系制御装置。
7. A closed sticking condition in which the bypass valve is left closed based on a difference between a detected value of the water temperature sensor after a lapse of a predetermined period from the start and a detected value of the water temperature sensor before or at the start of hot water supply. 7. The cooling system control device for an internal combustion engine according to claim 6, further comprising closed sticking determination means for determining presence / absence.
【請求項8】 前記冷却水循環制御手段は、前記閉固着
判定手段で前記バイパスバルブが閉固着していると判定
された場合に、前記制御バルブを前記ラジエータに冷却
水を流すように切り換えることを特徴とする請求項7に
記載の内燃機関の冷却系制御装置。
8. The cooling water circulation control means, when the closed sticking determination means determines that the bypass valve is stuck closed, switches the control valve to flow cooling water to the radiator. The cooling system control device for an internal combustion engine according to claim 7.
JP2001381016A 2001-12-14 2001-12-14 Cooling system control device for internal combustion engine Expired - Fee Related JP4127471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381016A JP4127471B2 (en) 2001-12-14 2001-12-14 Cooling system control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381016A JP4127471B2 (en) 2001-12-14 2001-12-14 Cooling system control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003184556A true JP2003184556A (en) 2003-07-03
JP4127471B2 JP4127471B2 (en) 2008-07-30

Family

ID=27591828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381016A Expired - Fee Related JP4127471B2 (en) 2001-12-14 2001-12-14 Cooling system control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4127471B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424474A (en) * 2005-03-21 2006-09-27 Bombardier Transp Gmbh Cooling system for an internal combustion engine, and a method of use in a vehicle
JP2010151105A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Heat-accumulation device for vehicle
JP4883225B2 (en) * 2009-10-05 2012-02-22 トヨタ自動車株式会社 Vehicle cooling device
KR101186051B1 (en) * 2009-10-29 2012-09-25 백상기 Electrical Coolant Pre-heating System for a Vehicle
GB2491595A (en) * 2011-06-07 2012-12-12 Gm Global Tech Operations Inc Engine cooling apparatus comprising a valve provided in a radiator bypass line
KR101519298B1 (en) * 2014-05-16 2015-05-12 현대자동차주식회사 Apparatus and method for diagnosing bypass valve on oil cooling circuit for vehicle
US20150136048A1 (en) * 2013-11-15 2015-05-21 Volvo Car Corporation Heat storage in engine cooling system
KR101534732B1 (en) * 2013-12-10 2015-07-07 현대자동차 주식회사 Bypass valve detecting temperature and pressure
KR101567729B1 (en) 2014-09-19 2015-11-10 현대자동차주식회사 Apparatus and method for controling coolant flow
US9234466B2 (en) 2010-02-26 2016-01-12 Toyota Jidosha Kabushiki Kaisha Device for controlling internal combustion engine
CN109944679A (en) * 2019-02-26 2019-06-28 淮安信息职业技术学院 Car engine temperature detection and cooling system
CN111608785A (en) * 2020-06-30 2020-09-01 广西玉柴机器股份有限公司 Starter integrated with water pump and control method
CN112576361A (en) * 2019-09-30 2021-03-30 广州汽车集团股份有限公司 Rapid warming method and rapid warming device based on temperature control module
CN113702048A (en) * 2021-07-20 2021-11-26 中汽研汽车检验中心(天津)有限公司 Multifunctional temperature control system for engine bench test

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737143B (en) * 2009-11-30 2012-05-09 中国广东核电集团有限公司 System for controlling start-up of cooling system of electric motor
CN106014750A (en) * 2016-06-30 2016-10-12 山东文捷智能动力有限公司 Automobile radiator with heating device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424474A (en) * 2005-03-21 2006-09-27 Bombardier Transp Gmbh Cooling system for an internal combustion engine, and a method of use in a vehicle
JP2010151105A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Heat-accumulation device for vehicle
JP4883225B2 (en) * 2009-10-05 2012-02-22 トヨタ自動車株式会社 Vehicle cooling device
US8573163B2 (en) 2009-10-05 2013-11-05 Toyota Jidosha Kabushiki Kaisha Cooling device for vehicle
KR101186051B1 (en) * 2009-10-29 2012-09-25 백상기 Electrical Coolant Pre-heating System for a Vehicle
US9234466B2 (en) 2010-02-26 2016-01-12 Toyota Jidosha Kabushiki Kaisha Device for controlling internal combustion engine
GB2491595A (en) * 2011-06-07 2012-12-12 Gm Global Tech Operations Inc Engine cooling apparatus comprising a valve provided in a radiator bypass line
EP2873826B1 (en) * 2013-11-15 2019-03-27 Volvo Car Corporation Heat storage in engine cooling system
US20150136048A1 (en) * 2013-11-15 2015-05-21 Volvo Car Corporation Heat storage in engine cooling system
CN104653269A (en) * 2013-11-15 2015-05-27 沃尔沃汽车公司 Heat storage in engine cooling system
US9890756B2 (en) * 2013-11-15 2018-02-13 Volvo Car Corporation Heat storage in engine cooling system
KR101534732B1 (en) * 2013-12-10 2015-07-07 현대자동차 주식회사 Bypass valve detecting temperature and pressure
KR101519298B1 (en) * 2014-05-16 2015-05-12 현대자동차주식회사 Apparatus and method for diagnosing bypass valve on oil cooling circuit for vehicle
KR101567729B1 (en) 2014-09-19 2015-11-10 현대자동차주식회사 Apparatus and method for controling coolant flow
CN105715353A (en) * 2014-09-19 2016-06-29 现代自动车株式会社 Apparatus and method for controlling coolant flow of vehicle
CN105715353B (en) * 2014-09-19 2019-10-08 现代自动车株式会社 Device and method for controlling the coolant flow of vehicle
CN109944679A (en) * 2019-02-26 2019-06-28 淮安信息职业技术学院 Car engine temperature detection and cooling system
CN109944679B (en) * 2019-02-26 2020-08-14 淮安信息职业技术学院 Automobile engine temperature detection and cooling system
CN112576361A (en) * 2019-09-30 2021-03-30 广州汽车集团股份有限公司 Rapid warming method and rapid warming device based on temperature control module
CN111608785A (en) * 2020-06-30 2020-09-01 广西玉柴机器股份有限公司 Starter integrated with water pump and control method
CN113702048A (en) * 2021-07-20 2021-11-26 中汽研汽车检验中心(天津)有限公司 Multifunctional temperature control system for engine bench test
CN113702048B (en) * 2021-07-20 2023-12-01 中汽研汽车检验中心(天津)有限公司 Multifunctional temperature control system for engine bench test

Also Published As

Publication number Publication date
JP4127471B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP2003184556A (en) Cooling system controller for internal combustion engine
JP3932035B2 (en) Abnormality diagnosis device for cooling system of internal combustion engine
US7757649B2 (en) Controller, cooling system abnormality diagnosis device and block heater determination device of internal combustion engine
EP3130777B1 (en) Cooling device for internal combustion engine
JP3631035B2 (en) Exhaust secondary air supply control device for internal combustion engine
JP5152595B2 (en) Control device for vehicle cooling system
US20090241863A1 (en) Control method of engine rapid warm-up system
JP5206160B2 (en) Thermostat failure detection apparatus and method
JP3039319B2 (en) Control device for electric cooling fan in engine cooling system
US10647177B2 (en) Control apparatus of heat exchanging system
JP2002021563A (en) Controller for controlling flow rate of cooling water for internal combustion engine
JP4883324B2 (en) Vehicle heat exchange system
US10100709B2 (en) Control device for engine cooling system
JP2008298059A (en) Cooling system abnormality diagnosis device and block heater determination device of internal combustion engine
US8978599B2 (en) Cooling apparatus of internal combustion engine for vehicle
JP3407572B2 (en) Thermostat failure detector for engine cooling system
CN110214222B (en) Cooling device for engine
US10113474B2 (en) Cooling device for internal combustion engine
JP3627335B2 (en) Heater control device for catalyst downstream air-fuel ratio sensor
JP2002266679A (en) Control device for internal combustion engine
JP5125755B2 (en) Control device for internal combustion engine
JP4687482B2 (en) Exhaust gas recirculation device for internal combustion engine
JP6590297B2 (en) Engine cooling system
JP2007071047A (en) Control device of internal combustion engine
JP6551865B2 (en) Engine cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080508

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees