JP2003183035A - Manufacturing device for glass fine particle deposition body - Google Patents

Manufacturing device for glass fine particle deposition body

Info

Publication number
JP2003183035A
JP2003183035A JP2001383583A JP2001383583A JP2003183035A JP 2003183035 A JP2003183035 A JP 2003183035A JP 2001383583 A JP2001383583 A JP 2001383583A JP 2001383583 A JP2001383583 A JP 2001383583A JP 2003183035 A JP2003183035 A JP 2003183035A
Authority
JP
Japan
Prior art keywords
glass
producing
heat shield
shield plate
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001383583A
Other languages
Japanese (ja)
Inventor
Tadakatsu Shimada
忠克 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001383583A priority Critical patent/JP2003183035A/en
Publication of JP2003183035A publication Critical patent/JP2003183035A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing device for a glass fine particle deposition body capable of shielding heat without disturbing gas flow in a reaction vessel, and capable of reducing heat load to the reaction vessel, and also capable of effectively exhausting floating soot, capable of preventing generation of bubbles at the time of vitrification. <P>SOLUTION: The manufacturing device provided with the reaction vessel, in which a starting material 2 is placed horizontally and freely rotatably, a burner 3 for deposition is reciprocated along and parallel to the starting material 2, is constituted such that the reaction vessel 1 sucks air from a whole bottom surface, and exhausts it from its upper part, and heat shielding plates 4 are provided detachably along the starting material 2. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバの原材
料となるガラス微粒子堆積体を製造する際に用いられる
ガラス微粒子堆積体の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a glass particulate deposit used for producing a glass particulate deposit as a raw material for an optical fiber.

【0002】[0002]

【従来の技術】光ファイバ用のガラス微粒子堆積体(以
下、単に堆積体という)は、例えば、外付け蒸着法(O
VD法)により、回転している出発部材に沿って往復動
しているバーナの火炎中に、テトラクロロシラン等のガ
ラス原料を供給して加水分解させ、生成するガラス微粒
子(スート)を出発部材上に堆積させて製造される。こ
のとき、出発部材に堆積されずに反応容器内を浮遊して
いるガラス微粒子(スス)や副生する塩化水素ガスは、
反応容器に付設された排気管から系外に排出される。
2. Description of the Related Art A glass particle deposit for optical fibers (hereinafter referred to simply as a deposit) is, for example, an external vapor deposition method (O).
By the VD method), glass raw materials such as tetrachlorosilane are supplied and hydrolyzed into the flame of the burner reciprocating along the rotating starting member, and the resulting glass particles (soot) are generated on the starting member. It is manufactured by depositing on. At this time, the fine glass particles (soot) floating in the reaction vessel without being deposited on the starting member and the hydrogen chloride gas produced as a byproduct,
It is discharged from the system through an exhaust pipe attached to the reaction vessel.

【0003】[0003]

【発明が解決しようとする課題】従来、反応容器内の気
流を循環流のない整流にすると、反応容器の内壁面に付
着するガラス微粒子量は減少し、付着物が剥離して堆積
体上に落下することによる製品中に生じる泡を減少でき
るといわれている。特開平13−019437号公報では、反応
容器の構造を、底部より整流した気流を導入し、上部よ
り排出するようにすることで、反応熱によって生じる上
昇流により、より効果的に整流状態が保て、泡の発生が
抑えられるとしている。
Conventionally, when the air flow in the reaction vessel is rectified without a circulating flow, the amount of glass particles adhering to the inner wall surface of the reaction vessel is reduced, and the adhered matter is peeled off and deposited on the deposit. It is said that bubbles generated in the product due to falling can be reduced. In Japanese Unexamined Patent Application Publication No. 13-019437, the structure of the reaction vessel is configured so that a rectified air flow is introduced from the bottom and discharged from the top, so that the rectified state is more effectively maintained by the upward flow generated by the reaction heat. It is said that the generation of bubbles can be suppressed.

【0004】他方、生産速度を増すためにバーナ数を増
やしたり、バーナに供給する燃焼ガス量を増やすと、反
応容器の温度が上がり、反応容器が変形したり、破損す
るという問題を生じる。この熱は、主に堆積面から輻射
で反応容器に伝熱されるため、反応容器の温度を下げる
ためには、反応容器の壁(以下、器壁という)と堆積面
との距離を大きくする必要が生じる。その結果、反応容
器の断面積が増し、整流状態を保つためには、多量の気
体を反応容器内へ導入し、かつ排出する必要が生じる。
On the other hand, if the number of burners is increased or the amount of combustion gas supplied to the burners is increased in order to increase the production speed, the temperature of the reaction vessel rises, causing a problem that the reaction vessel is deformed or damaged. This heat is mainly transferred from the deposition surface to the reaction vessel by radiation, so in order to lower the temperature of the reaction vessel, it is necessary to increase the distance between the wall of the reaction vessel (hereinafter referred to as the vessel wall) and the deposition surface. Occurs. As a result, the cross-sectional area of the reaction vessel increases and a large amount of gas needs to be introduced into and discharged from the reaction vessel in order to maintain the rectified state.

【0005】反応容器内の気体には反応によって生じる
塩化水素ガス等が含まれているため、排ガスは清浄化処
理後系外に排出する必要があり、排ガス処理量の増加は
コストアップの要因となる。また、反応容器への熱負荷
を低減するためには、遮熱板の設置が効果的である。特
許第2888448号は、遮熱板を反応容器に対してルーズに
固定する装置を開示している。しかしながらこの装置
は、遮熱板と反応容器との間によどみが生じて、この間
にススが付着し易く、製品に泡を発生する原因になり易
い等の問題があった。また、よどみを防ぐためには、反
応容器と遮熱板を離す必要があるが、この場合、製造し
たガラス微粒子堆積体を反応容器から取り出す際に、邪
魔になると言う問題が生じた。
Since the gas in the reaction vessel contains hydrogen chloride gas produced by the reaction, the exhaust gas needs to be discharged out of the system after the cleaning treatment, and the increase in the exhaust gas treatment amount is a factor of cost increase. Become. Further, in order to reduce the heat load on the reaction vessel, it is effective to install a heat shield plate. Japanese Patent No. 2888448 discloses a device for fixing a heat shield plate loosely with respect to a reaction vessel. However, this device has a problem that stagnation occurs between the heat shield plate and the reaction container, soot is likely to adhere during this period, and this easily causes bubbles in the product. Further, in order to prevent stagnation, it is necessary to separate the heat shield plate from the reaction container, but in this case, there is a problem that it becomes an obstacle when the manufactured glass particle deposit is taken out from the reaction container.

【0006】そこで本発明は、上記問題点を解決するた
めになされたものであって、反応容器内の気流を乱すこ
となく遮熱でき、反応容器への熱負荷を低減することが
できるとともに、効率良く浮遊しているススの排出が行
え、ガラス化時に泡等の発生を防止できる堆積体の製造
装置を提供するものである。
Therefore, the present invention has been made in order to solve the above-mentioned problems, and it is possible to shield heat without disturbing the air flow in the reaction vessel and reduce the heat load on the reaction vessel. It is intended to provide an apparatus for manufacturing a deposited body, which can efficiently discharge floating soot and can prevent generation of bubbles and the like during vitrification.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の堆積
体の製造装置は、水平かつ回転自在に配置された出発部
材に、バーナを該出発部材に沿って平行に往復移動させ
てガラス微粒子を吹き付け、反応容器内で堆積体を製造
する装置において、該反応容器が底部全面から吸気し上
部から排気するように構成され、取り外し可能な遮熱板
を有することを特徴としている。取り外し可能とは、堆
積体を取り出す際に、遮熱板を堆積体に干渉しない場所
へ移動できることである。本発明の製造装置には、遮熱
板を反応容器の内壁と堆積面との間に垂直に配設し、さ
らに、遮熱板を出発部材に沿って平行に移動させる移動
機構や、遮熱板を取り外すことができる着脱機構を設け
るのが好ましい。また、遮熱板は、石英ガラス、あるい
は石英ガラスと赤外線吸収ガラスの2重構造とするのが
好ましい。
That is, in the apparatus for producing a deposit according to the present invention, a burner is reciprocally moved in parallel to a starting member arranged horizontally and rotatably along the starting member so that fine glass particles are generated. An apparatus for spraying and producing a deposit in a reaction container is characterized in that the reaction container is configured so that air is taken in from the entire bottom surface and exhausted from the upper part and has a removable heat shield plate. Removable means that the heat shield plate can be moved to a place where it does not interfere with the stack when the stack is taken out. In the manufacturing apparatus of the present invention, a heat shield plate is disposed vertically between the inner wall of the reaction vessel and the deposition surface, and further, a moving mechanism for moving the heat shield plate in parallel along the starting member and a heat shield plate. It is preferable to provide an attaching / detaching mechanism capable of removing the plate. The heat shield plate is preferably made of quartz glass or a double structure of quartz glass and infrared absorbing glass.

【0008】さらに、本発明の製造装置には、遮熱板を
引き出し・収容するための収容部を設けるのが好まし
い。排気口は、出発部材に沿って往復動するバーナの移
動範囲以上の長さにわたって設け、さらに反応容器の上
部を、気流の流路が排気口に向って次第に狭くなるよう
に形成するのが好ましい。本発明の堆積体の製造方法
は、上記構成からなる製造装置を用いて製造される。
Further, it is preferable that the manufacturing apparatus of the present invention is provided with a housing portion for drawing out and housing the heat shield plate. It is preferable that the exhaust port is provided over a length not less than the moving range of the burner that reciprocates along the starting member, and that the upper part of the reaction vessel is formed so that the flow path of the air flow becomes gradually narrower toward the exhaust port. . The method for manufacturing a deposit according to the present invention is manufactured using the manufacturing apparatus having the above configuration.

【0009】[0009]

【発明の実施の形態】本発明を、図を用いてさらに詳細
に説明する。図1は、本発明の堆積体の製造装置をモデ
ル化して示した概略断面図であり、反応容器1内には、
出発部材(堆積体)2が水平かつ回転自在に配設されて
いる。出発部材(堆積体)2の下方には堆積用バーナ3
が設置され、堆積用バーナ3による堆積体2への堆積面
と反応容器1の内壁との間に、遮熱板4が出発部材に沿
って平行かつ垂直に配設されている。反応容器1の底部
には気流の吸気口5が、反応容器1の頂部には排気ガス
の排気口6が設けられている。この遮熱板4は、反応容
器に対する熱負荷の低減に加えて、吸気口5から吸入さ
れた気流を整流とする整流作用をも有している。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a model of an apparatus for producing a deposit according to the present invention.
The starting member (deposit) 2 is arranged horizontally and rotatably. A deposition burner 3 is provided below the starting member (deposit) 2.
The heat shield plate 4 is disposed between the deposition surface of the deposition burner 3 on the deposit body 2 and the inner wall of the reaction vessel 1 in parallel and vertically along the starting member. An inlet 5 for airflow is provided at the bottom of the reaction vessel 1, and an exhaust port 6 for exhaust gas is provided at the top of the reaction vessel 1. In addition to reducing the heat load on the reaction vessel, the heat shield plate 4 also has a rectifying function of rectifying the air flow sucked from the intake port 5.

【0010】本発明の製造装置は、水平に配置された出
発部材に沿って平行に堆積用バーナを往復移動させてガ
ラス微粒子を吹き付け、堆積体を製造する装置であり、
反応容器内の気流を整流状態として安定した堆積を行う
ために、反応容器の底部全面から吸気し、上部から排出
するように構成されている。なお、吸気は、例えば、反
応容器の底部のほぼ全域にわたって設けられた多数の小
孔から行われる。
The production apparatus of the present invention is an apparatus for producing a deposit by spraying fine glass particles by reciprocally moving the deposition burner in parallel along a horizontally arranged starting member.
In order to carry out stable deposition by rectifying the air flow in the reaction vessel, it is configured so that air is taken in from the entire bottom surface of the reaction vessel and discharged from the top. In addition, intake is performed from a large number of small holes provided over almost the entire area of the bottom of the reaction vessel, for example.

【0011】反応容器の上部に設けられる排気口は、出
発部材に沿って往復動する堆積用バーナの火炎が及ぶ領
域と同等乃至それ以上の長さとするのが望ましい。ま
た、反応容器の上部は、図1に示すように、排気口に向
って気流の流路が緩やかに狭くなる構造とするのが良
く、気流が乱れず、さらに徐々に気流の速度が増すた
め、反応容器の器壁へのススの付着が抑えられるという
効果がある。反応容器内の気流は整流状態を乱すことな
く、排気口から排気される。
It is desirable that the exhaust port provided in the upper portion of the reaction vessel has a length equal to or longer than the region of the flame of the deposition burner that reciprocates along the starting member. Further, as shown in FIG. 1, it is preferable that the upper portion of the reaction container has a structure in which the flow path of the air flow is gradually narrowed toward the exhaust port so that the air flow is not disturbed and the speed of the air flow gradually increases. The effect of suppressing the attachment of soot to the vessel wall of the reaction container is obtained. The air flow in the reaction vessel is exhausted from the exhaust port without disturbing the rectified state.

【0012】反応容器が受ける熱負荷を小さくするため
に、すなわち、器壁が受ける輻射熱を抑制するために、
遮熱板を堆積面と器壁との間に設置する。遮熱板は整流
された気流中に設置され、気流によどみが生じないよう
に、遮熱板と器壁との間の距離を、堆積面と器壁との間
の距離の20%以上とする。また、遮熱板と堆積面との
間の距離は、堆積面に近すぎると堆積面から発生するス
スが遮熱板に付着し易くなるため、堆積面と器壁との間
の距離の40%以上とするのが望ましい。
In order to reduce the heat load received by the reaction vessel, that is, in order to suppress the radiant heat received by the vessel wall,
A heat shield is installed between the deposition surface and the vessel wall. The heat shield plate is installed in the rectified air flow, and the distance between the heat shield plate and the vessel wall is set to 20% or more of the distance between the deposition surface and the vessel wall so that the air flow does not cause stagnation. To do. If the distance between the heat shield plate and the deposition surface is too close to the deposition surface, soot generated from the deposition surface easily adheres to the heat shield plate, so that the distance between the deposition surface and the vessel wall is 40%. It is desirable to set it to be at least%.

【0013】遮熱板の材質は、堆積面の観察ができるよ
うに透光性と耐熱性を有するものが望ましく、例えば、
石英ガラスが挙げられる。なお、この石英ガラスの器壁
側に赤外線吸収ガラスを配置した2重構造とするとより
効果的である。遮熱板は、遮熱板4の両端に柱を設け、
反応容器の底部に衝立状に立てる構造とするのが良く、
下方からの気流に沿うように垂直にかつ出発部材に平行
に設置される。例えば、図2の(a),(b)に示すよ
うに、反応容器の底部に設けられたスライドガイド7
に、柱8の脚部9を納めることで設置される。堆積体の
取り出し時には、作業の邪魔にならないように、複数の
遮熱板4は、順次、収容部10に引き込まれ、収容され
る。なお、1枚の遮熱板4を堆積用バーナの移動に合わ
せて移動することで遮熱しても良い。
The heat shield plate is preferably made of a material having a light-transmitting property and heat resistance so that the deposition surface can be observed.
Examples include quartz glass. It is more effective to use a double structure in which infrared absorbing glass is arranged on the side of the quartz glass wall. The heat shield plate is provided with columns at both ends of the heat shield plate 4,
It is good to have a structure that stands upright on the bottom of the reaction vessel,
It is installed vertically along the air flow from below and parallel to the starting member. For example, as shown in FIGS. 2A and 2B, a slide guide 7 provided at the bottom of the reaction container
It is installed by housing the legs 9 of the pillar 8. When taking out the stack, the plurality of heat shield plates 4 are sequentially drawn into and housed in the housing unit 10 so as not to disturb the work. The heat may be shielded by moving one heat shield plate 4 in accordance with the movement of the deposition burner.

【0014】[0014]

【実施例】(実施例1)図1に示した堆積体製造装置を
用い、石英ガラス製の遮熱板を出発部材に沿って平行か
つ垂直に設置した。このときの遮熱板の設置位置は、器
壁と遮熱板との距離及び遮熱板と出発部材との距離がそ
れぞれ順に800mm、800mmとなる位置である。
出発部材としてコア用に調整された外径50mmφ、長
さ4000mmの石英ガラス棒を装置の把持機構に取り
付け、バーナを20本取り付け、各バーナにSiC
4:30g/分、O2:20リットル/分、H2:60
リットル/分を供給し、火炎加水分解反応により生成し
たガラス微粒子をコア出発部材に付着・堆積させ、外径
400mmφの堆積体を得た。堆積中、石英ガラス製の
遮熱板を通して堆積状態を観察することができた。ま
た、装置の温度は250℃以下で推移し、装置の塗装が
変色することはなかった。得られた堆積体を焼結・透明
ガラス化したところ、泡の発生はなかった。
Example 1 Using the deposit manufacturing apparatus shown in FIG. 1, a quartz glass heat shield plate was installed parallel and vertically along a starting member. The installation positions of the heat shield plates at this time are positions where the distance between the device wall and the heat shield plate and the distance between the heat shield plate and the starting member are 800 mm and 800 mm, respectively.
As a starting member, a quartz glass rod with an outer diameter of 50 mmφ and a length of 4000 mm adjusted for the core was attached to the gripping mechanism of the device, 20 burners were attached, and each burner was made of SiC.
l 4 : 30 g / min, O 2 : 20 liters / min, H 2 : 60
By supplying liter / min, glass fine particles generated by the flame hydrolysis reaction were attached and deposited on the core starting member to obtain a deposit having an outer diameter of 400 mmφ. During the deposition, the deposition state could be observed through a quartz glass heat shield plate. Further, the temperature of the device remained below 250 ° C., and the coating of the device did not discolor. When the obtained deposit was sintered and made into a transparent glass, no bubbles were generated.

【0015】(実施例2)遮熱板として石英ガラスと赤
外線吸収ガラスの2重構造のものを使用した以外は、実
施例1と同様にして堆積体の製造を行った。堆積中、遮
熱板を通して堆積状態を観察することができた。装置の
温度は220℃以下で推移し、装置の塗装が変色するこ
とはなかった。得られた堆積体を焼結・透明ガラス化し
たところ、泡の発生はなかった。
(Example 2) A deposit was produced in the same manner as in Example 1 except that a heat shield plate having a double structure of quartz glass and infrared absorbing glass was used. During the deposition, the deposition state could be observed through the heat shield plate. The temperature of the device remained below 220 ° C., and the coating of the device did not discolor. When the obtained deposit was sintered and made into a transparent glass, no bubbles were generated.

【0016】(比較例1)遮熱板を使用しなかった以外
は、実施例1と同様にして堆積体の製造を行った。堆積
中、装置の温度は350℃以上となり、塗装の耐熱温度
280℃を超えたため塗装が変色し、剥がれ落ちてき
た。この堆積体を焼結・透明ガラス化したところ、ガラ
ス母材中に泡が多量に発生した。
Comparative Example 1 A deposit was manufactured in the same manner as in Example 1 except that the heat shield plate was not used. During the deposition, the temperature of the device became 350 ° C. or higher, and since the heat resistant temperature of the coating exceeded 280 ° C., the coating discolored and came off. When this deposit was sintered and made into a transparent glass, a large amount of bubbles were generated in the glass base material.

【0017】[0017]

【発明の効果】上記構成からなる本発明の製造装置は、
ガラス微粒子堆積中、未付着のガラス微粒子(スート)
や剥離した異物が製品に混入することがないため、製品
に泡や不純物汚染がなくなる。また、遮熱板を設けたこ
とにより、反応容器への熱負荷を大きく低減することが
でき、器壁と堆積面との距離を短くでき、装置の小型化
が可能となり、かつ装置の寿命を大幅に延長することが
できる。
The manufacturing apparatus of the present invention having the above structure is
Glass particles (soot) that have not adhered during glass particle deposition
Since the foreign matter that has peeled off or peeled off is not mixed in the product, there is no bubble or impurity contamination in the product. Also, by providing the heat shield plate, the heat load on the reaction vessel can be greatly reduced, the distance between the vessel wall and the deposition surface can be shortened, the apparatus can be downsized, and the life of the apparatus can be shortened. It can be extended significantly.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の堆積体の製造装置をモデル化して示
す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a model of a deposition body manufacturing apparatus of the present invention.

【図2】 (a)は遮熱板を示す正面図であり、(b)
は遮熱板の脚部を案内するスライドガイドを概略的に示
す平面図である。
FIG. 2A is a front view showing a heat shield plate, and FIG.
FIG. 3 is a plan view schematically showing a slide guide that guides the legs of the heat shield plate.

【符号の説明】[Explanation of symbols]

1. 反応容器 2. 出発部材(堆積体) 3. 堆積用バーナ 4. 遮熱板 5. 吸気口 6. 排気口 7. スライドガイド 8. 柱 9. 脚部 10. 収容部 1. Reaction vessel 2. Starting material (deposit) 3. Deposition burner 4. Heat shield plate 5. Intake 6. exhaust port 7. Slide guide 8. Pillar 9. leg 10. Housing

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 水平かつ回転自在に配置された出発部材
に、バーナを該出発部材に沿って平行に往復移動させて
ガラス微粒子を吹き付け、反応容器内でガラス微粒子堆
積体を製造する装置において、該反応容器が底部全面か
ら吸気し上部から排気するように構成され、取り外し可
能な遮熱板を有することを特徴とするガラス微粒子堆積
体の製造装置。
1. An apparatus for producing a glass particle deposit in a reaction vessel by spraying glass particles onto a horizontally and rotatably arranged starting member by reciprocating a burner in parallel along the starting member. An apparatus for producing glass particulate deposits, characterized in that the reaction container is constructed so as to intake air from the entire bottom surface and exhaust air from the top, and has a removable heat shield plate.
【請求項2】 移動可能な遮熱板が、反応容器の内壁と
堆積面との間に配設されている請求項1に記載のガラス
微粒子堆積体の製造装置。
2. The apparatus for producing a glass fine particle deposit according to claim 1, wherein the movable heat shield plate is disposed between the inner wall of the reaction container and the deposition surface.
【請求項3】 遮熱板が、垂直に配設されている請求項
1又は2に記載のガラス微粒子堆積体の製造装置。
3. The apparatus for producing a glass particle deposit according to claim 1, wherein the heat shield plate is arranged vertically.
【請求項4】 遮熱板を引き出し・収容するための収容
部を備えている請求項1乃至3のいずれかに記載のガラ
ス微粒子堆積体の製造装置。
4. The apparatus for producing a glass particulate deposit body according to claim 1, further comprising a housing portion for drawing out and housing the heat shield plate.
【請求項5】 遮熱板を取り外すことができる着脱機構
を有する請求項1乃至4のいずれかに記載のガラス微粒
子堆積体の製造装置。
5. The apparatus for producing a glass particulate deposit body according to claim 1, further comprising an attachment / detachment mechanism capable of detaching the heat shield plate.
【請求項6】 遮熱板を出発部材に沿って平行に移動さ
せる移動機構を有する請求項1乃至5のいずれかに記載
のガラス微粒子堆積体の製造装置。
6. The apparatus for producing a glass particle deposit according to claim 1, further comprising a moving mechanism that moves the heat shield plate in parallel along the starting member.
【請求項7】 遮熱板が、石英ガラスからなる請求項1
乃至6のいずれかに記載のガラス微粒子堆積体の製造装
置。
7. The heat shield plate is made of quartz glass.
7. The manufacturing apparatus for a glass particle deposit according to any one of 1 to 6.
【請求項8】 遮熱板が、石英ガラスと赤外線吸収ガラ
スの2重構造からなる請求項1乃至7のいずれかに記載
のガラス微粒子堆積体の製造装置。
8. The apparatus for producing a glass fine particle deposit according to claim 1, wherein the heat shield plate has a double structure of quartz glass and infrared absorbing glass.
【請求項9】 排気口が、出発部材に沿って往復動する
バーナの移動範囲以上の長さにわたって設けられている
請求項1乃至8のいずれかに記載のガラス微粒子堆積体
の製造装置。
9. The apparatus for producing a glass fine particle deposit according to claim 1, wherein the exhaust port is provided over a length not less than a moving range of the burner that reciprocates along the starting member.
【請求項10】 反応容器の上部が、気流の流路が排気
口に向って次第に狭くなるように形成されている請求項
1乃至9のいずれかに記載のガラス微粒子堆積体の製造
装置。
10. The apparatus for producing a glass fine particle deposit according to claim 1, wherein an upper part of the reaction vessel is formed so that a flow path of the air flow becomes gradually narrower toward the exhaust port.
【請求項11】 請求項1乃至10のいずれかに記載の
ガラス微粒子堆積体の製造装置を用いて製造することを
特徴とするガラス微粒子堆積体の製造方法。
11. A method for producing a glass fine particle deposit, which is produced using the apparatus for producing a glass fine particle deposit according to any one of claims 1 to 10.
JP2001383583A 2001-12-17 2001-12-17 Manufacturing device for glass fine particle deposition body Pending JP2003183035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001383583A JP2003183035A (en) 2001-12-17 2001-12-17 Manufacturing device for glass fine particle deposition body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383583A JP2003183035A (en) 2001-12-17 2001-12-17 Manufacturing device for glass fine particle deposition body

Publications (1)

Publication Number Publication Date
JP2003183035A true JP2003183035A (en) 2003-07-03

Family

ID=27593580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383583A Pending JP2003183035A (en) 2001-12-17 2001-12-17 Manufacturing device for glass fine particle deposition body

Country Status (1)

Country Link
JP (1) JP2003183035A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013034A (en) * 2007-07-09 2009-01-22 Nikon Corp Apparatus for producing base material for synthetic quartz glass and method for producing base material for synthetic quartz glass by using the same
JP2011020895A (en) * 2009-07-16 2011-02-03 Shin-Etsu Chemical Co Ltd Method for manufacturing synthetic quartz glass
JP2012111659A (en) * 2010-11-24 2012-06-14 Sumitomo Electric Ind Ltd Method for manufacturing glass preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013034A (en) * 2007-07-09 2009-01-22 Nikon Corp Apparatus for producing base material for synthetic quartz glass and method for producing base material for synthetic quartz glass by using the same
JP2011020895A (en) * 2009-07-16 2011-02-03 Shin-Etsu Chemical Co Ltd Method for manufacturing synthetic quartz glass
JP2012111659A (en) * 2010-11-24 2012-06-14 Sumitomo Electric Ind Ltd Method for manufacturing glass preform

Similar Documents

Publication Publication Date Title
JP2003183035A (en) Manufacturing device for glass fine particle deposition body
KR0163973B1 (en) Method of producing glass preform for optical fiber and apparatus thereof
JP2010042940A (en) Apparatus and method for producing glass parent material
EP1284246A2 (en) Method and apparatus for producing porous glass soot body
TW200536798A (en) Equipment for producing porous glass base material
US6339940B1 (en) Synthetic quartz glass manufacturing process
JP5416076B2 (en) Optical fiber preform manufacturing method
JP2010285330A (en) Method for producing glass porous body and apparatus for producing glass porous body
JP5762374B2 (en) Porous glass base material manufacturing equipment
JP5651675B2 (en) Porous glass manufacturing apparatus and manufacturing method, and optical fiber preform manufacturing method
JP2004035376A (en) Method and apparatus for manufacturing preform for optical fiber
JP2012246180A (en) Manufacturing apparatus for glass particle deposited body
JP3157628B2 (en) Equipment for manufacturing porous glass base material
CN106810056B (en) High-purity quartz production device
CN106986534B (en) Apparatus for manufacturing porous glass preform
JP4597847B2 (en) Deposition equipment
JP2008094647A (en) Film deposition apparatus
US20220106220A1 (en) Manufacturing method for porous glass deposit and apparatus for manufacturing porous glass deposit
JP2006219309A (en) Method and apparatus for producing porous quartz glass preform
JP2012031034A (en) Apparatus for manufacturing optical fiber perform, and method for manufacturing optical fiber preform
JP5528516B2 (en) Optical fiber preform manufacturing apparatus and optical fiber preform manufacturing method
CN216624211U (en) Semiconductor process chamber and semiconductor process equipment
JP2000319024A (en) Apparatus for production of porous glass preform and production of porous glass preform using the same
JP2009126716A (en) Manufacturing method of glass microparticle deposit
JP2934097B2 (en) Method and apparatus for producing porous glass base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060731