JP2003183086A - Porous material and its production method - Google Patents

Porous material and its production method

Info

Publication number
JP2003183086A
JP2003183086A JP2001381559A JP2001381559A JP2003183086A JP 2003183086 A JP2003183086 A JP 2003183086A JP 2001381559 A JP2001381559 A JP 2001381559A JP 2001381559 A JP2001381559 A JP 2001381559A JP 2003183086 A JP2003183086 A JP 2003183086A
Authority
JP
Japan
Prior art keywords
porous material
aggregate
material according
sio
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001381559A
Other languages
Japanese (ja)
Other versions
JP4054571B2 (en
Inventor
Yuichiro Tabuchi
雄一郎 田渕
Shinji Kawasaki
真司 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2001381559A priority Critical patent/JP4054571B2/en
Publication of JP2003183086A publication Critical patent/JP2003183086A/en
Application granted granted Critical
Publication of JP4054571B2 publication Critical patent/JP4054571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous material which has a sufficient heat resistance without firing at a high temperature, is improved in strength and is excellent in low pressure loss, acid resistance and heat resistance in the case of being used as a filter material, and also to provide a production method therefor. <P>SOLUTION: This porous material is composed by binding aggregate with a calcium silicate-based material and has the Mode fine pore size of 10% or more of an aggregate particle diameter. The method for production thereof comprises adding water of 5-20 wt.% in an outer addition percentage to the aggregate and a binder of a predetermined amount, kneading, forming the moisture-controlled kneaded material, and then hydrothermally synthesizing the formed body at a temperature of 150-300°C for 4-100 hr. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、多孔質材料及び
その製造方法に関する。
TECHNICAL FIELD The present invention relates to a porous material and a method for producing the same.

【0002】[0002]

【従来の技術】 多孔質材料は、例えば、ディーゼルエ
ンジン排気ガスのような含塵流体中の粒子状物質を捕集
除去するためのフィルタ、排気ガス中の有害物質を浄化
する触媒成分を担持するための触媒担体、又は固液分離
用のフィルタの分野で好適に用いられている。上記多孔
質材料は、通常、出発原料を所望の形状に成形、乾燥
後、高温で焼成して得られる焼成体である。
2. Description of the Related Art A porous material carries a filter for collecting and removing particulate matter in a dust-containing fluid such as diesel engine exhaust gas, and a catalyst component for purifying harmful substances in exhaust gas. It is preferably used in the field of a catalyst carrier or a filter for solid-liquid separation. The above-mentioned porous material is usually a fired body obtained by molding the starting material into a desired shape, drying and firing at high temperature.

【0003】 しかしながら、環境問題や省エネへの関
心が高まりつつある現在、焼成により発生する二酸化炭
素の排出量及びエネルギー消費量を低減する努力がより
一層要求されつつある。このため、例えば、水熱合成法
を使った低温固化によるバルク体の作製技術を使用する
ことが考えられるが、これを用いて多孔質材料を製造す
ると、多孔質材料を形成する骨材を局所的に結合するよ
うな組織制御がなされていないため、フィルター用途の
多孔質材料としては、圧力損失が高く、そのままでは使
用できなかった。
However, as interest in environmental problems and energy saving is increasing, efforts to reduce the emission amount of carbon dioxide and energy consumption generated by firing are further required. Therefore, for example, it is conceivable to use a technique for producing a bulk body by low temperature solidification using a hydrothermal synthesis method. However, when a porous material is manufactured using this, the aggregate forming the porous material is locally Since the tissue is not controlled so as to be bonded mechanically, it cannot be used as it is as a porous material for a filter because of its high pressure loss.

【0004】[0004]

【発明が解決しようとする課題】 本発明は、上述した
従来技術の問題点に鑑みてなされたものであり、その目
的とするところは、骨材間を結合する結合部の結晶相を
制御しながら水熱合成することにより、高温で焼成する
ことなく、十分な耐熱性を付与することができるととも
に、成形時の調湿等の処置により、Mode細孔径の大
気孔径化及び結合面積の増大を実現することができるた
め、強度向上並びにフィルター向け材料として使用する
際に、低圧損化や耐酸性、耐熱性にも優れた多孔質材料
及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional techniques, and an object of the present invention is to control the crystal phase of a bonding portion that bonds aggregates. However, by hydrothermally synthesizing, sufficient heat resistance can be imparted without firing at high temperature, and by adjusting the humidity during molding, the Mode pore size can be increased to the atmospheric pore size and the bonding area can be increased. Therefore, it is an object of the present invention to provide a porous material having improved strength and excellent low pressure loss, acid resistance, and heat resistance when used as a material for a filter, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】 即ち、本発明(第1の
発明)によれば、骨材間を珪酸カルシウム系材料で結合
した多孔質材料であり、骨材粒径の10%以上のMod
e細孔径を有することを特徴とする多孔質材料が提供さ
れる。このとき、骨材間を結合する結合部は、骨材の表
面積のうち20〜90%を結合面積とすることが好まし
い。
[Means for Solving the Problems] That is, according to the present invention (first invention), a porous material in which aggregates are bonded with a calcium silicate-based material, and a Mod having a particle diameter of 10% or more of the aggregate is used.
Provided is a porous material having an e-pore size. At this time, it is preferable that the joint area for joining the aggregates has a joint area of 20 to 90% of the surface area of the aggregate.

【0006】 本発明では、骨材100重量%に対し、
結合材が外配で2〜50重量%含有する多孔質材料であ
り、開気孔率が20〜40%、Mode細孔径が1〜2
0μmの範囲にあることが好ましい。
In the present invention, with respect to 100% by weight of aggregate,
It is a porous material containing 2 to 50% by weight of a binder as an outer layer, having an open porosity of 20 to 40% and a Mode pore diameter of 1 to 2.
It is preferably in the range of 0 μm.

【0007】 また、本発明では、珪酸カルシウム系材
料が、CaO−SiO2−H2O系材料であることが好ま
しく、主な結晶相が、トバモライト又はゾノトライトで
あることが好ましい。
Further, in the present invention, the calcium silicate-based material is preferably a CaO—SiO 2 —H 2 O-based material, and the main crystal phase is preferably tobermorite or xonotlite.

【0008】 更に、本発明では、珪酸カルシウム系材
料が、CaO−SiO2系材料であることが好ましく、
主な結晶相が、ウォラストナイトであることが好まし
い。
Further, in the present invention, the calcium silicate-based material is preferably a CaO—SiO 2 -based material,
It is preferable that the main crystal phase is wollastonite.

【0009】 また、本発明(第2の発明)によれば、
骨材と所定量の結合材に、外配で5〜20重量%の水分
を添加し、調湿された混練物を、成形し、得られた成形
体を、150〜300℃、4〜100時間水熱合成させ
ることを特徴とする多孔質材料の製造方法が提供され
る。このとき、骨材は、Si、Al、Zrのいずれか1
種を含む酸化物及び非酸化物からなることが好ましく、
結合材は、Ca(OH)2であることが好ましい。
Further, according to the present invention (second invention),
5 to 20% by weight of water is added to the aggregate and a predetermined amount of binder by external distribution to form a kneaded product whose humidity has been adjusted, and the obtained formed body is heated to 150 to 300 ° C. for 4 to 100 ° C. There is provided a method for producing a porous material, which comprises performing hydrothermal synthesis for a period of time. At this time, the aggregate is one of Si, Al, and Zr.
It is preferably composed of an oxide containing a seed and a non-oxide,
The binder is preferably Ca (OH) 2 .

【0010】 次いで、本発明(第3の発明)によれ
ば、SiO2を含有しない骨材と、所定量のCa/Si
比が0.9〜1.1(モル比)になるように、Ca源並
びにSi源を調合した結合材に、外配で5〜20重量%
の水分を添加し、調湿された混練物を、成形し、得られ
た成形体を、250〜300℃、10〜100時間水熱
合成させることを特徴とする多孔質材料の製造方法が提
供される。
Next, according to the present invention (third invention), an aggregate containing no SiO 2 and a predetermined amount of Ca / Si
5 to 20 wt% by external distribution to a binder prepared by mixing a Ca source and a Si source so that the ratio becomes 0.9 to 1.1 (molar ratio).
The method for producing a porous material is characterized in that the kneaded product whose moisture has been added and the humidity is adjusted is molded, and the obtained molded product is hydrothermally synthesized at 250 to 300 ° C. for 10 to 100 hours. To be done.

【0011】 また、本発明(第4の発明)によれば、
SiO2を含有しない骨材と、所定量のCa/Si比が
0.9〜1.1(モル比)になるように、Ca源並びに
Si源を調合した結合材に、外配で5〜20重量%の水
分を添加し、調湿された混練物を、成形し、得られた成
形体を、250〜300℃、10〜100時間水熱合成
させた後、熱処理することにより、骨材間の結合部の結
晶相をウォラストナイトへ相転移させたことを特徴とす
る多孔質材料の製造方法が提供される。このとき、上記
熱処理は、大気中800℃以上で行うことが好ましい。
Further, according to the present invention (fourth invention),
The aggregate containing no SiO 2 and a binder prepared by mixing a Ca source and a Si source so that the Ca / Si ratio of a predetermined amount is 0.9 to 1.1 (molar ratio), are externally distributed to 20% by weight of water is added, a kneaded product whose humidity has been adjusted is molded, and the obtained molded product is hydrothermally synthesized at 250 to 300 ° C. for 10 to 100 hours and then heat-treated to obtain an aggregate. There is provided a method for producing a porous material, characterized in that a crystalline phase of a bonding portion between the phases is transformed into wollastonite. At this time, the heat treatment is preferably performed at 800 ° C. or higher in the atmosphere.

【0012】 尚、本発明(第3〜4の発明)では、骨
材が、Si、Al、Zrのいずれか1種を含む酸化物及
び非酸化物のうちSiO2を含有しないものからなるも
のであることが好ましく、結合材が、Ca(OH)2
SiO2であることが好ましい。
In the present invention (third to fourth inventions), the aggregate is made of one of oxides and non-oxides containing any one of Si, Al and Zr and containing no SiO 2. And the binder is Ca (OH) 2 /
It is preferably SiO 2 .

【0013】[0013]

【発明の実施の形態】 本発明の多孔質材料は、骨材間
を珪酸カルシウム系材料で結合した多孔質材料であり、
骨材粒径の10%以上のMode細孔径を有するもので
ある。ここで、本発明の多孔質材料は、焼成することな
く、水熱合成により製造されることが最大の特徴であ
る。これにより、焼成による二酸化炭素の排出や消費エ
ネルギーを抑制することができるため、環境や省エネに
配慮した製造プロセスを新たに構築することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The porous material of the present invention is a porous material in which aggregates are bonded with a calcium silicate-based material,
It has a Mode pore size of 10% or more of the aggregate particle size. Here, the greatest feature of the porous material of the present invention is that it is produced by hydrothermal synthesis without firing. As a result, the emission of carbon dioxide and energy consumption due to firing can be suppressed, so that it is possible to newly construct a manufacturing process in consideration of the environment and energy saving.

【0014】 また、本発明の多孔質材料は、骨材間を
結合する結合部が、骨材の表面積のうち20〜90%を
結合面積とすることが好ましい。
Further, in the porous material of the present invention, it is preferable that the bonding portion for bonding the aggregates has a bond area of 20 to 90% of the surface area of the aggregate.

【0015】 更に、本発明の多孔質材料は、骨材10
0重量%に対し、結合材が外配で2〜50重量%含有す
る多孔質材料であり、開気孔率が20〜40%、Mod
e細孔径が1〜20μmの範囲にあることが好ましい。
ここで、Mode細孔径とは、水銀ポロシメータによる
細孔径分布測定で得られる細孔径分布で、最も細孔量が
多い細孔径を示すものである。
Further, the porous material of the present invention is an aggregate 10
It is a porous material containing 2 to 50% by weight of a binder as an external component relative to 0% by weight, and has an open porosity of 20 to 40% and a Mod.
e The pore size is preferably in the range of 1 to 20 μm.
Here, the Mode pore size is a pore size distribution obtained by measuring a pore size distribution by a mercury porosimeter, and represents the pore size having the largest amount of pores.

【0016】 尚、本発明の多孔質材料では、骨材間を
結合する結合部を形成する珪酸カルシウム系材料が、C
aO−SiO2−H2O系材料であることが好ましく、主
な結晶相が、トバモライト(多孔質材料I)又はゾノト
ライト(多孔質材料II)であることが好ましい。特に、
ゾノトライト(多孔質材料II)である場合、800℃の
耐熱性を付与することができる(トバモライト(多孔質
材料I)の場合、耐熱性は、600℃程度である)た
め、多孔質材料の適用範囲を更に広げることができる。
In the porous material of the present invention, the calcium silicate-based material forming the bonding portion that bonds the aggregates is C
is preferably aO-SiO 2 -H 2 O-based material, the main crystal phase is preferably a tobermorite (porous material I) or xonotlite (porous material II). In particular,
In the case of zonotolite (porous material II), heat resistance of 800 ° C can be imparted (in the case of tobermorite (porous material I), heat resistance is about 600 ° C), so application of porous material The range can be further expanded.

【0017】 また、本発明の多孔質材料(多孔質材料
III)では、珪酸カルシウム系材料が、CaO−SiO2
系材料であることが好ましく、主な結晶相が、ゾノトラ
イトを熱処理することにより、相転移させたウォラスト
ナイトにすることにより、800℃の耐熱性に加えて、
耐酸性も付与することができる。
In addition, the porous material of the present invention (porous material
In III), the calcium silicate material is CaO-SiO 2
It is preferable that the main crystalline phase is wollastonite whose main crystal phase is phase transition by heat treatment of zonotolite.
Acid resistance can also be imparted.

【0018】 以上のことから、本発明の多孔質材料
は、結合部の結晶相制御により、300℃以下の水熱合
成で、水熱合成温度よりも高い温度(300〜800
℃)の耐熱性を有するとともに、Mode細孔径の大気
孔化及び結合面積の増大を実現し、強度向上並びにフィ
ルター向け材料として使用する場合、低圧損化に寄与す
ることができる。
From the above, the porous material of the present invention has a hydrothermal synthesis temperature of 300 ° C. or lower and a temperature higher than the hydrothermal synthesis temperature (300 to 800) by controlling the crystal phase of the bonding portion.
It has heat resistance of (° C.), realizes atmospheric pore size of Mode, and increases bonding area, and when used as a material for a filter and a filter, can contribute to low pressure loss.

【0019】 次に、本発明の多孔質材料の製造方法に
ついてそれぞれ説明する。本発明の多孔質材料の主な製
造工程には、秤量、混合、調湿、成形、水熱合成があ
る。 秤量工程:多孔質材料の原料である骨材及び結合材の
種類や配合を決定する。 混合工程:多孔質材料の材料である骨材及び結合材の
混合を行う。 調湿工程:骨材及び結合材の混合物に、所定量の水分
を添加することにより、成形時における成形体の水分量
を決定する。 成形工程:得られた混合物を成形する。 水熱合成工程:得られた成形体を高温高圧下での(高
温高圧の熱水または水蒸気の状態にあり、極めて高い反
応性を有する)熱水の関与する水熱反応により、多孔質
材料を水熱合成する。
Next, the respective methods for producing the porous material of the present invention will be described. The main manufacturing steps of the porous material of the present invention include weighing, mixing, humidity control, molding and hydrothermal synthesis. Weighing process: Determine the type and composition of the aggregate and binder that are the raw materials of the porous material. Mixing step: The aggregate and the binder, which are the materials of the porous material, are mixed. Humidification step: A predetermined amount of water is added to the mixture of the aggregate and the binder to determine the water content of the molded body during molding. Molding step: molding the resulting mixture. Hydrothermal synthesis step: The obtained molded body is subjected to hydrothermal reaction involving hot water under high temperature and high pressure (in the state of high temperature and high pressure hot water or steam, which has extremely high reactivity) to form a porous material. Hydrothermally synthesize.

【0020】 ここで、本発明の多孔質材料の製造方法
の主な特徴は、焼成することなく、水熱合成により製造
する際に、外配で5〜20重量%の水分を添加し、調湿
された混練物(骨材+結合材)を用いて成形体を成形す
ることにある。これにより、成形体中の骨材間に結合材
が局在化し、局在化した結合材が、水熱合成時に高温高
圧の熱水もしくは水蒸気に溶解し、その溶解物がある結
晶相として析出して、骨材間を局所的に結合させること
ができるため、Mode細孔径の大気孔径化及び強度の
向上に寄与することができる。
Here, the main feature of the method for producing a porous material of the present invention is that when it is produced by hydrothermal synthesis without firing, it is prepared by adding 5 to 20% by weight of water by external distribution. It is to form a molded body using a wet kneaded material (aggregate + binder). As a result, the binder is localized between the aggregates in the molded body, and the localized binder is dissolved in hot water or steam at high temperature and high pressure during hydrothermal synthesis, and the dissolved substance precipitates as a crystalline phase. Then, since the aggregates can be locally bonded to each other, it is possible to contribute to making the Mode pore diameter into the atmospheric pore diameter and improving the strength.

【0021】 まず、骨材間の結合部の主な結晶相がト
バモライトである多孔質材料(多孔質材料I)は、骨材
と所定量の結合材に、外配で5〜20重量%の水分を添
加し、調湿された混練物を、成形し、得られた成形体
を、150〜300℃、4〜100時間水熱合成させ
る。このとき、骨材は、Si、Al、Zrのいずれか1
種を含む酸化物及び非酸化物(例えば、アルミナ[Al
23]、ムライト[3Al23・2SiO2]、酸化ジ
ルコニウム[ZrO2]等)であることが好ましく、結
合材は、Ca(OH)2であることが好ましい。
First, a porous material (porous material I) in which the main crystalline phase of the joint between the aggregates is tobermorite is 5% to 20% by weight of the aggregate and the predetermined amount of the binder. Moisture is added to the kneaded product, the humidity of which has been adjusted, and the obtained molded product is hydrothermally synthesized at 150 to 300 ° C. for 4 to 100 hours. At this time, the aggregate is one of Si, Al, and Zr.
Species-containing oxides and non-oxides (eg, alumina [Al
2 O 3 ], mullite [3Al 2 O 3 .2SiO 2 ], zirconium oxide [ZrO 2 ] etc.), and the binder is preferably Ca (OH) 2 .

【0022】 また、骨材間の結合部の主な結晶相がゾ
ノトライトである多孔質材料(多孔質材料II)は、Si
2を含有しない骨材と、所定量のCa/Si比が0.
9〜1.1(モル比)になるように、Ca源並びにSi
源を調合した結合材に、外配で5〜20重量%の水分を
添加し、調湿された混練物を、成形し、得られた成形体
を、250〜300℃、10〜100時間水熱合成させ
る。
Further, a porous material (porous material II) in which the main crystal phase of the joint between the aggregates is zonotolite is Si
And aggregate containing no O 2, a predetermined amount of Ca / Si ratio of 0.
9 to 1.1 (molar ratio) so that Ca source and Si
To the binder prepared by adding the source, 5 to 20% by weight of water is added by external distribution to form a kneaded product whose humidity has been adjusted, and the obtained formed body is heated at 250 to 300 ° C. for 10 to 100 hours. Heat synthesis.

【0023】 このとき、上記多孔質材料IIは、骨材間
の結合部の主な結晶相をゾノトライトにするため、骨材
種にSiO2がなく、且つ結合材のCa/Si比を0.
9〜1.1に調合された混練物から成形体を成形すると
ともに、得られた成形体を、250〜300℃、10〜
100時間水熱合成させることが重要である。このと
き、骨材は、Si、Al、Zrのいずれか1種を含む酸
化物及び非酸化物のうちSiO2を含有しないもの(例
えば、アルミナ[Al23]又は酸化ジルコニウム[Z
rO2]等)であることが好ましく、結合材は、Ca
(OH)2/SiO2であることが好ましい。
At this time, since the above-mentioned porous material II uses xonotlite as the main crystal phase of the joint between the aggregates, the aggregate species does not have SiO 2 and the Ca / Si ratio of the binder is 0.
A molded body is molded from the kneaded mixture prepared to 9 to 1.1, and the obtained molded body is heated at 250 to 300 ° C. for 10 to 10.
It is important to carry out hydrothermal synthesis for 100 hours. At this time, the aggregate is one of oxides and non-oxides containing any one of Si, Al, and Zr that does not contain SiO 2 (for example, alumina [Al 2 O 3 ] or zirconium oxide [Z].
rO 2 ]), and the binder is Ca
It is preferably (OH) 2 / SiO 2 .

【0024】 更に、骨材間の結合部の主な結晶相がウ
ォラストナイトである多孔質材料(多孔質材料III)
は、上記多孔質材料IIを熱処理することにより、骨材間
の結合部の結晶相をゾノトライトからウォラストナイト
へ相転移させたものである。このとき、上記熱処理は、
大気中800℃以上で行うことが好ましい。
Furthermore, a porous material (porous material III) in which the main crystalline phase of the joint between the aggregates is wollastonite
Is obtained by subjecting the porous material II to a heat treatment to cause the crystal phase of the joint between the aggregates to undergo a phase transition from zonotolite to wollastonite. At this time, the heat treatment is
It is preferable to perform it in the air at 800 ° C. or higher.

【0025】[0025]

【実施例】 本発明を実施例に基づいて、更に詳細に説
明するが、本発明はこれらの実施例に限られるものでは
ない。 (実施例1〜11、比較例1〜6)表1に示す骨材及び
結合材を表1に示す配合比(重量比)になるように、所
定量をそれぞれ秤量した(秤量工程)。尚、結合材とし
ては、Ca(OH)2(平均粒径1μm)のみの場合
と、Ca(OH)2に石英ガラス(平均粒径1μm)若
しくはクォーツ(平均粒径1μm)を表1に示すように
配合したもの(Ca(OH)2/SiO2)を用いた。
EXAMPLES The present invention will be described in more detail based on examples, but the present invention is not limited to these examples. (Examples 1 to 11 and Comparative Examples 1 to 6) Predetermined amounts of the aggregates and binders shown in Table 1 were weighed so that the compounding ratios (weight ratios) shown in Table 1 were obtained (weighing step). Table 1 shows the case where only Ca (OH) 2 (average particle size 1 μm) is used as the binder and quartz glass (average particle size 1 μm) or quartz (average particle size 1 μm) is used for Ca (OH) 2. The composition (Ca (OH) 2 / SiO 2 ) thus blended was used.

【0026】 秤量した骨材及び結合材を乾式混合した
後、得られた乾式混合粉末に、霧吹きにて蒸留水を表1
に示すように添加し、更に混合した(混合・調湿工
程)。
After dry-mixing the weighed aggregate and binder, the resulting dry-mixed powder was sprayed with distilled water.
Was added as shown in (1) and further mixed (mixing / humidification step).

【0027】 得られた混練物をプレス成形機にて、
5.0×107Pa(500kgf/cm2)の成形圧で
プレス成形した(成形工程)。
The obtained kneaded product is pressed by a press molding machine.
Press molding was performed at a molding pressure of 5.0 × 10 7 Pa (500 kgf / cm 2 ) (molding process).

【0028】 次に、オートクレーブ内に蒸留水を入
れ、そこにセッターをセットし、上記成形体をセットす
る。更に、オートクレーブを乾燥器内に入れ、表1に示
す水熱処理条件の温度まで昇温させた後、表1に示す水
熱処理条件で、上記成形体を水熱処理した(水熱合成工
程)。
Next, distilled water is put into the autoclave, a setter is set therein, and the above-mentioned molded body is set. Further, the autoclave was placed in a dryer and heated to the temperature of the hydrothermal treatment conditions shown in Table 1, and then the above-mentioned molded body was hydrothermally treated under the hydrothermal treatment conditions shown in Table 1 (hydrothermal synthesis step).

【0029】 上記水熱処理後、放冷し、容器が十分冷
却したことを確認して、オートクレーブを開放し、サン
プルを取り出した。得られたそれぞれのサンプルについ
て、以下に示す測定をそれぞれ行い、その結果を表1に
示す。 開気孔率:アルキメデス法により測定。 Mode細孔径:水銀圧入法により測定。 結合部結晶相(主相):粉末X線回折法により測定。 結合面積:二次元SEM観察により得られる結果か
ら、骨材間を結合する結合部の面積を骨材表面の100
分率にて示す。 結合面積=(各骨材が結合部と接触する面積の総和)/
(骨材の表面積の総和)×100
After the hydrothermal treatment, it was allowed to cool, it was confirmed that the container was sufficiently cooled, the autoclave was opened, and the sample was taken out. The following measurements were performed on each of the obtained samples, and the results are shown in Table 1. Open porosity: Measured by Archimedes method. Mode Pore size: Measured by mercury porosimetry. Bond part crystal phase (main phase): measured by powder X-ray diffraction method. Bonding area: From the results obtained by two-dimensional SEM observation, the area of the bonding portion that bonds the aggregates to 100 of the aggregate surface.
Shown as a fraction. Bonded area = (sum of areas where each aggregate contacts the bonded part) /
(Sum of aggregate surface area) x 100

【0030】[0030]

【表1】 [Table 1]

【0031】 実施例1(図2参照)、実施例2、実施
例3(図3参照)、実施例4(図1参照)及び実施例6
は、表1に示すように、骨材がムライトであり、結合材
をCa(OH)2(平均粒径1μm)とし、外配で5〜
20重量%の水分を添加し、調湿された混練物を、プレ
ス成形し、得られた成形体を、150〜300℃、4〜
100時間水熱合成させることにより、析出した結晶相
により骨材間を局所的に結合させることができるため、
Mode細孔径の大気孔径化及び強度の向上が確認され
た。
Example 1 (see FIG. 2), Example 2, Example 3 (see FIG. 3), Example 4 (see FIG. 1) and Example 6
As shown in Table 1, the aggregate is mullite, and the binder is Ca (OH) 2 (average particle size 1 μm).
20% by weight of water was added, and the kneaded product whose humidity was adjusted was press-molded, and the obtained molded body was heated at 150 to 300 ° C.
By performing hydrothermal synthesis for 100 hours, it is possible to locally bond the aggregates by the precipitated crystal phase,
It was confirmed that the Mode pore diameter was changed to the atmospheric pore diameter and the strength was improved.

【0032】 一方、比較例1(図4参照)は、成形体
水分量が5重量%未満であるため、特に、平均結合面積
の低下による多孔質材料の強度低下が確認された。
On the other hand, in Comparative Example 1 (see FIG. 4), since the water content of the molded body was less than 5% by weight, it was confirmed that the strength of the porous material was decreased due to the decrease in the average bonding area.

【0033】 また、比較例6(図5参照)では、結合
材が外配で50重量%を超過しているため、十分な開気
孔率やMode細孔径を得ることができなかった。
Further, in Comparative Example 6 (see FIG. 5), since the binder exceeds 50 wt% in the external distribution, it was not possible to obtain sufficient open porosity and Mode pore size.

【0034】 更に、比較例2〜5は、水熱処理後も硬
化しないため、多孔質材料を得ることができなかった。
これは、水熱処理温度が150℃未満と不十分であるこ
と(比較例2)、成形体水分量が多すぎること(比較例
3)、水熱処理時における保持時間が不十分であること
(比較例4)、結合材が不十分であること(比較例5)
が原因として考えられる。
Further, in Comparative Examples 2 to 5, the porous materials could not be obtained because they did not harden even after the hydrothermal treatment.
This is because the hydrothermal treatment temperature was insufficient at less than 150 ° C. (Comparative Example 2), the water content of the molded body was too large (Comparative Example 3), and the retention time during hydrothermal treatment was insufficient (Comparison). Example 4), insufficient binder (Comparative Example 5)
Is thought to be the cause.

【0035】 実施例5は、表1に示すように、骨材が
SiO2を含有しないアルミナであり、結合材をCa/
Si比が0.9〜1.1(モル比)であるCa(OH)
2/SiO2(平均粒径1μm)とし、外配で5〜20重
量%の水分を添加し、調湿された混練物を、プレス成形
し、得られた成形体を、250〜300℃、10〜10
0時間水熱合成させることにより、骨材間の結合部の主
な結晶相をゾノトライトにすることができるため、Mo
de細孔径の大気孔径化及び強度の向上だけでなく、8
00℃の耐熱性を付与することができた。
In Example 5, as shown in Table 1, the aggregate was alumina containing no SiO 2 and the binder was Ca /
Ca (OH) whose Si ratio is 0.9 to 1.1 (molar ratio)
2 / SiO 2 (average particle size 1 μm), 5-20% by weight of water was added externally, and the humidity-controlled kneaded product was press-molded to obtain a molded product at 250-300 ° C. 10 to 10
By performing hydrothermal synthesis for 0 hours, the main crystal phase of the joint between the aggregates can be zonotolite, so Mo
In addition to increasing the de pore size to the atmospheric size and improving the strength,
It was possible to impart heat resistance of 00 ° C.

【0036】 一方、実施例7〜11では、骨材間の結
合部の主な結晶相をゾノトライトにすることができなか
ったため、800℃の耐熱性を付与することができなか
った。これは、骨材(ムライト)がSiO2を含有する
こと(実施例7)、水熱処理時における保持時間が不十
分であること(実施例8)、水熱処理温度が低すぎるこ
と(実施例9)、結合材のCa/Si比が適切でないこ
と(実施例10〜11)が原因として考えられる。
On the other hand, in Examples 7 to 11, zonotolite could not be used as the main crystal phase of the joint between the aggregates, and therefore heat resistance at 800 ° C. could not be imparted. This is because the aggregate (mullite) contained SiO 2 (Example 7), the holding time during hydrothermal treatment was insufficient (Example 8), and the hydrothermal treatment temperature was too low (Example 9). ), The Ca / Si ratio of the binder is not appropriate (Examples 10 to 11).

【0037】(耐熱試験)実施例5と実施例7のサンプ
ルを、それぞれ大気中800℃、2時間(昇降温速度2
00℃/h)の耐熱試験を行った。その結果を表2に示
す。
(Heat Resistance Test) Samples of Example 5 and Example 7 were respectively subjected to 800 ° C. for 2 hours in the atmosphere (heating rate 2
A heat resistance test at 00 ° C./h) was performed. The results are shown in Table 2.

【0038】[0038]

【表2】 [Table 2]

【0039】 実施例5では、図6に示すように、骨材
間の結合部の主な結晶相をゾノトライトにすることによ
り、耐熱試験の前後で組織変化が発生していなかった。
一方、実施例7では、図7に示すように、骨材間の結合
部の主な結晶相がゾノトライトではないため、耐熱試験
の前後で組織変化が発生していた。
In Example 5, as shown in FIG. 6, by using zonotolite as the main crystal phase of the joint between the aggregates, no structural change occurred before and after the heat resistance test.
On the other hand, in Example 7, as shown in FIG. 7, since the main crystal phase of the joint between the aggregates was not zonotolite, the microstructural change occurred before and after the heat resistance test.

【0040】(実施例8)実施例5のサンプルを大気中
800℃、2時間(昇降温速度200℃/h)で熱処理
した後、得られた熱処理品を粉末X線回折により、骨材
間の結合部の主な結晶相がウォラストナイトであること
を確認した。次に、実施例5のサンプルと、得られた熱
処理品(実施例12)、実施例7の耐酸試験をそれぞれ
行った。その結果を表3に示す。尚、耐酸試験は、クエ
ン酸2重量%溶液に16時間浸漬後の重量変化率を測定
したものである。 重量変化率={(試験前重量)−(試験後重量)}/
(試験前重量)×100
Example 8 The sample of Example 5 was heat-treated in air at 800 ° C. for 2 hours (temperature rising / falling rate of 200 ° C./h), and the heat-treated product thus obtained was analyzed by powder X-ray diffraction to measure It was confirmed that the main crystal phase of the joint part of was wollastonite. Next, the sample of Example 5, the obtained heat-treated product (Example 12), and the acid resistance test of Example 7 were respectively performed. The results are shown in Table 3. The acid resistance test is a measurement of the rate of change in weight after immersion in a 2% by weight citric acid solution for 16 hours. Weight change rate = {(weight before test)-(weight after test)} /
(Weight before test) x 100

【0041】[0041]

【表3】 [Table 3]

【0042】 実施例5は、表3に示すように、実施例
7と比較して耐熱性に優れているだけではなく、耐酸性
にも優れることを確認した。また、実施例12は、実施
例5と比較して、さらに耐酸性に優れているだけではな
く、実施例5の耐熱性をも併せ持つことを確認した。
As shown in Table 3, it was confirmed that Example 5 has not only excellent heat resistance as compared with Example 7, but also excellent acid resistance. In addition, it was confirmed that Example 12 is not only superior in acid resistance as compared with Example 5, but also has the heat resistance of Example 5.

【0043】[0043]

【発明の効果】 以上説明したように、本発明の多孔質
材料及びその製造方法は、骨材間を結合する結合部の結
晶相を制御しながら水熱合成することにより、高温で焼
成することなく、十分な耐熱性を付与することができる
とともに、成形時の調湿等の処置により、Mode細孔
径の大気孔径化及び結合面積の増大を実現することがで
きるため、強度向上並びにフィルター向け材料として使
用する際に、低圧損化や耐酸性、耐熱性にも優れてい
る。また、本発明の製造方法は、焼成による二酸化炭素
の排出や消費エネルギーを抑制することができるため、
環境や省エネに配慮した製造プロセスを新たに構築する
ことができる。
[Effects of the Invention] As described above, in the porous material and the method for producing the same of the present invention, firing is performed at a high temperature by hydrothermally synthesizing while controlling the crystal phase of the joint portion that bonds the aggregates. In addition to being able to impart sufficient heat resistance, it is possible to realize the improvement of strength and the material for the filter because it is possible to realize the atmospheric pore diameter of the Mode pore diameter and increase the bonding area by the treatment such as humidity control during molding. When used as, it is also excellent in low pressure loss, acid resistance, and heat resistance. Further, the production method of the present invention can suppress carbon dioxide emissions and energy consumption due to firing,
It is possible to build a new manufacturing process that considers the environment and energy conservation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例4で得られた多孔質材料の微
構造を示すSEM写真である。
FIG. 1 is an SEM photograph showing a microstructure of a porous material obtained in Example 4 of the present invention.

【図2】 本発明の実施例1で得られた多孔質材料の微
構造を示すSEM写真である。
FIG. 2 is an SEM photograph showing the microstructure of the porous material obtained in Example 1 of the present invention.

【図3】 本発明の実施例3で得られた多孔質材料の微
構造を示すSEM写真である。
FIG. 3 is an SEM photograph showing the microstructure of the porous material obtained in Example 3 of the present invention.

【図4】 本発明の比較例1で得られた多孔質材料の微
構造を示すSEM写真である。
FIG. 4 is an SEM photograph showing the microstructure of the porous material obtained in Comparative Example 1 of the present invention.

【図5】 本発明の比較例6で得られた多孔質材料の微
構造を示すSEM写真である。
FIG. 5 is a SEM photograph showing the microstructure of the porous material obtained in Comparative Example 6 of the present invention.

【図6】 本発明の実施例5で得られた多孔質材料の耐
熱試験の結果を示すものであり、(a)は耐熱試験前、
(b)は耐熱試験後の微構造を示すSEM写真である。
FIG. 6 shows the results of a heat resistance test of the porous material obtained in Example 5 of the present invention, (a) before the heat resistance test,
(B) is an SEM photograph showing the microstructure after the heat resistance test.

【図7】 本発明の実施例7で得られた多孔質材料の耐
熱試験の結果を示すものであり、(a)は耐熱試験前、
(b)は耐熱試験後の微構造を示すSEM写真である。
FIG. 7 shows the results of heat resistance test of the porous material obtained in Example 7 of the present invention, (a) before heat resistance test,
(B) is an SEM photograph showing the microstructure after the heat resistance test.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 32/00 B01J 32/00 F01N 3/02 301 F01N 3/02 301B 3/28 3/28 Q Fターム(参考) 3G090 AA02 3G091 BA39 GA16 GB10X GB17X 4D019 AA01 BA05 BB06 CB04 CB06 4G019 FA15 GA02 GA04 LA03 LD02 4G069 AA01 AA08 BA02A BA02B BA13A BA13B BB04A BB04B BC09A BC09B DA05 EC22X EC22Y FC08 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 32/00 B01J 32/00 F01N 3/02 301 F01N 3/02 301B 3/28 3/28 Q F term (Reference) 3G090 AA02 3G091 BA39 GA16 GB10X GB17X 4D019 AA01 BA05 BB06 CB04 CB06 4G019 FA15 GA02 GA04 LA03 LD02 4G069 AA01 AA08 BA02A BA02B BA13A BA13B BB04A BB04B BC09A BC09B DA05 EC22X EC22X

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 骨材間を珪酸カルシウム系材料で結合し
た多孔質材料であり、骨材粒径の10%以上のMode
細孔径を有することを特徴とする多孔質材料。
1. A Modem material which is a porous material in which aggregates are bonded with a calcium silicate-based material and has a particle size of 10% or more of the aggregate particle size.
A porous material having a pore size.
【請求項2】 骨材間を結合する結合部が、骨材の表面
積のうち20〜90%を結合面積とする請求項1に記載
の多孔質材料。
2. The porous material according to claim 1, wherein the bonding portion for bonding the aggregates has a bond area of 20 to 90% of the surface area of the aggregate.
【請求項3】 骨材100重量%に対し、結合材が外配
で2〜50重量%含有する多孔質材料であり、開気孔率
が20〜40%、Mode細孔径が1〜20μmの範囲
にある請求項1又は2に記載の多孔質材料。
3. A porous material containing 2 to 50% by weight of a binder as an external component relative to 100% by weight of an aggregate, and having an open porosity of 20 to 40% and a mode pore diameter of 1 to 20 μm. The porous material according to claim 1 or 2, wherein
【請求項4】 珪酸カルシウム系材料が、CaO−Si
2−H2O系材料である請求項1〜3のいずれか1項に
記載の多孔質材料。
4. The calcium silicate material is CaO--Si.
The porous material according to claim 1 which is O 2 -H 2 O-based material.
【請求項5】 CaO−SiO2−H2O系材料の主な結
晶相が、トバモライト又はゾノトライトである請求項4
に記載の多孔質材料。
5. The main crystal phase of the CaO—SiO 2 —H 2 O-based material is tobermorite or xonotlite.
The porous material according to.
【請求項6】 珪酸カルシウム系材料が、CaO−Si
2系材料である請求項1〜3のいずれか1項に記載の
多孔質材料。
6. The calcium silicate material is CaO--Si.
The porous material according to any one of claims 1 to 3, which is an O 2 -based material.
【請求項7】 CaO−SiO2系材料の主な結晶相
が、ウォラストナイトである請求項6に記載の多孔質材
料。
7. The porous material according to claim 6, wherein the main crystal phase of the CaO—SiO 2 material is wollastonite.
【請求項8】 骨材と所定量の結合材に、外配で5〜2
0重量%の水分を添加し、調湿された混練物を、成形
し、得られた成形体を、150〜300℃、4〜100
時間水熱合成させることを特徴とする多孔質材料の製造
方法。
8. The aggregate and the predetermined amount of the bonding material are externally distributed by 5-2.
0% by weight of water was added to form a kneaded product whose humidity was adjusted, and the obtained molded product was heated at 150 to 300 ° C. for 4 to 100 ° C.
A method for producing a porous material, which comprises hydrothermally synthesizing for a period of time.
【請求項9】 骨材が、Si、Al、Zrのいずれか1
種を含む酸化物及び非酸化物からなる請求項8に記載の
多孔質材料の製造方法。
9. The aggregate is one of Si, Al, and Zr.
The method for producing a porous material according to claim 8, comprising an oxide and a non-oxide containing a seed.
【請求項10】 結合材が、Ca(OH)2である請求
項8又は9に記載の多孔質材料の製造方法。
10. The method for producing a porous material according to claim 8, wherein the binder is Ca (OH) 2 .
【請求項11】 SiO2を含有しない骨材と、所定量
のCa/Si比が0.9〜1.1(モル比)になるよう
に、Ca源並びにSi源を調合した結合材に、外配で5
〜20重量%の水分を添加し、調湿された混練物を、成
形し、得られた成形体を、250〜300℃、10〜1
00時間水熱合成させることを特徴とする多孔質材料の
製造方法。
11. An aggregate containing no SiO 2 and a binder prepared by mixing a Ca source and a Si source so that a predetermined amount of Ca / Si ratio is 0.9 to 1.1 (molar ratio). 5 out
To 20% by weight of water is added to form a kneaded product whose humidity has been adjusted, and the obtained molded product is heated at 250 to 300 ° C. for 10 to 1
A method for producing a porous material, which comprises performing hydrothermal synthesis for 00 hours.
【請求項12】 骨材が、Si、Al、Zrのいずれか
1種を含む酸化物及び非酸化物のうちSiO2を含有し
ないものからなる請求項11に記載の多孔質材料の製造
方法。
12. The method for producing a porous material according to claim 11, wherein the aggregate is made of an oxide and a non-oxide containing any one of Si, Al and Zr and containing no SiO 2 .
【請求項13】 結合材が、Ca(OH)2/SiO2
ある請求項11又は12に記載の多孔質材料の製造方
法。
13. The method for producing a porous material according to claim 11, wherein the binder is Ca (OH) 2 / SiO 2 .
【請求項14】 SiO2を含有しない骨材と、所定量
のCa/Si比が0.9〜1.1(モル比)になるよう
に、Ca源並びにSi源を調合した結合材に、外配で5
〜20重量%の水分を添加し、調湿された混練物を、成
形し、得られた成形体を、250〜300℃、10〜1
00時間水熱合成させた後、熱処理することにより、骨
材間の結合部の結晶相をウォラストナイトへ相転移させ
たことを特徴とする多孔質材料の製造方法。
14. An aggregate containing no SiO 2 and a binder prepared by mixing a Ca source and a Si source so that a predetermined amount of Ca / Si ratio is 0.9 to 1.1 (molar ratio), 5 out
To 20% by weight of water is added to form a kneaded product whose humidity has been adjusted, and the obtained molded product is heated at 250 to 300 ° C. for 10 to 1
A method for producing a porous material, characterized in that a crystal phase of a joint portion between aggregates is phase-transformed to wollastonite by hydrothermally synthesizing for 00 hours and then heat treatment.
【請求項15】 熱処理を、大気中800℃以上で行う
請求項14に記載の多孔質材料の製造方法。
15. The method for producing a porous material according to claim 14, wherein the heat treatment is performed in the air at 800 ° C. or higher.
【請求項16】 骨材が、Si、Al、Zrのいずれか
1種を含む酸化物及び非酸化物のうちSiO2を含有し
ないものからなる請求項14又は15に記載の多孔質材
料の製造方法。
16. The production of a porous material according to claim 14 or 15, wherein the aggregate is made of one of oxides and non-oxides containing any one of Si, Al and Zr and containing no SiO 2. Method.
【請求項17】 結合材が、Ca(OH)2/SiO2
ある請求項14〜16のいずれか1項に記載の多孔質材
料の製造方法。
17. The method for producing a porous material according to claim 14, wherein the binder is Ca (OH) 2 / SiO 2 .
JP2001381559A 2001-12-14 2001-12-14 Porous material and method for producing the same Expired - Fee Related JP4054571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381559A JP4054571B2 (en) 2001-12-14 2001-12-14 Porous material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381559A JP4054571B2 (en) 2001-12-14 2001-12-14 Porous material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003183086A true JP2003183086A (en) 2003-07-03
JP4054571B2 JP4054571B2 (en) 2008-02-27

Family

ID=27592197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381559A Expired - Fee Related JP4054571B2 (en) 2001-12-14 2001-12-14 Porous material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4054571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418929C (en) * 2004-03-19 2008-09-17 日本碍子株式会社 Method for producing porous ceramic structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418929C (en) * 2004-03-19 2008-09-17 日本碍子株式会社 Method for producing porous ceramic structure

Also Published As

Publication number Publication date
JP4054571B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
KR101725558B1 (en) Method for making porous mullite-containing composites
EP1160223B1 (en) Silicon nitride filter and method of manufacture thereof
JP2014031317A (en) Mullite bodies and methods of forming mullite bodies
JP5066766B2 (en) Geopolymer high-strength cured product containing calcined kaolin as active filler and method for producing the same
JP2002068854A (en) Alumina porous material and production method thereof
WO1995023775A1 (en) TYPE α TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
US6398864B1 (en) Pottery plaster formulations for the manufacture of plaster molds
CN107008157B (en) SAPO-56 molecular sieve membrane and preparation method thereof
JP2003183086A (en) Porous material and its production method
JPH10513431A (en) Castable refractory system
JP3212586B1 (en) Humidity control building materials
JP2011513176A (en) Permeable material, article made of permeable material, and manufacturing method
JP4967111B2 (en) Alumina-based porous ceramics and method for producing the same
JP2004168629A (en) Porous sintered compact, and production method therefor
JPH09268085A (en) Production of silicon carbide porous body
JPH07291723A (en) Alpha-tricalcium phosphate ceramics and production thereof
JP2004203663A (en) Hexaaluminate porous ceramics and its manufacturing process
JP2979075B2 (en) High strength porcelain and manufacturing method thereof
KR101133650B1 (en) Preparing method hot gas filters using sr-containing ceramic compostitions for mullite-bonded silicon carbide
RU2543008C2 (en) Calcium sulphate-based products with increased water resistance
JP2008214111A (en) Manufacturing method of tricalcium phosphate containing silicon and tricalcium phosphate containing silicon
JP3280017B2 (en) Calcium silicate sintered body
JPS59217659A (en) Manufacture of lightweight calcium silicate formed body
JP2001328879A (en) Method of producing aluminous porous material
JP2003165762A (en) Moisture-adsorbing and releasing inorganic formed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees