JP2003178918A - Rare-earth thin film magnet - Google Patents
Rare-earth thin film magnetInfo
- Publication number
- JP2003178918A JP2003178918A JP2001380192A JP2001380192A JP2003178918A JP 2003178918 A JP2003178918 A JP 2003178918A JP 2001380192 A JP2001380192 A JP 2001380192A JP 2001380192 A JP2001380192 A JP 2001380192A JP 2003178918 A JP2003178918 A JP 2003178918A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnet
- rare
- protective film
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マイクロモータ、
マイクロアクチュエータなど微小デバイスに用いられる
薄膜磁石、特に磁石特性に優れる希土類薄膜磁石に係
り、基板上に非磁性下地膜、希土類磁石膜、非磁性保護
膜が順次形成されて成る磁性膜において、希土類磁石膜
の酸化を防止し磁気特性を向上させることを特徴とする
希土類薄膜磁石に関する。TECHNICAL FIELD The present invention relates to a micromotor,
A thin film magnet used for a micro device such as a microactuator, particularly a rare earth thin film magnet having excellent magnet characteristics. In a magnetic film formed by sequentially forming a nonmagnetic undercoat film, a rare earth magnet film, and a nonmagnetic protective film on a substrate, The present invention relates to a rare earth thin film magnet characterized by preventing oxidation of a film and improving magnetic properties.
【0002】[0002]
【従来の技術】近年、電子機器の小型・高性能化にとも
ない、モータやアクチュエータも小型化が要求されてお
り、従って使用される磁石の薄型化が要求されている。2. Description of the Related Art In recent years, motors and actuators have been required to be downsized in accordance with the miniaturization and high performance of electronic devices, and hence the magnets used have been required to be thin.
【0003】現在それら用途には磁石特性に優れる希土
類磁石が主として使用されており、特に希土類をRとす
ると、R−Fe−Bと表記される組成の磁石が多用され
ている。しかし当該磁石は粉末冶金法で製造されるた
め、さらに薄型化するには限界であった。At present, rare earth magnets having excellent magnet characteristics are mainly used for those applications, and particularly, when the rare earth is R, a magnet having a composition represented by R-Fe-B is often used. However, since the magnet is manufactured by the powder metallurgy method, there is a limit to further reduction in thickness.
【0004】このような背景になか、最近前記R−Fe
−B系磁石の薄膜化に関する研究が活発化している。例
えばCadieuらは初めてNd−Fe−B薄膜を作成し磁気
特性を発現したことを報告している(Vac.Sci.Techno
l.,A6,1688(1988))。Against this background, the above-mentioned R-Fe has been recently used.
-Research on thinning of B-based magnets has been activated. For example, Cadieu et al. Reported for the first time that an Nd-Fe-B thin film was formed and magnetic properties were exhibited (Vac.Sci.Techno.
L., A6, 1688 (1988)).
【0005】また、より高性能化を目的として室温基板
温度で、Mo基板上またはMo膜を成膜した基板上に、
希土類磁石膜、Ti保護膜を、順次形成した磁石膜も報
告されている(特開平11−288812号公報)。酸
化によって特性が劣化し易い磁石膜の保護膜が必要とさ
れている。Further, for the purpose of higher performance, at room temperature substrate temperature, on a Mo substrate or a substrate on which a Mo film is formed,
A magnet film in which a rare earth magnet film and a Ti protective film are sequentially formed has also been reported (JP-A-11-288812). There is a need for a protective film for a magnet film, the characteristics of which tend to deteriorate due to oxidation.
【0006】[0006]
【発明が解決しようとする課題】しかし、上記の方法で
は保護膜として実用に供する膜厚は10nm〜100n
m必要とされている。このような膜厚は成膜する時間が
長くなることを意味し、生産効率が低いという問題があ
る。However, in the above method, the practical thickness of the protective film is 10 nm to 100 n.
m is needed. Such a film thickness means that the film forming time becomes long, and there is a problem that the production efficiency is low.
【0007】本発明は、希土類磁石膜の酸化抑制に使用
される保護膜を薄くし、生産効率を向上させるばかりで
なく同一の膜厚では耐触性も向上させる方法を提供する
ことを目的とする。It is an object of the present invention to provide a method for thinning a protective film used for suppressing oxidation of a rare earth magnet film so as to improve not only production efficiency but also touch resistance with the same film thickness. To do.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本発明では保護膜として磁石膜の表面にチタンを主
成分とする窒化膜を形成することを特徴とする。すなわ
ち、本発明の希土類薄膜磁石は、基板上に非磁性下地
膜、希土類磁石膜、非磁性保護膜が順次形成されている
磁性膜であって、前記非磁性保護膜がチタンを主成分と
する窒化膜で構成されることを特徴とする。当該膜は従
来のチタン等の膜に比較し薄くても同等以上の効果を有
する。より好ましくは非磁性保護膜を窒化チタンで構成
する。To achieve the above object, the present invention is characterized in that a nitride film containing titanium as a main component is formed on the surface of a magnet film as a protective film. That is, the rare earth thin film magnet of the present invention is a magnetic film in which a nonmagnetic undercoat film, a rare earth magnet film, and a nonmagnetic protective film are sequentially formed on a substrate, and the nonmagnetic protective film contains titanium as a main component. It is characterized by being composed of a nitride film. Even if the film is thinner than the conventional film made of titanium or the like, it has the same or more effects. More preferably, the nonmagnetic protective film is made of titanium nitride.
【0009】また、本発明における基板と希土類磁石膜
との界面に設ける非磁性下地膜をチタンを主成分とする
窒化膜で構成すると、基板からの酸素拡散などによる磁
石膜の酸化を抑制でき、さらなる薄膜化に有効である。
また、本発明では飽和磁化および保磁力が大きなネオジ
ム鉄ボロン(Nd−Fe−B)を主成分とする希土類磁
石で磁石膜を構成することができる。Further, when the non-magnetic underlayer film provided at the interface between the substrate and the rare earth magnet film in the present invention is composed of a nitride film containing titanium as a main component, oxidation of the magnet film due to oxygen diffusion from the substrate can be suppressed, It is effective for further thinning.
Further, in the present invention, the magnet film can be composed of a rare earth magnet having neodymium iron boron (Nd-Fe-B) as a main component, which has large saturation magnetization and coercive force.
【0010】本発明の希土類薄膜磁石をアクチュエータ
ーに適用すると、保護膜が薄いため、磁石膜の磁界を印
加する部材と磁石間の距離(磁気ギャップ)を小さくす
ることができる。例えば、微細加工技術や集積技術を用
いたMEMS(Micro−Electro Mechanical System
s)について、駆動部材(カンチレバーやミラー支持部
材)を自己保持するために、本発明の希土類薄膜磁石を
用いると、磁気ギャップが小さく、磁石が駆動部材を吸
着する力を大きくすることができる。一定の吸着力が求
められるいる場合には、希土類薄膜磁石の厚さを薄くす
ることも可能であるため、MEMSの薄型化・小型化に
寄与する。MEMSには、光スイッチ、光路切替装置、
マイクロマシーンデバイス等が含まれる。When the rare earth thin film magnet of the present invention is applied to an actuator, since the protective film is thin, the distance (magnetic gap) between the member for applying the magnetic field of the magnet film and the magnet can be reduced. For example, MEMS (Micro-Electro Mechanical System) using microfabrication technology or integration technology.
With regard to (s), if the rare earth thin film magnet of the present invention is used to self-hold the driving member (cantilever or mirror supporting member), the magnetic gap is small and the force of the magnet to attract the driving member can be increased. When a constant attracting force is required, the thickness of the rare earth thin film magnet can be reduced, which contributes to thinning and downsizing of the MEMS. The MEMS includes an optical switch, an optical path switching device,
Includes micromachine devices and the like.
【0011】[0011]
【発明の実施の形態】金属Tiを薄膜で形成した場合に
はその活性的性質のため、直ぐに表面が酸化され易い。
酸化は表面から膜厚方向に進行し、膜厚が薄いときには
希土類磁石膜をも酸化する。その影響を抑制するために
は膜厚を厚くしなければならない。BEST MODE FOR CARRYING OUT THE INVENTION When metallic Ti is formed as a thin film, its surface is likely to be oxidized immediately because of its active property.
Oxidation proceeds from the surface in the film thickness direction, and when the film thickness is thin, the rare earth magnet film is also oxidized. In order to suppress the influence, it is necessary to increase the film thickness.
【0012】これに対して、本発明で磁石膜の保護膜と
して供する材料はTiを主成分とする窒化物である。T
i窒化物は酸化されにくく、またNd−Fe−B膜と反
応することもないため、その磁気特性を劣化させること
がない。しかしながら、薄膜としての緻密性や結晶性を
実現するためには膜厚を一定以上の膜厚は必要である。
本発明では10nm以上の厚みを必要とする。上限は特
に規定されるものではないが、100nm以上では効果
に有意差がない。ただし、MEMSなどのアクチュエー
タに適用する場合、膜の薄型化の観点から上限を100
nmにすることが望ましい。従って、本発明では好適な
膜厚を10nm以上且つ100nm以下とする。On the other hand, the material used as the protective film for the magnet film in the present invention is a nitride containing Ti as a main component. T
The i-nitride is not easily oxidized and does not react with the Nd-Fe-B film, so that its magnetic characteristics are not deteriorated. However, in order to realize denseness and crystallinity as a thin film, the film thickness must be a certain value or more.
The present invention requires a thickness of 10 nm or more. The upper limit is not particularly specified, but there is no significant difference in the effect when the thickness is 100 nm or more. However, when applied to an actuator such as MEMS, the upper limit is set to 100 from the viewpoint of thinning the film.
nm is desirable. Therefore, in the present invention, the preferable film thickness is 10 nm or more and 100 nm or less.
【0013】本発明に係る保護膜はスパッタ、イオンビ
ームデポジション、パルスレーザアブレーションなどの
真空中製膜法によって形成される。スパッタやイオンビ
ームデポジション法であれば通常の不活性ガスを放電媒
介として製膜を行ない、またパルスレーザアブレーショ
ン法であれば真空中で製膜を行うが、いずれの方法も窒
素雰囲気中で行っても良い。The protective film according to the present invention is formed by a vacuum film forming method such as sputtering, ion beam deposition or pulse laser ablation. In the case of the sputtering or ion beam deposition method, the film is formed by using an ordinary inert gas as a discharge medium, and in the case of the pulse laser ablation method, the film is formed in a vacuum, but both methods are performed in a nitrogen atmosphere. May be.
【0014】Ti窒化物は特に2元系Ti−N合金に限
られるものではなく、Tiの一部が微量のTa、Si、
Alなどの金属に置換された組成でもその効果に変わり
はない。The Ti nitride is not particularly limited to the binary Ti-N alloy, but a small amount of Ti, such as Ta, Si,
Even if the composition is replaced with a metal such as Al, the effect is the same.
【0015】Ti窒化膜はまた酸化を被ることがなく安
定なため、保護層ばかりでなく基板と磁石膜との下地膜
として使用することができる。Nd−Fe−B磁石膜は
高基板温度下における製膜、あるいは所定の膜構成に製
膜したのち真空中で熱処理することによって磁気特性を
発現するため、特に基板がガラスなどの酸化物で構成さ
れる場合には、基板からの酸素拡散によって磁石膜が酸
化されることを抑制する。Since the Ti nitride film is stable without being oxidized, it can be used not only as a protective layer but also as a base film between the substrate and the magnet film. The Nd-Fe-B magnet film exhibits magnetic properties by being formed at a high substrate temperature or after being formed into a predetermined film structure and then heat-treated in a vacuum. Therefore, the substrate is made of an oxide such as glass. In that case, the magnet film is prevented from being oxidized by oxygen diffusion from the substrate.
【0016】磁石膜Nd−Fe−BはNdが13〜15
原子%、Bが7〜11原子%、残部Feとなる組成で表
される。他の希土類元素を添加する場合にはNdと置換
した構造となり、このとき希土類の組成は変化しない。
ここに組成は紛体磁石試料を較正基準とし、EPMAに
よって分析したものとする。The magnet film Nd-Fe-B has Nd of 13 to 15
It is represented by a composition in which atomic%, B is 7 to 11 atomic% and the balance is Fe. When other rare earth elements are added, the structure is replaced with Nd, and the composition of the rare earth elements does not change at this time.
Here, the composition is analyzed by EPMA using a powder magnet sample as a calibration standard.
【0017】基板温度が室温で、本発明のように基板上
に順次製膜された試料は600℃以上の高温下、真空中
もしくは嫌気性雰囲気で熱処理することによって磁石特
性を発現する。保護膜を製膜しその後試料を熱処理する
ことにより磁石膜の磁気特性発現することは、特開平1
1−288812号公報に記されている。しかしなが
ら、この手法は既に特開平9−237714号公報の実
施例に明らかな技術であり磁気特性発現のための処理と
して特殊なものではない。以下、具体例にしたがい本発
明をさらに詳述する。A sample, which is sequentially formed on the substrate at a substrate temperature of room temperature as in the present invention, exhibits magnet characteristics by being heat-treated at a high temperature of 600 ° C. or higher in a vacuum or in an anaerobic atmosphere. It is disclosed in Japanese Patent Application Laid-Open No. HEI-1 that the magnetic properties of the magnet film are exhibited by forming a protective film and then heat-treating the sample.
No. 1-288812. However, this method is already a technique that is apparent from the embodiment disclosed in Japanese Patent Laid-Open No. 9-237714, and is not special as a process for exhibiting magnetic characteristics. Hereinafter, the present invention will be described in more detail with reference to specific examples.
【0018】[0018]
【実施例】(実施例1)製膜装置内のチャンバを10
−8Pa以下に真空排気する。チャンバ内に装着された
ターゲットにKrFエキシマレーザを照射することによ
り、ターゲットに対向するSi基板上に下地Ti層、N
d−Fe−B磁性層、TiN保護層を順次製膜する。T
iNはターゲット組成が窒素をほぼ50原子%含有する
組成のものを使用した。Nd−Fe−Bは順次13、70、
17原子%組成となるターゲットを使用した。全ての製膜
においてエキシマレーザの照射エネルギーは200m
J、パルス発生の周波数は10Hzに制御した。基板温
度は室温とし、基板は10mm×10mm角の大きさの
MgO単結晶とした。ここに、下地Ti層は膜厚50n
m、Nd−Fe−B層は1μmとしてTiN保護層の膜
厚を10〜200nmと変化させた。製膜後に試料を取
出し10−4Pa以下の真空環境下700℃で1時間の
熱処理を行った。得られた試料の磁気特性を振動式磁力
計で測定した結果を図1に示す。図1のグラフは、基板
上に下地膜、磁石膜、保護膜が順次形成された試料にお
いて、Ti保護膜を設けた場合と、本発明によるTiN
保護膜を設けた場合について、飽和磁化Bsと保磁力H
cの磁気特性の膜厚依存性を表す。丸印は本発明の実施
例1であり、三角印は比較例1である。(Example) (Example 1) 10 chambers in the film forming apparatus
Evacuate to −8 Pa or less. By irradiating the target mounted in the chamber with the KrF excimer laser, the underlying Ti layer and N are formed on the Si substrate facing the target.
A d-Fe-B magnetic layer and a TiN protective layer are sequentially formed. T
As iN, a target composition having a composition containing approximately 50 atomic% of nitrogen was used. Nd-Fe-B is 13, 70,
A target having a composition of 17 atomic% was used. Irradiation energy of excimer laser is 200m for all film formation
The frequency of J and pulse generation was controlled to 10 Hz. The substrate temperature was room temperature, and the substrate was a 10 mm × 10 mm square MgO single crystal. Here, the underlying Ti layer has a film thickness of 50 n
The thickness of the TiN protective layer was changed to 10 to 200 nm by setting the m and Nd-Fe-B layers to 1 μm. After film formation, the sample was taken out and heat-treated at 700 ° C. for 1 hour in a vacuum environment of 10 −4 Pa or less. The results of measuring the magnetic characteristics of the obtained sample with a vibrating magnetometer are shown in FIG. The graph of FIG. 1 shows a sample in which a base film, a magnet film, and a protective film are sequentially formed on a substrate when a Ti protective film is provided and when TiN according to the present invention is used.
Saturation magnetization Bs and coercive force H when a protective film is provided
The film thickness dependence of the magnetic property of c is shown. The circles represent Example 1 of the present invention, and the triangles represent Comparative Example 1.
【0019】(比較例1)保護層をTiとした以外は実
施例1と同一の条件のもと試料を作成した。得られた試
料の磁気特性を図1に示す。Comparative Example 1 A sample was prepared under the same conditions as in Example 1 except that the protective layer was Ti. The magnetic characteristics of the obtained sample are shown in FIG.
【0020】(実施例2)基板上に下地層としてTiN
層を50nm形成し、その後Nd−Fe−B膜を所定の
膜厚で形成し、TiN保護膜を80nm製膜した。Nd
−Fe−B膜の膜厚を100nm〜1.5μmの範囲内
で変えることにより、異なるサンプルを作製した。その
他の条件は実施例1と同一の条件のもとで試料を作製し
た。得られた試料の磁気特性の測定結果を同じ図2に示
す。図2は、上記膜構成において、下地膜が本発明のT
iNである場合と、比較例のTi膜を供に50nm設け
た場合について、磁気特性のNd−Fe−B磁石膜の膜
厚依存性を示す。丸印は実施例2、三角印は比較例2で
ある。(Example 2) TiN as a base layer on a substrate
The layer was formed to a thickness of 50 nm, an Nd-Fe-B film was then formed to a predetermined thickness, and a TiN protective film was formed to a thickness of 80 nm. Nd
Different samples were prepared by changing the film thickness of the —Fe—B film within the range of 100 nm to 1.5 μm. Other conditions were the same as in Example 1, and the sample was manufactured. The measurement results of the magnetic properties of the obtained sample are shown in the same FIG. FIG. 2 shows that, in the above film structure, the base film is the T film of the present invention.
The film thickness dependence of the Nd-Fe-B magnet film of the magnetic characteristics is shown for the case of iN and the case of providing the Ti film of the comparative example together with 50 nm. The circles represent Example 2 and the triangles represent Comparative Example 2.
【0021】(比較例2)下地層としてTiを使用した
以外は実施例2と同一の条件のもとで試料を作製した。
得られた試料の磁気特性を図2に示す。Comparative Example 2 A sample was prepared under the same conditions as in Example 2 except that Ti was used as the underlayer.
The magnetic characteristics of the obtained sample are shown in FIG.
【0022】図1に示されたように、実施例1と比較例
1との結果を比較すると、明らかに保護膜が薄い範囲に
おいてはTiN保護膜を有する試料は磁気特性が優れ
る。しかし、膜厚が100nm以上ではほぼ同じ磁気特
性となる。下地層にもTiN膜を設けた場合には実施例
2および比較例2の結果を図示した図2から明らかなよ
うに、Nd−Fe−B磁石膜の膜厚が薄い場合において
磁気特性向上の効果が顕著である。As shown in FIG. 1, when the results of Example 1 and Comparative Example 1 are compared, the sample having the TiN protective film has excellent magnetic properties in the range where the protective film is obviously thin. However, when the film thickness is 100 nm or more, the magnetic properties are almost the same. When the TiN film is also provided on the underlayer, as is apparent from FIG. 2 showing the results of Example 2 and Comparative Example 2, the magnetic characteristics are improved when the film thickness of the Nd-Fe-B magnet film is thin. The effect is remarkable.
【0023】[0023]
【発明の効果】これらの結果から、TiN保護膜は従来
知られていたTi膜よりも有効であることがわかる。ま
た保護膜ばかりでなく下地膜としても効果的であること
が理解できる。本発明の構成により、保護膜を薄くし、
生産効率を向上させて、耐触性も向上させることができ
る。From these results, it is understood that the TiN protective film is more effective than the conventionally known Ti film. Further, it can be understood that it is effective not only as a protective film but also as a base film. With the configuration of the present invention, the protective film is thinned,
It is possible to improve production efficiency and also improve touch resistance.
【図1】飽和磁化Bsと保磁力Hcの磁気特性の保護膜
膜厚依存性を表すグラフである。FIG. 1 is a graph showing the dependence of magnetic properties of saturation magnetization Bs and coercive force Hc on a protective film thickness.
【図2】磁気特性のNd−Fe−B磁石膜の膜厚依存性
を示すグラフである。FIG. 2 is a graph showing the dependence of magnetic characteristics on the film thickness of an Nd—Fe—B magnet film.
Claims (3)
非磁性保護膜が順次形成されている磁性膜であって、前
記非磁性保護膜がチタンを主成分とする窒化膜で構成さ
れることを特徴とする希土類薄膜磁石。1. A nonmagnetic underlayer film, a rare earth magnet film, and
A rare-earth thin-film magnet, wherein the non-magnetic protective film is a magnetic film sequentially formed, and the non-magnetic protective film is composed of a nitride film containing titanium as a main component.
る窒化膜で構成されることを特徴とする請求項1に記載
の希土類薄膜磁石。2. The rare earth thin-film magnet according to claim 1, wherein the non-magnetic underlayer film is also composed of a nitride film containing titanium as a main component.
主成分とする組成であることを特徴とする請求項1に記
載の希土類薄膜磁石。3. The rare earth thin film magnet according to claim 1, wherein the rare earth magnet film has a composition containing neodymium iron boron as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001380192A JP2003178918A (en) | 2001-12-13 | 2001-12-13 | Rare-earth thin film magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001380192A JP2003178918A (en) | 2001-12-13 | 2001-12-13 | Rare-earth thin film magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003178918A true JP2003178918A (en) | 2003-06-27 |
Family
ID=19187114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001380192A Pending JP2003178918A (en) | 2001-12-13 | 2001-12-13 | Rare-earth thin film magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003178918A (en) |
-
2001
- 2001-12-13 JP JP2001380192A patent/JP2003178918A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3897724B2 (en) | Manufacturing method of micro, high performance sintered rare earth magnets for micro products | |
WO2007119271A1 (en) | Thin-film rare earth magnet and method for manufacturing the same | |
WO2005091315A1 (en) | R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF | |
JP4337209B2 (en) | Permanent magnet thin film and manufacturing method thereof | |
JP4915349B2 (en) | Rare earth magnet and manufacturing method thereof | |
JP4803398B2 (en) | Multilayer permanent magnet | |
JP6353901B2 (en) | Magnetic material | |
JP2003178918A (en) | Rare-earth thin film magnet | |
JP4977307B2 (en) | Small motor | |
JPH07272929A (en) | Rare earth element-fe-b-thin film permanent magnet | |
JP2003303708A (en) | Rare-earth thin-film magnet | |
JP4457530B2 (en) | Permanent magnet thin film | |
JP4483166B2 (en) | Permanent magnet thin film | |
JP3953498B2 (en) | Cylindrical or disk-shaped sintered rare earth magnets for micro products | |
JP2012109490A (en) | Method for manufacturing rare earth permanent magnet thin film | |
Kruusing | Nd–Fe–B films and microstructures | |
JPH11288812A (en) | High coercive force r-irone-b thin-film magnet and manufacture thereof | |
JPH06151226A (en) | Film magnet forming method | |
JPH09219313A (en) | R-tm-b hard magnetic thin film and its manufacture | |
WO2020110893A1 (en) | Magnetic alloy material | |
JPH04219912A (en) | Formation of rare-earth thin film magnet | |
JPH11195514A (en) | Hard magnetic material | |
JP3969125B2 (en) | Fe-Pt magnet and method for producing the same | |
Kim et al. | Magnetic properties of NdFeB thin film obtained by diffusion annealing | |
JPS59138311A (en) | Surface treatment of permanent magnet |