JP2003184545A - EXHAUST EMISSIONS CONTROL CATALYST REDUCTION AMOUNT DETECTION METHOD, EXHAUST EMISSIONS CONTROL MANAGEMENT METHOD, AND METHOD AND APPARATUS FOR CALCULATING EXHAUST EMISSIONS CONTROL CATALYST NOx OCCLUSION AMOUNT FOR INTERNAL COMBUSTION ENGINE - Google Patents

EXHAUST EMISSIONS CONTROL CATALYST REDUCTION AMOUNT DETECTION METHOD, EXHAUST EMISSIONS CONTROL MANAGEMENT METHOD, AND METHOD AND APPARATUS FOR CALCULATING EXHAUST EMISSIONS CONTROL CATALYST NOx OCCLUSION AMOUNT FOR INTERNAL COMBUSTION ENGINE

Info

Publication number
JP2003184545A
JP2003184545A JP2001387612A JP2001387612A JP2003184545A JP 2003184545 A JP2003184545 A JP 2003184545A JP 2001387612 A JP2001387612 A JP 2001387612A JP 2001387612 A JP2001387612 A JP 2001387612A JP 2003184545 A JP2003184545 A JP 2003184545A
Authority
JP
Japan
Prior art keywords
amount
nox
catalyst
nox storage
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001387612A
Other languages
Japanese (ja)
Inventor
Nobuyuki Shibagaki
信之 柴垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001387612A priority Critical patent/JP2003184545A/en
Publication of JP2003184545A publication Critical patent/JP2003184545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately obtain an NOx reduction amount of a NOx occlusion reducing catalyst for an internal combustion engine. <P>SOLUTION: The NOx reduction amount enoxredrate per unit time is obtained (S226) by calculating a catalyst deterioration ratio esoxratio (S218 to S222) and then obtaining a catalyst transmissivity epassr (S224). Using the NOx reduction amount enoxredrate per unit time obtained highly accurately in the manner described in the foregoing allows the NOx reduction amount to be highly accurately obtained. Since the NOx occlusion amount is also obtained highly accurately, a highly accurate exhaust emissions control management is enabled. As a result, a rich spike timing is appropriately determined, which allows a rich spike of an adequate amount to be performed. This economizes on fuel and eliminates NOx that is otherwise discharged to an outside. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気浄
化触媒還元量検出方法、排気浄化管理方法、排気浄化触
媒NOx吸蔵量算出方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust purification catalyst reduction amount detection method for an internal combustion engine, an exhaust purification management method, an exhaust purification catalyst NOx storage amount calculation method and an apparatus.

【0002】[0002]

【従来の技術】内燃機関の排気浄化システムとして、成
層燃焼あるいはリーン燃焼の実行中に排気中のNOxを
吸蔵し、理論空燃比あるいは更に高燃料濃度(リッチ)
の燃焼が開始されて排気中の酸素濃度が低下すると吸蔵
したNOxを放出し還元浄化するNOx吸蔵還元触媒を
用いた排気浄化管理システムが知られている(特開20
00−170527)。このようなシステムでは、NO
x吸蔵還元触媒におけるNOx吸蔵量が所定量に到達す
ると、リッチスパイクを実行して高濃度の燃料を内燃機
関に供給することで、排気中に大量のHCやCO等の未
燃ガスを排出させている。この未燃ガスが還元剤として
NOx吸蔵還元触媒に作用することにより吸蔵されてい
るNOxが消滅するので、NOx吸蔵還元触媒のNOx
吸蔵能力を回復させることができる。
2. Description of the Related Art As an exhaust gas purification system for an internal combustion engine, NOx in the exhaust gas is stored during execution of stratified charge combustion or lean combustion, and the stoichiometric air-fuel ratio or even higher fuel concentration (rich) is provided.
There is known an exhaust gas purification management system using a NOx storage reduction catalyst that releases the stored NOx and reduces and purifies it when the oxygen concentration in the exhaust gas is reduced by the start of combustion.
00-170527). In such a system, NO
When the NOx storage amount in the x storage reduction catalyst reaches a predetermined amount, a rich spike is executed to supply a high concentration of fuel to the internal combustion engine to discharge a large amount of unburned gas such as HC and CO into the exhaust gas. ing. The unburned gas acts as a reducing agent on the NOx storage reduction catalyst, so that the stored NOx disappears, so that the NOx of the NOx storage reduction catalyst.
The storage capacity can be restored.

【0003】[0003]

【発明が解決しようとする課題】このような排気浄化管
理システムにおいて、リッチスパイクによる過不足ない
還元剤供給や、成層燃焼あるいは希薄燃焼などの燃焼時
においてNOxを外部に排出しないようにするために
は、NOx吸蔵還元触媒におけるNOx吸蔵量を正確に
検出しておく必要がある。このために従来技術では内燃
機関の運転状態に応じて排気中に含まれるNOx量を求
めて、このNOx量を積算することによりNOx吸蔵還
元触媒におけるNOx吸蔵量を精度高く算出しようとし
ている。
In such an exhaust gas purification management system, in order to supply a sufficient amount of reducing agent due to rich spikes and to prevent NOx from being emitted to the outside during combustion such as stratified combustion or lean combustion. Must accurately detect the NOx storage amount in the NOx storage reduction catalyst. For this reason, in the prior art, the NOx amount contained in the exhaust gas is calculated according to the operating state of the internal combustion engine, and the NOx storage amount in the NOx storage reduction catalyst is calculated with high accuracy by integrating the NOx amount.

【0004】ところでNOx吸蔵量を正確に算出しよう
とする場合には、還元剤によるNOx還元量も精度高く
求める必要がある。しかし前記従来技術ではNOx吸蔵
量の精度の向上は考慮しているが、NOx還元量につい
ては精度を高くするための考慮がなされていない。この
ため十分に高精度に排気浄化管理がなされているとは言
えない。
By the way, in order to accurately calculate the NOx storage amount, the NOx reduction amount by the reducing agent also needs to be obtained with high accuracy. However, in the above-mentioned conventional technique, although the accuracy of the NOx storage amount is considered, the NOx reduction amount is not considered to increase the accuracy. Therefore, it cannot be said that exhaust gas purification management is performed with sufficiently high accuracy.

【0005】本発明は、NOx還元量を高精度に求める
ことができる内燃機関の排気浄化触媒還元量検出方法及
び装置、NOx還元量を高精度に求めることができるこ
とにより高精度な排気浄化管理を実行することが可能な
排気浄化管理方法及び装置、NOx還元量を高精度に求
めることができることにより高精度にNOx吸蔵量を求
めることができる排気浄化触媒NOx吸蔵量算出方法及
び装置の提供を目的とするものである。
The present invention provides a method and apparatus for detecting an exhaust purification catalyst reduction amount of an internal combustion engine capable of obtaining a NOx reduction amount with high precision, and a highly accurate exhaust purification management by being able to obtain the NOx reduction amount with high precision. An exhaust purification control method and device that can be executed, and an exhaust purification catalyst NOx storage amount calculation method and device that can obtain a NOx storage amount with high precision by being able to obtain a NOx reduction amount with high precision. It is what

【0006】[0006]

【課題を解決するための手段】以下、上記目的を達成す
るための手段及びその作用効果について記載する。請求
項1記載の内燃機関の排気浄化触媒還元量検出方法は、
排気系にNOx吸蔵還元触媒を備える内燃機関の排気浄
化触媒還元量検出方法であって、前記NOx吸蔵還元触
媒に流入した還元剤量と、前記NOx吸蔵還元触媒内で
の還元剤の透過率とに基づいて、前記NOx吸蔵還元触
媒における還元量を検出することを特徴とする。
[Means for Solving the Problems] Means for achieving the above-mentioned objects and their effects will be described below. An exhaust gas purification catalyst reduction amount detection method for an internal combustion engine according to claim 1,
A method for detecting a reduction amount of an exhaust purification catalyst of an internal combustion engine having an NOx storage reduction catalyst in an exhaust system, comprising: a reducing agent amount flowing into the NOx storage reduction catalyst; and a reducing agent permeability in the NOx storage reduction catalyst. Based on the above, the reduction amount in the NOx storage reduction catalyst is detected.

【0007】NOx吸蔵還元触媒内に還元剤を通過させ
てNOx吸蔵還元触媒内部のNOxを還元する場合に、
NOx吸蔵還元触媒に十分なNOx吸蔵量が存在したと
しても、通過した還元剤の全てが酸化されて還元作用に
寄与するわけではない。すなわち還元剤の一部はNOx
吸蔵還元触媒内部で完全に酸化されずにNOx吸蔵還元
触媒から排出される。したがってこの還元剤の未酸化分
の割合、すなわち透過率を考慮しないと高精度なNOx
還元量は得られない。
When the reducing agent is passed through the NOx storage reduction catalyst to reduce the NOx in the NOx storage reduction catalyst,
Even if the NOx storage reduction catalyst has a sufficient NOx storage amount, not all of the passing reducing agent is oxidized and contributes to the reducing action. That is, part of the reducing agent is NOx
It is exhausted from the NOx storage reduction catalyst without being completely oxidized inside the storage reduction catalyst. Therefore, if the ratio of the unoxidized portion of the reducing agent, that is, the transmittance is not taken into consideration, highly accurate NOx
No reduction amount can be obtained.

【0008】このため本発明では、還元剤量とともに上
述した透過率を考慮してNOx吸蔵還元触媒における還
元量を検出している。こうしてNOx還元量を高精度に
求めることができる。
Therefore, in the present invention, the amount of reduction in the NOx storage reduction catalyst is detected in consideration of the above-mentioned transmittance together with the amount of reducing agent. In this way, the NOx reduction amount can be obtained with high accuracy.

【0009】請求項2記載の内燃機関の排気浄化触媒還
元量検出方法では、請求項1において、前記NOx吸蔵
還元触媒に流入した還元剤量は、内燃機関の燃焼室内か
ら排出される排気に含まれる還元成分量として検出する
ことを特徴とする。
According to a second aspect of the present invention, there is provided the exhaust gas purification catalyst reduction amount detection method for an internal combustion engine according to the first aspect, wherein the reducing agent amount flowing into the NOx storage reduction catalyst is included in the exhaust gas discharged from the combustion chamber of the internal combustion engine. It is characterized in that it is detected as the amount of reducing component to be generated.

【0010】このように還元剤としては、燃焼室内から
排出される排気に含まれる還元成分を用いることができ
るので、排気に含まれる還元成分量を直接あるいは間接
的に検出することにより、還元剤量を容易に高精度に得
ることができる。この結果、高精度にNOx還元量を求
めることができる。
As described above, since the reducing component contained in the exhaust gas discharged from the combustion chamber can be used as the reducing agent, the reducing component can be detected directly or indirectly by detecting the amount of the reducing component contained in the exhaust gas. The amount can be easily obtained with high accuracy. As a result, the NOx reduction amount can be obtained with high accuracy.

【0011】請求項3記載の内燃機関の排気浄化触媒還
元量検出方法では、請求項2において、内燃機関に吸入
される吸入空気量と前記NOx吸蔵還元触媒上流の空燃
比とに基づいて、前記NOx吸蔵還元触媒に流入した還
元剤量を検出することを特徴とする。
According to a third aspect of the present invention, there is provided an exhaust gas purification catalyst reduction amount detection method for an internal combustion engine according to the second aspect, based on the intake air amount sucked into the internal combustion engine and the air-fuel ratio upstream of the NOx storage reduction catalyst. It is characterized in that the amount of reducing agent that has flowed into the NOx storage reduction catalyst is detected.

【0012】NOx吸蔵還元触媒上流の空燃比が理論空
燃比よりも燃料濃度が濃くなればなるほど、排気に含ま
れる還元成分の濃度は濃くなる。更にこの場合、内燃機
関に吸入される吸入空気量が多くなればなるほど、排気
量も多くなりトータルとしての還元成分量は多くなる。
As the fuel concentration of the air-fuel ratio upstream of the NOx storage reduction catalyst becomes higher than the stoichiometric air-fuel ratio, the concentration of the reducing component contained in the exhaust gas becomes higher. Further, in this case, as the intake air amount taken into the internal combustion engine increases, the exhaust amount also increases, and the total reducing component amount increases.

【0013】このように排気に含まれる還元成分は、吸
入空気量とNOx吸蔵還元触媒上流の空燃比とに応じる
ため、これら吸入空気量と空燃比とに基づいてNOx吸
蔵還元触媒に流入した還元剤量を容易に高精度に検出す
ることができる。この結果、高精度にNOx還元量を求
めることができる。
Since the reducing component contained in the exhaust gas depends on the intake air amount and the air-fuel ratio upstream of the NOx storage reduction catalyst as described above, the reduction component flowing into the NOx storage reduction catalyst based on the intake air amount and the air-fuel ratio. The amount of agent can be easily detected with high accuracy. As a result, the NOx reduction amount can be obtained with high accuracy.

【0014】請求項4記載の内燃機関の排気浄化触媒還
元量検出方法では、請求項1〜3のいずれかにおいて、
前記NOx吸蔵還元触媒の劣化度と前記NOx吸蔵還元
触媒の床温とに基づいて前記透過率を検出することを特
徴とする。
According to a fourth aspect of the present invention, there is provided an exhaust gas purification catalyst reduction amount detection method for an internal combustion engine, comprising:
The transmittance is detected based on the degree of deterioration of the NOx storage reduction catalyst and the bed temperature of the NOx storage reduction catalyst.

【0015】NOx吸蔵還元触媒内での還元剤の透過率
は、NOx吸蔵還元触媒の劣化度と前記NOx吸蔵還元
触媒の床温とに応じて変化していることが判明した。こ
のためNOx吸蔵還元触媒の劣化度と前記NOx吸蔵還
元触媒の床温とに基づいて、上述した透過率を容易に高
精度に求めることができる。この結果、高精度にNOx
還元量を求めることができる。
It has been found that the permeability of the reducing agent in the NOx storage reduction catalyst changes according to the degree of deterioration of the NOx storage reduction catalyst and the bed temperature of the NOx storage reduction catalyst. Therefore, the above-described transmittance can be easily and highly accurately obtained based on the degree of deterioration of the NOx storage reduction catalyst and the bed temperature of the NOx storage reduction catalyst. As a result, NOx with high accuracy
The amount of reduction can be calculated.

【0016】請求項5記載の内燃機関の排気浄化触媒還
元量検出方法では、請求項4において、前記NOx吸蔵
還元触媒の劣化度は、前記NOx吸蔵還元触媒のイオウ
被毒の程度として検出されることを特徴とする。
According to a fifth aspect of the present invention, in the exhaust gas purification catalyst reduction amount detection method for an internal combustion engine, in the fourth aspect, the degree of deterioration of the NOx storage reduction catalyst is detected as a degree of sulfur poisoning of the NOx storage reduction catalyst. It is characterized by

【0017】前記透過率に影響するNOx吸蔵還元触媒
の劣化度の原因は主にイオウ被毒によるものであること
から、NOx吸蔵還元触媒のイオウ被毒の程度を検出し
てNOx吸蔵還元触媒の劣化度とすることができる。こ
のことにより適切な透過率を得ることができ、高精度に
NOx還元量を求めることができる。
Since the cause of the degree of deterioration of the NOx storage reduction catalyst that affects the above-mentioned transmittance is mainly due to sulfur poisoning, the degree of sulfur poisoning of the NOx storage reduction catalyst is detected to detect the NOx storage reduction catalyst. It can be the degree of deterioration. As a result, an appropriate transmittance can be obtained, and the NOx reduction amount can be obtained with high accuracy.

【0018】請求項6記載の内燃機関の排気浄化触媒還
元量検出方法では、請求項4又は5において、前記NO
x吸蔵還元触媒の劣化度は、前記NOx吸蔵還元触媒の
床温に応じて設定されることを特徴とする。
According to a sixth aspect of the present invention, there is provided an exhaust gas purification catalyst reduction amount detection method for an internal combustion engine, wherein the NO
The deterioration degree of the x storage reduction catalyst is set according to the bed temperature of the NOx storage reduction catalyst.

【0019】NOx吸蔵還元触媒の劣化度は、NOx吸
蔵還元触媒の床温により変化し、床温が変わっても一定
では劣化度を高精度に決定できない。したがってNOx
吸蔵還元触媒の床温に応じて劣化度を設定することによ
り適切な劣化度を得ることができて透過率が高精度とな
るのでNOx還元量を高精度に求めることができる。
The degree of deterioration of the NOx occlusion reduction catalyst changes depending on the bed temperature of the NOx occlusion reduction catalyst, and even if the bed temperature changes, the degree of deterioration cannot be determined with high accuracy. Therefore NOx
By setting the degree of deterioration according to the bed temperature of the storage reduction catalyst, an appropriate degree of deterioration can be obtained and the transmittance becomes highly accurate, so that the NOx reduction amount can be obtained with high accuracy.

【0020】請求項7記載の内燃機関の排気浄化触媒還
元量検出方法では、請求項4〜6のいずれかにおいて、
前記NOx吸蔵還元触媒の劣化度は、前記NOx吸蔵還
元触媒の未使用時のNOx吸蔵容量と現在のNOx吸蔵
容量とに基づいて求めることを特徴とする。
According to a seventh aspect of the present invention, there is provided an exhaust gas purification catalyst reduction amount detecting method for an internal combustion engine, comprising:
The degree of deterioration of the NOx storage / reduction catalyst is determined based on the unused NOx storage capacity and the current NOx storage capacity of the NOx storage / reduction catalyst.

【0021】このようにNOx吸蔵還元触媒の未使用時
のNOx吸蔵容量と現在のNOx吸蔵容量とに基づいて
NOx吸蔵還元触媒の劣化度を高精度に求めることがで
きるので、高精度な透過率を得て、高精度にNOx還元
量を求めることができる。
As described above, the degree of deterioration of the NOx storage-reduction catalyst can be determined with high accuracy based on the NOx storage capacity when the NOx storage-reduction catalyst is not used and the current NOx storage capacity, so that the transmittance is highly accurate. Therefore, the NOx reduction amount can be calculated with high accuracy.

【0022】請求項8記載の内燃機関の排気浄化管理方
法では、請求項1〜7のいずれかの内燃機関の排気浄化
触媒還元量検出方法により前記NOx吸蔵還元触媒の還
元量を求めるとともに、内燃機関の運転状態に基づいて
排気中のNOx量を求め、該NOx量と前記還元量とに
基づいて排気浄化管理を実行することを特徴とする。
In the exhaust gas purification management method for an internal combustion engine according to claim 8, the reduction amount of the NOx storage reduction catalyst is obtained by the exhaust gas purification catalyst reduction amount detection method for an internal combustion engine according to any one of claims 1 to 7, and It is characterized in that the NOx amount in the exhaust gas is obtained based on the operating state of the engine, and the exhaust gas purification management is executed based on the NOx amount and the reduction amount.

【0023】NOx吸蔵還元触媒に対する還元量と排気
中のNOx量とがNOx吸蔵還元触媒内のNOx吸蔵状
態に直接関係している。このため還元量として、請求項
1〜7のいずれかに述べたごとくに求められたNOx吸
蔵還元触媒の還元量を用いることにより、高精度な排気
浄化管理が可能となる。
The reduction amount for the NOx storage reduction catalyst and the NOx amount in the exhaust gas are directly related to the NOx storage state in the NOx storage reduction catalyst. Therefore, by using the reduction amount of the NOx storage reduction catalyst obtained as described in any one of claims 1 to 7 as the reduction amount, highly accurate exhaust gas purification management becomes possible.

【0024】請求項9記載の内燃機関の排気浄化管理方
法では、請求項8において、請求項1〜7のいずれかの
内燃機関の排気浄化触媒還元量検出方法により求められ
た前記NOx吸蔵還元触媒の還元量と内燃機関の運転状
態に基づいて求められた排気中のNOx量との収支計算
により算出された前記NOx吸蔵還元触媒のNOx吸蔵
量に基づいて、排気浄化管理を実行することを特徴とす
る。
According to a ninth aspect of the present invention, there is provided an exhaust gas purification control method for an internal combustion engine, wherein the NOx storage reduction catalyst is obtained by the exhaust purification catalyst reduction amount detection method for an internal combustion engine according to any one of the first to seventh aspects. The exhaust gas purification management is executed based on the NOx storage amount of the NOx storage reduction catalyst calculated by the balance calculation of the reduction amount of NOx and the NOx amount in exhaust gas obtained based on the operating state of the internal combustion engine. And

【0025】このように還元量とNOx量との収支計算
において請求項1〜7のいずれかに述べたごとくに求め
られた還元量を用いることにより、NOx吸蔵還元触媒
のNOx吸蔵量を高精度に求めることができるので、高
精度な排気浄化管理が可能となる。
As described above, by using the calculated reduction amount as described in any one of claims 1 to 7 in the balance calculation of the reduction amount and the NOx amount, the NOx storage amount of the NOx storage reduction catalyst can be highly accurately determined. Therefore, highly accurate exhaust gas purification management becomes possible.

【0026】請求項10記載の内燃機関の排気浄化触媒
NOx吸蔵量算出方法は、請求項1〜7のいずれかの内
燃機関の排気浄化触媒還元量検出方法により求められた
前記NOx吸蔵還元触媒の還元量と内燃機関の運転状態
に基づいて求められた排気中のNOx量との収支計算に
より、前記NOx吸蔵還元触媒のNOx吸蔵量を算出す
ることを特徴とする。
A method for calculating an NOx storage amount of an exhaust purification catalyst for an internal combustion engine according to a tenth aspect of the present invention is the NOx storage reduction catalyst for an NOx storage reduction catalyst obtained by the exhaust purification catalyst reduction amount detection method for an internal combustion engine according to any one of the first to seventh aspects. It is characterized in that the NOx storage amount of the NOx storage reduction catalyst is calculated by a balance calculation of the reduction amount and the NOx amount in the exhaust gas obtained based on the operating state of the internal combustion engine.

【0027】このように収支計算において前記還元量を
用いることにより、NOx吸蔵還元触媒のNOx吸蔵量
を高精度に求めることができる。請求項11記載の内燃
機関の排気浄化触媒還元量検出装置は、排気系にNOx
吸蔵還元触媒を備える内燃機関の排気浄化触媒還元量検
出装置であって、前記NOx吸蔵還元触媒に流入する還
元剤量を検出する流入還元剤量検出手段と、前記NOx
吸蔵還元触媒内での還元剤の透過率を検出する還元剤透
過率検出手段と、前記流入還元剤量検出手段にて検出さ
れた還元剤量と前記還元剤透過率検出手段にて検出され
た透過率とに基づいて前記NOx吸蔵還元触媒における
還元量を検出する還元量検出手段とを備えたことを特徴
とする。
As described above, by using the reduction amount in the balance calculation, the NOx storage amount of the NOx storage reduction catalyst can be obtained with high accuracy. The exhaust gas purification catalyst reduction amount detection device for an internal combustion engine according to claim 11, wherein the exhaust system is provided with NOx.
An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine, comprising an occlusion reduction catalyst, comprising: an inflow reducing agent amount detection means for detecting an amount of reducing agent flowing into the NOx occlusion reduction catalyst;
The reducing agent permeability detecting means for detecting the reducing agent permeability in the storage reduction catalyst, the reducing agent amount detected by the inflowing reducing agent amount detecting means and the reducing agent permeability detecting means And a reduction amount detecting means for detecting the reduction amount in the NOx storage reduction catalyst based on the transmittance.

【0028】前述したごとくNOx吸蔵還元触媒内に還
元剤を通過させてNOx吸蔵還元触媒内部を還元する場
合に、NOx吸蔵還元触媒に十分なNOx吸蔵量が存在
したとしても、還元剤の一部はNOx吸蔵還元触媒内部
で完全に酸化されずにNOx吸蔵還元触媒から排出され
る。したがってこの還元剤の未酸化分の割合である透過
率を考慮しないと高精度なNOx還元量は得られない。
As described above, when the reducing agent is passed through the NOx storage / reduction catalyst to reduce the inside of the NOx storage / reduction catalyst, even if the NOx storage / reduction catalyst has a sufficient NOx storage amount, a part of the reducing agent is present. Is exhausted from the NOx storage reduction catalyst without being completely oxidized inside the NOx storage reduction catalyst. Therefore, a highly accurate NOx reduction amount cannot be obtained unless the transmittance, which is the ratio of the unoxidized portion of the reducing agent, is taken into consideration.

【0029】このため本発明では、還元剤透過率検出手
段によりNOx吸蔵還元触媒内での還元剤の透過率を検
出している。したがって、還元量検出手段は、流入還元
剤量検出手段にて検出された還元剤量と共に、上述した
ごとくの透過率を用いることで、NOx吸蔵還元触媒に
おける還元量を高精度に検出することができる。
Therefore, in the present invention, the reducing agent permeability detecting means detects the permeability of the reducing agent in the NOx storage reduction catalyst. Therefore, the reduction amount detecting means can detect the reduction amount in the NOx storage reduction catalyst with high accuracy by using the transmittance as described above together with the reducing agent amount detected by the inflow reducing agent amount detecting means. it can.

【0030】請求項12記載の内燃機関の排気浄化触媒
還元量検出装置では、請求項11において、前記流入還
元剤量検出手段は、内燃機関の燃焼室内から排出される
排気に含まれる還元成分量を、前記NOx吸蔵還元触媒
に流入した還元剤量として検出することを特徴とする。
According to a twelfth aspect of the present invention, there is provided the exhaust gas purification catalyst reduction amount detection device for an internal combustion engine according to the eleventh aspect, wherein the inflow reducing agent amount detection means is the reduction component amount contained in the exhaust gas discharged from the combustion chamber of the internal combustion engine. Is detected as the amount of reducing agent that has flowed into the NOx occlusion reduction catalyst.

【0031】内燃機関では燃焼室内から排出される排気
に含まれる還元成分が還元剤となることから、流入還元
剤量検出手段は、燃焼室内から排出される排気に含まれ
る還元成分の量を検出することで、NOx吸蔵還元触媒
に流入した還元剤量を容易に得ることができる。この結
果、還元量検出手段は高精度にNOx還元量を求めるこ
とができる。
In the internal combustion engine, since the reducing component contained in the exhaust gas discharged from the combustion chamber serves as a reducing agent, the inflow reducing agent amount detecting means detects the amount of the reducing component contained in the exhaust gas discharged from the combustion chamber. By doing so, the amount of reducing agent that has flowed into the NOx storage reduction catalyst can be easily obtained. As a result, the reduction amount detecting means can obtain the NOx reduction amount with high accuracy.

【0032】請求項13記載の内燃機関の排気浄化触媒
還元量検出装置では、請求項12において、内燃機関に
吸入される吸入空気量を検出する吸入空気量検出手段
と、前記NOx吸蔵還元触媒上流の排気成分から空燃比
を検出する空燃比検出手段とを備え、前記流入還元剤量
検出手段は、前記吸入空気量検出手段の検出値及び前記
空燃比検出手段の検出値に基づいて前記NOx吸蔵還元
触媒に流入した還元剤量を検出することを特徴とする。
According to a thirteenth aspect of the present invention, there is provided an exhaust gas purification catalyst reduction amount detection device for an internal combustion engine, wherein the intake air amount detection means for detecting the amount of intake air taken into the internal combustion engine and the NOx storage reduction catalyst upstream side according to the twelfth aspect. And an air-fuel ratio detecting means for detecting an air-fuel ratio from the exhaust gas component of It is characterized in that the amount of reducing agent that has flowed into the reduction catalyst is detected.

【0033】前述したごとく、NOx吸蔵還元触媒上流
の空燃比が理論空燃比よりも燃料濃度が濃くなればなる
ほど排気に含まれる還元成分の濃度は濃くなり、更にこ
の場合、内燃機関に吸入される吸入空気量が多くなれば
なるほど、排気量が多くなるのでトータルとしての還元
成分量も多くなる。
As described above, the concentration of the reducing component contained in the exhaust increases as the fuel concentration of the air-fuel ratio upstream of the NOx storage reduction catalyst becomes higher than the stoichiometric air-fuel ratio. Further, in this case, the reducing component is sucked into the internal combustion engine. The larger the intake air amount, the larger the exhaust amount, and therefore the total reducing component amount.

【0034】したがって流入還元剤量検出手段は、吸入
空気量検出手段が検出する吸入空気量と、空燃比検出手
段が検出する空燃比とに基づいて、NOx吸蔵還元触媒
に流入した還元剤量を容易に検出することができる。こ
の結果、還元量検出手段は高精度にNOx還元量を求め
ることができる。
Therefore, the inflow reducing agent amount detecting means determines the reducing agent amount that has flown into the NOx storage reduction catalyst based on the intake air amount detected by the intake air amount detecting means and the air-fuel ratio detected by the air-fuel ratio detecting means. It can be easily detected. As a result, the reduction amount detecting means can obtain the NOx reduction amount with high accuracy.

【0035】請求項14記載の内燃機関の排気浄化触媒
還元量検出装置では、請求項11〜13のいずれかにお
いて、前記NOx吸蔵還元触媒の劣化度を検出する劣化
度検出手段と、前記NOx吸蔵還元触媒の床温を検出す
る触媒床温検出手段とを備え、前記還元剤透過率検出手
段は、前記劣化度検出手段の検出値及び触媒床温検出手
段の検出値に基づいて前記透過率を検出することを特徴
とする。
According to a fourteenth aspect of the invention, there is provided an exhaust gas purification catalyst reduction amount detecting device for an internal combustion engine according to any one of the eleventh to thirteenth aspects, wherein a deterioration degree detecting means for detecting a deterioration degree of the NOx occlusion reduction catalyst and the NOx occlusion. And a catalyst bed temperature detecting means for detecting the bed temperature of the reducing catalyst, wherein the reducing agent permeability detecting means determines the transmittance based on the detection value of the deterioration degree detecting means and the detection value of the catalyst bed temperature detecting means. It is characterized by detecting.

【0036】前述したごとくNOx吸蔵還元触媒内での
還元剤の透過率は、NOx吸蔵還元触媒の劣化度と前記
NOx吸蔵還元触媒の床温とに応じて変化していること
が判明した。このため還元剤透過率検出手段は、劣化度
検出手段が検出したNOx吸蔵還元触媒の劣化度と、触
媒床温検出手段が検出したNOx吸蔵還元触媒の床温と
に基づいて、透過率を容易に高精度に求めることができ
る。この結果、還元量検出手段は高精度にNOx還元量
を求めることができる。
As described above, it has been found that the permeability of the reducing agent in the NOx storage reduction catalyst changes depending on the degree of deterioration of the NOx storage reduction catalyst and the bed temperature of the NOx storage reduction catalyst. Therefore, the reducing agent permeation rate detecting means easily determines the permeation rate based on the deterioration degree of the NOx occlusion reduction catalyst detected by the deterioration degree detecting means and the bed temperature of the NOx occlusion reduction catalyst detected by the catalyst bed temperature detecting means. Can be obtained with high accuracy. As a result, the reduction amount detecting means can obtain the NOx reduction amount with high accuracy.

【0037】請求項15記載の内燃機関の排気浄化触媒
還元量検出装置では、請求項14において、前記NOx
吸蔵還元触媒に対するイオウ被毒を検出するイオウ被毒
検出手段を備え、前記劣化度検出手段は、前記イオウ被
毒検出手段にて検出された前記NOx吸蔵還元触媒のイ
オウ被毒の程度を前記NOx吸蔵還元触媒の劣化度とし
て検出することを特徴とする。
According to a fifteenth aspect of the present invention, there is provided the exhaust gas purification catalyst reduction amount detection device for an internal combustion engine according to the fourteenth aspect.
The NOx storage reduction catalyst is provided with sulfur poisoning detection means for detecting sulfur poisoning to the storage reduction catalyst, and the deterioration degree detection means determines the degree of sulfur poisoning of the NOx storage reduction catalyst detected by the sulfur poisoning detection means. It is characterized in that it is detected as the degree of deterioration of the storage reduction catalyst.

【0038】前記透過率に影響するNOx吸蔵還元触媒
の劣化度の原因は主にイオウ被毒によるものであること
から、劣化度検出手段は、イオウ被毒検出手段が検出し
たイオウ被毒の程度を用いることで、NOx吸蔵還元触
媒の劣化度を容易に高精度に検出することができる。こ
のことにより還元剤透過率検出手段は高精度な透過率を
得ることができ、そして還元量検出手段は高精度にNO
x還元量を求めることができる。
Since the cause of the deterioration degree of the NOx storage reduction catalyst which affects the above-mentioned transmittance is mainly due to sulfur poisoning, the deterioration degree detecting means determines the degree of sulfur poisoning detected by the sulfur poisoning detecting means. By using, it is possible to easily and highly accurately detect the degree of deterioration of the NOx storage reduction catalyst. As a result, the reducing agent transmittance detecting means can obtain highly accurate transmittance, and the reducing amount detecting means can accurately detect NO.
The x reduction amount can be obtained.

【0039】請求項16記載の内燃機関の排気浄化触媒
還元量検出装置では、請求項14又は15において、前
記劣化度検出手段は、前記触媒床温検出手段の検出値に
応じて前記NOx吸蔵還元触媒の劣化度を設定すること
を特徴とする。
According to a sixteenth aspect of the present invention, there is provided the exhaust gas purification catalyst reduction amount detecting device for an internal combustion engine according to the fourteenth or fifteenth aspects, wherein the deterioration degree detecting means is responsive to the detected value of the catalyst bed temperature detecting means. It is characterized in that the degree of deterioration of the catalyst is set.

【0040】前述したごとくNOx吸蔵還元触媒の劣化
度は、NOx吸蔵還元触媒の床温により変化し、床温が
変わっても一定では劣化度を高精度に決定できない。し
たがって劣化度検出手段は、触媒床温検出手段が検出し
たNOx吸蔵還元触媒の床温に応じて劣化度を設定す
る。このことにより適切な劣化度を設定することができ
る。こうして還元剤透過率検出手段は高精度な透過率を
得ることができ、還元量検出手段は高精度にNOx還元
量を求めることができる。
As described above, the degree of deterioration of the NOx occlusion reduction catalyst changes depending on the bed temperature of the NOx occlusion reduction catalyst, and even if the bed temperature changes, the degree of deterioration cannot be determined with high accuracy. Therefore, the deterioration degree detecting means sets the deterioration degree in accordance with the bed temperature of the NOx storage reduction catalyst detected by the catalyst bed temperature detecting means. This makes it possible to set an appropriate degree of deterioration. In this way, the reducing agent transmittance detecting means can obtain a highly accurate transmittance, and the reducing amount detecting means can obtain the NOx reducing amount with high accuracy.

【0041】請求項17記載の内燃機関の排気浄化触媒
還元量検出装置では、請求項14〜16のいずれかにお
いて、前記NOx吸蔵還元触媒のNOx吸蔵容量を検出
するNOx吸蔵容量検出手段を備え、前記劣化度検出手
段は、前記NOx吸蔵容量検出手段の検出値と前記NO
x吸蔵還元触媒の未使用時のNOx吸蔵容量とに基づい
て、前記NOx吸蔵還元触媒の劣化度を検出することを
特徴とする。
An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine according to a seventeenth aspect is the one according to any one of the fourteenth to sixteenth aspects, further comprising NOx storage capacity detection means for detecting a NOx storage capacity of the NOx storage reduction catalyst, The deterioration degree detecting means detects the NOx storage capacity detecting means and the NOx storage capacity detecting means.
The deterioration degree of the NOx storage reduction catalyst is detected based on the NOx storage capacity of the x storage reduction catalyst when it is not used.

【0042】このように劣化度検出手段はNOx吸蔵還
元触媒の未使用時のNOx吸蔵容量とNOx吸蔵容量検
出手段が検出する現在のNOx吸蔵容量とに基づいてN
Ox吸蔵還元触媒の劣化度を高精度に求めることができ
る。このことにより還元剤透過率検出手段は高精度な透
過率を得ることができ、還元量検出手段は高精度にNO
x還元量を求めることができる。
As described above, the deterioration degree detecting means determines N based on the NOx storage capacity when the NOx storage reduction catalyst is not used and the current NOx storage capacity detected by the NOx storage capacity detecting means.
The degree of deterioration of the Ox storage reduction catalyst can be obtained with high accuracy. As a result, the reducing agent transmittance detecting means can obtain a highly accurate transmittance, and the reducing amount detecting means can accurately detect the NO.
The x reduction amount can be obtained.

【0043】請求項18記載の内燃機関の排気浄化管理
装置では、請求項11〜17のいずれか記載の内燃機関
の排気浄化触媒還元量検出装置と、内燃機関の運転状態
に基づいて排気中のNOx量を求めるNOx量検出手段
と、前記排気浄化触媒還元量検出装置により求められた
前記NOx吸蔵還元触媒の還元量と前記NOx量検出手
段にて求められたNOx量とに基づいて排気浄化管理を
実行する排気浄化管理手段とを備えたことを特徴とす
る。
In the exhaust gas purification management device for an internal combustion engine according to claim 18, the exhaust gas purification catalyst reduction amount detection device for an internal combustion engine according to any one of claims 11 to 17 and exhaust gas based on the operating state of the internal combustion engine. Exhaust gas purification control based on the NOx amount detection means for obtaining the NOx amount, the reduction amount of the NOx storage reduction catalyst obtained by the exhaust purification catalyst reduction amount detection device, and the NOx amount obtained by the NOx amount detection means. And an exhaust gas purification management means for executing the above.

【0044】NOx吸蔵還元触媒に対する還元量と排気
中のNOx量とがNOx吸蔵還元触媒内のNOx吸蔵状
態に直接関係しているため、排気浄化管理手段は、請求
項11〜17のいずれかの排気浄化触媒還元量検出装置
により還元量を得て、更にNOx量検出手段からNOx
量を得て、排気浄化管理を実行している。このように高
精度に検出された還元量を用いているので、排気浄化管
理手段は高精度な排気浄化管理が可能となる。
Since the reduction amount for the NOx occlusion reduction catalyst and the NOx amount in the exhaust gas are directly related to the NOx occlusion state in the NOx occlusion reduction catalyst, the exhaust gas purification management means is any one of claims 11 to 17. The exhaust purification catalyst reduction amount detection device obtains the reduction amount, and further the NOx amount detection means detects NOx.
We get the amount and carry out exhaust gas purification management. Since the reduction amount detected with high accuracy is used in this way, the exhaust gas purification management means can perform highly accurate exhaust gas purification management.

【0045】請求項19記載の内燃機関の排気浄化管理
装置では、請求項18において、前記排気浄化管理手段
は、前記排気浄化触媒還元量検出装置により求められた
前記NOx吸蔵還元触媒の還元量と前記NOx量検出手
段にて求められたNOx量との収支計算により算出され
た前記NOx吸蔵還元触媒のNOx吸蔵量に基づいて排
気浄化管理を実行することを特徴とする。
According to a nineteenth aspect of the present invention, in the exhaust gas purification management device for an internal combustion engine according to the eighteenth aspect, the exhaust gas purification management means is the reduction amount of the NOx storage reduction catalyst obtained by the exhaust purification catalyst reduction amount detection device. The exhaust gas purification control is executed based on the NOx storage amount of the NOx storage reduction catalyst calculated by the balance calculation with the NOx amount obtained by the NOx amount detection means.

【0046】このように還元量とNOx量との収支計算
において請求項11〜17のいずれかの排気浄化触媒還
元量検出装置により得られた還元量を用いることによ
り、NOx吸蔵還元触媒のNOx吸蔵量を高精度に求め
ることができるので、排気浄化管理手段は高精度な排気
浄化管理が可能となる。
Thus, by using the reduction amount obtained by the exhaust purification catalyst reduction amount detection device according to any one of claims 11 to 17 in the balance calculation of the reduction amount and the NOx amount, the NOx storage of the NOx storage reduction catalyst Since the amount can be obtained with high accuracy, the exhaust gas purification management means can perform highly accurate exhaust gas purification management.

【0047】請求項20記載の内燃機関の排気浄化触媒
NOx吸蔵量算出装置は、請求項11〜17のいずれか
記載の内燃機関の排気浄化触媒還元量検出装置と、内燃
機関の運転状態に基づいて排気中のNOx量を求めるN
Ox量検出手段と、前記排気浄化触媒還元量検出装置に
より求められた前記NOx吸蔵還元触媒の還元量と前記
NOx量検出手段にて求められたNOx量との収支計算
により前記NOx吸蔵還元触媒のNOx吸蔵量を算出す
るNOx吸蔵量算出手段とを備えたことを特徴とする。
An exhaust purification catalyst NOx storage amount calculation device for an internal combustion engine according to claim 20 is based on the exhaust purification catalyst reduction amount detection device for an internal combustion engine according to any one of claims 11 to 17 and an operating state of the internal combustion engine. To obtain the amount of NOx in the exhaust gas N
The NOx storage reduction catalyst is calculated based on the balance between the reduction amount of the NOx storage reduction catalyst obtained by the exhaust purification catalyst reduction amount detection device and the NOx amount obtained by the NOx amount detection means. And a NOx occlusion amount calculation means for calculating the NOx occlusion amount.

【0048】このように還元量とNOx量との収支計算
において請求項11〜17のいずれかの排気浄化触媒還
元量検出装置により得られた還元量を用いることによ
り、NOx吸蔵量算出手段は、NOx吸蔵還元触媒のN
Ox吸蔵量を高精度に求めることができる。
By using the reduction amount obtained by the exhaust purification catalyst reduction amount detection device according to any one of claims 11 to 17 in the balance calculation of the reduction amount and the NOx amount, the NOx storage amount calculation means is N of NOx storage reduction catalyst
The Ox storage amount can be obtained with high accuracy.

【0049】[0049]

【発明の実施の形態】[実施の形態1]図1は、車両に
搭載された筒内噴射型ガソリンエンジン(以下「エンジ
ン」と略す)2及びその電子制御ユニット(以下、「E
CU」と称す)4の概略構成を示している。エンジン2
には各気筒の燃焼室内に燃料を直接噴射する燃料噴射バ
ルブ6と、この噴射された燃料に点火する点火プラグ8
とがそれぞれ設けられている。燃焼室に吸気バルブ(図
示略)を介して接続された吸気経路10の途中にはモー
タによって開度が調節されるスロットルバルブ12が設
けられている。このスロットルバルブ12の開度(スロ
ットル開度TA)により各気筒へ供給される吸入空気量
GA(mg/sec)が調整される。スロットル開度T
Aはスロットル開度センサ14により検出され、吸入空
気量GAは吸入空気量センサ16(吸入空気量検出手段
に相当)により検出されて、ECU4に読み込まれてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment 1] FIG. 1 shows a cylinder injection type gasoline engine (hereinafter abbreviated as "engine") 2 mounted on a vehicle and its electronic control unit (hereinafter "E").
(Hereinafter referred to as "CU") 4. Engine 2
Includes a fuel injection valve 6 for directly injecting fuel into the combustion chamber of each cylinder, and a spark plug 8 for igniting the injected fuel.
And are provided respectively. A throttle valve 12 whose opening is adjusted by a motor is provided in the middle of an intake path 10 connected to the combustion chamber via an intake valve (not shown). The intake air amount GA (mg / sec) supplied to each cylinder is adjusted by the opening of the throttle valve 12 (throttle opening TA). Throttle opening T
A is detected by the throttle opening sensor 14, and the intake air amount GA is detected by the intake air amount sensor 16 (corresponding to intake air amount detecting means) and read by the ECU 4.

【0050】燃焼室に排気バルブ(図示略)を介して接
続された排気経路18の途中にはNOx吸蔵還元触媒2
0が設けられている。NOx吸蔵還元触媒20の上流側
には排気成分から空燃比を検出する空燃比センサ22
(空燃比検出手段に相当)、及びNOx吸蔵還元触媒2
0の下流には排気成分中の酸素を検出するO2センサ2
4がそれぞれ設けられている。
The NOx storage reduction catalyst 2 is provided in the middle of the exhaust path 18 connected to the combustion chamber via an exhaust valve (not shown).
0 is provided. An air-fuel ratio sensor 22 for detecting an air-fuel ratio from an exhaust component is provided upstream of the NOx storage reduction catalyst 20.
(Corresponding to air-fuel ratio detecting means), and NOx storage reduction catalyst 2
An O2 sensor 2 for detecting oxygen in exhaust components is provided downstream of 0.
4 are provided respectively.

【0051】ECU4はデジタルコンピュータを中心と
して構成されているエンジン制御回路である。このEC
U4は、スロットル開度センサ14、吸入空気量センサ
16、空燃比センサ22及びO2センサ24以外に、ア
クセルペダル26の踏み込み量(アクセル開度ACC
P)を検出するアクセル開度センサ28、クランク軸
(図示略)の回転からエンジン回転数NEを検出するエ
ンジン回転数センサ30、エンジン2の冷却水温THW
を検出する冷却水温センサ32などからそれぞれ信号を
入力している。尚、このようなセンサ以外にも、図示省
略しているが、車速センサなどのエンジン制御に必要な
センサが設けられている。
The ECU 4 is an engine control circuit mainly composed of a digital computer. This EC
In addition to the throttle opening sensor 14, the intake air amount sensor 16, the air-fuel ratio sensor 22 and the O2 sensor 24, U4 is the depression amount of the accelerator pedal 26 (accelerator opening ACC
P), an accelerator opening sensor 28, an engine speed sensor 30 that detects an engine speed NE from the rotation of a crankshaft (not shown), a cooling water temperature THW of the engine 2.
Signals are input from the cooling water temperature sensor 32 for detecting the In addition to such sensors, although not shown, sensors such as a vehicle speed sensor necessary for engine control are provided.

【0052】ECU4は、上述した各種センサからの検
出内容に基づいて、エンジン2の燃料噴射時期、燃料噴
射量、点火時期及びスロットル開度TAを適宜制御す
る。このことにより、例えば燃焼形態については成層燃
焼と均質燃焼との間で切り替えがなされている。本実施
の形態1では、冷間時などの状態を除いた通常運転時に
おいては、エンジン回転数NEと負荷率eklqとのマ
ップに基づいて、前記燃焼形態が決定されている。ここ
で負荷率eklqは、最大機関負荷に対する現在の負荷
の割合を示すものとして、例えばアクセル開度ACCP
とエンジン回転数NEとをパラメータとするマップから
求められる値である。
The ECU 4 appropriately controls the fuel injection timing, the fuel injection amount, the ignition timing and the throttle opening TA of the engine 2 based on the contents detected by the various sensors described above. As a result, for example, the combustion mode is switched between stratified combustion and homogeneous combustion. In the first embodiment, the combustion mode is determined on the basis of the map of the engine speed NE and the load factor eklq during normal operation excluding the cold state. Here, the load factor eklq indicates the ratio of the current load to the maximum engine load, for example, the accelerator opening ACCP.
Is a value obtained from a map with the engine rotation speed NE as a parameter.

【0053】次に本実施の形態において、ECU4によ
り実行される制御のうち、NOx吸蔵還元触媒20に対
する排気浄化管理に関係する処理について説明する。図
2はリッチスパイク設定処理であり、一定時間周期で繰
り返し実行される。本処理が開始されると、まず単位時
間当たりNOx排出量enoxextrate(mg/
sec)が、負荷率eklqとエンジン回転数NEとに
基づいてマップMenoxextrate(eklq,
NE)から算出される(S110)。ここでマップMe
noxextrate(eklq,NE)は負荷率ek
lq及びエンジン回転数NEをパラメータとして予め実
験にて求められている単位時間当たりのNOx排出量
(mg/sec)を示すマップである。尚、このマップ
Menoxextrate(eklq,NE)は成層燃
焼と均質燃焼とで切り替える。尚、均質燃焼が、理論空
燃比又は理論空燃比よりも高燃料濃度である場合にはN
Ox排出量はほとんどないので、マップを用いずに常に
NOx排出量enoxextrate=0(mg/se
c)としても良い。
Next, of the control executed by the ECU 4 in the present embodiment, a process relating to exhaust gas purification management for the NOx storage reduction catalyst 20 will be described. FIG. 2 is a rich spike setting process, which is repeatedly executed at regular time intervals. When this process is started, first, the NOx emission amount per unit time enoxextrate (mg /
sec) is a map Menoxextrate (eklq, based on the load factor eklq and the engine speed NE.
It is calculated from NE) (S110). Map Me here
noxextrate (eklq, NE) is the load factor ek
It is a map which shows the amount of NOx emissions (mg / sec) per unit time previously obtained by an experiment using lq and engine speed NE as parameters. The map Menoxextrate (eklq, NE) is switched between stratified combustion and homogeneous combustion. If the homogeneous combustion has a stoichiometric air-fuel ratio or a fuel concentration higher than the stoichiometric air-fuel ratio, N
Since there is almost no Ox emission, NOx emission enoxextrate = 0 (mg / se
It may be c).

【0054】そしてこの単位時間当たりNOx排出量e
noxextrateと本処理の制御周期(sec)と
の積により今回の制御周期において排出されるNOx排
出量enoxext(mg)が算出される(S11
2)。すなわち今回、NOx吸蔵還元触媒20に吸蔵さ
れるNOx量が算出される。
The NOx emission amount e per unit time
The NOx emission amount enoxext (mg) emitted in the current control cycle is calculated by the product of noxextrate and the control cycle (sec) of this processing (S11).
2). That is, this time, the amount of NOx stored in the NOx storage reduction catalyst 20 is calculated.

【0055】次に単位時間当たりNOx還元量enox
redrate(mg/sec)が読み込まれる(S1
14)。この単位時間当たりNOx還元量enoxre
drateは後述する単位時間当たりNOx還元量検出
処理(図4)にて求められている値である。そしてこの
単位時間当たりNOx還元量enoxredrateと
本処理の制御周期との積により今回の制御周期における
NOx還元量enoxredが(mg)算出される(S
116)。すなわちNOx吸蔵還元触媒20内に吸蔵さ
れているNOxの還元量(mg)が算出される。
Next, the NOx reduction amount enox per unit time
readrate (mg / sec) is read (S1
14). NOx reduction amount per unit time enoxre
"drate" is a value calculated in the NOx reduction amount detection process (FIG. 4) per unit time described later. Then, the NOx reduction amount enoxred in the current control cycle is calculated (mg) by the product of the NOx reduction amount per unit time enoxreduce and the control cycle of this processing (S).
116). That is, the reduction amount (mg) of NOx stored in the NOx storage reduction catalyst 20 is calculated.

【0056】次に次式1によりNOx吸蔵量enoxc
nt(mg)が更新される(S118)。
Next, the NOx storage amount enoxc is calculated by the following equation 1.
nt (mg) is updated (S118).

【0057】[0057]

【数1】 enoxcnt ← enoxcnt + enoxext − enoxred … [式1] ここで右辺のenoxcntは前回の制御周期時でのN
Ox吸蔵量であり、左辺のenoxcntが更新された
NOx吸蔵量である。
[Equation 1] enoxcnt ← enoxcnt + enoxext-enoxred ... [Formula 1] Here, enoxcnt on the right side is N in the previous control cycle.
It is the Ox storage amount, and the NOx storage amount in which the left side enoxcnt is updated.

【0058】次にNOx吸蔵容量noxmax(mg)
が算出される(S120)。このNOx吸蔵容量nox
maxは、図3に示す触媒床温とNOx吸蔵容量nox
maxとの関係を示すマップMnoxmax(ここでは
△印のマップ)から触媒床温に基づいて算出される。
Next, the NOx storage capacity noxmax (mg)
Is calculated (S120). This NOx storage capacity nox
max is the catalyst bed temperature and NOx storage capacity nox shown in FIG.
It is calculated based on the catalyst bed temperature from a map Mnoxmax (here, a map marked with Δ) showing a relationship with max.

【0059】NOx吸蔵還元触媒20においては触媒床
温に応じてNOx吸蔵容量が異なるため、マップMno
xmaxでは、触媒床温を複数の領域、図3では7つの
床温領域tmp(1)〜tmp(7)に分割して、各床
温領域毎にNOx吸蔵容量を保持している。尚、図3に
て○印で表すNOx吸蔵容量はNOx吸蔵還元触媒20
が未使用(未劣化)であった時のNOx吸蔵容量を表し
ており、△印で表すNOx吸蔵容量は現在のNOx吸蔵
還元触媒20のNOx吸蔵容量を表している。すなわち
現在のNOx吸蔵還元触媒20は劣化(主にイオウ被
毒)によりNOx吸蔵容量が未使用時よりも低下してい
ることが判る。
In the NOx storage reduction catalyst 20, since the NOx storage capacity differs depending on the catalyst bed temperature, the map Mno is
In xmax, the catalyst bed temperature is divided into a plurality of areas, in FIG. 3, seven bed temperature areas tmp (1) to tmp (7), and the NOx storage capacity is held for each bed temperature area. Incidentally, the NOx storage capacity indicated by a circle in FIG. 3 is the NOx storage reduction catalyst 20.
Represents the NOx storage capacity when it was unused (undegraded), and the NOx storage capacity represented by a triangle represents the current NOx storage capacity of the NOx storage reduction catalyst 20. That is, it can be seen that the current NOx storage reduction catalyst 20 has its NOx storage capacity lower than when it is not used due to deterioration (mainly sulfur poisoning).

【0060】したがってステップS120では触媒床温
etempaveを決定し、この触媒床温etempa
veの位置により、図3に示したごとく2つの床温領域
tmp(3),tmp(4)のNOx吸蔵容量(△印)
を用いて補間計算して、NOx吸蔵容量noxmaxを
求める。
Therefore, in step S120, the catalyst bed temperature etempave is determined, and this catalyst bed temperature ettempa is determined.
Depending on the position of ve, the NOx storage capacity (marked by Δ) in the two bed temperature regions tmp (3) and tmp (4) as shown in FIG.
The NOx storage capacity noxmax is obtained by performing an interpolation calculation using

【0061】尚、触媒床温etempaveは、ECU
4にて別途行われる床温推定処理によりエンジン回転数
NEと吸入空気量GAとから推定されている。この床温
推定処理としては、例えば、エンジン2の安定運転時の
エンジン回転数NEと吸入空気量GAとから求められる
排気温として触媒床温を推定できる。そしてエンジン2
の過渡時においては吸入空気量GAによる時定数に基づ
いて排気温に追随するように触媒床温を繰り替えし算出
することで、触媒床温etempaveを求める。尚、
このように推定する代わりにNOx吸蔵還元触媒20内
に温度センサを設けて、直接、触媒床温を測定して用い
ても良い。
It should be noted that the catalyst bed temperature etemptave is determined by the ECU
It is estimated from the engine speed NE and the intake air amount GA by a floor temperature estimation process separately performed in 4. As the bed temperature estimation processing, for example, the catalyst bed temperature can be estimated as an exhaust temperature obtained from the engine speed NE and the intake air amount GA during stable operation of the engine 2. And engine 2
During the transition of, the catalyst bed temperature is calculated by repeating and calculating the catalyst bed temperature so as to follow the exhaust gas temperature based on the time constant of the intake air amount GA. still,
Instead of estimating in this way, a temperature sensor may be provided in the NOx storage reduction catalyst 20 and the catalyst bed temperature may be directly measured and used.

【0062】次に前記式1にて求められたNOx吸蔵量
enoxcntがNOx吸蔵容量noxmax以上か否
かが判定される(S122)。ここでenoxcnt<
noxmaxである場合には(S122で「NO」)、
次にNOx吸蔵量enoxcntが「0」以上か否かが
判定される(S124)。enoxcnt≧0であれば
(S124で「YES」)、このまま一旦本処理を終了
する。
Next, it is determined whether or not the NOx storage amount enoxcnt obtained by the above equation 1 is greater than or equal to the NOx storage capacity noxmax (S122). Where enoxcnt <
If it is noxmax (“NO” in S122),
Next, it is determined whether or not the NOx storage amount enoxcnt is "0" or more (S124). If enoxcnt ≧ 0 (“YES” in S124), this processing is temporarily terminated.

【0063】又、enoxcnt<0であれば(S12
4で「NO」)、NOx吸蔵量enoxcntに「0」
を設定して(S126)、本処理を一旦終了する。一
方、enoxcnt≧noxmaxである場合には(S
122で「YES」)、次にリッチスパイクを実行する
ためにリッチスパイク用パラメータを設定する(S12
8)。このリッチスパイク用パラメータとは、例えばリ
ッチスパイク用空燃比AFr及びリッチスパイク期間R
sptが、NOx吸蔵容量noxmaxの値などに応じ
て設定される。
If enoxcnt <0 (S12)
4 is “NO”), and the NOx storage amount enoxcnt is “0”
Is set (S126), and this processing is once ended. On the other hand, if enoxcnt ≧ noxmax, (S
At 122, "YES"), and then parameters for rich spike are set to execute rich spike (S12).
8). The rich spike parameters include, for example, the rich spike air-fuel ratio AFr and the rich spike period R.
spt is set according to the value of the NOx storage capacity noxmax or the like.

【0064】こうして一旦本処理を終了する。このよう
にリッチスパイク用パラメータが設定されたことによ
り、ECU4による燃料噴射量制御によりリッチスパイ
クが開始されて、燃焼室内の混合気の燃料濃度は一時的
に理論空燃比よりも十分に高い状態とされ、排気経路1
8にはHCやCOなどの大量の未燃ガスが排出される。
このことにより、リッチスパイク設定処理(図2)にお
いては、単位時間当たりNOx還元量enoxredr
ateが上昇し(S114)、NOx還元量enoxr
edが増加するので(S116)、NOx吸蔵量eno
xcntが「0」に向かって急激に減少して行く。
In this way, this processing is once terminated. By setting the rich spike parameter in this way, the rich spike is started by the fuel injection amount control by the ECU 4, and the fuel concentration of the air-fuel mixture in the combustion chamber is temporarily set to a state sufficiently higher than the theoretical air-fuel ratio. Exhaust route 1
A large amount of unburned gas such as HC and CO is discharged to 8.
As a result, in the rich spike setting process (FIG. 2), the NOx reduction amount enoxredr per unit time.
ate rises (S114), and NOx reduction amount enoxr
Since ed increases (S116), the NOx storage amount eno
xcnt sharply decreases toward "0".

【0065】図4に、単位時間当たりNOx還元量en
oxredrateを求めるための単位時間当たりNO
x還元量検出処理を示す。本処理は一定時間周期で繰り
返し実行される。本処理が開始されると、まず空燃比セ
ンサ22の出力から得られているNOx吸蔵還元触媒2
0の上流側における現在の空燃比AFの値を読み込む
(S210)。そして吸入空気量センサ16の出力から
得られている吸入空気量GAの値を読み込む(S21
2)。
FIG. 4 shows the NOx reduction amount en per unit time.
NO per unit time to obtain oxredrate
The x reduction amount detection processing is shown. This process is repeatedly executed at regular time intervals. When this processing is started, first, the NOx storage reduction catalyst 2 obtained from the output of the air-fuel ratio sensor 22.
The current value of the air-fuel ratio AF on the upstream side of 0 is read (S210). Then, the value of the intake air amount GA obtained from the output of the intake air amount sensor 16 is read (S21
2).

【0066】次にマップMeredutm(AF,G
A)から、空燃比AF及び吸入空気量GAに基づいて単
位時間当たり供給還元剤量eredutmが算出される
(S214)。ここでマップMeredutm(AF,
GA)は、予め実験により空燃比AFと吸入空気量GA
とをパラメータとし、排気中に存在する未酸化分の燃料
成分量(mg/sec)を測定することで設定したマッ
プである。例えば、マップMeredutm(AF,G
A)は、特に理論空燃比よりも空燃比AFの値が低い側
において空燃比AFが低いほど単位時間当たり供給還元
剤量eredutmは増加し、そして理論空燃比よりも
空燃比AFの値が低い側において吸入空気量GAが増加
するほど単位時間当たり供給還元剤量eredutmが
増加する傾向に設定され、理論空燃比よりも空燃比AF
の値が高い側においては、ほぼ「0(mg/sec)」
に設定される。
Next, the map Meredutm (AF, G
From A), the supply reducing agent amount eredutm per unit time is calculated based on the air-fuel ratio AF and the intake air amount GA (S214). Here, the map Meredutm (AF,
GA) is the air-fuel ratio AF and the intake air amount GA previously experimentally
This is a map set by measuring the amount of unoxidized fuel component existing in the exhaust gas (mg / sec) with and as parameters. For example, the map Meredutm (AF, G
In A), in particular, on the side where the air-fuel ratio AF is lower than the theoretical air-fuel ratio, the lower the air-fuel ratio AF is, the more the supply reducing agent amount eredutm per unit time increases, and the air-fuel ratio AF is lower than the theoretical air-fuel ratio. The intake air amount GA on the side is set so that the supply reducing agent amount eredutm per unit time increases, and the air-fuel ratio AF is higher than the stoichiometric air-fuel ratio.
When the value of is high, it is almost "0 (mg / sec)".
Is set to.

【0067】次に触媒床温etempaveが読み込ま
れる(S216)。この触媒床温etempaveの検
出は前述したごとくである。次に初期NOx吸蔵容量n
oxmaxinitが読み込まれる(S218)。この
初期NOx吸蔵容量noxmaxinitは未使用(未
劣化)時のNOx吸蔵還元触媒20のNOx吸蔵容量で
あり、前述したマップMnoxmaxの内の未使用時の
NOx吸蔵還元触媒のマップ(○印)から、触媒床温e
tempaveに基づいて、図3に示すごとく求められ
る。
Next, the catalyst bed temperature etemptave is read (S216). The detection of the catalyst bed temperature “etempave” is as described above. Next, the initial NOx storage capacity n
oxmaxinit is read (S218). This initial NOx storage capacity noxmaxinit is the NOx storage capacity of the NOx storage / reduction catalyst 20 when it is unused (not deteriorated), and from the map of the unused NOx storage / reduction catalyst (marked with a circle) in the aforementioned map Mnoxmax, Catalyst bed temperature e
Based on the temperature, it is obtained as shown in FIG.

【0068】次に現在のNOx吸蔵容量noxmax
が、前述したマップMnoxmaxの内の現在のNOx
吸蔵還元触媒のマップ(△印)から図3に示したごとく
読み込まれる(S220)。
Next, the current NOx storage capacity noxmax
Is the current NOx in the map Mnoxmax described above.
It is read from the map of the storage reduction catalyst (marked by Δ) as shown in FIG. 3 (S220).

【0069】次に次式2のごとく触媒劣化度esoxr
atio(%)が算出される(S222)。この触媒劣
化度esoxratioは主にイオウ被毒に対応するも
のである。
Next, as shown in the following equation 2, the degree of catalyst deterioration esoxr
audio (%) is calculated (S222). The degree of catalyst deterioration esoxratio mainly corresponds to sulfur poisoning.

【0070】[0070]

【数2】 esoxratio ← 100 × noxmax/noxmaxinit … [式2] 次にマップMepassr(etempave,eso
xratio)から、触媒床温etempave及び触
媒劣化度esoxratioに基づいて、触媒透過率e
passr(%)を算出する(S224)。この触媒透
過率epassrは、排気中の還元剤(未酸化燃料成
分)がNOx吸蔵還元触媒20内にて酸化されずに通過
する程度を表すものである。
[Equation 2] esoxratio ← 100 × noxmax / noxmaxinit ... [Equation 2] Next, the map Mepassr (etempave, eso
xratio), based on the catalyst bed temperature etemptave and the degree of catalyst deterioration esoxratio, the catalyst permeability e
Passr (%) is calculated (S224). The catalyst permeability epassr represents the degree to which the reducing agent (unoxidized fuel component) in the exhaust gas passes through the NOx storage reduction catalyst 20 without being oxidized.

【0071】次に次式3のごとく単位時間当たりNOx
還元量enoxredrateを算出する(S22
6)。
Next, as shown in the following expression 3, NOx per unit time
The reduction amount enoxredrate is calculated (S22
6).

【0072】[0072]

【数3】 enoxredrate ← Krn × eredutm ×(100−epassr)/100 … [式3] 前記式3の右辺はNOx吸蔵還元触媒20内にて酸化さ
れた還元剤量を示している。Krnは還元剤量からNO
x還元量への変換係数である。還元剤が酸化されること
によりNOxが還元されるので、前記式3の右辺の値は
単位時間当たりNOx還元量enoxredrateを
示していることになる。
## EQU00003 ## enoxreduce.rarw.Krn.times.eredutm.times. (100-epassr) / 100 [Formula 3] The right side of Formula 3 represents the amount of the reducing agent oxidized in the NOx storage reduction catalyst 20. Krn is NO from the amount of reducing agent
x is a conversion coefficient to the reduction amount. Since the NOx is reduced by oxidizing the reducing agent, the value on the right side of the equation 3 indicates the NOx reduction amount enoxreduce per unit time.

【0073】こうして一旦本処理を終了する。このよう
な処理が繰り返されることにより、単位時間当たりNO
x還元量enoxredrateが繰り返し更新され
る。図5に、現在のNOx吸蔵容量noxmaxを求め
るためのNOx吸蔵容量更新処理を示す。本処理は一定
時間周期で繰り返し実行される処理である。本処理が開
始されると、まずリッチスパイク実行フラグFspkが
「ON」か否かが判定される(S310)。このリッチ
スパイク実行フラグFspkは、リッチスパイクが開始
された際に「ON」に設定されるフラグである。
In this way, this processing is once terminated. By repeating such processing, NO per unit time
The x reduction amount enoxupdate is repeatedly updated. FIG. 5 shows the NOx storage capacity updating process for obtaining the current NOx storage capacity noxmax. This process is a process that is repeatedly executed at regular time intervals. When this process is started, it is first determined whether or not the rich spike execution flag Fspk is "ON" (S310). The rich spike execution flag Fspk is a flag that is set to “ON” when the rich spike is started.

【0074】Fspk=「OFF」であれば(S310
で「NO」)、このまま一旦本処理を終了する。リッチ
スパイクの開始によりFspk=「ON」となれば(S
310で「YES」)、次にO2センサ24の出力にリ
ッチ側への変化があったか否かが判定される(S31
2)。このリッチ側への変化は、NOx吸蔵還元触媒2
0に吸蔵されているNOxの全量の還元が完了して、N
Ox吸蔵還元触媒20下流の排気が一時的にリッチ側に
変化したタイミングを捉えるためである。
If Fspk = “OFF” (S310)
Then, “NO”), and this processing is once terminated. If Fspk = "ON" due to the start of the rich spike (S
If YES in 310, then it is determined whether or not the output of the O2 sensor 24 has changed to the rich side (S31).
2). This change to the rich side is caused by the NOx storage reduction catalyst 2
When the reduction of the total amount of NOx stored in 0 is completed, N
This is because the timing at which the exhaust gas downstream of the Ox storage reduction catalyst 20 temporarily changes to the rich side is captured.

【0075】O2センサ24にリッチ側への変化がなけ
れば(S312で「NO」)、次にリッチスパイク終了
後の制限時間前か否かが判定される(S314)。この
制限時間は、リッチスパイク終了後においてO2センサ
24のリッチ側への出力変化を検出するための制限時間
である。
If the O2 sensor 24 has not changed to the rich side ("NO" in S312), it is next determined whether or not it is before the time limit after the end of the rich spike (S314). This time limit is a time limit for detecting a change in the output of the O2 sensor 24 to the rich side after the rich spike ends.

【0076】前記制限時間前であれば(S314で「Y
ES」)、このまま一旦本処理を終了する。前記制限時
間前にO2センサ24においてNOx還元完了を示すリ
ッチ側への一時的な変化があった場合には(S312で
「YES」)、次にO2センサ24における出力状態、
ここではリッチ側への出力変化のタイミングに基づいて
NOx吸蔵容量補正値dnoxmaxが算出される(S
316)。
If it is before the time limit ("Y" in S314).
ES ”), the present process is temporarily terminated. If there is a temporary change to the rich side indicating the completion of NOx reduction in the O2 sensor 24 before the time limit (“YES” in S312), then the output state of the O2 sensor 24,
Here, the NOx storage capacity correction value dnoxmax is calculated based on the timing of the output change to the rich side (S
316).

【0077】例えば前記図3に△印にて示すごとくに設
定されているの現在のNOx吸蔵容量noxmaxがN
Ox吸蔵還元触媒20の実際のNOx吸蔵容量と一致し
ている場合にリッチスパイク開始時あるいは終了時から
O2センサ24にリッチ側の変化が現れるタイミングを
基準タイミングとする。そして、基準タイミングよりも
実際のタイミングが早ければ実際のNOx吸蔵容量はマ
ップ上のNOx吸蔵容量noxmaxより小さいので、
タイミングの早さに応じて、マップにより絶対値の大き
なプラスの値をNOx吸蔵容量補正値dnoxmaxに
設定する。逆に基準タイミングよりも実際のタイミング
が遅ければ実際のNOx吸蔵容量はマップ上のNOx吸
蔵容量noxmaxより大きいので、タイミングの遅さ
に応じて、マップにより絶対値の大きなマイナスの値を
NOx吸蔵容量補正値dnoxmaxに設定する。
For example, the current NOx storage capacity noxmax, which is set as indicated by a triangle mark in FIG. 3, is N.
When the actual NOx storage capacity of the Ox storage / reduction catalyst 20 matches, the timing at which the rich side change appears in the O2 sensor 24 from the start or end of the rich spike is set as the reference timing. If the actual timing is earlier than the reference timing, the actual NOx storage capacity is smaller than the NOx storage capacity noxmax on the map.
The NOx storage capacity correction value dnoxmax is set to a plus value having a large absolute value according to the speed of the timing. On the contrary, if the actual timing is later than the reference timing, the actual NOx storage capacity is larger than the NOx storage capacity noxmax on the map. Therefore, depending on the timing delay, the map shows a large negative value of the absolute value as the NOx storage capacity. The correction value dnoxmax is set.

【0078】こうしてNOx吸蔵容量補正値dnoxm
axが算出されると、次に図3に△印にて示したマップ
Mnoxmaxの内のNOx吸蔵容量noxmax
(i)の補正を次式4に示すごとく実行する(S31
8)。
Thus, the NOx storage capacity correction value dnoxm
Once ax is calculated, the NOx storage capacity noxmax in the map Mnoxmax indicated by the triangle mark in FIG. 3 is next calculated.
The correction of (i) is executed as shown in the following Expression 4 (S31
8).

【0079】[0079]

【数4】 noxmax(i) ← noxmax(i) − dnoxmax … [式4] ここで(i)は現在の触媒床温etempaveが属し
ている床温領域を示している。例えば、図3の例では、
床温領域tmp(4)が該当し、この床温領域tmp
(4)における△印の値がnoxmax(i)に該当す
る。
[Mathematical formula-see original document] noxmax (i) <-noxmax (i) -dnoxmax ... [Equation 4] Here, (i) represents the bed temperature region to which the current catalyst bed temperature etempave belongs. For example, in the example of FIG.
The floor temperature region tmp (4) corresponds to this floor temperature region tmp.
The value of Δ in (4) corresponds to noxmax (i).

【0080】次にリッチスパイク実行フラグFspkに
「OFF」が設定されて(S320)、一旦本処理を終
了する。このことにより、次の制御周期ではステップS
310では「NO」と判定されて、実質的な処理は次の
リッチスパイクが開始されるまでなされない。
Next, "OFF" is set to the rich spike execution flag Fspk (S320), and this processing is once terminated. As a result, in the next control cycle, step S
At 310, the determination is “NO”, and the substantial process is not performed until the next rich spike is started.

【0081】一方、制限時間が経過してもO2センサ2
4の出力がリッチ側への一時的な変化を示さなかった場
合には(S314で「NO」)、この場合もステップS
316〜S320の処理が実行される。この場合、ステ
ップS316では、基準タイミングよりも実際のリッチ
変化タイミングが制限時間に対応して遅いものとされ
る。したがって実際のNOx吸蔵容量はマップ上のNO
x吸蔵容量noxmaxより大きいと判断されて、タイ
ミングの遅さに応じて、マップにより絶対値の大きなマ
イナスの値をNOx吸蔵容量補正値dnoxmaxに設
定する。そしてステップS318にてNOx吸蔵容量n
oxmax(i)が増加される。
On the other hand, even if the time limit elapses, the O2 sensor 2
If the output of No. 4 does not show a temporary change to the rich side (“NO” in S314), in this case also the step S
The processing of 316 to S320 is executed. In this case, in step S316, the actual rich change timing is later than the reference timing in correspondence with the time limit. Therefore, the actual NOx storage capacity is NO on the map.
It is determined that it is larger than the x storage capacity noxmax, and a negative value having a large absolute value is set to the NOx storage capacity correction value dnoxmax according to the timing delay. Then, in step S318, the NOx storage capacity n
oxmax (i) is increased.

【0082】上述した構成において、単位時間当たりN
Ox還元量検出処理(図4)のステップS210〜S2
14が流入還元剤量検出手段としての処理に、ステップ
S224が還元剤透過率検出手段としての処理に、ステ
ップS226が還元量検出手段としての処理に、ステッ
プS216が触媒床温検出手段としての処理に、ステッ
プS218〜S222が劣化度検出手段としての処理
に、NOx吸蔵容量更新処理(図5)がNOx吸蔵容量
検出手段としての処理に、リッチスパイク設定処理(図
2)のステップS110,S112がNOx量検出手段
としての処理に、ステップS114〜S128が排気浄
化管理手段としての処理に、ステップS118がNOx
吸蔵量算出手段としての処理に相当する。
In the above configuration, N per unit time
Steps S210 to S2 of the Ox reduction amount detection processing (FIG. 4)
14 is processing as inflow reducing agent amount detecting means, step S224 is processing as reducing agent permeability detecting means, step S226 is processing as reducing amount detecting means, and step S216 is processing as catalyst bed temperature detecting means. In addition, steps S218 to S222 are processing as deterioration degree detection means, NOx storage capacity update processing (FIG. 5) is processing as NOx storage capacity detection means, and steps S110 and S112 of rich spike setting processing (FIG. 2) are performed. Steps S114 to S128 are performed as the exhaust purification management means, and step S118 is performed as the NOx amount detection processing.
This corresponds to the processing as the storage amount calculation means.

【0083】以上説明した本実施の形態1によれば、以
下の効果が得られる。 (イ).NOx吸蔵還元触媒20内にリッチスパイクに
より還元剤を通過させてNOx吸蔵還元触媒20内部に
吸蔵されているNOxを還元する場合に、NOx吸蔵還
元触媒20に十分なNOx吸蔵量が存在したとしても、
通過した還元剤の全てが酸化されて還元作用に寄与する
わけではない。すなわち還元剤の一部はNOx吸蔵還元
触媒20内部で完全に酸化されずにNOx吸蔵還元触媒
20から排出される。したがってこの還元剤の未酸化分
の割合である透過率を考慮しないと高精度なNOx還元
量は得られない。
According to the first embodiment described above, the following effects can be obtained. (I). When a reducing agent is passed through the NOx storage reduction catalyst 20 by a rich spike to reduce the NOx stored in the NOx storage reduction catalyst 20, even if the NOx storage reduction catalyst 20 has a sufficient NOx storage amount. ,
Not all of the passing reducing agent is oxidized and contributes to the reducing action. That is, a part of the reducing agent is not completely oxidized inside the NOx storage reduction catalyst 20 and is discharged from the NOx storage reduction catalyst 20. Therefore, a highly accurate NOx reduction amount cannot be obtained unless the transmittance, which is the ratio of the unoxidized portion of the reducing agent, is taken into consideration.

【0084】本実施の形態では、単位時間当たりNOx
還元量検出処理(図4)により触媒透過率epassr
を設定して、高精度に単位時間当たりNOx還元量en
oxredrateを求めている。このためこの単位時
間当たりNOx還元量enoxredrateを用い
て、NOx還元量enoxredも高精度に算出でき
(図2:S116)、NOx吸蔵量enoxcntも高
精度に求められる(図2:S118)。このため高精度
な排気浄化管理が可能となり、リッチスパイクのタイミ
ングを適切に判断でき、適切な量のリッチスパイクがで
きるので、燃料を浪費することなく、かつNOxを外部
に排出することがない。
In the present embodiment, NOx per unit time
Catalyst reduction rate epassr by reduction amount detection processing (FIG. 4)
To set the NOx reduction amount per unit time with high accuracy
Seeking oxredrate. Therefore, the NOx reduction amount enoxredrate per unit time can be used to calculate the NOx reduction amount enoxred with high precision (FIG. 2: S116), and the NOx storage amount enoxcnt can also be obtained with high precision (FIG. 2: S118). Therefore, highly accurate exhaust gas purification management can be performed, the timing of rich spike can be appropriately determined, and an appropriate amount of rich spike can be performed, so that fuel is not wasted and NOx is not emitted to the outside.

【0085】(ロ).触媒透過率epassrは、触媒
劣化度esoxratioと触媒床温etempave
とに応じて設定しているため、高精度な触媒透過率ep
assrを求めることができ、高精度なNOx還元量を
求めることができる。
(B). The catalyst permeability epassr is the catalyst deterioration degree esoxratio and the catalyst bed temperature etemptave.
Since it is set according to, the highly accurate catalyst permeability ep
Assr can be obtained, and a highly accurate NOx reduction amount can be obtained.

【0086】(ハ).前記触媒劣化度esoxrati
oは、触媒床温etempaveに応じて得られた初期
NOx吸蔵容量noxmaxinitとNOx吸蔵容量
noxmaxとから設定されている。したがって高精度
な値を容易に求めることができる。
(C). The catalyst deterioration degree esoxrati
o is set from the initial NOx storage capacity noxmaxinit and the NOx storage capacity noxmax that are obtained according to the catalyst bed temperature etmave. Therefore, a highly accurate value can be easily obtained.

【0087】又、このように触媒劣化度esoxrat
ioは、触媒床温etempaveに対応して設定され
ることになるため、触媒床温etempaveが変化し
ても適切な触媒劣化度esoxratioを得ることが
できる。したがって、より高精度な触媒透過率epas
srが得られ、高精度なNOx還元量を求めることがで
きる。
Further, as described above, the degree of catalyst deterioration esorat
Since io is set corresponding to the catalyst bed temperature etemptave, it is possible to obtain an appropriate degree of catalyst deterioration esoxratio even if the catalyst bed temperature etemptave changes. Therefore, more accurate catalyst permeability epas
Since sr is obtained, a highly accurate NOx reduction amount can be obtained.

【0088】[実施の形態2]本実施の形態では、O2
センサ24の出力状態に基づいてNOx吸蔵容量nox
maxの更新を実行するのではなく、NOx吸蔵還元触
媒20のイオウ被毒状態を算出してNOx吸蔵容量no
xmaxを更新するものである。このため本実施の形態
では、前記NOx吸蔵容量更新処理(図5)の代わりに
図6のイオウ被毒NOx吸蔵容量更新処理が実行され
る。
[Embodiment 2] In the present embodiment, O2
NOx storage capacity nox based on the output state of the sensor 24
Instead of updating max, the NOx storage capacity no is calculated by calculating the sulfur poisoning state of the NOx storage reduction catalyst 20.
xmax is updated. Therefore, in the present embodiment, the sulfur poisoning NOx storage capacity updating processing of FIG. 6 is executed instead of the NOx storage capacity updating processing (FIG. 5).

【0089】イオウ被毒NOx吸蔵容量更新処理(図
6)は一定周期で繰り返し実行される処理である。本処
理が開始されると、まず触媒床温etempaveが属
する床温領域iにおけるNOx吸蔵還元触媒20に対す
る単位時間当たりイオウ被毒増加量esoxincra
te(i)がマップMesoxincrate(燃料の
種類,AF,GA,etempave)から、現在用い
られている燃料の種類、空燃比AF、吸入空気量GA、
触媒床温etempaveに基づいて算出される(S4
10)。
The sulfur poisoning NOx storage capacity updating process (FIG. 6) is a process which is repeatedly executed at regular intervals. When this process is started, first, the sulfur poisoning increase amount esoxincra per unit time for the NOx storage reduction catalyst 20 in the bed temperature region i to which the catalyst bed temperature etempave belongs.
te (i) is a map Mesoxinrate (fuel type, AF, GA, etemptave), from the type of fuel currently used, air-fuel ratio AF, intake air amount GA,
It is calculated on the basis of the catalyst bed temperature "etempave" (S4
10).

【0090】このマップMesoxincrate(燃
料の種類,AF,GA,etempave)は、各パラ
メータに応じて予め実験により求められているマップで
ある。ここで現在用いられている燃料の種類がパラメー
タであるのは、例えばハイオクタンガソリンの場合には
レギュラーガソリンよりもイオウ含有量は少ないからで
ある。このような燃料の種類の判定は、例えば、ハイオ
クタンガソリンの場合にはノッキングが発生しにくいの
で点火進角制御により点火進角が大きく設定され、レギ
ュラーガソリンの場合は点火進角が小さく設定されるこ
とから、点火進角に基づいて種類を判定することができ
る。空燃比AF、吸入空気量GA及び触媒床温etem
paveについてはイオウの供給量及び被毒の反応速度
に関係する。
This map Mesoxinrate (fuel type, AF, GA, etemptave) is a map that has been previously obtained by experiments according to each parameter. The type of fuel currently used here is a parameter because, for example, high octane gasoline has a lower sulfur content than regular gasoline. In this type of fuel determination, for example, in the case of high octane gasoline, knocking is less likely to occur, so the ignition advance angle is set to a large value by the ignition advance control, and in the case of regular gasoline, the ignition advance angle is set to a small value. Therefore, the type can be determined based on the ignition advance angle. Air-fuel ratio AF, intake air amount GA and catalyst bed temperature etem
The pave is related to the amount of sulfur supplied and the reaction rate of poisoning.

【0091】このように求められた単位時間当たりのイ
オウ被毒増加量esoxincrate(i)と本処理
の制御周期との積が計算されて、今回の制御周期におけ
る床温領域iのNOx吸蔵還元触媒20に対するイオウ
被毒増加量esoxinc(i)が算出される(S41
2)。
The product of the amount of increased sulfur poisoning per unit time esoxincrate (i) thus obtained and the control cycle of this processing is calculated, and the NOx storage reduction catalyst in the bed temperature region i in this control cycle is calculated. The sulfur poisoning increase amount esoxinc (i) for 20 is calculated (S41).
2).

【0092】次に床温領域iにおけるNOx吸蔵還元触
媒20に対する単位時間当たりのイオウ被毒回復量es
oxdecrate(i)がマップMesoxdecr
ate(esox(i),AF,GA,etempav
e)から、イオウ被毒量esox(i)、空燃比AF、
吸入空気量GA、触媒床温etempaveに基づいて
算出される(S414)。ここでイオウ被毒量esox
(i)は、前記床温領域iのイオウ被毒量であり、NO
x吸蔵還元触媒20が床温領域iの下で実際に被毒して
いる量である。このイオウ被毒量esox(i)が多い
ほどNOx吸蔵還元触媒20から離脱するイオウの量も
多くなる。空燃比AF及び吸入空気量GAはイオウを還
元する成分の量に関係し、触媒床温etempaveは
離脱速度に関係する。
Next, the sulfur poisoning recovery amount es per unit time for the NOx storage reduction catalyst 20 in the bed temperature region i
oxdecrate (i) is the map Mesoxdecr
ate (esox (i), AF, GA, etempav
From e), sulfur poisoning amount esox (i), air-fuel ratio AF,
It is calculated based on the intake air amount GA and the catalyst bed temperature etmave (S414). Where sulfur poisoning amount esox
(I) is the sulfur poisoning amount in the bed temperature region i, and NO
x The amount of the storage reduction catalyst 20 actually poisoned under the bed temperature region i. The larger the sulfur poisoning amount esox (i), the larger the amount of sulfur released from the NOx storage reduction catalyst 20. The air-fuel ratio AF and the intake air amount GA are related to the amount of the component that reduces sulfur, and the catalyst bed temperature etemptave is related to the desorption rate.

【0093】このように求められた単位時間当たりのイ
オウ被毒回復量esoxdecrate(i)を用い
て、次式5に示すごとく、今回の制御周期での床温領域
iにおけるイオウ被毒回復量esoxdec(i)が算
出される(S416)。
Using the sulfur poisoning recovery amount esoxdecrate (i) per unit time thus obtained, as shown in the following equation 5, the sulfur poisoning recovery amount esoxdec in the bed temperature region i in the present control cycle is expressed. (I) is calculated (S416).

【0094】[0094]

【数5】 esoxdec(i) ← esoxdecrate(i) × 制御周期 × kdec(i) … [式5] ここでkdec(i)はイオウ被毒回復補正係数であ
り、低温で被毒した床温領域ほどイオウが離脱し易いこ
とから低温の床温領域iであるほど大きい値が設定され
ている。
[Equation 5] esoxdec (i) ← esoxdecrate (i) x control period x kdec (i) ... [Equation 5] Here, kdec (i) is a sulfur poisoning recovery correction coefficient, and is a floor temperature region poisoned at a low temperature. Since sulfur is more likely to be released, a larger value is set in the lower bed temperature region i.

【0095】次にイオウ被毒量esox(i)が、今回
求められたイオウ被毒増加量esoxinc(i)及び
イオウ被毒回復量esoxdec(i)に基づいて次式
6のごとく算出される(S418)。
Next, the sulfur poisoning amount esox (i) is calculated according to the following equation 6 based on the sulfur poisoning increase amount esoxinc (i) and the sulfur poisoning recovery amount esoxdec (i) obtained this time ( S418).

【0096】[0096]

【数6】 esox(i) ← esox(i) + esoxinc(i) − esoxdec(i) … [式6] ここで右辺のesox(i)は前回の制御周期での床温
領域iのイオウ被毒量であり、左辺のesox(i)は
今回更新された床温領域iのイオウ被毒量である。
[Equation 6] esox (i) ← esox (i) + esoxinc (i) -esoxdec (i) [Equation 6] where esox (i) on the right side is the sulfur coverage of the bed temperature region i in the previous control cycle. It is the poison amount, and esox (i) on the left side is the sulfur poisoning amount of the bed temperature region i updated this time.

【0097】次に次式7に示すごとく床温領域iにおけ
るNOx吸蔵容量noxmax(i)が算出される(S
420)。
Next, the NOx storage capacity noxmax (i) in the bed temperature region i is calculated as shown in the following equation 7 (S).
420).

【0098】[0098]

【数7】 noxmax(i) ← noxmaxinit(i) − esox(i) … [式7] 次に触媒床温etempaveが床温領域iを示してい
ても床温領域i以外の各床温領域についても同時にイオ
ウ被毒の回復が生じるので、次のステップS422〜S
428によりイオウ被毒回復処理が実行される。なお、
各ステップは1つの処理で説明するが、床温領域i以外
の各床温領域(図3の例では6つの床温領域が対象とな
る)毎にそれぞれ実行されるものとする。
[Equation 7] noxmax (i) ← noxmaxinit (i) -esox (i) [Equation 7] Next, even if the catalyst bed temperature etempave indicates the bed temperature region i, for each bed temperature region other than the bed temperature region i At the same time, recovery of sulfur poisoning occurs, so the next steps S422-S
By 428, the sulfur poisoning recovery process is executed. In addition,
Although each step will be described as one process, it is assumed that each step is executed for each bed temperature region other than the bed temperature region i (6 bed temperature regions are targets in the example of FIG. 3).

【0099】すなわち前記ステップS414と同じ処理
が、床温領域i以外の各床温領域について実行されて、
NOx吸蔵還元触媒20に対する単位時間当たりのイオ
ウ被毒回復量esoxdecrate(i以外)が各々
算出される(S422)。
That is, the same processing as step S414 is executed for each bed temperature region other than the bed temperature region i,
The sulfur poisoning recovery amount esoxdecrate (other than i) per unit time for the NOx storage reduction catalyst 20 is calculated (S422).

【0100】そして前記式5により今回の制御周期での
床温領域i以外の各床温領域におけるイオウ被毒回復量
esoxdec(i以外)が算出される(S424)。
そして次に次式8に示すごとく床温領域i以外の各床温
領域におけるイオウ被毒量esox(i以外)が、今回
求められた各イオウ被毒回復量esoxdec(i以
外)に基づいて算出される(S426)。
Then, the sulfur poisoning recovery amount esoxdec (other than i) in each bed temperature region other than the bed temperature region i in the present control cycle is calculated by the above equation 5 (S424).
Then, the sulfur poisoning amount esox (other than i) in each bed temperature region other than the bed temperature region i is calculated based on each sulfur poisoning recovery amount esoxdec (other than i) obtained this time as shown in the following equation 8. (S426).

【0101】[0101]

【数8】 esox(i以外) ← esox(i以外) − esoxdec(i以外) … [式8] 次に前記式7により床温領域i以外の各床温領域におけ
る各NOx吸蔵容量noxmax(i以外)が算出され
る(S428)。
[Equation 8] esox (other than i) ← esox (other than i) -esoxdec (other than i) ... [Equation 8] Next, according to the above Equation 7, each NOx storage capacity noxmax (i Other than) is calculated (S428).

【0102】こうして一旦本処理を終了する。このよう
な処理を繰り返すことにより床温領域iのNOx吸蔵容
量noxmax(i)及び床温領域i以外の各床温領域
のNOx吸蔵容量noxmax(i以外)が更新され
る。このことにより図3のマップ(△印)が更新されて
図4の処理にて単位時間当たりのNOx還元量enox
redrateの算出に用いられる。
In this way, this process is once terminated. By repeating such processing, the NOx storage capacity noxmax (i) of the bed temperature region i and the NOx storage capacity noxmax (other than i) of each bed temperature region other than the bed temperature region i are updated. As a result, the map (marked with Δ) in FIG. 3 is updated and the NOx reduction amount enox per unit time in the process of FIG.
Used to calculate redrate.

【0103】上述した構成において、イオウ被毒NOx
吸蔵容量更新処理(図6)のステップS410〜S41
8,S422〜S426がイオウ被毒検出手段としての
処理に、ステップS420,S428及びステップS2
18〜S222(図4)が劣化度検出手段としての処理
に相当する。
In the above structure, sulfur poisoning NOx
Steps S410 to S41 of the storage capacity update process (FIG. 6)
8, S422 to S426 are steps S420, S428, and S2 for processing as sulfur poisoning detection means.
18 to S222 (FIG. 4) correspond to the process as the deterioration degree detecting means.

【0104】以上説明した本実施の形態2によれば、以
下の効果が得られる。 (イ).前記実施の形態1の(イ)〜(ハ)の効果を生
じる。 (ロ).リッチスパイクを待たなくてもNOx吸蔵容量
noxmax(i)の更新を実行することができるの
で、実際のNOx吸蔵容量との誤差を常に小さくしてお
くことができる。
According to the second embodiment described above, the following effects can be obtained. (I). The effects (a) to (c) of the first embodiment are produced. (B). Since the NOx storage capacity noxmax (i) can be updated without waiting for the rich spike, the error from the actual NOx storage capacity can be kept small at all times.

【0105】[その他の実施の形態] (a).前記実施の形態1と前記実施の形態2とを組み
合わせて、リッチスパイクからリッチスパイクまでの間
はイオウ被毒NOx吸蔵容量更新処理(図6)にて高頻
度にNOx吸蔵容量noxmax(i)を更新し、リッ
チスパイク時にはNOx吸蔵容量更新処理(図5)によ
り、O2センサ24の出力にて誤差を修正するようにし
ても良い。このことによりNOx還元量enoxre
d、NOx吸蔵量enoxcnt及びNOx吸蔵容量n
oxmaxが一層高精度に得られ、より高精度な排気浄
化管理が可能となる。
[Other Embodiments] (a). Combining the first embodiment and the second embodiment, the NOx storage capacity noxmax (i) is frequently set in the sulfur poisoning NOx storage capacity update process (FIG. 6) from the rich spike to the rich spike. Alternatively, the error may be corrected by the output of the O2 sensor 24 by the NOx storage capacity updating process (FIG. 5) during the rich spike. As a result, the NOx reduction amount enoxre
d, NOx storage amount enoxcnt and NOx storage capacity n
oxmax can be obtained with higher accuracy, and more accurate exhaust gas purification management becomes possible.

【0106】(b).前記各実施の形態においては、筒
内噴射型エンジンを使用したが吸気ポートに燃料を噴射
するポート噴射型エンジンにも適用できる。この構成の
場合には成層燃焼の代わりにリーン燃焼が行われ、この
リーン燃焼時にNOx吸蔵還元触媒に対してNOxが吸
蔵される。
(B). In each of the above-described embodiments, the in-cylinder injection type engine is used, but it is also applicable to a port injection type engine that injects fuel into the intake port. In the case of this configuration, lean combustion is performed instead of stratified combustion, and during this lean combustion, NOx is stored in the NOx storage reduction catalyst.

【0107】(c).前記各実施の形態においては、N
Ox吸蔵還元触媒20の上流側に他の触媒が配置されて
いない構成を示したが、例えばエンジン始動時に多量に
放出されるHCやCO成分を除去するための酸素貯蔵機
能を有する三元触媒であるスタートキャタリストを配置
しても良い。この場合には、リッチスパイク時にはスタ
ートキャタリストが排気中の未燃成分を酸化することに
対応して、特にステップS316(図5)では、NOx
吸蔵還元触媒20への未燃成分の到達遅れ時間を加味し
てNOx吸蔵容量補正値dnoxmaxを算出する。
(C). In each of the above embodiments, N
Although a configuration in which no other catalyst is arranged on the upstream side of the Ox storage reduction catalyst 20 is shown, for example, a three-way catalyst having an oxygen storage function for removing HC and CO components released in large quantities at the time of engine start A start catalystist may be placed. In this case, in response to the start catalyst oxidizing the unburned components in the exhaust during the rich spike, particularly in step S316 (FIG. 5), NOx is discharged.
The NOx storage capacity correction value dnoxmax is calculated in consideration of the arrival delay time of the unburned component to the storage reduction catalyst 20.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態1のエンジン及びECUの概略構成
説明図。
FIG. 1 is a schematic configuration explanatory diagram of an engine and an ECU according to a first embodiment.

【図2】実施の形態1のECUが実行するリッチスパイ
ク設定処理のフローチャート。
FIG. 2 is a flowchart of a rich spike setting process executed by the ECU of the first embodiment.

【図3】触媒床温とNOx吸蔵容量との関係を示すマッ
プの構成説明図。
FIG. 3 is an explanatory diagram of a map showing a relationship between a catalyst bed temperature and a NOx storage capacity.

【図4】実施の形態1のECUが実行する単位時間当た
りNOx還元量検出処理のフローチャート。
FIG. 4 is a flowchart of NOx reduction amount detection processing per unit time executed by the ECU of the first embodiment.

【図5】同じくNOx吸蔵容量更新処理のフローチャー
ト。
FIG. 5 is a flow chart of NOx storage capacity update processing.

【図6】実施の形態2のECUが実行するイオウ被毒N
Ox吸蔵容量更新処理のフローチャート。
FIG. 6 is a sulfur poisoning N executed by the ECU of the second embodiment.
The flowchart of Ox storage capacity update processing.

【符号の説明】[Explanation of symbols]

2…エンジン、4…ECU、6…燃料噴射バルブ、8…
点火プラグ、10…吸気経路、12…スロットルバル
ブ、14…スロットル開度センサ、16…吸入空気量セ
ンサ、18…排気経路、20…NOx吸蔵還元触媒、2
2…空燃比センサ、24…O2センサ、26…アクセル
ペダル、28…アクセル開度センサ、30…エンジン回
転数センサ、32…冷却水温センサ。
2 ... Engine, 4 ... ECU, 6 ... Fuel injection valve, 8 ...
Spark plug, 10 ... Intake passage, 12 ... Throttle valve, 14 ... Throttle opening sensor, 16 ... Intake air amount sensor, 18 ... Exhaust passage, 20 ... NOx storage reduction catalyst, 2
2 ... Air-fuel ratio sensor, 24 ... O2 sensor, 26 ... Accelerator pedal, 28 ... Accelerator opening sensor, 30 ... Engine speed sensor, 32 ... Cooling water temperature sensor.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 314 F02D 45/00 368G B01D 53/36 101A 368 ZAB Fターム(参考) 3G084 BA04 BA05 BA09 BA13 DA27 FA07 FA10 FA13 FA20 FA26 FA27 FA28 FA29 3G091 AA02 AA17 AA24 AA28 AB04 AB06 AB09 BA01 BA14 BA33 CA16 DB07 DB10 EA01 EA05 EA07 EA10 EA18 EA19 EA22 EA33 FA01 HA36 HA37 4D048 AA06 AB02 AC10 BC01 DA01 DA02 DA08 DA09 DA10 DA13 DA20 EA04 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 45/00 314 F02D 45/00 368G B01D 53/36 101A 368 ZAB F term (reference) 3G084 BA04 BA05 BA09 BA13 DA27 FA07 FA10 FA13 FA20 FA26 FA27 FA28 FA29 3G091 AA02 AA17 AA24 AA28 AB04 AB06 AB09 BA01 BA14 BA33 CA16 DB07 DB10 EA01 EA05 EA07 EA10 EA18 EA19 EA22 EA33 FA01 HA36 HA37 4D048 AA06 AB02 AC10 BC01 DA01 DA02 DA08 DA08 DA08 DA08 DA09

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】排気系にNOx吸蔵還元触媒を備える内燃
機関の排気浄化触媒還元量検出方法であって、 前記NOx吸蔵還元触媒に流入した還元剤量と、前記N
Ox吸蔵還元触媒内での還元剤の透過率とに基づいて、
前記NOx吸蔵還元触媒における還元量を検出すること
を特徴とする内燃機関の排気浄化触媒還元量検出方法。
1. A method for detecting an exhaust purification catalyst reduction amount of an internal combustion engine comprising an NOx storage reduction catalyst in an exhaust system, comprising: a reducing agent amount flowing into the NOx storage reduction catalyst;
Based on the transmittance of the reducing agent in the Ox storage reduction catalyst,
An exhaust gas purification catalyst reduction amount detection method for an internal combustion engine, comprising detecting a reduction amount in the NOx storage reduction catalyst.
【請求項2】請求項1において、前記NOx吸蔵還元触
媒に流入した還元剤量は、内燃機関の燃焼室内から排出
される排気に含まれる還元成分量として検出することを
特徴とする内燃機関の排気浄化触媒還元量検出方法。
2. The internal combustion engine according to claim 1, wherein the amount of the reducing agent that has flowed into the NOx storage reduction catalyst is detected as the amount of reducing component contained in the exhaust gas discharged from the combustion chamber of the internal combustion engine. Exhaust purification catalyst reduction amount detection method.
【請求項3】請求項2において、内燃機関に吸入される
吸入空気量と前記NOx吸蔵還元触媒上流の空燃比とに
基づいて、前記NOx吸蔵還元触媒に流入した還元剤量
を検出することを特徴とする内燃機関の排気浄化触媒還
元量検出方法。
3. The method according to claim 2, wherein the amount of reducing agent flowing into the NOx storage reduction catalyst is detected based on the amount of intake air taken into the internal combustion engine and the air-fuel ratio upstream of the NOx storage reduction catalyst. A method for detecting an exhaust purification catalyst reduction amount of an internal combustion engine.
【請求項4】請求項1〜3のいずれかにおいて、前記N
Ox吸蔵還元触媒の劣化度と前記NOx吸蔵還元触媒の
床温とに基づいて前記透過率を検出することを特徴とす
る内燃機関の排気浄化触媒還元量検出方法。
4. The N according to claim 1,
An exhaust gas purification catalyst reduction amount detection method for an internal combustion engine, comprising: detecting the permeability based on a degree of deterioration of an Ox storage reduction catalyst and a bed temperature of the NOx storage reduction catalyst.
【請求項5】請求項4において、前記NOx吸蔵還元触
媒の劣化度は、前記NOx吸蔵還元触媒のイオウ被毒の
程度として検出されることを特徴とする内燃機関の排気
浄化触媒還元量検出方法。
5. The method for detecting an exhaust gas purification catalyst reduction amount of an internal combustion engine according to claim 4, wherein the degree of deterioration of the NOx storage reduction catalyst is detected as a degree of sulfur poisoning of the NOx storage reduction catalyst. .
【請求項6】請求項4又は5において、前記NOx吸蔵
還元触媒の劣化度は、前記NOx吸蔵還元触媒の床温に
応じて設定されることを特徴とする内燃機関の排気浄化
触媒還元量検出方法。
6. The exhaust gas purification catalyst reduction amount detection of an internal combustion engine according to claim 4 or 5, wherein the degree of deterioration of the NOx storage reduction catalyst is set according to the bed temperature of the NOx storage reduction catalyst. Method.
【請求項7】請求項4〜6のいずれかにおいて、前記N
Ox吸蔵還元触媒の劣化度は、前記NOx吸蔵還元触媒
の未使用時のNOx吸蔵容量と現在のNOx吸蔵容量と
に基づいて求めることを特徴とする内燃機関の排気浄化
触媒還元量検出方法。
7. The N according to any one of claims 4 to 6.
The exhaust gas purification catalyst reduction amount detection method for an internal combustion engine, wherein the degree of deterioration of the Ox storage reduction catalyst is obtained based on an unused NOx storage capacity of the NOx storage reduction catalyst and a current NOx storage capacity.
【請求項8】請求項1〜7のいずれかの内燃機関の排気
浄化触媒還元量検出方法により前記NOx吸蔵還元触媒
の還元量を求めるとともに、内燃機関の運転状態に基づ
いて排気中のNOx量を求め、該NOx量と前記還元量
とに基づいて排気浄化管理を実行することを特徴とする
内燃機関の排気浄化管理方法。
8. The NOx storage reduction catalyst reduction amount detection method for an internal combustion engine according to claim 1, wherein the reduction amount of the NOx storage reduction catalyst is obtained, and the NOx amount in the exhaust gas is determined based on the operating state of the internal combustion engine. The exhaust gas purification management method for an internal combustion engine is characterized in that the exhaust gas purification management is executed based on the NOx amount and the reduction amount.
【請求項9】請求項8において、請求項1〜7のいずれ
かの内燃機関の排気浄化触媒還元量検出方法により求め
られた前記NOx吸蔵還元触媒の還元量と内燃機関の運
転状態に基づいて求められた排気中のNOx量との収支
計算により算出された前記NOx吸蔵還元触媒のNOx
吸蔵量に基づいて、排気浄化管理を実行することを特徴
とする内燃機関の排気浄化管理方法。
9. The method according to claim 8, based on the reduction amount of the NOx storage reduction catalyst and the operating state of the internal combustion engine, which are obtained by the exhaust purification catalyst reduction amount detection method for an internal combustion engine according to any one of claims 1 to 7. NOx of the NOx storage-reduction catalyst calculated by the balance calculation with the calculated NOx amount in the exhaust gas
An exhaust gas purification management method for an internal combustion engine, characterized in that exhaust gas purification management is executed based on the stored amount.
【請求項10】請求項1〜7のいずれかの内燃機関の排
気浄化触媒還元量検出方法により求められた前記NOx
吸蔵還元触媒の還元量と内燃機関の運転状態に基づいて
求められた排気中のNOx量との収支計算により、前記
NOx吸蔵還元触媒のNOx吸蔵量を算出することを特
徴とする内燃機関の排気浄化触媒NOx吸蔵量算出方
法。
10. The NOx obtained by the exhaust gas purification catalyst reduction amount detection method for an internal combustion engine according to claim 1.
An NOx storage amount of the NOx storage / reduction catalyst is calculated by a balance calculation of the reduction amount of the storage / reduction catalyst and the NOx amount in the exhaust gas obtained based on the operating state of the internal combustion engine. Purification catalyst NOx storage amount calculation method.
【請求項11】排気系にNOx吸蔵還元触媒を備える内
燃機関の排気浄化触媒還元量検出装置であって、 前記NOx吸蔵還元触媒に流入する還元剤量を検出する
流入還元剤量検出手段と、 前記NOx吸蔵還元触媒内での還元剤の透過率を検出す
る還元剤透過率検出手段と、 前記流入還元剤量検出手段にて検出された還元剤量と前
記還元剤透過率検出手段にて検出された透過率とに基づ
いて前記NOx吸蔵還元触媒における還元量を検出する
還元量検出手段と、 を備えたことを特徴とする内燃機関の排気浄化触媒還元
量検出装置。
11. An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine, comprising an NOx storage reduction catalyst in an exhaust system, and an inflow reducing agent amount detection means for detecting an amount of reducing agent flowing into the NOx storage reduction catalyst. Reducing agent permeability detecting means for detecting the reducing agent permeability in the NOx occlusion reducing catalyst, reducing agent amount detected by the inflow reducing agent amount detecting means, and reducing agent permeability detecting means An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine, comprising: a reduction amount detection means for detecting a reduction amount in the NOx storage reduction catalyst based on the determined transmittance.
【請求項12】請求項11において、前記流入還元剤量
検出手段は、内燃機関の燃焼室内から排出される排気に
含まれる還元成分量を、前記NOx吸蔵還元触媒に流入
した還元剤量として検出することを特徴とする内燃機関
の排気浄化触媒還元量検出装置。
12. The inflow reducing agent amount detecting means according to claim 11, wherein the reducing component amount contained in the exhaust gas discharged from the combustion chamber of the internal combustion engine is detected as the reducing agent amount flowing into the NOx storage reduction catalyst. An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine, comprising:
【請求項13】請求項12において、内燃機関に吸入さ
れる吸入空気量を検出する吸入空気量検出手段と、 前記NOx吸蔵還元触媒上流の排気成分から空燃比を検
出する空燃比検出手段とを備え、 前記流入還元剤量検出手段は、前記吸入空気量検出手段
の検出値及び前記空燃比検出手段の検出値に基づいて前
記NOx吸蔵還元触媒に流入した還元剤量を検出するこ
とを特徴とする内燃機関の排気浄化触媒還元量検出装
置。
13. An intake air amount detecting means for detecting an intake air amount sucked into an internal combustion engine, and an air-fuel ratio detecting means for detecting an air-fuel ratio from an exhaust component upstream of the NOx storage reduction catalyst according to claim 12. The inflow reducing agent amount detecting means detects the reducing agent amount flowing into the NOx storage reduction catalyst based on the detection value of the intake air amount detecting means and the detection value of the air-fuel ratio detecting means. Exhaust gas purification catalyst reduction amount detection device for internal combustion engine.
【請求項14】請求項11〜13のいずれかにおいて、
前記NOx吸蔵還元触媒の劣化度を検出する劣化度検出
手段と、 前記NOx吸蔵還元触媒の床温を検出する触媒床温検出
手段とを備え、 前記還元剤透過率検出手段は、前記劣化度検出手段の検
出値及び触媒床温検出手段の検出値に基づいて前記透過
率を検出することを特徴とする内燃機関の排気浄化触媒
還元量検出装置。
14. The method according to any one of claims 11 to 13,
A deterioration degree detection unit that detects a deterioration degree of the NOx storage reduction catalyst, and a catalyst bed temperature detection unit that detects a bed temperature of the NOx storage reduction catalyst, wherein the reducing agent permeability detection unit is the deterioration degree detection unit. An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine, wherein the transmittance is detected based on a detection value of the means and a detection value of the catalyst bed temperature detection means.
【請求項15】請求項14において、前記NOx吸蔵還
元触媒に対するイオウ被毒を検出するイオウ被毒検出手
段を備え、 前記劣化度検出手段は、前記イオウ被毒検出手段にて検
出された前記NOx吸蔵還元触媒のイオウ被毒の程度を
前記NOx吸蔵還元触媒の劣化度として検出することを
特徴とする内燃機関の排気浄化触媒還元量検出装置。
15. The sulfur poisoning detection means for detecting sulfur poisoning to the NOx occlusion reduction catalyst according to claim 14, wherein the deterioration degree detection means detects the NOx detected by the sulfur poisoning detection means. An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine, wherein the degree of sulfur poisoning of the storage reduction catalyst is detected as the degree of deterioration of the NOx storage reduction catalyst.
【請求項16】請求項14又は15において、前記劣化
度検出手段は、前記触媒床温検出手段の検出値に応じて
前記NOx吸蔵還元触媒の劣化度を設定することを特徴
とする内燃機関の排気浄化触媒還元量検出装置。
16. The internal combustion engine according to claim 14 or 15, wherein the deterioration degree detecting means sets the deterioration degree of the NOx storage reduction catalyst according to a detection value of the catalyst bed temperature detecting means. Exhaust gas purification catalyst reduction amount detection device.
【請求項17】請求項14〜16のいずれかにおいて、
前記NOx吸蔵還元触媒のNOx吸蔵容量を検出するN
Ox吸蔵容量検出手段を備え、 前記劣化度検出手段は、前記NOx吸蔵容量検出手段の
検出値と前記NOx吸蔵還元触媒の未使用時のNOx吸
蔵容量とに基づいて、前記NOx吸蔵還元触媒の劣化度
を検出することを特徴とする内燃機関の排気浄化触媒還
元量検出装置。
17. The method according to any one of claims 14 to 16,
N for detecting the NOx storage capacity of the NOx storage reduction catalyst
Ox storage capacity detection means is provided, and the deterioration degree detection means is configured to deteriorate the NOx storage reduction catalyst based on a detection value of the NOx storage capacity detection means and an unused NOx storage capacity of the NOx storage reduction catalyst. An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine, which is characterized by detecting the degree.
【請求項18】請求項11〜17のいずれか記載の内燃
機関の排気浄化触媒還元量検出装置と、 内燃機関の運転状態に基づいて排気中のNOx量を求め
るNOx量検出手段と、 前記排気浄化触媒還元量検出装置により求められた前記
NOx吸蔵還元触媒の還元量と前記NOx量検出手段に
て求められたNOx量とに基づいて排気浄化管理を実行
する排気浄化管理手段と、 を備えたことを特徴とする内燃機関の排気浄化管理装
置。
18. An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine according to claim 11, NOx amount detection means for determining an NOx amount in the exhaust gas based on an operating state of the internal combustion engine, and the exhaust gas. Exhaust purification management means for executing exhaust purification management based on the reduction amount of the NOx storage reduction catalyst determined by the purification catalyst reduction amount detection device and the NOx amount determined by the NOx amount detection means. An exhaust gas purification management device for an internal combustion engine, comprising:
【請求項19】請求項18において、前記排気浄化管理
手段は、前記排気浄化触媒還元量検出装置により求めら
れた前記NOx吸蔵還元触媒の還元量と前記NOx量検
出手段にて求められたNOx量との収支計算により算出
された前記NOx吸蔵還元触媒のNOx吸蔵量に基づい
て排気浄化管理を実行することを特徴とする内燃機関の
排気浄化管理装置。
19. The exhaust purification management means according to claim 18, wherein the reduction amount of the NOx storage reduction catalyst obtained by the exhaust purification catalyst reduction amount detection device and the NOx amount obtained by the NOx amount detection means. An exhaust gas purification management device for an internal combustion engine, wherein exhaust gas purification control is executed based on the NOx storage amount of the NOx storage reduction catalyst calculated by the balance calculation.
【請求項20】請求項11〜17のいずれか記載の内燃
機関の排気浄化触媒還元量検出装置と、 内燃機関の運転状態に基づいて排気中のNOx量を求め
るNOx量検出手段と、 前記排気浄化触媒還元量検出装置により求められた前記
NOx吸蔵還元触媒の還元量と前記NOx量検出手段に
て求められたNOx量との収支計算により前記NOx吸
蔵還元触媒のNOx吸蔵量を算出するNOx吸蔵量算出
手段と、 を備えたことを特徴とする内燃機関の排気浄化触媒NO
x吸蔵量算出装置。
20. An exhaust gas purification catalyst reduction amount detection device for an internal combustion engine according to claim 11, NOx amount detection means for determining an NOx amount in the exhaust gas based on an operating state of the internal combustion engine, and the exhaust gas. NOx occlusion amount for calculating the NOx occlusion amount of the NOx occlusion reduction catalyst by calculating the balance between the reduction amount of the NOx occlusion reduction catalyst obtained by the purification catalyst reduction amount detection device and the NOx amount obtained by the NOx amount detection means. An exhaust gas purification catalyst NO for an internal combustion engine, comprising:
x Storage amount calculation device.
JP2001387612A 2001-12-20 2001-12-20 EXHAUST EMISSIONS CONTROL CATALYST REDUCTION AMOUNT DETECTION METHOD, EXHAUST EMISSIONS CONTROL MANAGEMENT METHOD, AND METHOD AND APPARATUS FOR CALCULATING EXHAUST EMISSIONS CONTROL CATALYST NOx OCCLUSION AMOUNT FOR INTERNAL COMBUSTION ENGINE Pending JP2003184545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387612A JP2003184545A (en) 2001-12-20 2001-12-20 EXHAUST EMISSIONS CONTROL CATALYST REDUCTION AMOUNT DETECTION METHOD, EXHAUST EMISSIONS CONTROL MANAGEMENT METHOD, AND METHOD AND APPARATUS FOR CALCULATING EXHAUST EMISSIONS CONTROL CATALYST NOx OCCLUSION AMOUNT FOR INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387612A JP2003184545A (en) 2001-12-20 2001-12-20 EXHAUST EMISSIONS CONTROL CATALYST REDUCTION AMOUNT DETECTION METHOD, EXHAUST EMISSIONS CONTROL MANAGEMENT METHOD, AND METHOD AND APPARATUS FOR CALCULATING EXHAUST EMISSIONS CONTROL CATALYST NOx OCCLUSION AMOUNT FOR INTERNAL COMBUSTION ENGINE

Publications (1)

Publication Number Publication Date
JP2003184545A true JP2003184545A (en) 2003-07-03

Family

ID=27596385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387612A Pending JP2003184545A (en) 2001-12-20 2001-12-20 EXHAUST EMISSIONS CONTROL CATALYST REDUCTION AMOUNT DETECTION METHOD, EXHAUST EMISSIONS CONTROL MANAGEMENT METHOD, AND METHOD AND APPARATUS FOR CALCULATING EXHAUST EMISSIONS CONTROL CATALYST NOx OCCLUSION AMOUNT FOR INTERNAL COMBUSTION ENGINE

Country Status (1)

Country Link
JP (1) JP2003184545A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019790A (en) * 2006-07-13 2008-01-31 Denso Corp Exhaust emission control system for internal combustion engine
WO2016140138A1 (en) * 2015-03-04 2016-09-09 いすゞ自動車株式会社 Exhaust purification system and catalyst regeneration method
WO2017010542A1 (en) * 2015-07-16 2017-01-19 いすゞ自動車株式会社 Storage amount estimation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019790A (en) * 2006-07-13 2008-01-31 Denso Corp Exhaust emission control system for internal combustion engine
JP4645543B2 (en) * 2006-07-13 2011-03-09 株式会社デンソー Exhaust gas purification device for internal combustion engine
WO2016140138A1 (en) * 2015-03-04 2016-09-09 いすゞ自動車株式会社 Exhaust purification system and catalyst regeneration method
CN107407175A (en) * 2015-03-04 2017-11-28 五十铃自动车株式会社 Emission control system and catalyst recovery process
US10677128B2 (en) 2015-03-04 2020-06-09 Isuzu Motors Limited Exhaust purification system and catalyst regeneration method
CN107407175B (en) * 2015-03-04 2021-02-05 五十铃自动车株式会社 Exhaust gas purification system and catalyst regeneration method
WO2017010542A1 (en) * 2015-07-16 2017-01-19 いすゞ自動車株式会社 Storage amount estimation device
CN107835892A (en) * 2015-07-16 2018-03-23 五十铃自动车株式会社 Uptake estimating device

Similar Documents

Publication Publication Date Title
JP4497132B2 (en) Catalyst degradation detector
JP3868693B2 (en) Air-fuel ratio control device for internal combustion engine
JP2697251B2 (en) Engine air-fuel ratio control device
JP3759567B2 (en) Catalyst degradation state detection device
JP2001152928A (en) Air-fuel ratio control device for internal combustion engine
JP3222685B2 (en) Air-fuel ratio control device for internal combustion engine
JP3444675B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP2008128080A (en) Control device for internal combustion engine
JP4103379B2 (en) Control device for internal combustion engine
JP2003328739A (en) Exhaust emission control device of internal-combustion engine
JP4045803B2 (en) Method and apparatus for reducing exhaust purification catalyst of internal combustion engine
JP3052642B2 (en) Air-fuel ratio control device for internal combustion engine
JP2003148201A (en) Exhaust emission control device for internal combustion engine
JP2003184545A (en) EXHAUST EMISSIONS CONTROL CATALYST REDUCTION AMOUNT DETECTION METHOD, EXHAUST EMISSIONS CONTROL MANAGEMENT METHOD, AND METHOD AND APPARATUS FOR CALCULATING EXHAUST EMISSIONS CONTROL CATALYST NOx OCCLUSION AMOUNT FOR INTERNAL COMBUSTION ENGINE
JP3465626B2 (en) Air-fuel ratio control device for internal combustion engine
JP2002364345A (en) Exhaust emission control device for internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP2006329113A (en) Catalytic deterioration detecting device
JPH09310635A (en) Air-fuel ratio control device of internal combustion engine
JP2003206791A (en) Exhaust emission control device of internal combustion engine
JP2003148200A (en) Exhaust emission control device of internal combustion engine
JP3966082B2 (en) Exhaust gas purification device for internal combustion engine
JP2008121632A (en) Each cylinder abnormal diagnosis device of internal combustion engine
JP2005090388A (en) Exhaust emission purification controller for internal combustion engine
JP2004108187A (en) Deterioration diagnosis device of exhaust emission control catalyst for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003