JP2003178808A - Manufacturing method of battery pack - Google Patents

Manufacturing method of battery pack

Info

Publication number
JP2003178808A
JP2003178808A JP2002345954A JP2002345954A JP2003178808A JP 2003178808 A JP2003178808 A JP 2003178808A JP 2002345954 A JP2002345954 A JP 2002345954A JP 2002345954 A JP2002345954 A JP 2002345954A JP 2003178808 A JP2003178808 A JP 2003178808A
Authority
JP
Japan
Prior art keywords
battery
storage battery
capacity
storage
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345954A
Other languages
Japanese (ja)
Other versions
JP3625292B2 (en
Inventor
Seiji Ishizuka
清司 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2002345954A priority Critical patent/JP3625292B2/en
Publication of JP2003178808A publication Critical patent/JP2003178808A/en
Application granted granted Critical
Publication of JP3625292B2 publication Critical patent/JP3625292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a battery pack wherein the battery pack, in which the original performance of the storage battery can be faithfully reproduced, can be manufactured with a superior reliability, while its production efficiency is enhanced. <P>SOLUTION: The manufactured plural storage batteries are divided into a storage battery group with a smaller capacity or a smaller positive electrode weight, and into a storage battery group with a larger capacity according to the boundary value decided by a distribution of its capacity or the positive electrode weight and specifications of the battery pack, and at an arranged position of sensors and/or a safety element for charging control decided by an arrangement of a unit cell and a structure of the battery, pack the storage battery extracted from the storage battery group with the smaller capacity or the smaller positive electrode weight is arranged, and at the remained position, the storage battery extracted from the storage battery group of the larger capacity of the larger positive electrode weight is arranged. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数個の蓄電池を
導電接続して構成される組電池を、個々の蓄電池の特性
に合わせて信頼性良く、しかもその生産効率を高めて製
造することのできる組電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to manufacturing an assembled battery constituted by electrically connecting a plurality of storage batteries in a highly reliable manner according to the characteristics of each storage battery, and at the same time, to improve its production efficiency. The present invention relates to a method of manufacturing a battery pack that can be used.

【0002】[0002]

【関連する背景技術】従来から用いられている蓄電池に
は、ニッケルカドミウム電池やニッケル水素電池を始め
とするアルカリ蓄電池、鉛蓄電池、また高エネルギー密
度が注目されるリチウム蓄電池等がある。種々の携帯機
器に搭載される組電池は、通常、複数の上述した蓄電池
を直列および/または並列に接続して構成される。組電
池の電池容量は、該組電池が搭載された機器の動作時間
を決定するので、機器の仕様に応じて組電池を構成する
蓄電池の本数が決定される。また機器においては、組電
池の構成本数に応じて組電池の放電終止電圧を設定し、
終止電圧に達した組電池の放電を禁止するようにしてい
る。
2. Related Background Art Conventionally used storage batteries include alkaline storage batteries such as nickel-cadmium batteries and nickel-hydrogen batteries, lead storage batteries, and lithium storage batteries for which high energy density is drawing attention. An assembled battery mounted on various mobile devices is usually configured by connecting a plurality of the above-mentioned storage batteries in series and / or in parallel. Since the battery capacity of the assembled battery determines the operating time of the device in which the assembled battery is mounted, the number of storage batteries forming the assembled battery is determined according to the specifications of the device. In the equipment, the discharge end voltage of the assembled battery is set according to the number of assembled batteries,
The battery pack that reaches the cut-off voltage is prohibited from being discharged.

【0003】ちなみに上記放電終止電圧Vendは、例え
ばアルカリ蓄電池の場合には次のように設定される。即
ち、複数の直列接続した蓄電池からなる電池列の組数が
6本までの場合には、個々の蓄電池の端子電圧をVcel
l、電池列をなす蓄電池の直列接続数をnとしたとき Vend = Vcell × n × 1.0 …(1) として設定される。また電池列の組数が7本以上の場合
には、 Vend = Vcell × (n−1) × 1.2 …(2) として設定される。
The discharge end voltage Vend is set as follows in the case of an alkaline storage battery, for example. That is, when the number of groups of battery rows each including a plurality of storage batteries connected in series is up to 6, the terminal voltage of each storage battery is set to Vcel.
l, where n is the number of series-connected storage batteries forming a battery array, Vend = Vcell × n × 1.0 (1) is set. When the number of battery groups is 7 or more, Vend = Vcell * (n-1) * 1.2 (2) is set.

【0004】尚、機器において上述した終止電圧が設定
されていない場合、若しくはその設定値が不適切である
場合には、組電池を構成する蓄電池は過放電する。一
方、電池容量の低い組電池においては、組電池を構成す
る複数の蓄電池の容量のばらつきに起因して、電池残存
容量が低くなった蓄電池により他の蓄電池が強制的に放
電され、転極することがある。この過放電に伴う転極と
いう現象が繰り返されると蓄電池の性能劣化が生じ、ひ
いてはその組電池の性能が劣化する。この現象は鉛蓄電
池やリチウム蓄電池においては特に深刻な問題となる。
従って過放電や転極といった現象を回避するためには、
上述したように蓄電池の特性に応じて各電池列、ひいて
は組電池が適正な放電終止電圧を保てるように配慮する
必要があった。
When the above-mentioned final voltage is not set in the device or the set value is inappropriate, the storage battery forming the assembled battery is over-discharged. On the other hand, in an assembled battery with a low battery capacity, due to the variations in the capacities of the plurality of batteries that make up the assembled battery, the remaining battery with the low remaining battery capacity is forcibly discharged from the other batteries and repolarized. Sometimes. If the phenomenon of reversal caused by this over-discharging is repeated, the performance of the storage battery deteriorates, which in turn deteriorates the performance of the assembled battery. This phenomenon becomes a particularly serious problem in lead-acid batteries and lithium-ion batteries.
Therefore, in order to avoid phenomena such as over-discharge and reversal,
As described above, it has been necessary to give consideration to each battery row, and thus the assembled battery, to maintain an appropriate discharge end voltage in accordance with the characteristics of the storage battery.

【0005】[0005]

【発明が解決しようとする課題】ところが最近の機器の
高機能化や用途の拡大により、組電池の終止電圧が適切
に設定された機器においても、過放電や転極現象による
と考えられる組電池の性能劣化が生じるようになった。
この原因は機器に内蔵された種々の電子回路が影響して
いると考えられる。即ち、機器の使用により組電池の容
量が尽きて終止電圧に至るとその機器は動作停止とな
り、従って組電池の過放電は生じない筈である。ところ
が機器によっては、その動作停止後にも各種情報のメモ
リーや操作待機のための電子回路に、微小ではあるが保
持電流や漏洩電流が流れている。この結果、機器が長時
間に亘って放置されるような場合、その間に組電池が過
放電してしまう。このとき組電池中の容量の低い電池は
他の電池の残存容量により強制的に放電され転極してし
まう。
However, due to the recent high functionality of devices and the expansion of their uses, even in devices for which the final voltage of the assembled battery is appropriately set, it is considered that the assembled battery is caused by overdischarge or reversal phenomenon. Performance deterioration of the.
It is considered that this cause is affected by various electronic circuits built in the device. That is, when the capacity of the battery pack is exhausted by the use of the device and the final voltage is reached, the device stops operating, and therefore the battery pack should not be over-discharged. However, depending on the device, a holding current and a leakage current, though minute, flow in the memory of various information and the electronic circuit for operation standby even after the operation is stopped. As a result, when the device is left for a long time, the battery pack is over-discharged during that time. At this time, the battery having a low capacity in the battery pack is forcibly discharged and repolarized due to the remaining capacity of the other battery.

【0006】このようにして過放電による転極現象が繰
り返されると徐々に蓄電池の性能劣化を引き起こし、同
時に組電池の性能も劣化する。このようにして劣化する
性能は、組電池に期待される本来の性能に対して著しく
低くなることがある。すると機器の動作時間が短くなっ
たり、或いは繰り返し使用できた回数が少ないといった
組電池自体の信頼性が低下する要因となる。
When the reversal phenomenon due to overdischarge is repeated in this manner, the performance of the storage battery gradually deteriorates, and at the same time, the performance of the assembled battery also deteriorates. The performance deteriorated in this way may be significantly lower than the original performance expected of the assembled battery. As a result, the operating time of the device is shortened, or the number of times the device can be repeatedly used is small, which causes a decrease in reliability of the assembled battery itself.

【0007】このような過放電に伴う転極現象による組
電池の信頼性の低下は組電池を構成する蓄電池の数が多
いほど、特に直列接続される蓄電池の数が多いほど顕著
になるので、その損害は甚だしい。またこの過放電に伴
う転極現象を機器側で回避するには複雑な制御を必要と
し、機器の価格上昇等の問題を招く。本発明はこのよう
な問題を考慮してなされたもので、その目的は、蓄電池
本来の性能を忠実に再現できる組電池を信頼性良く、し
かもその生産効率を高めて製造することのできる組電池
の製造方法を提供することにある。
The decrease in the reliability of the assembled battery due to the reversal phenomenon due to such over-discharge becomes more remarkable as the number of storage batteries constituting the assembled battery increases, particularly as the number of storage batteries connected in series increases. The damage is terrible. Further, in order to avoid the reversal phenomenon due to this over-discharge on the device side, complicated control is required, which causes a problem such as an increase in the price of the device. The present invention has been made in consideration of such a problem, and an object thereof is a battery pack which can faithfully reproduce the original performance of a storage battery and which can be manufactured with high reliability and high production efficiency. It is to provide a manufacturing method of.

【0008】[0008]

【課題を解決するための手段】上述した目的を達成する
べく本発明に係る組電池の製造方法は、複数個の蓄電池
を導電接続して構成する組電池の製造するに際して、製
造された複数の蓄電池を、その容量の分布と組電池の仕
様とに基づいて決定される境界値に従って容量の小さい
蓄電池群と容量の大きい蓄電池群とに分け、単電池の配
列や組電池の構造により決定される充電制御用のセンサ
−類および/または安全素子の配置位置に上記容量の小
さい蓄電池群から抽出した蓄電池を配置すると共に、残
された位置には前記容量の大きい蓄電池群から抽出した
蓄電池を配置することを特徴としている。
In order to achieve the above-mentioned object, a method for manufacturing an assembled battery according to the present invention is a method for manufacturing an assembled battery in which a plurality of storage batteries are conductively connected to each other. The storage battery is divided into a storage battery group having a small capacity and a storage battery group having a large capacity according to a boundary value determined based on the distribution of the capacity and specifications of the assembled battery, and is determined by the arrangement of the unit cells and the structure of the assembled battery. A storage battery extracted from the above-mentioned storage battery group having a small capacity is arranged at the position where the sensors and / or safety elements for charge control are arranged, and a storage battery extracted from the storage battery group having a large capacity is arranged at the remaining position. It is characterized by that.

【0009】或いは製造された複数の蓄電池を、その正
極重量の分布と組電池の仕様とに基づいて決定される境
界値に従って正極重量の小さい蓄電池群と正極重量の大
きい蓄電池群とに分け、単電池の配列や組電池の構造に
より決定される充電制御用のセンサ−類および/または
安全素子の配置位置に上記重量の小さい蓄電池群から抽
出した蓄電池を配置すると共に、残された位置には前記
重量の大きい蓄電池群から抽出した蓄電池を配置するこ
とを特徴としている。
Alternatively, the plurality of manufactured storage batteries are divided into a storage battery group having a small positive electrode weight and a storage battery group having a large positive electrode weight according to a boundary value determined based on the distribution of the positive electrode weight and the specification of the assembled battery. A storage battery extracted from the small storage battery group is arranged at a position for arranging sensors and / or safety elements for charge control determined by the arrangement of batteries and the structure of the assembled battery, and the remaining position is provided with the above It is characterized in that storage batteries extracted from a heavy storage battery group are arranged.

【0010】そして組電池の充放電を制御する為の各種
センサーや安全対策の為の安全素子が設けられる位置
に、容量の低い蓄電池群から選ばれた蓄電池、または正
極重量が小さい蓄電池群から選ばれた蓄電池を配置する
ことで、組電池の性能を左右する大きな要因となる容量
の低い蓄電池または正極重量が小さい蓄電池の性能を確
実にモニタし得るようにしている。また残りの位置に
は、容量の高い蓄電池群から選ばれた蓄電池、または正
極重量が大きい蓄電池群から選ばれた蓄電池を配置する
ことで、製造された蓄電池を無駄なく使用して複数の組
電池を生産効率良く製造することが可能となる。
A storage battery selected from a storage battery group having a low capacity or a storage battery group having a small positive electrode weight is selected at a position where various sensors for controlling charge / discharge of the assembled battery and safety elements for safety measures are provided. By arranging such a storage battery, it is possible to reliably monitor the performance of a storage battery having a low capacity or a storage battery having a small positive electrode weight, which is a major factor influencing the performance of the assembled battery. In the remaining position, a storage battery selected from a storage battery group with a high capacity or a storage battery selected from a storage battery group with a large positive electrode weight is placed, so that the manufactured storage batteries can be used without waste and a plurality of assembled batteries can be used. Can be manufactured with high production efficiency.

【0011】[0011]

【発明の実施の形態】一般に通信機器、OA機器、AV
機器などの携帯機器に用いられる組電池を構成する場合
には、複数の蓄電池以外に、安全性を確保する為や回路
を保護する目的でサーモスタット,ヒューズ,ポリスイ
ッチ等の安全素子が組み込まれる。また急速充電をする
ための充電制御方法の一つに、電池の温度を検出するた
めにサーミスタ等のセンサーを組み込む場合がある。こ
のようなセンサー類や安全素子の設置位置は、複数の蓄
電池の配列や組電池の構造によりほぼ決定されるが、一
般的には最も温度の上がり易い位置として決定されるこ
とが多い。換言すればセンサー類や安全素子の設置位置
は、個々の蓄電池の性能のばらつきを配慮して決定され
ことはなく、専ら、蓄電池の配列や組電池の構造に応じ
て決定される。これ故、先に述べた過放電現象はまぬが
れない。
BEST MODE FOR CARRYING OUT THE INVENTION Generally, communication equipment, OA equipment, AV
When constructing an assembled battery used in portable equipment such as equipment, in addition to a plurality of storage batteries, safety elements such as a thermostat, a fuse, and a polyswitch are incorporated for the purpose of ensuring safety and protecting the circuit. Further, as one of the charging control methods for performing rapid charging, a sensor such as a thermistor may be incorporated to detect the temperature of the battery. The installation positions of such sensors and safety elements are almost determined by the arrangement of a plurality of storage batteries and the structure of the assembled battery, but in general, they are often determined as the positions where the temperature easily rises. In other words, the installation positions of the sensors and the safety elements are not determined in consideration of variations in the performance of the individual storage batteries, but are determined exclusively according to the arrangement of the storage batteries and the structure of the assembled battery. Therefore, the above-mentioned over-discharge phenomenon cannot be avoided.

【0012】そこで本発明に係る組電池においては、セ
ンサー類や安全素子が設けられる位置に、容量の低い蓄
電池、または正極重量の小さい蓄電池が配置される。こ
のような容量の低い蓄電池、または正極重量の小さい蓄
電池は、その充電時に最も早く充電が完了し、また電池
の温度上昇が最も早く起こる。このため充電時の電圧検
出による充電制御方法や、電池の温度上昇を検出する充
電制御方法等を用いてその充電を制御する場合、その充
電量が容量の低い蓄電池または正極重量の小さい蓄電池
で規制されることになり、他の蓄電池は上記容量の低い
蓄電池または正極重量の小さい蓄電池と同じ量だけ充電
される。従ってこの後、組電池を放電する場合には、各
蓄電池の放電容量は個々の電池本来が持つ容量に拘わる
ことなく同じ放電量となる。この為、前述した組電池の
過放電現象が起きた場合にも、各蓄電池の放電容量が揃
っているので、過放電に伴う転極を受ける蓄電池は発生
しないことになる。
Therefore, in the assembled battery according to the present invention, a storage battery having a low capacity or a storage battery having a small positive electrode weight is arranged at a position where sensors and safety elements are provided. In such a storage battery having a low capacity or a storage battery having a small positive electrode weight, the charging is completed at the earliest, and the temperature rise of the battery occurs earliest. For this reason, when controlling charging by using a charging control method that detects voltage during charging or a charging control method that detects a rise in battery temperature, the amount of charge is regulated by a storage battery with a low capacity or a storage battery with a small positive electrode weight. Therefore, the other storage batteries are charged by the same amount as the storage battery having the low capacity or the storage battery having the small positive electrode weight. Therefore, after this, when the assembled battery is discharged, the discharge capacity of each storage battery becomes the same discharge amount regardless of the original capacity of each battery. Therefore, even when the above-mentioned over-discharge phenomenon of the assembled battery occurs, the discharge capacities of the respective storage batteries are uniform, so that no storage battery that undergoes reversal due to over-discharge occurs.

【0013】結局、組電池の放電性能等からなる信頼性
はセンサー類の設置された容量の低い電池、または正極
重量の小さい電池の性能に依存することになり、組電池
の過放電に伴う転極現象による信頼性の低下を回避する
ことができる。つまり単電池本来の性能を再現する信頼
性の高い組電池の提供が可能となる。ここで本発明に係
る組電池の製造方法について説明すると、本発明におい
ては先ず製造された複数の蓄電池を、その電池容量に応
じて電池容量の大きい蓄電池群と電池容量の小さい電池
群とに分けることから開始される。或いは製造された複
数の蓄電池を、その正極の重量に応じて正極重量の重い
(大きい)蓄電池群と正極重量の軽い(小さい)電池群
とに分けることから開始される。
In the end, the reliability of the assembled battery, which depends on the discharge performance and the like, depends on the performance of the battery having a low capacity in which the sensors are installed or the battery having a small positive electrode weight. It is possible to avoid a decrease in reliability due to the extreme phenomenon. In other words, it is possible to provide a highly reliable assembled battery that reproduces the original performance of a single battery. Explaining the method for manufacturing the assembled battery according to the present invention, first, in the present invention, the plurality of manufactured storage batteries are divided into a storage battery group having a large battery capacity and a battery group having a small battery capacity according to the battery capacities. It starts from that. Alternatively, it is started by dividing a plurality of manufactured storage batteries into a storage battery group having a large positive electrode weight (large) and a battery group having a small positive electrode weight (small) according to the weight of the positive electrode.

【0014】ここで電池容量または正極の重量による蓄
電池の選別について説明する。複数の蓄電池の電池容量
または正極重量がほぼ正規分布を示すと仮定する。そし
て或る境界値Pに従って上記蓄電池を、その電池容量ま
たは正極重量の値が大きい群Lと小さい群Sとに分け
る。このとき小さい群Sから選んだ蓄電池の電池容量ま
たは正極重量は、大きい群Lより選んだ蓄電池の電池容
量または正極重量より必ず小さいと言うことができる。
The selection of the storage battery according to the battery capacity or the weight of the positive electrode will be described below. It is assumed that the battery capacities or the positive electrode weights of a plurality of storage batteries exhibit a nearly normal distribution. Then, according to a certain boundary value P, the storage battery is divided into a group L having a large battery capacity or a positive electrode weight and a group S having a small positive electrode weight. At this time, it can be said that the battery capacity or the positive electrode weight of the storage battery selected from the small group S is always smaller than the battery capacity or the positive electrode weight of the storage battery selected from the large group L.

【0015】一方、この正規分布曲線下の面積(蓄電池
の総数)は上記境界値Pにより、大きい群Lの面積AL
と小さい群Sの面積ASとに2分することができる。こ
れにより次の式が成立する。 AL:AS =[群Lの個数]:[群Sの個数] …(3) 即ち、或る境界値Pによって2分した面積比によって2
つの群L,Sの個数の比を決定できることがわかる。逆
に言えば2つの群L,Sの個数の比を指定することによ
って或る境界値Pを決定することができる。
On the other hand, the area under the normal distribution curve (total number of storage batteries) is the area AL of the large group L depending on the boundary value P.
And the area AS of the small group S can be divided into two. As a result, the following equation is established. AL: AS = [number of groups L]: [number of groups S] (3) That is, 2 by the area ratio divided by a certain boundary value P.
It can be seen that the ratio of the numbers of the two groups L and S can be determined. Conversely speaking, a certain boundary value P can be determined by designating the ratio of the numbers of the two groups L and S.

【0016】図1に規準正規分布の模式図を示した。規
準正規分布曲線下の全面積は1に等しい。図1において
斜線で示されるz=0からzの正値までの上記規準正規
分布曲線下の部分の面積と変数zの関係は統計学的に求
められている。その関係表を用いて2分したい面積比に
対する変数zの値を求める。すると本発明の場合は概ね
次の関係が成立する。
FIG. 1 shows a schematic diagram of the standard normal distribution. The total area under the normal distribution curve is equal to 1. The relationship between the variable z and the area under the standard normal distribution curve from z = 0 to a positive value of z indicated by diagonal lines in FIG. 1 is statistically obtained. Using the relationship table, the value of the variable z for the area ratio to be divided into two is calculated. Then, in the case of the present invention, the following relationships are generally established.

【0017】[容量/重量の小さい群Sの個数]<[容
量/重量の大きい群Lの個数] [境界値P]<[平均値X] 従って変数zは負の値を示す。全面積はz=0を軸とし
て対称性があることから容量または重量の小さい群Sの
個数の比率に対応するzと、そのときの境界値Pが次の
式で求められる。
[Number of groups S having small capacity / weight] <[Number of groups L having large capacity / weight] [Boundary value P] <[Average value X] Therefore, the variable z shows a negative value. Since the total area has symmetry with z = 0 as an axis, z corresponding to the ratio of the numbers of the groups S having a small capacity or small weight and the boundary value P at that time are obtained by the following formula.

【0018】 [zに対応する面積] =0.5−[容量/重量の小さい群Sの個数の比率] …(4) [境界値P]=[平均値X]−z×[標準偏差S] …(5) このようにすれば種々の組電池の仕様に合わせてその電
池の構成本数と、センサー類や安全素子の数に応じて最
適な個数比に蓄電池を選別することができる。従って蓄
電池を無駄にすることなく、組電池を生産効率良く製造
することが可能となる。
[Area corresponding to z] = 0.5- [Ratio of number of groups S having small capacity / small weight] (4) [boundary value P] = [average value X] −z × [standard deviation S] ] (5) By doing so, the storage batteries can be selected in an optimum number ratio according to the specifications of various assembled batteries and the number of constituent batteries and the number of sensors and safety elements. Therefore, it is possible to manufacture the assembled battery with high production efficiency without wasting the storage battery.

【0019】[0019]

【実施例】以下、実施例1により本発明を詳細に説明す
る。本発明による実施例1として、携帯用液晶テレビに
用いられる8本直列組電池の場合を詳細に説明する。公
知のAAサイズで公称容量800mAhのニッケルカド
ミウム電池を製造し、これらの蓄電池を初充放電した後
に終止電圧1.0Vまで完全放電をして、各電池の電池
容量を測定した。このとき無作為に100個の電池容量
の値を抜き出し、それらの電池容量の平均値Xと標準偏
差Sを求めた。
EXAMPLE The present invention will be described in detail below with reference to Example 1. As Example 1 according to the present invention, a case of an eight-series assembled battery used in a portable liquid crystal television will be described in detail. Nickel-cadmium batteries having a known AA size and a nominal capacity of 800 mAh were manufactured, and these storage batteries were initially charged and discharged, and then completely discharged to an end voltage of 1.0 V, and the battery capacities of the respective batteries were measured. At this time, the values of 100 battery capacities were randomly extracted, and the average value X and standard deviation S of those battery capacities were determined.

【0020】ここで上記組電池の仕様は、充電制御のた
めの温度センサーが1箇所、安全素子として復帰型のサ
ーモスタットを1箇所備え付けるものとする。この場
合、これらの前記2箇所に容量の小さい電池を配置する
には、製造した蓄電池を [容量の小さい群S]:[容量の大きい群L]=2:6 の比に容量選別すれば良い。そこで容量の小さい群Sの
割合が25%となるように、[0.25]を前述した式
(4)に代入し、面積0.25に対応する変数zの値を
関係表により求める。このとき、その関係表中で最も近
い値に対応する変数zは[0.67]であった。このz
の値を前述した式(5)に代入して境界値Pを求めた。
この境界値Pを用いて電池全数を、容量がP値未満の容
量の小さい群Sと、P値以上の容量の大きい群Lの2群
に選別した。そして組電池の温度センサーとサーモスタ
ットの位置に容量の小さい群Sから任意に選んだ蓄電池
2本を配置し、残りの位置に容量の大きい群Lから任意
に選んだ電池6本を配置して、本発明による組電池Aを
作製した。
In the specification of the battery pack, one temperature sensor for charging control and one resettable thermostat as a safety element are provided. In this case, in order to arrange batteries having small capacities at these two locations, the capacity of the manufactured storage batteries may be selected in a ratio of [group S having small capacity]: [group L having large capacity] = 2: 6. . Therefore, [0.25] is substituted into the above-mentioned formula (4) so that the ratio of the group S having a small capacity is 25%, and the value of the variable z corresponding to the area 0.25 is obtained from the relation table. At this time, the variable z corresponding to the closest value in the relation table was [0.67]. This z
The boundary value P was obtained by substituting the value of Eq.
Using this boundary value P, the total number of batteries was selected into two groups, a small group S having a capacity of less than the P value and a large group L having a capacity of the P value or more. Then, two storage batteries arbitrarily selected from the small capacity group S are arranged at the positions of the temperature sensor and the thermostat of the assembled battery, and six batteries arbitrarily selected from the large capacity group L are arranged at the remaining positions, An assembled battery A according to the present invention was produced.

【0021】一方、本発明品の比較例1として、組電池
の温度センサーとサーモスタットの位置に容量の大きい
群Lから任意に選んだ電池2本を配置し、残りの位置に
は容量の小さい群Sと容量の大きい群Lの両群から任意
に選んだ電池6本を配置して比較例1の組電池Bを作製
した。これらの組電池を充電条件(電流1C、−ΔV検
出もしくは温度検出の充電制御)、放電条件(定抵抗1
0Ω,接続3時間)、休止時間(充電後・放電後それぞ
れ1時間)のサイクル評価にかけた。このサイクル評価
の放電条件は機器に適切な終止電圧が設定されていない
ことを想定した過放電現象を再現したものであり、組電
池を構成する電池に容量ばらつきがある場合には、少な
くとも一本は必ず転極する電池が存在する過酷な条件で
ある。
On the other hand, as Comparative Example 1 of the product of the present invention, two batteries arbitrarily selected from the group L having a large capacity are arranged at the position of the temperature sensor and the thermostat of the battery pack, and the group having a small capacity is arranged at the remaining positions. Six batteries arbitrarily selected from both groups of S and a group L having a large capacity were arranged to prepare an assembled battery B of Comparative Example 1. These assembled batteries are charged under conditions of charge (current 1C, charge control of -ΔV detection or temperature detection), discharge conditions (constant resistance 1
It was subjected to cycle evaluation of 0Ω, connection 3 hours) and rest time (1 hour each after charging and discharging). The discharge condition for this cycle evaluation is a reproduction of the over-discharge phenomenon that assumes that the device does not have an appropriate final voltage set.If the batteries that make up the battery pack vary in capacity, at least one Is a harsh condition where there is always a reversing battery.

【0022】サイクル数に対して組電池の端子電圧が
8.4Vになるまでの持続時間の維持率を図2に示し
た。ちなみにこの8.4Vという組電池の端子電圧は前
述した式(2)より、8本直列の場合の望ましい終止電
圧を用いた。すると組電池Bは組電池Aに比べて維持率
の減少が早期に生じた。この組電池Bを放電状態でサイ
クル評価を終了した後、蓄電池一本ずつに切り離して各
電池の開路電圧とその後の完全充放電による放電時間を
計測した。その結果を表1に示した。
FIG. 2 shows the maintenance ratio of the duration until the terminal voltage of the assembled battery reaches 8.4 V with respect to the number of cycles. By the way, the terminal voltage of the assembled battery of 8.4V is the desired final voltage in the case of eight batteries in series, according to the formula (2) described above. As a result, the battery pack B had a reduction in the maintenance rate earlier than the battery pack A. After the cycle evaluation was completed in the discharged state of the assembled battery B, the storage batteries were separated one by one, and the open circuit voltage of each battery and the discharge time after the complete charge / discharge were measured. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】次に、実施例2により本発明の他の実施例
を詳細に説明する。本発明による実施例2として、携帯
用液晶テレビに用いられる8本直列組電池の場合を詳細
に説明する。公知のAAサイズで公称容量800mAh
のニッケルカドミウム電池を製造するに際し、この蓄電
池に用いる正極の重量を測定した。このとき無作為に1
00個の正極重量の値を抜き出し、100個の正極重量
の平均値Xと標準偏差Sを求めた。
Next, another embodiment of the present invention will be described in detail with reference to the second embodiment. As Example 2 according to the present invention, a case of an eight-series assembled battery used in a portable liquid crystal television will be described in detail. Known AA size, nominal capacity 800mAh
The weight of the positive electrode used in this storage battery was measured when the nickel cadmium battery was manufactured. At this time randomly 1
The value of the weight of 00 positive electrodes was extracted, and the average value X and the standard deviation S of the weight of 100 positive electrodes were obtained.

【0025】本発明の組電池の仕様は、充電制御のため
の温度センサーが1箇所、安全素子として復帰型のサー
モスタットを1箇所設置するものとする。この場合、こ
れらの2箇所に正極の重量が小さい電池を配置するに
は、正極を [重量の小さい群S]:[重量の大きい群L]=2:6 の比に重量選別すれば良い。そこで重量の小さい群Sの
割合が25%となるように、[0.25]を前述した式
(4)に代入し、面積0.25に対応する変数zの値を
関係表により求めた。このとき、その関係表中で最も近
い値に対応する変数zは[0.67]であった。このz
の値を前述した式(5)に代入して境界値Pを求めた。
この境界値Pを用いて正極全数を容量がP値未満の重量
の小さい群Sと、P値以上の重量の大きい群Lの2群に
選別した。この2群を製造ロットを別々にして、それぞ
れ公知のAAサイズで公称容量800mAhのNi/M
H電池を製造し、所定の初充放電をした。次に組電池の
温度センサーとサーモスタットの位置に、正極の重量の
小さい群Sから任意に選んだ電池2本を配置し、残りの
位置に正極の重量の大きい群Lから任意に選んだ電池6
本を配置して、本発明による組電池Cを作製した。
According to the specification of the assembled battery of the present invention, one temperature sensor for charging control and one resettable thermostat as a safety element are installed. In this case, in order to arrange batteries having a small positive electrode weight at these two locations, the positive electrodes may be weight-sorted in a ratio of [small weight group S]: [large weight group L] = 2: 6. Then, [0.25] was substituted into the above-mentioned formula (4) so that the ratio of the group S having a small weight was 25%, and the value of the variable z corresponding to the area 0.25 was obtained from the relation table. At this time, the variable z corresponding to the closest value in the relation table was [0.67]. This z
The boundary value P was obtained by substituting the value of Eq.
Using this boundary value P, the total number of positive electrodes was divided into two groups, a small group S having a capacity less than the P value and a large group L having a capacity not less than the P value. These two groups are manufactured in different production lots, and each has a known AA size and a nominal capacity of 800 mAh of Ni / M.
An H battery was manufactured and subjected to predetermined initial charge / discharge. Next, two batteries arbitrarily selected from the group S having a small positive electrode weight are arranged at the positions of the temperature sensor and the thermostat of the assembled battery, and a battery 6 arbitrarily selected from the group L having a large positive electrode weight is arranged at the remaining positions.
The books were arranged and the assembled battery C according to the present invention was produced.

【0026】一方、本発明品の比較例2として、組電池
の温度センサーとサーモスタットの位置に正極の重量の
大きい群Lから任意に選んだ電池2本を配置し、残りの
位置には正極の重量の小さい群Sと重量の大きい群Lの
両群から任意に選んだ電池6本を配置して、比較例2の
組電池Dを作製した。これらの組電池を充電条件(電流
1C、−ΔV検出もしくは温度検出の充電制御)、放電
条件(定抵抗10Ω,接続3時間)、休止時間(充電後
・放電後それぞれ1時間)のサイクル評価にかけた。こ
のサイクル評価の放電条件は機器に適切な終止電圧が設
定されていないことを想定した過放電現象を再現したも
のであり、組電池を構成する電池に容量ばらつきがある
場合には、少なくとも一本は必ず転極する電池が存在す
る過酷な条件である。
On the other hand, as Comparative Example 2 of the product of the present invention, two batteries arbitrarily selected from the group L having a large positive electrode weight are arranged at the positions of the temperature sensor and the thermostat of the assembled battery, and the remaining positions of the positive electrode are set. Six batteries arbitrarily selected from both the group S having a small weight and the group L having a large weight were arranged to prepare an assembled battery D of Comparative Example 2. These assembled batteries were subjected to cycle evaluation under charge conditions (current 1C, charge control for -ΔV detection or temperature detection), discharge conditions (constant resistance 10Ω, connection 3 hours), rest time (1 hour after charging and 1 hour after discharging). It was The discharge condition for this cycle evaluation is a reproduction of the over-discharge phenomenon that assumes that the device does not have an appropriate final voltage set.If the batteries that make up the battery pack vary in capacity, at least one Is a harsh condition where there is always a reversing battery.

【0027】サイクル数に対して組電池の端子電圧が
8.4Vになるまでの持続時間の維持率を図3に示し
た。ちなみにこの8.4Vという組電池の端子電圧は前
述した式(2)より、8本直列の場合の望ましい終止電
圧を用いた。すると組電池Dは組電池Cに比べて維持率
の減少が早期に生じた。この組電池Dを放電状態でサイ
クル評価を終了した後、電池一本ずつに切り離して各電
池の開路電圧とその後の放電時間を計測した。その結果
を表2に示した。
FIG. 3 shows the maintenance ratio of the duration until the terminal voltage of the assembled battery reaches 8.4 V with respect to the number of cycles. By the way, the terminal voltage of the assembled battery of 8.4V is the desired final voltage in the case of eight batteries in series, according to the formula (2) described above. Then, the assembled battery D had a reduction in the maintenance rate earlier than the assembled battery C. After the cycle evaluation was completed in the discharged state of this assembled battery D, the batteries were separated into individual batteries and the open circuit voltage of each battery and the subsequent discharge time were measured. The results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】表1より組電池Bでの放電直後において、
開路電圧が低く放電持続時間が著しく低下した電池があ
ることがわかった。これらの電池は転極されたことによ
り性能が劣化したと考えられる。組電池Bは充電制御が
容量の大きい電池に依存したため、この電池より容量の
低い電池がその他の容量の大きい電池の残存容量によっ
て転極させられてしまったと考えられる。これに対して
組電池Aは充電制御が容量の最も低い電池に依存し、各
電池の充電される量が同じとなることにより放電容量が
等しくなり、過放電に伴う転極を回避できたと考えられ
る。即ち、単電池本来の性能を再現していると考えられ
る。
From Table 1, immediately after discharge in the assembled battery B,
It was found that there were batteries with low open circuit voltage and markedly reduced discharge duration. It is considered that the performance of these batteries deteriorated due to the reversal of polarity. It is considered that since the battery pack B relied on a battery having a large capacity for charge control, a battery having a smaller capacity than this battery was poled by the remaining capacity of the other battery having a larger capacity. On the other hand, in the assembled battery A, the charge control depends on the battery having the lowest capacity, and the discharge capacity becomes equal by the same charged amount of each battery, and it is considered that the reversal due to over-discharge could be avoided. To be That is, it is considered that the original performance of the unit cell is reproduced.

【0030】また表2より組電池Dでの放電直後におい
て、開路電圧が低く放電持続時間が著しく低下した電池
があることがわかった。これらの電池は転極されたこと
により性能が劣化したと考えられる。組電池Dは充電制
御が正極重量の大きい電池すなわち容量の大きい電池に
依存したため、この電池より正極重量の小さい電池がそ
の他の容量の残っていた電池により転極させられてしま
ったと考えられる。組電池Cは充電制御が正極の重量の
最も低い電池に依存し、各電池の充電される量が同じと
なることにより放電容量が等しくなり、過放電に伴う転
極を回避できたと考えられる。換言すれば、単電池本来
の性能を再現したと考えられる。
Further, from Table 2, it was found that there was a battery in which the open circuit voltage was low and the discharge duration was remarkably reduced immediately after discharging in the assembled battery D. It is considered that the performance of these batteries deteriorated due to the reversal of polarity. Since the charge control of the assembled battery D relied on a battery having a large positive electrode weight, that is, a battery having a large capacity, it is considered that a battery having a smaller positive electrode weight than this battery was reversed by the battery having the remaining capacity. It is considered that in the assembled battery C, the charge control depends on the battery having the smallest weight of the positive electrode, and the discharge capacities become equal as the charged amount of each battery becomes the same, so that the reversal due to over-discharge can be avoided. In other words, it is considered that the original performance of the unit cell was reproduced.

【0031】尚、本発明はニッケルカドミウム電池に限
らず、ニッケル水素電池等のアルカリ蓄電池は勿論のこ
と、鉛蓄電池やリチウム蓄電池等の蓄電池全般において
も同様の効果が得られることは容易に予測できる。特に
高容量化が進むほど蓄電池の容量ばらつきは大きくなる
傾向にあるため、過放電に伴う転極現象はより深刻とな
る。従って本発明による効果はより大きなものとなるこ
とも容易に予測できる。その他、本発明はその要旨を逸
脱しない範囲で種々変形して実施することができる。
The present invention is not limited to nickel-cadmium batteries, but it can be easily predicted that the same effect can be obtained not only in alkaline storage batteries such as nickel-hydrogen batteries but also in storage batteries such as lead storage batteries and lithium storage batteries. . In particular, as the capacity becomes higher, the capacity variation of the storage battery tends to increase, so that the reversal phenomenon due to overdischarge becomes more serious. Therefore, it can be easily predicted that the effect of the present invention will be greater. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

【0032】[0032]

【発明の効果】このように本発明によれば、種々の機器
ごとの仕様に応じることなく、組電池故の過放電に伴う
転極現象による組電池の信頼性の低下を防ぎ、単電池本
来の性能を再現することができるため、信頼性が高く工
業的価値の高い組電池を供給することが可能となる。し
かも製造した蓄電池を無駄にすることなく使用して組電
池を組み立てることができ、その生産効率を十分に高め
ることができる。
As described above, according to the present invention, it is possible to prevent the deterioration of reliability of the assembled battery due to the reversal phenomenon caused by over-discharge due to the assembled battery without depending on the specifications of various devices, and to improve the unit cell originally. Since the performance can be reproduced, it is possible to supply an assembled battery with high reliability and high industrial value. In addition, the assembled battery can be assembled without wasting the manufactured storage battery, and the production efficiency thereof can be sufficiently improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】蓄電池の規準正規分布曲線の模式図である。FIG. 1 is a schematic diagram of a standard normal distribution curve of a storage battery.

【図2】組電池A,Bの持続時間維持率のサイクル変化
図である。
FIG. 2 is a cycle change diagram of the duration maintenance rate of the assembled batteries A and B.

【図3】組電池C,Dの持続時間維持率のサイクル変化
図である。
FIG. 3 is a cycle change diagram of the duration maintenance rate of the assembled batteries C and D.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数個の蓄電池を導電接続して構成する
組電池の製造方法であって、 製造された複数の蓄電池を、その容量の分布と組電池の
仕様とに基づいて決定される境界値に従って容量の小さ
い蓄電池群と容量の大きい蓄電池群とに分け、 単電池の配列や組電池の構造により決定される充電制御
用のセンサ−類および/または安全素子の配置位置に上
記容量の小さい蓄電池群から抽出した蓄電池を配置する
と共に、残された位置には前記容量の大きい蓄電池群か
ら抽出した蓄電池を配置することを特徴とする組電池の
製造方法。
1. A method of manufacturing an assembled battery, which is configured by conductively connecting a plurality of storage batteries, wherein the plurality of manufactured storage batteries are determined based on a distribution of their capacities and specifications of the assembled battery. According to the value, it is divided into a storage battery group with a small capacity and a storage battery group with a large capacity. A method of manufacturing an assembled battery, wherein a storage battery extracted from the storage battery group is arranged, and a storage battery extracted from the storage battery group having the large capacity is arranged at a remaining position.
【請求項2】 複数個の蓄電池を導電接続して構成する
組電池の製造方法であって、 製造された複数の蓄電池を、その正極重量の分布と組電
池の仕様とに基づいて決定される境界値に従って正極重
量の小さい蓄電池群と正極重量の大きい蓄電池群とに分
け、 単電池の配列や組電池の構造により決定される充電制御
用のセンサー類および/または安全素子の配置位置に上
記重量の小さい蓄電池群から抽出した蓄電池を配置する
と共に、残された位置には前記重量の大きい蓄電池群か
ら抽出した蓄電池を配置することを特徴とする組電池の
製造方法。
2. A method of manufacturing an assembled battery, which is configured by conductively connecting a plurality of storage batteries, wherein the plurality of manufactured storage batteries are determined based on the distribution of the positive electrode weight and the specifications of the assembled battery. According to the boundary value, it is divided into a storage battery group with a small positive electrode weight and a storage battery group with a large positive electrode weight, and the above-mentioned weight is placed at the position where sensors and / or safety elements for charge control are determined by the arrangement of the unit cells and the structure of the battery pack A storage battery extracted from a small storage battery group is arranged, and a storage battery extracted from the heavy storage battery group is arranged at the remaining position.
JP2002345954A 2002-11-28 2002-11-28 Manufacturing method of battery pack Expired - Fee Related JP3625292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345954A JP3625292B2 (en) 2002-11-28 2002-11-28 Manufacturing method of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345954A JP3625292B2 (en) 2002-11-28 2002-11-28 Manufacturing method of battery pack

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24857093A Division JP3397854B2 (en) 1993-09-10 1993-09-10 Battery pack

Publications (2)

Publication Number Publication Date
JP2003178808A true JP2003178808A (en) 2003-06-27
JP3625292B2 JP3625292B2 (en) 2005-03-02

Family

ID=19197848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345954A Expired - Fee Related JP3625292B2 (en) 2002-11-28 2002-11-28 Manufacturing method of battery pack

Country Status (1)

Country Link
JP (1) JP3625292B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277402A (en) * 2008-05-13 2009-11-26 Murata Mfg Co Ltd Combining method of electronic material structure body, manufacturing method of electronic module body equipped with the body, combining device for electronic material structure body, and manufacturing device of electronic module body equipped with the device
WO2011108025A1 (en) 2010-03-04 2011-09-09 三菱電機株式会社 Assembled battery and power storage system
CN113178624A (en) * 2021-03-03 2021-07-27 安徽力普拉斯电源技术有限公司 High-consistency matching method for power batteries for electric road vehicles
CN113967609A (en) * 2021-10-09 2022-01-25 上海空间电源研究所 Screening and matching method of high-power lithium ion batteries for carrier rocket

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277402A (en) * 2008-05-13 2009-11-26 Murata Mfg Co Ltd Combining method of electronic material structure body, manufacturing method of electronic module body equipped with the body, combining device for electronic material structure body, and manufacturing device of electronic module body equipped with the device
WO2011108025A1 (en) 2010-03-04 2011-09-09 三菱電機株式会社 Assembled battery and power storage system
US9041404B2 (en) 2010-03-04 2015-05-26 Mitsubishi Electric Corporation Electric power storage system
CN113178624A (en) * 2021-03-03 2021-07-27 安徽力普拉斯电源技术有限公司 High-consistency matching method for power batteries for electric road vehicles
CN113178624B (en) * 2021-03-03 2022-09-20 安徽力普拉斯电源技术有限公司 High-consistency matching method for power batteries of electric road vehicles
CN113967609A (en) * 2021-10-09 2022-01-25 上海空间电源研究所 Screening and matching method of high-power lithium ion batteries for carrier rocket
CN113967609B (en) * 2021-10-09 2023-11-17 上海空间电源研究所 Screening and grouping method of high-power lithium ion battery for carrier rocket

Also Published As

Publication number Publication date
JP3625292B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP3879494B2 (en) Battery pack
EP3923007B1 (en) Battery management apparatus, battery management method, battery pack, and electric vehicle
CN110509817B (en) Vehicle and battery equalization control method and device
JP6494840B1 (en) Battery unit inspection apparatus, battery unit inspection method and program
JP2009081981A (en) Charge state optimizing apparatus and battery pack system provided therewith
JP2000228832A (en) Control method of charging and discharging
JP3229696B2 (en) How to charge the battery
JP2009038876A (en) Voltage equalizer for battery pack
JP3841001B2 (en) Battery control system
WO2006115342A1 (en) Circuit and chip for protecting battery, method of manufacturing the same and battery pack having the same
JP4512062B2 (en) Voltage balance adjustment method for assembled battery with multiple lithium ion secondary batteries connected in series
CN101504977A (en) Multi-cell electric power system
JP2004328902A (en) Method for constituting battery module and battery module
CN113795762B (en) Battery diagnosis device, battery diagnosis method and energy storage system
JP2011205839A (en) Charger and battery pack
JP3419115B2 (en) Battery charge / discharge protection device
TW202010211A (en) Rechargeable battery management system
JP2010009840A (en) Battery pack and battery system equipped with it
JP7374341B2 (en) Battery management system, battery pack, energy storage system and battery management method
JP2008235078A (en) Screening method of battery cell according to discharge capacity rank
JP2003178808A (en) Manufacturing method of battery pack
JP2002135989A (en) Control method for charging and discharging storage battery
JP3397854B2 (en) Battery pack
JPH08241705A (en) Battery
JPH03173323A (en) Secondary battery charger

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees