JP2003183746A - Process for recovering nickel and cobalt from oxidized ore - Google Patents

Process for recovering nickel and cobalt from oxidized ore

Info

Publication number
JP2003183746A
JP2003183746A JP2001402550A JP2001402550A JP2003183746A JP 2003183746 A JP2003183746 A JP 2003183746A JP 2001402550 A JP2001402550 A JP 2001402550A JP 2001402550 A JP2001402550 A JP 2001402550A JP 2003183746 A JP2003183746 A JP 2003183746A
Authority
JP
Japan
Prior art keywords
cobalt
sulfuric acid
iron
nickel
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001402550A
Other languages
Japanese (ja)
Other versions
JP3407738B1 (en
Inventor
Hiromasa Yakushiji
弘昌 薬師寺
Seiji Ito
誠治 伊藤
Kazuhiko Miura
一彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Original Assignee
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Kinzoku KK, Pacific Metals Co Ltd filed Critical Taiheiyo Kinzoku KK
Priority to JP2001402550A priority Critical patent/JP3407738B1/en
Application granted granted Critical
Publication of JP3407738B1 publication Critical patent/JP3407738B1/en
Publication of JP2003183746A publication Critical patent/JP2003183746A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for recovering nickel and cobalt from an oxidized ore containing nickel, cobalt, magnesium and iron. <P>SOLUTION: For leaching nickel and cobalt out of the oxidized ore containing nickel, cobalt, magnesium and iron, a sulfuric acid leachate containing nickel, cobalt, magnesium and a large amount of iron, obtained through leaching with sulfuric acid, is allowed to react with the ore under an atmospheric pressure at a temperature equal to or lower than the boiling point to obtain a reaction liquid containing nickel, cobalt, magnesium and a small amount of iron. The reaction residue of the ore is allowed to react again under an atmospheric pressure at a temperature equal to or lower than the boiling point to recover nickel and cobalt. Compared to a conventional leaching process under ordinary pressure, this process leaches nickel and cobalt at a high efficiency with an extremely small amount of sulfuric acid. It also cuts down the processing cost for removing iron by producing a reaction liquid containing only a small amount of iron. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ニッケル、コバルト、
マグネシウム及び鉄を含有する酸化鉱石からニッケル、
コバルトを回収するにあたり、効率よく、経済的に、し
かも容易に、硫酸ニッケル液、硫酸コバルト液として回
収する方法に関する。 【0002】【従来の技術)ニッケル、コバルト、マグ
ネシウム及び鉄を含有する酸化鉱石から硫酸によりニッ
ケル、コバルトを浸出する方法は、Proc.Aust
ralas.Inst.Metall.,No.26
5,March,1978及びThe metal.S
oc.,1988,p447に記載されているように、
大気圧のもとで硫酸により浸出しニッケル、コバルトを
含む硫酸液を得る常圧浸出方法と、Journal o
f Metals,March,1960,P206に
記載されているように、高温高圧のもとで硫酸により浸
出する加圧浸出方法がある。 【0003】前記The metal.Soc.198
8にも記載されているように、ニッケル、コバルト、マ
グネシウム及び鉄を含有する酸化鉱石を大気圧のもとで
硫酸により浸出すると、ニッケル、コバルトの他に鉄も
同時に浸出し、ニッケル、コバルトを80%以上浸出さ
せようとすると鉄も15%以上浸出する。 【0004】一般にニッケル、コバルトを含有する酸化
鉱石はニッケルの10〜40倍もの鉄を含んでいるた
め、浸出に必要な硫酸消費量が多くなり、しかも浸出し
た液中の鉄濃度も高く鉄を除去するための処理費も多く
なり、経済的に問題があった。 【0005】ニッケル、コバルト、マグネシウム及び鉄
を含有する酸化鉱石の予備処理として、前記酸化鉱石を
600℃以上でカ焼した後、大気圧のもとで硫酸により
浸出するとニッケル、コバルトの浸出速度が改善され
る。 【0006】しかし、ニッケル,コバルト及び鉄の浸出
は、鉱石の予備処理の有無に関係なく浸出されるため、
硫酸消費量及び浸出した鉄を除去するための処理費も多
く、さらに600℃以上でカ焼するためのエネルギーが
余分に必要となり、経済的に問題があった。 【0007】一方、Journal of Metal
sに記載されているように、高温高圧のもとで硫酸によ
り加圧浸出すると、鉄の浸出が抑えられニッケル、コバ
ルトの高い浸出率が得られる。従って、硫酸の使用量が
少なくてすみ、また鉄を除去するための処理費も少なく
なるが、高温高圧のもとでの硫酸浸出操業のためオート
クレーブが必要であり、材質もチタン等の高価なものが
必要となる。また大気圧のもとでの浸出に比べてエネル
ギー消費量が増加するという問題があった。 【0008】【発明が解決しようとする課題)本発明が
解決しようとする課題は、ニッケル、コバルト、マグネ
シウム及び鉄を含有する酸化鉱石からニッケル、コバル
トを浸出するにあたり、硫酸により浸出して得られたニ
ッケル、コバルト、マグネシウム及び多量の鉄を含む硫
酸浸出液と前記鉱石とを大気圧のもとで沸点以下の温度
で反応させることにより、鉄を少量しか含まないニッケ
ル、コバルト、マグネシウムを含む反応液を得ること、
及び前記鉱石の反応残留物を硫酸により大気圧のもとで
沸点以下の温度で再度反応させることにより、従来の常
圧浸出方法に比べて非常に少ない硫酸使用量でニッケ
ル、コバルトの高い浸出率を得、しかも鉄を少量しか含
まない液を得ることにより、鉄を除去するための処理費
を大幅に低減することである。 【0009】 【課題を解決するための手段】本発明は、ニッケル、コ
バルト、マグネシウム及び鉄を含有する酸化鉱石からニ
ッケル、コバルトを回収するにあたり、(1)前記酸化
鉱石と工程(d)で得られたニッケル、コバルト、マグ
ネシウム及び鉄を含む硫酸浸出液とを、大気圧で、80
℃以上沸点以下の温度で反応させ、ニッケル、コバル
ト、マグネシウム及び鉄を含む反応液を得る常圧反応工
程(a)と、(2)工程(a)で得られたニッケル、コ
バルト、マグネシウム及び鉄を含む反応液と、前記酸化
鉱石の反応残留物とを分ける分離工程(b)と、(3)
工程(b)で得られた反応残留物の全量を、大気圧で、
80℃以上沸点以下の温度で硫酸と反応させ、ニッケ
ル、コバルト、マグネシウム及び鉄を含む硫酸浸出液を
得る常圧浸出工程(c)と、(4)工程(c)で得られ
たニッケル、コバルト、マグネシウム及び鉄を含む硫酸
浸出液と残渣物を分離し、ニッケル、コバルト、マグネ
シウム及び鉄を含む硫酸浸出液を工程(a)に循環使用
する工程(d)とからなる、ニッケル、コバルト、マグ
ネシウム及び鉄を含有する酸化鉱石からニッケル、コバ
ルトを回収する方法、、を提供する。 【0010】以下に本発明について詳細に説明する。本
発明で原料として使用する酸化鉱石とは、Ni、Co、
Fe、Mg等を酸化物の形態で含み、鉱物学的な名称で
いうとリモナイト鉱石(ラテライト鉱石とも言う)とサ
プロライト鉱石(ガーニライト鉱石とも言う)が代表的
である。リモナイト鉱石とサプロライト鉱石の概略成分
は以下のようなものである。 【0011】 【表1】 【0012】図1に酸化鉱石からニッケル、コバルトを
浸出するための工程図を示す。 工程(a):ニッケル、コバルト、マグネシウム及び鉄
を含有する酸化鉱石1を、シックナーによる分離、硫酸
液循環使用工程(d)で得られたニッケル、コバルト、
マグネシウム及び多量(2〜35g/l)の鉄を含む硫
酸浸出液6と、大気圧のもとで常圧反応(a)させる。
温度は反応速度の点から高い温度の方が好ましく、80
℃〜沸点温度でおこなうのがよい。反応時間は1時間以
上10時間以下、好ましくは3時間以上7時間以下が望
ましい。硫酸浸出液中には、ニッケル、コバルト、マグ
ネシウム及び多量(2〜35g/l)の鉄が硫酸塩とし
て存在しているが、フリー硫酸も5〜30g/l存在す
る。 【0013】従って、前記酸化鉱石と前記硫酸浸出液と
を充分な攪拌のもとで反応させると、酸化鉱石中のニッ
ケル、コバルト、マグネシウムと硫酸の反応により硫酸
浸出液中のフリー硫酸が減少しPHが上昇する。このフ
リー硫酸の減少に伴って、硫酸浸出液中に多量に含まれ
ている鉄がFeO(OH)となって沈殿し、硫酸を生成
すると同時に、この硫酸が前記鉱石中のマグネシウム、
ニッケル、コバルトとの反応に有効に寄与し、これらの
金属の一部が反応液中に浸出される。前記酸化鉱石との
反応により、反応液のPHを1.5〜3.0、フリー硫
酸を0.5〜5g/lとすることにより、鉄濃度を0.
2〜2g/lまで低下させることができる。 【0014】工程(b):工程(a)で得られたニッケ
ル、コバルト、マグネシウム及び少量(0.2〜2.0
g/l)の鉄を含む反応液と前記酸化鉱石の反応残留物
2とを分離する。この分離方法は、シックナーあるいは
フィルタープレス等による固液分離方法があるが、高分
子凝集剤をスラリー中に加えて凝集させることにより、
シックナーで容易に固液分離(b)がおこなえる。 【0015】シックナーからのオーバーフローにより得
られた反応液中には、ニッケル、コバルト、マグネシウ
ムの他に鉄が2g/l以下、フリー硫酸も5g/l以下
含まれている反応液3が得られるが、鉄もフリー硫酸も
十分に低い濃度であるため、中和による鉄除去とその後
のニッケル、コバルトの回収が容易となる。 【0016】中和工程では、中和剤としてカルシウム、
マグネシウム及びナトリウムの水酸化物、酸化物及び炭
酸化物の使用により反応液中の鉄とフリー硫酸が沈殿除
去され、このとき、中和開始の反応液中の鉄とフリー硫
酸は十分に低い濃度であるため、前記中和剤の使用量は
少なくてすむ。 【0017】このようにして得られた中和液は、ニッケ
ル、コバルトとマグネシウムを含んでおり、ニッケルと
コバルトを回収するには、この中和液に水硫化ソーダ、
硫化ソーダ、硫化アンモン、又は硫化水素を加えニッケ
ルとコバルトの混合硫化物として沈殿回収するか(特開
平6−116660)、水酸化物、酸化物及び炭酸化物
を加えてニッケルとコバルトの混合水酸化物あるいは混
合炭酸化物として沈殿回収できる(特開平12−234
130)。マグネシウムは沈殿回収後の液に残留する。
一方、反応残留物4はシックナーの下部からスラリー状
態で抜かれる。 【0018】工程(c):工程(b)で得られたスラリ
ー状の反応残留物の全量は、大気圧のもとで80℃以上
沸点以下の温度で硫酸を加え常圧浸出(c)することに
より、ニッケル、コバルト、マグネシウム及び多量(2
〜35g/l)の鉄を含む硫酸浸出液が得られる。この
残留物と硫酸による常圧浸出時間は1時間以上10時間
以下好ましくは3時間あれば十分に浸出が平衡に達す
る。このことは、工程(a)により酸化鉱石中のニッケ
ル、コバルト及びマグネシウムの一部が浸出され、残り
の酸化鉱石がポーラス状となり表面積が大きくなったこ
とによる。 【0019】硫酸の使用量は、前記酸化鉱石のニッケ
ル、コバルト、マグネシウムに対し、当量程度使用し、
液のpHが0.7〜1.5、硫酸液濃度が5〜30g/
lとなるようにし、これによりニッケルの85%以上、
コバルト、マグネシウムの90%以上が浸出される。 【0020】工程(d):次に工程(d)で工程(c)
で得られたニッケル、コバルト、マグネシウム及び多量
(2〜35g/l)の鉄を含む硫酸浸出液と残渣物5と
を分離する。この分離方法は、6段以上の向流洗浄シッ
クナーあるいはフィルタープレス等による固液分離方法
があるが、高分子凝集剤をスラリー中に加えて凝集させ
ることにより、シックナーで容易に固液分離(d)が行
える。 【0021】シックナーからオーバーフローにより得ら
れた硫酸浸出液6は多量(2〜35g/l)の鉄と5〜
30g/lのフリー硫酸が含まれている為、全量工程
(a)に循環使用され、一方残渣物7はシックナーの下
部からスラリー状で抜かれ、廃棄される。 【0022】残渣物とは、工程bで得られた反応残留物
を硫酸と反応してNi、Co、MgのほとんどとFeの
一部が浸出した後の未溶解物である。この残渣物はシッ
クナー下部から全量抜く。この理由は、残渣物はNi、
Coのほとんどが浸出され、残渣中にはNi、Coが残
っていないためである。 【0023】以下本発明を実施例により具体的に説明す
る。またこれらの実施例の各成分比率はいずれもwt%
である。表−2に実施例と比較例の結果を示す。 【0024】 【実施例1】Ni:1.49%、Co:0.026%、
Fe:31.1%、Mg:10.8%の成分を有する酸
化鉱石を使用し、工程(d)で準備されたNi:3.4
7g/l、Co:0.06g/l、Fe:12.4g/
l、Mg:27.9g/l、フリー硫酸:12.1g/
lの濃度を有する硫酸浸出液とを沸点温度、大気圧のも
とで6時間攪拌し反応させた。 【0025】この結果、硫酸浸出液中のフリー硫酸は1
2.1g/lから2.8g/lに減少し、それに伴って
液pHは1.02から1.69に上昇した。一方、鉱石
中のNi、Co、Mgの一部は浸出され、また硫酸浸出
液中の鉄は沈殿除去され、Ni:4.53g/l、C
o:0.10g/l、Fe:1.29g/l、Mg:3
9.40g/l濃度を有する鉄を少量しか含まない反応
液が得られた。この時のFe/Ni比(液の濃度比)は
0.28であった。 【0026】この反応液と反応残留物とをシックナーに
て凝集分離し、シックナー下部から抜かれた反応残留物
スラリーに98%濃硫酸を加え、沸点温度で3時間攪拌
しNi、Co、Mgを浸出させた。硫酸添加量は、酸化
鉱石1kgに対して0.5kg使用した。 【0027】この反応残渣物を分析したところNi:
0.34%、Co:0.003%、Mg:0.82%、
Fe:42.1%であり、また鉱石に対する反応残渣物
の重量減少率は30%であった。従って、浸出率はN
i:84%、Co:92%、Mg:95%、Fe:5%
であった。 【0028】 【実施例2】実施例1で使用した成分の酸化鉱石を使用
して、工程(d)で準備されたNi:3.42g/l、
Co:0.06g/l、Fe:10.8g/l、Mg:
28.9g/l、フリー硫酸:8.5g/lの濃度を有
する硫酸浸出液とを実施例1と同じ条件で反応させた。 【0029】この結果、硫酸浸出液中のフリー硫酸は
1.2g/lに減少し、それに伴って硫酸浸出液pHは
1.21から2.27に上昇した。一方鉱石中のNi、
Co、Mgの一部は浸出され、また硫酸浸出液中の鉄は
沈殿除去され、Ni:4.89g/l、Co:0.10
g/l、Fe:0.64g/l、Mg:38.9g/l
の濃度を有する鉄を少量しか含まない反応液が得られ
た。この時のFe/Ni比は0.13であった。 【0030】その後、シックナー分離して得られた反応
残留物スラリーに98%濃硫酸を加え実施例1と同じ条
件で浸出させた。硫酸添加量は、酸化鉱石1kgに対し
て0.45kg使用した。この反応残渣物の分析値と、
重量減少率から求めた浸出率は、Ni:83%、Co:
93%、Mg:94%、Fe:2%であった。 【0031】 【実施例3】Ni:1.94%、Co:0.025%、
Fe:24.3%、Mg:15.4%の成分を有する酸
化鉱石と、工程(d)で準備されたNi:3.34g/
l、Co:0.05g/l、Fe:5.2g/l、M
g:28.9g/l、フリー硫酸:10.2g/lの濃
度を有する硫酸浸出液を使用した以外は実施例1と同様
に行った。 【0032】この緒果、硫酸浸出液中のフリー硫酸は
0.9g/lに減少し、それに伴って硫酸浸出液pHは
1.13から2.38に上昇した。一方反応液のFe/
Ni比は0.14であった。 【0033】その後、シックナー分離して得られた反応
残留物スラリーに98%濃硫酸を酸化鉱石1kgに対し
て0.65kg加え実施例1と同様に行つた結果、浸出
率はNi:88%、Co:95%、Mg:94%、F
e:1%であった。 【0034】 【実施例4】Ni:1.50%、Co:0.035%、
Fe:19.6%、Mg:25.8%の成分を有する酸
化鉱石と、工程(d)で準備されたNi:1.89g/
l、Co:0.04g/l、Fe:15.1g/l、M
g:28.9g/l、フリー硫酸:8.7g/lの濃度
を有する硫酸浸出液を使用した以外は実施例1と同様に
行った。 【0035】この結果、硫酸浸出液中のフリー硫酸は
0.8g/lに減少し、それに伴って硫酸浸出液pHは
1.24から2.45に上昇した。一方、反応液のFe
/Ni比は0.28であった。 【0036】その後、シックナー分離して得られた反応
残留物スラリーに98%濃硫酸を酸化鉱石1kgに対し
て0.65kg加え実施例1と同様に行った結果、浸出
率はNi:92%、Co:90%、Mg:94%、F
e:0.4%であった。 【0037】 【比較例1】実施例1で使用した成分の酸化鉱石を使用
し水でスラリー化後、98%濃硫酸を加え、沸点温度、
大気圧のもとで6時間攪拌し反応させた。硫酸添加量は
実施例1と同量の酸化鉱石1kgに対して0.5kg使
用した。 【0038】この反応残渣物を分析したところNi:
1.20%、Co:0.022%、Mg:5.8%、F
e:39.3%であり、また鉱石に対する反応残渣物の
重量減少率は29%であった。従って、浸出率はNi:
43%、Co:40%、Mg:62%、Fe:10%で
あつた。この浸出液濃度は、Ni:1.62g/l、C
o:0.028g/l、Mg:17.0g/l、Fe:
7.9g/l、フリー硫酸:27.6g/lであり、F
e/Ni比、フリー硫酸濃度ともに高くなった。 【0039】 【比較例2】実施例2で使用した成分の酸化鉱石を水で
スラリー化後、98%濃硫酸を酸化鉱石1kgに対して
0.95kg加え、沸点温度、大気圧のもとで6時間攪
拌し反応させた。この反応残渣物を分析したところ、N
i:0.53%、Co:0.008%、Mg:1.1
%、Fe:26.3%であり、鉱石に対する反応残渣物
の重量減少率は41.5%であつた。 【0040】従って、浸出率はNi:84%、Co:8
2%、Mg:96%と高い浸出率となったが、Feも3
6%と高い浸出率となった。この浸出液濃度は、Ni:
4.13g/l、Co:0.052g/l、Mg:3
6.5g/l、Fe:21.6g/l、フリー硫酸:4
3.3g/lであり、Fe/Ni比、フリー硫酸濃度と
もに高くなった。 【0041】 【比較例3】実施例4で使用した成分の酸化鉱石を水で
スラリー化後、98%濃硫酸を酸化鉱石1kgに対して
1.30kg加え、比較例1と同様に反応させた。浸出
率はNi:89%、Co:86%、Mg:90%と高い
浸出率となったが、鉄も43%と高い浸出率となつた。
この浸出液濃度は、Ni:2.67g/l、Co:0.
06g/l、Mg:46.4g/l、Fe:15.5g
/l、フリー硫酸:45.2g/lであり、Fe/Ni
比、フリー硫酸濃度ともに高くなった。 【0042】 【表2】 【0043】 【発明の効果】本発明によれば、ニッケル、コバルト、
マグネシウム及び鉄を含有する酸化鉱石からニッケル、
コバルトを浸出するにあたり、少ない硫酸使用量でニッ
ケル、コバルトの高い浸出率が得られ、しかも鉄を少量
しか含まない反応液が得られることから、経済的にニッ
ケル、コバルトの効率良い浸出が行われる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nickel, cobalt,
Nickel from oxide ores containing magnesium and iron,
The present invention relates to a method for efficiently, economically, and easily recovering cobalt as a nickel sulfate solution and a cobalt sulfate solution. 2. Description of the Related Art A method for leaching nickel and cobalt from an oxide ore containing nickel, cobalt, magnesium and iron with sulfuric acid is described in Proc. Aust
ralas. Inst. Metall. , No. 26
5, March, 1978 and The metal. S
oc. , 1988, p447,
A normal pressure leaching method for leaching with sulfuric acid under atmospheric pressure to obtain a sulfuric acid solution containing nickel and cobalt;
As described in f Metals, March, 1960, P206, there is a pressure leaching method of leaching with sulfuric acid under high temperature and high pressure. [0003] The Themetal. Soc. 198
As described in FIG. 8, when oxidized ore containing nickel, cobalt, magnesium and iron is leached with sulfuric acid under atmospheric pressure, iron is leached simultaneously with nickel and cobalt, and nickel and cobalt are leached. If it is attempted to leach 80% or more, iron also leach 15% or more. [0004] Generally, an oxide ore containing nickel and cobalt contains 10 to 40 times as much iron as nickel, so that the amount of sulfuric acid required for leaching is increased, and the iron concentration in the leached liquid is high so that iron is removed. The processing cost for removal also increased, which was economically problematic. As a preliminary treatment of an oxide ore containing nickel, cobalt, magnesium and iron, the oxide ore is calcined at a temperature of 600 ° C. or more and then leached with sulfuric acid under atmospheric pressure, whereby the leaching rate of nickel and cobalt is reduced. Be improved. However, the leaching of nickel, cobalt and iron is irrespective of whether ore is not pre-treated,
The consumption of sulfuric acid and the processing cost for removing the leached iron are large, and additional energy for calcining at 600 ° C. or higher is required, which is economically problematic. On the other hand, Journal of Metal
As described in s, when pressure leaching is performed with sulfuric acid under high temperature and high pressure, leaching of iron is suppressed, and a high leaching rate of nickel and cobalt is obtained. Therefore, the amount of sulfuric acid used is small, and the processing cost for removing iron is also small.However, an autoclave is required for sulfuric acid leaching operation under high temperature and high pressure, and the material is expensive such as titanium. Things are needed. In addition, there is a problem that energy consumption increases as compared with leaching under atmospheric pressure. The problem to be solved by the present invention is obtained by leaching with sulfuric acid in leaching nickel and cobalt from an oxide ore containing nickel, cobalt, magnesium and iron. Reacting a sulfuric acid leach solution containing nickel, cobalt, magnesium and a large amount of iron with the ore at a temperature below the boiling point under atmospheric pressure, thereby producing a reaction solution containing nickel, cobalt and magnesium containing only a small amount of iron. Getting
And the reaction residue of the ore is reacted again with sulfuric acid at a temperature below the boiling point under atmospheric pressure, so that nickel and cobalt can be leached at a very small amount of sulfuric acid compared to the conventional atmospheric leaching method. Another object of the present invention is to greatly reduce the processing cost for removing iron by obtaining a solution containing only a small amount of iron. SUMMARY OF THE INVENTION The present invention relates to a method for recovering nickel and cobalt from an oxide ore containing nickel, cobalt, magnesium and iron. Sulfuric acid leaching solution containing nickel, cobalt, magnesium and iron at atmospheric pressure
A normal pressure reaction step (a) in which a reaction solution containing nickel, cobalt, magnesium and iron is obtained by reacting at a temperature of not lower than the boiling point and a nickel, cobalt, magnesium and iron obtained in step (a) A separation step (b) for separating a reaction solution containing
The total amount of the reaction residue obtained in step (b) is
A normal pressure leaching step (c) in which a sulfuric acid leaching solution containing nickel, cobalt, magnesium and iron is reacted with sulfuric acid at a temperature of 80 ° C. or higher and a boiling point or lower, and nickel and cobalt obtained in step (c). Separating the sulfuric acid leachate containing magnesium and iron from the residue, and recycling the sulfuric acid leachate containing nickel, cobalt, magnesium and iron in step (a) (d). A method for recovering nickel and cobalt from a contained oxide ore. Hereinafter, the present invention will be described in detail. The oxide ore used as a raw material in the present invention includes Ni, Co,
Fe, Mg, etc. are contained in the form of oxides, and in mineralogy, limonite ore (also called laterite ore) and saprolite ore (also called garnilite ore) are representative. The general components of limonite ore and saprolite ore are as follows. [Table 1] FIG. 1 shows a process chart for leaching nickel and cobalt from oxide ore. Step (a): Separating oxide ore 1 containing nickel, cobalt, magnesium and iron by a thickener, nickel, cobalt obtained in step (d) of circulating and using sulfuric acid solution,
A normal pressure reaction (a) is performed with sulfuric acid leachate 6 containing magnesium and a large amount (2 to 35 g / l) of iron under atmospheric pressure.
The temperature is preferably higher from the viewpoint of the reaction rate.
It is preferable to carry out at a temperature between ° C and the boiling point. The reaction time is desirably from 1 hour to 10 hours, preferably from 3 hours to 7 hours. In the sulfuric acid leaching solution, nickel, cobalt, magnesium and a large amount (2 to 35 g / l) of iron are present as sulfates, and free sulfuric acid is also present at 5 to 30 g / l. Therefore, when the oxide ore and the sulfuric acid leaching solution are reacted under sufficient stirring, the free sulfuric acid in the sulfuric acid leaching solution is reduced by the reaction of nickel, cobalt, magnesium and sulfuric acid in the oxide ore, and PH is reduced. To rise. With the decrease of the free sulfuric acid, iron contained in a large amount in the sulfuric acid leaching solution precipitates as FeO (OH) to generate sulfuric acid, and at the same time, the sulfuric acid is formed of magnesium in the ore,
It effectively contributes to the reaction with nickel and cobalt, and some of these metals are leached into the reaction solution. By adjusting the pH of the reaction solution to 1.5 to 3.0 and the free sulfuric acid to 0.5 to 5 g / l by the reaction with the oxide ore, the iron concentration is set to 0.1.
It can be reduced to 2 to 2 g / l. Step (b): nickel, cobalt, magnesium obtained in step (a) and a small amount (0.2 to 2.0)
g / l) of iron and a reaction residue 2 of the oxide ore are separated. This separation method includes a solid-liquid separation method using a thickener or a filter press, and the like.
Solid-liquid separation (b) can be easily performed with a thickener. In the reaction solution obtained by overflow from the thickener, a reaction solution 3 containing not more than 2 g / l of iron and not more than 5 g / l of free sulfuric acid in addition to nickel, cobalt and magnesium is obtained. Since both iron and free sulfuric acid have sufficiently low concentrations, removal of iron by neutralization and subsequent recovery of nickel and cobalt are facilitated. In the neutralizing step, calcium is used as a neutralizing agent,
Iron and free sulfuric acid in the reaction solution are precipitated and removed by the use of hydroxides, oxides and carbonates of magnesium and sodium, and at this time, the concentration of iron and free sulfuric acid in the reaction solution at the start of neutralization is sufficiently low. Therefore, the amount of the neutralizing agent used may be small. The neutralized solution thus obtained contains nickel, cobalt and magnesium. To recover nickel and cobalt, the neutralized solution contains sodium bisulfide,
Sodium sulfide, ammonium sulfide, or hydrogen sulfide is added to precipitate and recover as a mixed sulfide of nickel and cobalt (JP-A-6-116660), or mixed hydroxide of nickel and cobalt is added by adding hydroxide, oxide and carbonate. Can be recovered as a product or a mixed carbonate (JP-A-12-234).
130). Magnesium remains in the liquid after precipitation recovery.
On the other hand, the reaction residue 4 is drained from the lower part of the thickener in a slurry state. Step (c): The total amount of the slurry-like reaction residue obtained in step (b) is leached at normal pressure by adding sulfuric acid at a temperature of 80 ° C. or more and a boiling point under atmospheric pressure. By this, nickel, cobalt, magnesium and a large amount (2
A sulfuric acid leach liquor containing (~ 35 g / l) iron is obtained. A normal pressure leaching time between this residue and sulfuric acid is 1 hour or more and 10 hours or less, preferably 3 hours, so that the leaching sufficiently reaches equilibrium. This is because part of nickel, cobalt and magnesium in the oxide ore was leached out by the step (a), and the remaining oxide ore became porous and the surface area was increased. The amount of sulfuric acid used is approximately equivalent to nickel, cobalt and magnesium of the oxide ore,
The pH of the solution is 0.7 to 1.5, and the sulfuric acid solution concentration is 5 to 30 g /
l, so that more than 85% of nickel,
More than 90% of cobalt and magnesium are leached. Step (d): Next, in step (d), step (c)
The sulfuric acid leaching solution containing nickel, cobalt, magnesium and a large amount (2 to 35 g / l) of iron leaching solution obtained in the above is separated from the residue 5. This separation method includes a solid-liquid separation method using a countercurrent washing thickener having six or more stages or a filter press. By adding a polymer flocculant to the slurry and coagulating the slurry, the solid-liquid separation (d) can be easily performed using the thickener. ) Can be performed. The sulfuric acid leachate 6 obtained from the thickener by overflow contains a large amount (2-35 g / l) of iron and 5-
Since 30 g / l of free sulfuric acid is contained, the whole amount is recycled to the step (a), while the residue 7 is drained in a slurry form from the lower part of the thickener and discarded. The residue is an undissolved substance obtained by reacting the reaction residue obtained in the step b with sulfuric acid and leaching most of Ni, Co, Mg and a part of Fe. This residue is completely drained from the bottom of the thickener. The reason is that the residue is Ni,
This is because most of Co is leached and Ni and Co do not remain in the residue. Hereinafter, the present invention will be described specifically with reference to examples. In addition, each component ratio in these examples is wt%.
It is. Table 2 shows the results of Examples and Comparative Examples. Example 1 Ni: 1.49%, Co: 0.026%,
Ni: 3.4 prepared in step (d) using an oxide ore having a composition of 31.1% Fe and 10.8% Mg.
7 g / l, Co: 0.06 g / l, Fe: 12.4 g / l
1, Mg: 27.9 g / l, free sulfuric acid: 12.1 g / l
The sulfuric acid leachate having a concentration of 1 l was stirred and reacted at the boiling point at atmospheric pressure for 6 hours. As a result, the amount of free sulfuric acid in the sulfuric acid leachate was 1
The liquid pH decreased from 2.1 g / l to 2.8 g / l, and the liquid pH rose from 1.02 to 1.69. On the other hand, a part of Ni, Co, and Mg in the ore is leached, and the iron in the sulfuric acid leaching solution is precipitated and removed. Ni: 4.53 g / l, C
o: 0.10 g / l, Fe: 1.29 g / l, Mg: 3
A reaction solution containing only a small amount of iron having a concentration of 9.40 g / l was obtained. At this time, the Fe / Ni ratio (concentration ratio of the liquid) was 0.28. The reaction solution and the reaction residue are coagulated and separated by a thickener, and 98% concentrated sulfuric acid is added to the reaction residue slurry drained from the lower part of the thickener, and the mixture is stirred at the boiling point for 3 hours to leaching Ni, Co, and Mg. I let it. The amount of sulfuric acid added was 0.5 kg per 1 kg of oxide ore. Analysis of the reaction residue revealed that Ni:
0.34%, Co: 0.003%, Mg: 0.82%,
Fe: 42.1%, and the weight reduction ratio of the reaction residue to the ore was 30%. Therefore, the leaching rate is N
i: 84%, Co: 92%, Mg: 95%, Fe: 5%
Met. Example 2 Using the oxide ore of the component used in Example 1, Ni prepared in step (d): 3.42 g / l,
Co: 0.06 g / l, Fe: 10.8 g / l, Mg:
A sulfuric acid leachate having a concentration of 28.9 g / l and a free sulfuric acid of 8.5 g / l was reacted under the same conditions as in Example 1. As a result, the free sulfuric acid in the sulfuric acid leachate was reduced to 1.2 g / l, and the pH of the sulfuric acid leachate was increased from 1.21 to 2.27. On the other hand, Ni in ore,
Part of Co and Mg is leached, and iron in the sulfuric acid leaching solution is precipitated and removed, Ni: 4.89 g / l, Co: 0.10
g / l, Fe: 0.64 g / l, Mg: 38.9 g / l
A reaction solution containing only a small amount of iron having a concentration of was obtained. At this time, the Fe / Ni ratio was 0.13. Thereafter, 98% concentrated sulfuric acid was added to the reaction residue slurry obtained by the thickener separation and leached under the same conditions as in Example 1. The amount of sulfuric acid added was 0.45 kg per 1 kg of oxide ore. Analytical values of the reaction residue,
The leaching rate obtained from the weight loss rate was as follows: Ni: 83%, Co:
93%, Mg: 94%, and Fe: 2%. Example 3 Ni: 1.94%, Co: 0.025%,
Oxide ore having a composition of 24.3% Fe and 15.4% Mg, and 3.34 g / Ni prepared in step (d)
1, Co: 0.05 g / l, Fe: 5.2 g / l, M
g: 28.9 g / l, free sulfuric acid: 10.2 g / l, except that a sulfuric acid leachate having a concentration of 10.2 g / l was used. As a result, the free sulfuric acid in the sulfuric acid leachate was reduced to 0.9 g / l, and the pH of the sulfuric acid leachate was increased from 1.13 to 2.38. On the other hand, Fe /
The Ni ratio was 0.14. Thereafter, 98% concentrated sulfuric acid was added to the reaction residue slurry obtained by the thickener separation in an amount of 0.65 kg per 1 kg of the oxidized ore, and the same procedure as in Example 1 was carried out. Co: 95%, Mg: 94%, F
e: 1%. Example 4 Ni: 1.50%, Co: 0.035%,
Oxide ore having a composition of 19.6% Fe and 25.8% Mg, and 1.89 g / Ni prepared in step (d).
1, Co: 0.04 g / l, Fe: 15.1 g / l, M
g: 28.9 g / l, sulfuric acid: 8.7 g / l, except that a sulfuric acid leachate having a concentration of 8.7 g / l was used. As a result, the free sulfuric acid in the sulfuric acid leachate was reduced to 0.8 g / l, and the pH of the sulfuric acid leachate was increased from 1.24 to 2.45. On the other hand, the reaction solution Fe
The / Ni ratio was 0.28. Then, 0.65 kg of 98% concentrated sulfuric acid was added to 1 kg of oxide ore to the slurry of the reaction residue obtained by thickener separation, and the same procedure as in Example 1 was carried out. As a result, the leaching rate was 92% for Ni: 92%. Co: 90%, Mg: 94%, F
e: 0.4%. Comparative Example 1 Oxide ore of the component used in Example 1 was slurried with water, and 98% concentrated sulfuric acid was added.
The mixture was stirred and reacted at atmospheric pressure for 6 hours. The amount of sulfuric acid added was 0.5 kg per 1 kg of oxidized ore in the same amount as in Example 1. Analysis of the reaction residue showed that Ni:
1.20%, Co: 0.022%, Mg: 5.8%, F
e: 39.3%, and the weight reduction ratio of the reaction residue to the ore was 29%. Therefore, the leaching rate is Ni:
43%, Co: 40%, Mg: 62%, and Fe: 10%. The leachate concentration was 1.62 g / l Ni, C
o: 0.028 g / l, Mg: 17.0 g / l, Fe:
7.9 g / l, free sulfuric acid: 27.6 g / l, F
Both the e / Ni ratio and the free sulfuric acid concentration increased. Comparative Example 2 Oxide ore of the component used in Example 2 was slurried with water, and then 0.95 kg of 98% concentrated sulfuric acid was added to 1 kg of oxide ore at a boiling point and at atmospheric pressure. The mixture was stirred and reacted for 6 hours. Analysis of the reaction residue showed that N
i: 0.53%, Co: 0.008%, Mg: 1.1
%, Fe: 26.3%, and the weight loss of the reaction residue with respect to the ore was 41.5%. Therefore, the leaching rate was as follows: Ni: 84%, Co: 8
The leaching rate was as high as 2% and Mg: 96%.
The leaching rate was as high as 6%. This leachate concentration is Ni:
4.13 g / l, Co: 0.052 g / l, Mg: 3
6.5 g / l, Fe: 21.6 g / l, free sulfuric acid: 4
It was 3.3 g / l, and both the Fe / Ni ratio and the free sulfuric acid concentration increased. Comparative Example 3 Oxide ore of the components used in Example 4 was slurried with water, and 1.30 kg of 98% concentrated sulfuric acid was added to 1 kg of oxide ore, and the reaction was carried out in the same manner as in Comparative Example 1. . The leaching rate was as high as 89% for Ni, 86% for Co, and 90% for Mg, but also 43% for iron.
The leachate concentration was as follows: Ni: 2.67 g / l, Co: 0.
06 g / l, Mg: 46.4 g / l, Fe: 15.5 g
/ L, free sulfuric acid: 45.2 g / l, Fe / Ni
Both the ratio and the free sulfuric acid concentration increased. [Table 2] According to the present invention, nickel, cobalt,
Nickel from oxide ores containing magnesium and iron,
When leaching cobalt, a high leaching rate of nickel and cobalt can be obtained with a small amount of sulfuric acid, and a reaction solution containing only a small amount of iron can be obtained, so that nickel and cobalt can be efficiently leached economically. .

【図面の簡単な説明】 【図1】酸化鉱石からニッケル、コバルトの浸出工程図
である。 【符号の説明】 a 常圧反応工程 b シックナー分離工程 c 常圧浸出工程 d シックナー分離、硫酸浸出液循環使用工程 1 酸化鉱石 2 反応液+反応残留物 3 反応液 4 反応残留物 5 硫酸浸出液+残渣物 6 硫酸浸出液 7 残渣物
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process chart of leaching nickel and cobalt from oxide ore. [Description of Signs] a Atmospheric pressure reaction step b Thickener separation step c Atmospheric pressure leaching step d Thickener separation, sulfuric acid leachate circulating use step 1 Oxide ore 2 Reaction liquid + reaction residue 3 Reaction liquid 4 Reaction residue 5 Sulfuric acid leachate + residue Thing 6 sulfuric acid leachate 7 residue

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 一彦 青森県八戸市大字河原木字遠山新田5−2 大平洋金属株式会社内 Fターム(参考) 4K001 AA07 AA19 BA02 DB03    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kazuhiko Miura             Hachinohe City, Aomori Prefecture               Taiheiyo Metal Co., Ltd. F term (reference) 4K001 AA07 AA19 BA02 DB03

Claims (1)

【特許請求の範囲】 【請求項1】 ニッケル、コバルト、マグネシウム及び
鉄を含有する酸化鉱石からニッケル、コバルトを回収す
るにあたり、(1)前記酸化鉱石と工程(d)で得られ
たニッケル、コバルト、マグネシウム及び鉄を含む硫酸
浸出液とを、大気圧で、80℃以上沸点以下の温度で反
応させ、ニッケル、コバルト、マグネシウム及び鉄を含
む反応液を得る常圧反応工程(a)と、(2)工程
(a)で得られたニッケル、コバルト、マグネシウム及
び鉄を含む反応液と、前記酸化鉱石の反応残留物とを分
ける分離工程(b)と、(3)工程(b)で得られた反
応残留物の全量を、大気圧で、80℃以上沸点以下の温
度で硫酸と反応させ、ニッケル、コバルト、マグネシウ
ム及び鉄を含む硫酸浸出液を得る常圧浸出工程(c)
と、(4)工程(c)で得られたニッケル、コバルト、
マグネシウム及び鉄を含む硫酸浸出液と残渣物を分離
し、ニッケル、コバルト、マグネシウム及び鉄を含む硫
酸浸出液を工程(a)に循環使用する工程(d)とから
なる、ニッケル、コバルト、マグネシウム及び鉄を含有
する酸化鉱石からニッケル、コバルトを回収する方法。
Claims: 1. To recover nickel and cobalt from an oxide ore containing nickel, cobalt, magnesium and iron, (1) the nickel or cobalt obtained in the step (d) with the oxide ore A sulfuric acid leaching solution containing magnesium, iron and iron at atmospheric pressure at a temperature of 80 ° C. or more and a boiling point or less to obtain a reaction solution containing nickel, cobalt, magnesium and iron, and an atmospheric pressure reaction step (a); ) Separation step (b) for separating the reaction solution containing nickel, cobalt, magnesium and iron obtained in step (a) from the reaction residue of the oxide ore, and (3) obtained in step (b). Atmospheric pressure leaching step in which the total amount of the reaction residue is reacted with sulfuric acid at atmospheric pressure at a temperature of 80 ° C. or higher and a boiling point or lower to obtain a sulfuric acid leaching solution containing nickel, cobalt, magnesium and iron (c).
And (4) the nickel, cobalt obtained in step (c),
Separating the sulfuric acid leachate containing magnesium and iron from the residue, and recycling the sulfuric acid leachate containing nickel, cobalt, magnesium and iron in step (a) (d). A method for recovering nickel and cobalt from contained oxide ores.
JP2001402550A 2001-12-11 2001-12-11 Method for recovering nickel and cobalt from oxide ore Expired - Fee Related JP3407738B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001402550A JP3407738B1 (en) 2001-12-11 2001-12-11 Method for recovering nickel and cobalt from oxide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001402550A JP3407738B1 (en) 2001-12-11 2001-12-11 Method for recovering nickel and cobalt from oxide ore

Publications (2)

Publication Number Publication Date
JP3407738B1 JP3407738B1 (en) 2003-05-19
JP2003183746A true JP2003183746A (en) 2003-07-03

Family

ID=19190315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001402550A Expired - Fee Related JP3407738B1 (en) 2001-12-11 2001-12-11 Method for recovering nickel and cobalt from oxide ore

Country Status (1)

Country Link
JP (1) JP3407738B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287827B2 (en) 2006-09-06 2012-10-16 Eramet Process for the hydrometallurgical treatment of a lateritic nickel/cobalt ore and process for producing nickel and/or cobalt intermediate concentrates or commercial products using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287827B2 (en) 2006-09-06 2012-10-16 Eramet Process for the hydrometallurgical treatment of a lateritic nickel/cobalt ore and process for producing nickel and/or cobalt intermediate concentrates or commercial products using it

Also Published As

Publication number Publication date
JP3407738B1 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
AU740712B2 (en) Chloride assisted hydrometallurgical extraction of nickel and cobalt from sulphide or laterite ores
TW493008B (en) Chloride assisted hydrometallurgical extraction of metal
JP3203707B2 (en) Method for recovering valuable metals from oxide ore
JP4895454B2 (en) Nickel-containing laterite ore leaching method
CA2624609C (en) Processing of nickel sulphide ore or concentrates with sodium chloride
JP3385997B2 (en) Method of recovering valuable metals from oxide ore
JP3430973B2 (en) Method for recovering nickel and scandium from oxidized ore
JP2003514109A5 (en)
JP6448684B2 (en) Lithium recovery method
AU2011228956B2 (en) Method of processing nickel bearing raw material
JP2005511891A (en) Treatment method for molybdenum concentrate
WO2000065113A1 (en) Process for recovering value metals from iron-containing alloys
US4594102A (en) Recovery of cobalt and nickel from sulphidic material
JP2019011518A (en) Lithium recovery method
EP1731622B1 (en) Leach method for recovering nickel or cobalt
JP3197288B2 (en) Simultaneous wet treatment of zinc concentrate and zinc leaching residue
EP3395968B1 (en) Method for removing sulfurizing agent
JP2004300490A (en) Method of recovering cobalt
EP3252177A1 (en) Wet smelting method for nickel oxide ore
JPH06212304A (en) Method for smelting zinc
AU2003233283B2 (en) Chloride assisted hydrometallurgical extraction of metals
JP3407738B1 (en) Method for recovering nickel and cobalt from oxide ore
JP4439804B2 (en) Cobalt recovery method
WO2013187367A1 (en) Neutralization method
US10190189B2 (en) Scandium recovery process

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3407738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees