JP2009038876A - Voltage equalizer for battery pack - Google Patents

Voltage equalizer for battery pack Download PDF

Info

Publication number
JP2009038876A
JP2009038876A JP2007200253A JP2007200253A JP2009038876A JP 2009038876 A JP2009038876 A JP 2009038876A JP 2007200253 A JP2007200253 A JP 2007200253A JP 2007200253 A JP2007200253 A JP 2007200253A JP 2009038876 A JP2009038876 A JP 2009038876A
Authority
JP
Japan
Prior art keywords
voltage
soc
vbst
equalization
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007200253A
Other languages
Japanese (ja)
Inventor
Hitoshi Sakai
仁 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007200253A priority Critical patent/JP2009038876A/en
Priority to PCT/JP2008/063200 priority patent/WO2009017009A1/en
Publication of JP2009038876A publication Critical patent/JP2009038876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage equalizer for a battery pack, which properly equalizes the voltage by less charge and discharge, the equalizer which equalizes the voltage of the battery pack where a plurality of cells to be charged and discharged are connected in series. <P>SOLUTION: This voltage equalizer detects the voltage Vb(k) of each unit cell (step S100), and charges or discharges a cell where a voltage difference from a voltage (reference voltage Vbst) to become a reference is at or over a threshold Vr among detected voltages thereby equalizing the voltage. For example, it equalizes the voltage by discharging the cell (steps S102-114) whose voltage difference from the lowest voltage Vbmin being the lowest voltage among the detected voltage is at or over the threshold Vr. Here, the threshold Vr is set at a different value (step S104), according to the reference voltage Vbst (the lowest voltage Vbmin) so that it reduces the difference, by the reference voltage Vbst (for example, the lowest voltage Vbmin), in the range of the charge state corresponding to the threshold Vr. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、組電池の電圧均等化装置に関し、詳しくは、複数の単電池を直列に接続してなる組電池においてそれら複数の単電池の電圧を均等化する均等化装置に関する。   The present invention relates to an assembled battery voltage equalizing apparatus, and more particularly to an equalizing apparatus for equalizing voltages of a plurality of unit cells in an assembled battery formed by connecting a plurality of unit cells in series.

充放電可能な単電池(二次電池)の複数個を直列に接続してなる組電池では、該組電池を構成する個々の単電池の自己放電電流や経時変化(劣化)の程度のばらつき、充電効率のばらつき等に起因して、これら単電池間で電圧がばらつくことがある。かかる電圧のばらつきは、一部の単電池が過充電または過放電されて該単電池の寿命を低下させる要因となり得る。このため、上記組電池を構成する単電池の電圧アンバランスを解消する均等化装置が提案されている。例えば特許文献1には、組電池を構成する各単電池の電圧を検出し、それらのうち最も電圧の低い単電池との間に一定値以上の電圧差が生じた単電池を放電させることによって均等化を行う技術が記載されている。   In an assembled battery in which a plurality of chargeable / dischargeable cells (secondary batteries) are connected in series, self-discharge current of individual cells constituting the assembled battery and variations in the degree of deterioration (deterioration) over time, Due to variations in charging efficiency, etc., the voltage may vary between these single cells. Such variations in voltage may cause some of the cells to be overcharged or overdischarged to reduce the life of the cells. For this reason, an equalizing device that eliminates voltage imbalance of the cells constituting the assembled battery has been proposed. For example, in Patent Document 1, by detecting the voltage of each unit cell constituting the assembled battery and discharging a unit cell in which a voltage difference of a certain value or more is generated between the unit cell having the lowest voltage among them. A technique for equalization is described.

特開2003−282155号公報JP 2003-282155 A

ここで、電圧均等化のための放電量が多くなると組電池の実効容量(エネルギー効率)が低下してしまう。したがって、より少ない放電量で、電圧ばらつきにより生じ得る不都合(例えば、一部の単電池が過充電または過放電されるという事象)を効果的に回避することが望ましい。そこで本発明は、充放電可能な単電池が複数直列に接続された組電池の電圧を均等化する装置であって、より少量の充放電によって適切に均等化を行うことができる、組電池の電圧均等化装置を提供することを目的とする。   Here, when the discharge amount for voltage equalization increases, the effective capacity (energy efficiency) of the assembled battery decreases. Therefore, it is desirable to effectively avoid inconveniences (for example, an event in which some cells are overcharged or overdischarged) with a smaller discharge amount, which may be caused by voltage variations. Therefore, the present invention is an apparatus for equalizing the voltage of an assembled battery in which a plurality of chargeable / dischargeable cells are connected in series, and can be appropriately equalized with a smaller amount of charge / discharge. An object is to provide a voltage equalizing apparatus.

本発明者は、上記単電池の充電状態(state of charge、以下「SOC」ということもある。)に対する開回路電圧(open circuit voltage、以下「OCV」ということもある。)の関係を示す特性曲線の勾配が該電池のSOCによって異なり、したがって所定の電圧差に対応するSOCの幅が電圧(OCV)によって異なることに着目した。そして、電圧均等化のための充電または放電を開始する条件(すなわち、均等化処理部を構成する均等化回路の作動条件)をSOCに応じて変更することにより上記課題を解決し得ることを見出して本発明を完成した。   The inventor has characteristics indicating a relationship between an open circuit voltage (hereinafter also referred to as “OCV”) and a state of charge (hereinafter also referred to as “SOC”) of the unit cell. It was noted that the slope of the curve varies depending on the SOC of the battery, and therefore the SOC width corresponding to a predetermined voltage difference varies depending on the voltage (OCV). Then, it has been found that the above problem can be solved by changing the condition for starting charging or discharging for voltage equalization (that is, the operating condition of the equalization circuit constituting the equalization processing unit) according to the SOC. The present invention has been completed.

本発明によると、充放電可能な単電池(二次電池)が複数直列に接続された組電池において該複数の単電池の電圧を均等化する均等化装置が提供される。その均等化装置は、前記単電池の電圧を検出する電圧検出部を備える。また、その検出された電圧のうち基準となる電圧である基準電圧Vbstとの電圧差が閾値Vr以上の単電池を充電し又は放電させて電圧の均等化を図る(すなわち、該単電池の電圧と前記基準電圧との電圧差を減らすように、前記単電池の電圧が前記基準電圧Vbstよりも閾値Vr以上高い場合には該単電池を放電させ、前記単電池の電圧が前記基準電圧Vbstよりも閾値Vr以上低い場合には該単電池を充電する)均等化処理部を備える。ここで前記閾値Vrは、該閾値Vrに対応する充電状態の幅の前記基準電圧Vbstによる差異を緩和するように、該基準電圧Vbstに応じて異なる値に設定されている。   ADVANTAGE OF THE INVENTION According to this invention, the equalization apparatus which equalizes the voltage of this several unit cell in the assembled battery in which the unit cell (secondary battery) which can be charged / discharged was connected in series is provided. The equalization apparatus includes a voltage detection unit that detects the voltage of the unit cell. In addition, the cells having the voltage difference from the reference voltage Vbst, which is a reference voltage among the detected voltages, are charged or discharged to equalize the voltages (that is, the voltage of the cells). When the voltage of the unit cell is higher than the reference voltage Vbst by a threshold Vr or more, the unit cell is discharged so that the voltage of the unit cell is higher than the reference voltage Vbst. Is also provided with an equalization processing unit that charges the unit cell when the threshold value Vr is lower than the threshold value Vr. Here, the threshold value Vr is set to a different value according to the reference voltage Vbst so as to relieve the difference in the width of the charging state corresponding to the threshold value Vr due to the reference voltage Vbst.

なお、本明細書において「単電池」とは、組電池を構成する個々の蓄電素子を指す用語であって、特に限定しない限り種々の組成および構成の電池を包含する。また、「二次電池」とは、繰り返し充電可能な電池一般をいい、リチウムイオン電池、ニッケル水素電池等のいわゆる蓄電池を包含する。リチウムイオン電池を構成する蓄電素子はここでいう「単電池」に包含される典型例であり、そのような単電池を複数直列に接続して成るリチウムイオン電池モジュールはここで開示される「組電池」の典型例である。   In the present specification, the “single cell” is a term indicating individual power storage elements constituting an assembled battery, and includes batteries having various compositions and configurations unless otherwise specified. The “secondary battery” refers to a battery that can be repeatedly charged, and includes so-called storage batteries such as lithium ion batteries and nickel metal hydride batteries. The electric storage element constituting the lithium ion battery is a typical example included in the “unit cell” referred to herein, and a lithium ion battery module formed by connecting a plurality of such unit cells in series is disclosed in the “set” This is a typical example of a “battery”.

上記基準電圧Vbstとしては、例えば、前記検出された電圧のうち最も低い電圧である最低電圧Vbminを好ましく採用することができる。この場合、前記均等化処理部は、該基準電圧Vbst(ここでは最低電圧Vbmin)との電圧差が閾値Vr以上の単電池を放電させて電圧の均等化を図るように構成されたものであり得る。すなわち、本発明によると、充放電可能な単電池(二次電池)が複数直列に接続された組電池において該複数の単電池の電圧を均等化する均等化装置が提供される。その均等化装置は、前記単電池の電圧を検出する電圧検出部を備える。また、その検出された電圧のうち最も低い電圧である最低電圧Vbminとの電圧差が閾値Vr以上の単電池を放電させて電圧の均等化を図る均等化処理部を備える。ここで前記閾値Vrは、閾値Vrに対応する充電状態(SOC)の幅の、前記最低電圧Vbminによる差異を緩和するように、該最低電圧Vbminに応じて異なる値に設定されている。
なお、上記基準電圧Vbstとして、例えば、前記検出された電圧のうち最も高い電圧である最高電圧Vbmaxを採用してもよい。この場合、前記均等化処理部は、該最高電圧Vbmax)との電圧差が閾値Vr以上の単電池を充電して電圧の均等化を図るように構成されたものであり得る。
As the reference voltage Vbst, for example, the lowest voltage Vbmin that is the lowest voltage among the detected voltages can be preferably used. In this case, the equalization processing unit is configured to discharge the cells having a voltage difference from the reference voltage Vbst (here, the minimum voltage Vbmin) equal to or higher than the threshold Vr to equalize the voltage. obtain. That is, according to the present invention, there is provided an equalizing device that equalizes the voltages of a plurality of unit cells in a battery pack in which a plurality of chargeable / dischargeable unit cells (secondary cells) are connected in series. The equalization apparatus includes a voltage detection unit that detects the voltage of the unit cell. Moreover, the equalization process part which discharges the cell whose voltage difference with minimum voltage Vbmin which is the lowest voltage among the detected voltages is more than threshold value Vr, and equalizes a voltage is provided. Here, the threshold value Vr is set to a different value in accordance with the minimum voltage Vbmin so as to alleviate the difference in the state of charge (SOC) corresponding to the threshold value Vr due to the minimum voltage Vbmin.
As the reference voltage Vbst, for example, the highest voltage Vbmax that is the highest voltage among the detected voltages may be employed. In this case, the equalization processing unit may be configured to charge the cells having a voltage difference from the maximum voltage Vbmax) equal to or higher than the threshold value Vr to equalize the voltages.

上述のように、一般に二次電池(例えばリチウムイオン電池)のSOCとOCVとは直線関係にはなく、SOC−OCV特性曲線はSOCによって異なる勾配(典型的には、該曲線の接線の傾きとして把握され得る。)を有する。したがって、上記特性曲線の勾配が相対的に小さい箇所に比べて、該勾配が相対的に大きい箇所では、単電池のSOC(該電池に蓄えられている電荷量)の差異が電圧差に及ぼす影響が大きくなる。このため、従来のようにSOCに拘わらず閾値Vrを一定の値に設定すると、均等化のための充電または放電(均等化処理)が必要以上に頻繁に行われ、あるいは必要なときに均等化処理が行われないという不都合が生じ得る。例えば、上記基準電圧Vbstを示す単電池(基準電圧単電池)が相対的に特性曲線の勾配が小さい充電状態にある場合に組電池を構成する単電池のSOCのばらつきを所望の範囲(SOCの幅)におさめるのに特定の閾値Vrが適当であるとしても、該基準電圧単電池が相対的に特性曲線の勾配が大きい充電状態にある場合に上記特定の閾値Vr(固定値)をそのまま適用すると、SOCのばらつきの程度がまだ上記所望の範囲内におさまっているのに均等化処理を行ってしまうこととなる。   As described above, in general, the SOC and OCV of a secondary battery (for example, a lithium ion battery) are not linearly related, and the SOC-OCV characteristic curve varies depending on the SOC (typically, the slope of the tangent of the curve). Can be grasped.) Therefore, compared with the location where the slope of the characteristic curve is relatively small, the influence of the difference in the SOC (the amount of charge stored in the battery) on the voltage difference at the location where the slope is relatively large. Becomes larger. For this reason, if the threshold value Vr is set to a constant value regardless of the SOC as in the prior art, charging or discharging (equalization processing) for equalization is performed more frequently than necessary or equalized when necessary. There may be a disadvantage that processing is not performed. For example, when the single cell (reference voltage single cell) indicating the reference voltage Vbst is in a charged state where the slope of the characteristic curve is relatively small, the variation in the SOC of the single cells constituting the assembled battery is reduced to a desired range (SOC The specific threshold value Vr (fixed value) is applied as it is when the reference voltage cell is in a charged state where the slope of the characteristic curve is relatively large even if the specific threshold value Vr is appropriate Then, although the degree of variation in SOC is still within the desired range, the equalization process is performed.

ここに開示される技術では、閾値Vrに対応する充電状態の幅の前記基準電圧Vbst(例えば最低電圧Vbmin)による差異を緩和するように、該基準電圧Vbstに応じて上記閾値Vrを異なる値に設定する(すなわち、該基準電圧Vbstに応じて上記閾値Vrを変更する)。より具体的にいえば、SOC−OCV特性曲線の勾配が相対的に大きい箇所では、該曲線の勾配が相対的に小さい箇所に比べて閾値Vrを大きな値に設定する。例えば、当該閾値Vrに対応するSOCの幅(容量の差異)がSOC−OCV特性曲線の全体に亘って(すなわちSOCによらず)実質的に同一となるように閾値Vrを設定することが好ましい。
閾値Vrを上記のように設定することにより、基準電圧Vbstの値に拘わらず(したがって、該基準電圧Vbstを示す単電池の充電状態(SOCst)に拘らず)、SOCのばらつきが一定の許容限度を超えた場合にのみ効果的に均等化処理を行うことができる。したがって、無駄な充放電(特に、SOCのばらつきの程度がまだ上記所望の範囲内におさまっているのに均等化処理を行ってしまうことによる充放電)を抑えて、より少量の充放電によって効率よく均等化処理を行うことができる。これにより均等化処理に要するエネルギーを節約することができる。
例えば、基準電圧Vbstとして最低電圧Vbminを用いる態様では、閾値Vrを上記のように設定することにより、上記最低電圧Vbminの値に拘わらず(したがって、該最低電圧Vbminを示す単電池の充電状態(SOCmin)に拘らず)、SOCのばらつきが一定の許容限度を超えた場合にのみ効果的に均等化処理を行うことができる。したがって、無駄な放電(特に、SOCのばらつきの程度がまだ上記所望の範囲内におさまっているのに均等化処理を行ってしまうことによる放電)を抑えて、より少量の放電によって効率よく均等化処理を行うことができる。これにより組電池のエネルギーをより有効に利用することができる。
In the technique disclosed herein, the threshold value Vr is set to a different value in accordance with the reference voltage Vbst so as to alleviate a difference due to the reference voltage Vbst (for example, the lowest voltage Vbmin) in the state of charge corresponding to the threshold value Vr. (Ie, the threshold value Vr is changed according to the reference voltage Vbst). More specifically, at a location where the slope of the SOC-OCV characteristic curve is relatively large, the threshold value Vr is set to a larger value than at a location where the slope of the curve is relatively small. For example, the threshold value Vr is preferably set such that the SOC width (capacity difference) corresponding to the threshold value Vr is substantially the same over the entire SOC-OCV characteristic curve (that is, regardless of the SOC). .
By setting the threshold value Vr as described above, regardless of the value of the reference voltage Vbst (thus, regardless of the state of charge of the single cell indicating the reference voltage Vbst (SOCst)), the variation in the SOC is a certain allowable limit. The equalization process can be effectively performed only when the value exceeds. Therefore, unnecessary charge / discharge (especially, charge / discharge caused by performing the equalization process even though the degree of variation in the SOC is still within the desired range) is suppressed, and the charge / discharge is made less efficient. The equalization process can be performed well. Thereby, the energy required for the equalization process can be saved.
For example, in the aspect using the minimum voltage Vbmin as the reference voltage Vbst, the threshold value Vr is set as described above, so that the state of charge of the unit cell indicating the minimum voltage Vbmin (therefore, the state of charge of the unit cell indicating the minimum voltage Vbmin) ( Regardless of the SOCmin), the equalization process can be effectively performed only when the variation of the SOC exceeds a certain allowable limit. Therefore, wasteful discharge (especially, discharge caused by performing the equalization process even though the degree of variation in SOC is still within the desired range) is suppressed, and equalization is efficiently performed with a smaller amount of discharge. Processing can be performed. Thereby, the energy of the assembled battery can be used more effectively.

ここに開示される均等化装置の好ましい一態様では、前記基準電圧Vbst(例えば最低電圧Vbmin)との電圧差が閾値Vr以上である単電池を、前記基準電圧Vbst(例えば最低電圧Vbmin)の値に拘わらず一定電荷量だけ充電し又は放電させるように(上記最低電圧Vbminを基準電圧Vbstとする態様では、最低電圧Vbminとの電圧差が閾値Vr以上である単電池を放電させるように)構成されている。例えば、前記基準電圧Vbst(例えば最低電圧Vbmin)との電圧差が閾値Vr以上である単電池を、一回の均等化処理当たり、該閾値Vrに対応するSOCの幅以下の一定電荷量だけ充電し又は放電させるように(上記最低電圧Vbminを基準電圧Vbstとする態様では放電させるように)構成する。かかる態様によると、簡単な制御機構によって、均等化処理を必要とする単電池(基準電圧Vbstとの電圧差が閾値Vr以上である単電池)を過剰に充放電させることを防止しつつ、該単電池の電圧を適切に均等化することができる。   In a preferred aspect of the equalization apparatus disclosed herein, a unit cell whose voltage difference from the reference voltage Vbst (for example, the minimum voltage Vbmin) is equal to or greater than a threshold value Vr is set to a value of the reference voltage Vbst (for example, the minimum voltage Vbmin). Regardless of the configuration, the battery is charged or discharged by a certain amount of charge (in the embodiment in which the minimum voltage Vbmin is the reference voltage Vbst, a cell having a voltage difference from the minimum voltage Vbmin equal to or greater than the threshold Vr is discharged). Has been. For example, a unit cell whose voltage difference from the reference voltage Vbst (for example, the minimum voltage Vbmin) is equal to or greater than a threshold value Vr is charged by a constant charge amount equal to or less than the width of the SOC corresponding to the threshold value Vr per one equalization process. Or configured to be discharged (in the embodiment in which the minimum voltage Vbmin is the reference voltage Vbst). According to such an aspect, a simple control mechanism prevents excessive charging / discharging of a unit cell that requires equalization processing (a unit cell having a voltage difference from the reference voltage Vbst equal to or greater than the threshold value Vr). It is possible to appropriately equalize the voltages of the single cells.

ここに開示される均等化装置は、例えば、前記単電池がリチウムイオン電池である組電池(換言すれば、複数のリチウムイオン電池が直列に接続された組電池)において該単電池の電圧を均等化する電圧均等化装置として好適である。   The equalization apparatus disclosed herein, for example, equalizes the voltage of the unit cell in an assembled battery in which the unit cell is a lithium ion battery (in other words, an assembled battery in which a plurality of lithium ion batteries are connected in series). This is suitable as a voltage equalizing device.

また本発明は、他の側面として、ここに開示されるいずれかの組電池の電圧均等化装置と、充放電可能な単電池が複数直列に接続された組電池とを含み、前記複数の単電池の電圧を前記電圧均等化装置により均等化可能に構成された電源システムを提供する。本発明は、さらに他の側面として、該電源システムを搭載した車両を提供する。   Further, the present invention includes, as another aspect, a voltage equalization apparatus for any assembled battery disclosed herein, and an assembled battery in which a plurality of chargeable / dischargeable cells are connected in series. Provided is a power supply system configured to be able to equalize battery voltage by the voltage equalization device. As still another aspect, the present invention provides a vehicle equipped with the power supply system.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

本発明の一実施形態に係る組電池の電圧均等化装置の概略構成を図1に示す。この電圧均等化装置20は、組電池10を構成する単電池B(1)〜B(n)の電圧を均等化する装置として構成されている。該装置20は、導電ラインL(0)〜L(n)を介して単電池B(1)〜B(n)の接続点と接続された電子制御ユニット(electronic control unit;ECU)30と、導電ラインL(0)〜L(n)間に各々直列に接続されたトランジスタT(1)〜T(n)および抵抗R(1)〜R(n)とを備える。この電圧均等化装置20は、また、該装置20と組電池10とを含む電源システム1を構成している。   FIG. 1 shows a schematic configuration of a battery pack voltage equalizing apparatus according to an embodiment of the present invention. The voltage equalizing device 20 is configured as a device that equalizes the voltages of the cells B (1) to B (n) constituting the assembled battery 10. The apparatus 20 includes an electronic control unit (ECU) 30 connected to connection points of the cells B (1) to B (n) through conductive lines L (0) to L (n), Transistors T (1) to T (n) and resistors R (1) to R (n) connected in series between the conductive lines L (0) to L (n), respectively. The voltage equalizing device 20 also constitutes a power supply system 1 including the device 20 and the assembled battery 10.

組電池10を構成する個々の単電池B(1)〜B(n)は例えばリチウムイオン電池である。組電池10は、これらの単電池B(1)〜B(n)を直列に接続して構成されている。リレー14を介して組電池10に接続された負荷12は、組電池10に蓄えられた電力を消費する電力消費機を含み得る。該負荷12は、また、単電池B(1)〜B(n)を充電可能な電力を供給する電力供給機(充電器)を含み得る。   The individual cells B (1) to B (n) constituting the assembled battery 10 are, for example, lithium ion batteries. The assembled battery 10 is configured by connecting these single cells B (1) to B (n) in series. The load 12 connected to the assembled battery 10 via the relay 14 may include a power consumer that consumes the power stored in the assembled battery 10. The load 12 may also include a power supply device (charger) that supplies power capable of charging the cells B (1) to B (n).

電子制御ユニット30は、CPU(central processing unit)32と、このCPU32で実行されるプログラムを記憶したROM(read only member)34と、一時的にデータを記憶するRAM(random access memory)36と、図示しない入出力ポートとを備える。図1に示す電源システム1は、電子制御ユニット30から出力ポートを介して出力されたオンオフ信号によってトランジスタT(1)〜T(n)がオンされると、そのオンされたトランジスタを介してこれに直列に接続された抵抗に電流が流れ、対応する単電池の電力が消費される(放電される)ように構成されている。なお、ROM34には、組電池10を構成する単電池のSOC−OCV特性カーブの形状(典型的には、該特性曲線の接線の傾き)に基づいて、OCVの値と、該OCVにおいてSOCのばらつきを一定の幅内(許容範囲内)におさめるための電圧差すなわち閾値Vrとの関係を示すデータテーブルが記憶されている。このデータテーブルにおいて、閾値Vrは、該閾値Vrに対応するSOCの幅がSOC−OCV特性カーブの全体に亘って(すなわちSOCによらず)実質的に同一となるように設定されている。   The electronic control unit 30 includes a central processing unit (CPU) 32, a ROM (read only member) 34 that stores a program executed by the CPU 32, a random access memory (RAM) 36 that temporarily stores data, And an input / output port (not shown). When the transistors T (1) to T (n) are turned on by the on / off signal output from the electronic control unit 30 through the output port, the power supply system 1 shown in FIG. A current flows through a resistor connected in series to each other, and the power of the corresponding unit cell is consumed (discharged). Note that the ROM 34 stores the value of the OCV and the SOC of the OCV based on the shape of the SOC-OCV characteristic curve (typically, the slope of the tangent line of the characteristic curve) of the cells constituting the assembled battery 10. A data table is stored that indicates a relationship with a voltage difference, that is, a threshold value Vr for keeping the variation within a certain range (within an allowable range). In this data table, the threshold value Vr is set so that the SOC width corresponding to the threshold value Vr is substantially the same over the entire SOC-OCV characteristic curve (that is, regardless of the SOC).

このように構成された電圧均等化装置20の動作について説明する。図2は、本実施例に係る電圧均等化装置20の電子制御ユニット30により実行される均等化処理ルーチンの一例を示すフローチャートである。このルーチンは、組電池10が負荷12から遮断された直後から所定時間毎(例えば1時間毎)に繰り返し実行される。   The operation of the voltage equalizing apparatus 20 configured as described above will be described. FIG. 2 is a flowchart illustrating an example of an equalization processing routine executed by the electronic control unit 30 of the voltage equalization apparatus 20 according to the present embodiment. This routine is repeatedly executed every predetermined time (for example, every hour) immediately after the assembled battery 10 is disconnected from the load 12.

図2に示す均等化処理ルーチンが実行されると、電子制御ユニット30のCPU32は、まず、各単電池B(1)〜B(n)の電圧Vb(1)〜Vb(n)を検出する処理を実行する(ステップS100)。各単電池B(1)〜B(n)の電圧Vb(1)〜Vb(n)は、導電ラインL(0)〜L(n)間の電圧差として検出することができる。次いで、検出された電圧Vb(1)〜Vb(n)のうち最も低い電圧、すなわち最低電圧Vbminを判定し(ステップS102)、ROM34に記憶されている上記OCV−Vrデータテーブルを参照して該最低電圧Vbmin(OCV)に対応する閾値Vrの値を読み込み(ステップS104)、単電池カウンタkに値0をセットする(ステップS106)。   When the equalization processing routine shown in FIG. 2 is executed, the CPU 32 of the electronic control unit 30 first detects the voltages Vb (1) to Vb (n) of the individual cells B (1) to B (n). Processing is executed (step S100). The voltages Vb (1) to Vb (n) of the individual cells B (1) to B (n) can be detected as a voltage difference between the conductive lines L (0) to L (n). Next, the lowest voltage among the detected voltages Vb (1) to Vb (n), that is, the lowest voltage Vbmin is determined (step S102), and the OCV-Vr data table stored in the ROM 34 is referred to. The value of the threshold value Vr corresponding to the lowest voltage Vbmin (OCV) is read (step S104), and the value 0 is set to the cell counter k (step S106).

そして、電池カウンタkをインクリメントして(ステップS108)、k番目の単電池B(k)の電圧Vb(k)と最低電圧Vbminとの電圧差ΔVを計算し(ステップS110)、その計算した電圧差ΔVの値を上記で読み込んだ閾値Vrと比較する(ステップS112)。その結果、電圧差ΔVが閾値Vr以上である場合には(ステップS112にてYES)、SOCのばらつきを許容できないと判断し、対応するトランジスタT(k)をオンする(ステップS114)。これにより単電池B(k)の電力が抵抗R(k)で消費されてSOCのばらつきが解消されるようにする。一方、電圧差ΔVが閾値Vr以下である場合には(ステップS112にてNO)、SOCのばらつきが許容範囲内にあると判断して、対応するトランジスタT(k)をオフする(ステップS115)。なお、トランジスタT(k)が既にオフ状態にある場合にはその状態を維持する。   Then, the battery counter k is incremented (step S108), and a voltage difference ΔV between the voltage Vb (k) and the lowest voltage Vbmin of the kth cell B (k) is calculated (step S110), and the calculated voltage The value of the difference ΔV is compared with the threshold value Vr read above (step S112). As a result, when voltage difference ΔV is equal to or greater than threshold value Vr (YES in step S112), it is determined that the variation in SOC cannot be permitted, and corresponding transistor T (k) is turned on (step S114). As a result, the electric power of the unit cell B (k) is consumed by the resistor R (k) so that the variation in the SOC is eliminated. On the other hand, when voltage difference ΔV is equal to or smaller than threshold value Vr (NO in step S112), it is determined that the variation in SOC is within an allowable range, and corresponding transistor T (k) is turned off (step S115). . Note that when the transistor T (k) is already in the off state, the state is maintained.

そして、単電池カウンタkがnであるかどうかを調べ(ステップS116)、単電池カウンタkがnではない場合は(ステップS116にてNO)、ステップS108により単電池カウンタkをインクリメントし、次の単電池について同様の処理を行う。また、単電池カウンタkがnである場合には(ステップS116にてYES)、今回の均等化処理ルーチンを終了する。   Then, it is checked whether or not the unit cell counter k is n (step S116). If the unit cell counter k is not n (NO in step S116), the unit cell counter k is incremented in step S108, and the next The same process is performed for the unit cell. If unit cell counter k is n (YES in step S116), the current equalization processing routine is terminated.

上記実施形態によると、SOCのばらつきを一定の幅内におさめるように均等化処理を行うことにより、組電池を構成する単電池が過充電または過放電されること(換言すれば、該単電池のSOCが過大または過小になること)を効果的に防止することができる。また、各単電池B(k)の電圧Vb(k)を検出し、その検出した電圧Vb(k)と最低電圧Vbminとの電圧差ΔVを閾値Vrと比較することにより上記SOCのばらつきが一定の幅内にあるかどうか(すなわち均等化の要否)を判断するので、各単電池のSOCの差に基づいて均等化の要否を判断する態様に比べて、該判断をより精度よく行うことが可能である。また、閾値Vrは、当該閾値Vrに対応するSOCの幅が最低電圧Vbminに拘わらず一定値となるように設定されているので、SOCのばらつきが一定の許容程度を超えた場合にのみ効果的に均等化処理を行うことができる。したがって、より少量の放電によって効率よく均等化処理を行うことができる。   According to the above-described embodiment, by performing the equalization process so as to keep the variation in the SOC within a certain range, the unit cell constituting the assembled battery is overcharged or overdischarged (in other words, the unit cell Can be effectively prevented. Further, the variation in the SOC is constant by detecting the voltage Vb (k) of each cell B (k) and comparing the detected voltage Vb (k) and the voltage difference ΔV between the minimum voltage Vbmin and the threshold value Vr. Therefore, the determination is made with higher accuracy than the aspect of determining the necessity of equalization based on the difference in the SOC of each unit cell. It is possible. Further, the threshold value Vr is set so that the SOC width corresponding to the threshold value Vr becomes a constant value regardless of the minimum voltage Vbmin. Therefore, the threshold value Vr is effective only when the variation of the SOC exceeds a certain allowable level. The equalization process can be performed. Therefore, the equalization process can be performed efficiently with a smaller amount of discharge.

なお、ステップS114においてk番目の単電池B(k)に対応するトランジスタT(k)をオンするとともにタイマをスタートさせ、該タイマにより上記単電池B(k)が一定の放電電荷量Q(典型的には、該閾値Vrに対応するSOCの幅以下の電荷量となるように設定される。)だけ放電されるタイミングを検出し、そのタイミングでトランジスタT(k)をオフするように構成してもよい。かかる構成によると、単電池B(k)が過剰に(最低電圧Vminを下回るまで)放電される事象が回避されるので、より少量の放電で効率よく均等化処理を行うことができる。また、上記閾値Vrは、対応するSOCの幅が最低電圧Vbminに拘わらず一定値となるように設定されているので、このように放電電荷量が一定値Qに到達したらトランジスタT(k)をオフするような制御を行うのに適している。   In step S114, the transistor T (k) corresponding to the kth unit cell B (k) is turned on and a timer is started, and the timer B causes the unit cell B (k) to have a constant discharge charge amount Q (typically Specifically, the charge amount is set to be equal to or less than the SOC width corresponding to the threshold value Vr.) The discharge timing is detected, and the transistor T (k) is turned off at that timing. May be. According to such a configuration, an event in which the unit cell B (k) is excessively discharged (until the voltage falls below the minimum voltage Vmin) is avoided, so that the equalization process can be performed efficiently with a smaller amount of discharge. The threshold value Vr is set so that the corresponding SOC width becomes a constant value regardless of the minimum voltage Vbmin. Therefore, when the discharge charge amount reaches the constant value Q in this way, the transistor T (k) is turned on. It is suitable for controlling to turn off.

本発明の適用効果を確認するため、以下の実験を行った。
すなわち、シート状の正極集電体および負極集電体にそれぞれ正極活物質および負極活物質が保持された正負の電極シートがセパレータシートを介して捲回され、電解質とともにケースに収容された構成の18650型リチウムイオン電池を用意した。ここで用意したリチウムイオン電池の正極集電体はアルミニウム箔であり、負極集電体は銅箔、正極活物質はニッケル酸リチウム(LiNiO)、負極活物質は人造黒鉛である。また、該リチウムイオン電池の電解質は、エチレンカーボネートとジエチルカーボネートとの3:7(体積比)混合溶媒に1モル/Lの濃度でLiPFを含む組成である。本実験例で使用したリチウムイオン電池のSOC−OCV特性曲線を図3に示す。
In order to confirm the application effect of the present invention, the following experiment was conducted.
That is, the positive and negative electrode sheets each holding the positive electrode active material and the negative electrode active material on the sheet-like positive electrode current collector and the negative electrode current collector are wound through the separator sheet and accommodated in the case together with the electrolyte. An 18650 type lithium ion battery was prepared. The positive electrode current collector of the lithium ion battery prepared here is an aluminum foil, the negative electrode current collector is a copper foil, the positive electrode active material is lithium nickelate (LiNiO 2 ), and the negative electrode active material is artificial graphite. The electrolyte of the lithium ion battery has a composition containing LiPF 6 at a concentration of 1 mol / L in a 3: 7 (volume ratio) mixed solvent of ethylene carbonate and diethyl carbonate. FIG. 3 shows an SOC-OCV characteristic curve of the lithium ion battery used in this experimental example.

<例1>
上記構成のリチウムイオン電池6個(以下、これらをBa1,Ba2,Bb1,Bb2,Bc1,Bc2と呼ぶことがある。)を、2個づつ3組(第1組:Ba1とBa2,第2組:Bb1とBb2,第3組:Bc1とBc2の3組)に分けた。
そのうち第1組の電池Ba1,Ba2を、SOCが60%となるように調整し、これらのリチウムイオン電池(単電池)を直列に接続して図1に示す構成の組電池10とした。この組電池10を、図1に示す構成であって図2に示すフローチャートに従って電圧均等化処理を行う電圧均等化装置20に接続した。この電圧均等化装置20は、図2中の最低電圧VminがSOC60%に相当する電圧のとき、SOCの許容幅に対応する閾値Vrとして5mVを読み込む(採用する)ように設定されている。換言すれば、単電池Ba1,Ba2間の電圧のずれが5mV以上になったら均等化処理を開始するように設定されている。
かかる構成の電源システム1につき、25℃において30日間に均等化処理が行われた回数と、該均等化処理のために放電された電荷量の合計値(合計放電量)とを調べた。ここで、上記合計放電量は、実験開始時のSOC(ここでは60%)と実験終了時のSOCとの差(ΔSOC(%))により表すものとする。その結果、本例における均等化処理回数は2回、合計放電量ΔSOCは3%であった。
<Example 1>
Six lithium ion batteries having the above-described configuration (hereinafter, these may be referred to as Ba1, Ba2, Bb1, Bb2, Bc1, and Bc2), two sets of three (first set: Ba1 and Ba2, second set) : Bb1 and Bb2, and the third set: Bc1 and Bc2).
Among them, the first set of batteries Ba1 and Ba2 was adjusted so that the SOC was 60%, and these lithium ion batteries (unit cells) were connected in series to form the assembled battery 10 having the configuration shown in FIG. This assembled battery 10 is connected to a voltage equalizing apparatus 20 having the configuration shown in FIG. 1 and performing a voltage equalizing process according to the flowchart shown in FIG. The voltage equalizing apparatus 20 is set to read (adopt) 5 mV as the threshold value Vr corresponding to the allowable range of SOC when the minimum voltage Vmin in FIG. 2 is a voltage corresponding to SOC 60%. In other words, the equalization process is set to start when the voltage difference between the single cells Ba1 and Ba2 becomes 5 mV or more.
For the power supply system 1 having such a configuration, the number of times equalization processing was performed for 30 days at 25 ° C., and the total amount of charges discharged for the equalization processing (total discharge amount) were examined. Here, the total discharge amount is represented by the difference (ΔSOC (%)) between the SOC at the start of the experiment (here, 60%) and the SOC at the end of the experiment. As a result, the number of equalization treatments in this example was 2, and the total discharge amount ΔSOC was 3%.

<例2>
第2組の電池Bb1,Bb2を、SOCが20%となるように調整し、これらのリチウムイオン電池(単電池)を直列に接続して図1に示す構成の組電池10とした。この組電池10を、図1に示す構成であって図2に示すフローチャートに従って電圧均等化処理を行う電圧均等化装置20に接続した。ここで、図3に示すSOC−OCV特性曲線において、SOCが20%のときの該曲線の勾配(接線の傾き)はSOCが60%のときの勾配のほぼ二倍である。したがって、本例の電圧均等化装置20は、図2中の最低電圧VminがSOC20%に相当する電圧のとき、SOCの許容幅(例1と同じ幅)に対応する閾値Vrとして10mVを読み込む(採用する)ように設定されている。
かかる構成の電源システム1につき、例1と同様に均等化処理回数および合計放電量を調べた。その結果、均等化処理回数は3回、合計放電量ΔSOCは3%であった。
<Example 2>
The second set of batteries Bb1 and Bb2 were adjusted so that the SOC was 20%, and these lithium ion batteries (single cells) were connected in series to obtain the assembled battery 10 having the configuration shown in FIG. This assembled battery 10 is connected to a voltage equalizing apparatus 20 having the configuration shown in FIG. 1 and performing a voltage equalizing process according to the flowchart shown in FIG. Here, in the SOC-OCV characteristic curve shown in FIG. 3, the slope of the curve when the SOC is 20% (the slope of the tangent line) is almost twice the slope when the SOC is 60%. Therefore, when the minimum voltage Vmin in FIG. 2 is a voltage corresponding to SOC 20%, the voltage equalization apparatus 20 of this example reads 10 mV as the threshold value Vr corresponding to the allowable width of SOC (the same width as in Example 1) ( To be adopted).
For the power supply system 1 having such a configuration, the number of equalization processes and the total discharge amount were examined in the same manner as in Example 1. As a result, the number of equalization treatments was 3, and the total discharge amount ΔSOC was 3%.

<例3>
第3組の電池Bc1,Bc2を、SOCが20%となるように調整し、これらのリチウムイオン電池(単電池)を直列に接続して図1に示す構成の組電池10とした。この組電池10を図1に示す構成の電圧均等化装置20に接続した。ただし、本例に係る電圧均等化装置20は、Vminの値に拘わらず(すなわち、SOC−OCV特性曲線の勾配に拘らず)、閾値Vrとして5mVを読み込む(採用する)ように設定されている。
かかる構成の電源システム1につき、例1と同様に均等化処理回数および合計放電量を調べた。その結果、均等化処理回数は18回、合計放電量ΔSOCは10%であった。
<Example 3>
The third set of batteries Bc1 and Bc2 was adjusted so that the SOC was 20%, and these lithium ion batteries (unit cells) were connected in series to form the assembled battery 10 having the configuration shown in FIG. This assembled battery 10 was connected to a voltage equalizing apparatus 20 having the configuration shown in FIG. However, the voltage equalization apparatus 20 according to the present example is set to read (adopt) 5 mV as the threshold value Vr regardless of the value of Vmin (that is, regardless of the gradient of the SOC-OCV characteristic curve). .
For the power supply system 1 having such a configuration, the number of equalization processes and the total discharge amount were examined in the same manner as in Example 1. As a result, the number of equalization treatments was 18, and the total discharge amount ΔSOC was 10%.

これらの実験結果に示されるように、例3の態様では、電池がSOC−OCV特性曲線の勾配が相対的に大きい充電状態(SOC20%)にあるにも拘らず該勾配が相対的に小さいSOC60%の場合(例1)と同一の閾値Vr(5mV)を均等化処理の開始条件として採用したため、SOCのばらつきの程度がまだ例1におけるSOCの許容幅内におさまっていても均等化処理が開始された。その結果、例3の態様では例1に比べて均等化処理回数が著しく多くなり、また、例1に比べて明らかに多くの電荷量が均等化のために放電(消費)された。
これに対して例2の態様では、SOC−OCV特性曲線の勾配に応じて、SOCの許容幅がSOC60%の場合と同じとなる閾値Vr(10mV)を均等化処理の開始条件として採用したことにより、SOCのばらつきが上記許容幅まで大きくなった場合にのみ均等化処理が開始された。その結果、例2の態様では例3に比べて均等化処理回数が抑えられ、また、より少ない放電量で適切に均等化が行われることが確認された。
As shown in these experimental results, in the embodiment of Example 3, the SOC 60 has a relatively small gradient even though the battery is in a state of charge (SOC 20%) where the gradient of the SOC-OCV characteristic curve is relatively large. %, The same threshold value Vr (5 mV) as in Example 1 is adopted as the equalization process start condition. Therefore, even if the degree of variation in the SOC is still within the allowable range of the SOC in Example 1, the equalization process is performed. Started. As a result, in the embodiment of Example 3, the number of equalization treatments was remarkably increased compared to Example 1, and a clearly larger amount of charge was discharged (consumed) for equalization than in Example 1.
On the other hand, in the aspect of Example 2, the threshold value Vr (10 mV), which is the same as that in the case where the allowable SOC range is 60% SOC, is adopted as the equalization processing start condition according to the gradient of the SOC-OCV characteristic curve. Thus, the equalization process is started only when the variation of the SOC becomes larger than the allowable range. As a result, in the aspect of Example 2, it was confirmed that the number of equalization processes was suppressed compared to Example 3, and that equalization was appropriately performed with a smaller discharge amount.

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and changed the above-mentioned specific example is contained in the invention disclosed here.

一実施形態に係る組電池の電圧均等化装置の概略構成を模式的に示す説明図である。It is explanatory drawing which shows typically schematic structure of the voltage equalization apparatus of the assembled battery which concerns on one Embodiment. 一実施形態に係る組電池の電圧均等化装置の一作動形態を例示するフローチャートである。It is a flowchart which illustrates one operation | movement form of the voltage equalization apparatus of the assembled battery which concerns on one Embodiment. 実験例にて使用したリチウムイオン電池(単電池)のSOC−OCV特性曲線を示すグラフである。It is a graph which shows the SOC-OCV characteristic curve of the lithium ion battery (unit cell) used in the experiment example.

符号の説明Explanation of symbols

1 電源システム
10 組電池
12 負荷
14 リレー
20 電圧均等化装置(電圧検出部、均等化処理部)
30 電子制御ユニット
32 CPU
34 ROM
36 RAM
DESCRIPTION OF SYMBOLS 1 Power supply system 10 Assembly battery 12 Load 14 Relay 20 Voltage equalization apparatus (voltage detection part, equalization process part)
30 Electronic control unit 32 CPU
34 ROM
36 RAM

Claims (4)

充放電可能な単電池が複数直列に接続された組電池において該複数の単電池の電圧を均等化する均等化装置であって、
前記単電池の電圧を検出する電圧検出部と、
その検出された電圧のうち基準となる電圧である基準電圧Vbstとの電圧差が閾値Vr以上の単電池を充電し又は放電させて電圧の均等化を図る均等化処理部と、
を備え、
ここで前記閾値Vrは、該閾値Vrに対応する充電状態の幅の前記基準電圧Vbstによる差異を緩和するように、該基準電圧Vbstに応じて異なる値に設定されている、組電池の電圧均等化装置。
In an assembled battery in which a plurality of chargeable / dischargeable cells are connected in series, an equalizing device for equalizing the voltages of the plurality of cells,
A voltage detector for detecting the voltage of the unit cell;
An equalization processing unit that charges or discharges a unit cell having a voltage difference from a reference voltage Vbst, which is a reference voltage among the detected voltages, equal to or higher than a threshold value Vr to equalize the voltage;
With
Here, the threshold voltage Vr is set to a different value according to the reference voltage Vbst so as to alleviate a difference in the state of charge corresponding to the threshold value Vr due to the reference voltage Vbst. Device.
前記検出された電圧のうち最も低い電圧である最低電圧Vbminを前記基準電圧Vbstとし、前記均等化処理部は、該基準電圧Vbstとの電圧差が閾値Vr以上の単電池を放電させて電圧の均等化を図るように構成されている、請求項1に記載の組電池の電圧均等化装置。   The lowest voltage Vbmin, which is the lowest voltage among the detected voltages, is set as the reference voltage Vbst, and the equalization processing unit discharges a cell whose voltage difference from the reference voltage Vbst is equal to or greater than a threshold Vr to The battery pack voltage equalization apparatus according to claim 1, wherein the voltage equalization apparatus is configured to equalize the battery pack. 前記基準電圧Vbstとの電圧差が閾値Vr以上である単電池を、前記基準電圧Vbstの値に拘わらず一定電荷量だけ充電し又は放電させて電圧の均等化を図るように構成されている、請求項1または2に記載の組電池の電圧均等化装置。   A cell having a voltage difference from the reference voltage Vbst equal to or greater than a threshold value Vr is configured to charge or discharge a single charge by a constant charge amount regardless of the value of the reference voltage Vbst, thereby equalizing the voltage. The voltage equalization apparatus for an assembled battery according to claim 1 or 2. 前記単電池はリチウムイオン電池である、請求項1から3のいずれか一項に記載の組電池の電圧均等化装置。   The voltage equalization apparatus for an assembled battery according to any one of claims 1 to 3, wherein the single battery is a lithium ion battery.
JP2007200253A 2007-08-01 2007-08-01 Voltage equalizer for battery pack Pending JP2009038876A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007200253A JP2009038876A (en) 2007-08-01 2007-08-01 Voltage equalizer for battery pack
PCT/JP2008/063200 WO2009017009A1 (en) 2007-08-01 2008-07-23 Voltage equalizer of assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200253A JP2009038876A (en) 2007-08-01 2007-08-01 Voltage equalizer for battery pack

Publications (1)

Publication Number Publication Date
JP2009038876A true JP2009038876A (en) 2009-02-19

Family

ID=40304241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200253A Pending JP2009038876A (en) 2007-08-01 2007-08-01 Voltage equalizer for battery pack

Country Status (2)

Country Link
JP (1) JP2009038876A (en)
WO (1) WO2009017009A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071936A (en) * 2007-09-11 2009-04-02 Fuji Heavy Ind Ltd Voltage equalization system for battery pack
WO2011052594A1 (en) * 2009-10-27 2011-05-05 ミツミ電機株式会社 Charge/discharge control circuit, semiconductor integrated circuit, charge/discharge control method, and charge/discharge control program
US20120112755A1 (en) * 2010-11-05 2012-05-10 Mitsumi Electric Co., Ltd. Battery voltage monitoring circuit
CN103403559A (en) * 2011-02-28 2013-11-20 矢崎总业株式会社 Voltage detection apparatus and method of reducing dispersion of dark currents
DE102013217767A1 (en) 2012-09-18 2014-03-20 Suzuki Motor Corporation Compensating device for compensating charge amount of lithium-ion batteries in plug-in hybrid vehicle, has control unit for controlling inputting of charge amount, where device acknowledges that number is larger than thresholds
JP2015080334A (en) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 Power storage system
WO2015072061A1 (en) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 Equalizing apparatus
US9436172B2 (en) 2010-01-21 2016-09-06 Duerr Systems Gmbh Test installation for testing control programs for a robot installation
KR101683603B1 (en) * 2015-07-10 2016-12-21 ㈜ 에이치엠지 apparatus for balancing cell of battery pack and method thereof
CN107825977A (en) * 2017-10-27 2018-03-23 北京华特时代电动汽车技术有限公司 The adjusting method and system of battery case pressure difference
US20210156926A1 (en) * 2019-11-25 2021-05-27 Alan C. Knudson Battery charge and discharge cycling with predictive load and availability control system
US11747403B2 (en) * 2020-02-07 2023-09-05 Robert Bosch Gmbh Method for ascertaining the state of charge of an electrical energy storage unit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917061B2 (en) * 2009-09-18 2014-12-23 Schneider Electric It Corporation System and method for battery cell balancing
WO2012081696A1 (en) 2010-12-16 2012-06-21 本田技研工業株式会社 Battery control apparatus and battery control method
CN102082307B (en) * 2010-12-31 2013-08-07 华为技术有限公司 Method and system for parallel use of lithium battery modules
WO2012172592A1 (en) * 2011-06-13 2012-12-20 トヨタ自動車株式会社 Battery system and method for controlling battery device
ES2543922B1 (en) * 2013-12-18 2016-06-09 Bluelife Battery S.L Method to regenerate Ni-Mh batteries

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503414B2 (en) * 1997-05-12 2004-03-08 日産自動車株式会社 Battery charging rate adjustment device for assembled batteries
JP4529246B2 (en) * 2000-07-06 2010-08-25 トヨタ自動車株式会社 Abnormality detection device for battery pack
JP3545367B2 (en) * 2001-08-08 2004-07-21 三洋電機株式会社 Battery pack voltage detector
JP2003333762A (en) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd Voltage level equalization device for battery pack

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071936A (en) * 2007-09-11 2009-04-02 Fuji Heavy Ind Ltd Voltage equalization system for battery pack
WO2011052594A1 (en) * 2009-10-27 2011-05-05 ミツミ電機株式会社 Charge/discharge control circuit, semiconductor integrated circuit, charge/discharge control method, and charge/discharge control program
CN102668316A (en) * 2009-10-27 2012-09-12 三美电机株式会社 Charge/discharge control circuit, semiconductor integrated circuit, charge/discharge control method, and charge/discharge control program
JP5423805B2 (en) * 2009-10-27 2014-02-19 ミツミ電機株式会社 Charge / discharge control circuit, semiconductor integrated circuit, charge / discharge control method, and charge / discharge control program
US8947052B2 (en) 2009-10-27 2015-02-03 Mitsumi Electric Co., Ltd. Charge-discharge control circuit, semiconductor integrated circuit, method of controlling charging and discharging
US9436172B2 (en) 2010-01-21 2016-09-06 Duerr Systems Gmbh Test installation for testing control programs for a robot installation
US20120112755A1 (en) * 2010-11-05 2012-05-10 Mitsumi Electric Co., Ltd. Battery voltage monitoring circuit
US8878541B2 (en) * 2010-11-05 2014-11-04 Mitsumi Electric Co., Ltd. Battery voltage monitoring circuit
CN103403559A (en) * 2011-02-28 2013-11-20 矢崎总业株式会社 Voltage detection apparatus and method of reducing dispersion of dark currents
US9310443B2 (en) 2011-02-28 2016-04-12 Yazaki Corporation Voltage detection apparatus and method of reducing dispersion of dark currents
DE102013217767A1 (en) 2012-09-18 2014-03-20 Suzuki Motor Corporation Compensating device for compensating charge amount of lithium-ion batteries in plug-in hybrid vehicle, has control unit for controlling inputting of charge amount, where device acknowledges that number is larger than thresholds
DE102013217767B4 (en) 2012-09-18 2022-02-03 Suzuki Motor Corporation Battery Pack Balancer
JP2015080334A (en) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 Power storage system
WO2015072061A1 (en) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 Equalizing apparatus
JPWO2015072061A1 (en) * 2013-11-13 2017-03-16 パナソニックIpマネジメント株式会社 Equalization processing device
US9979210B2 (en) 2013-11-13 2018-05-22 Panasonic Intellectual Property Management Co., Ltd. Equalizing apparatus
CN105706330A (en) * 2013-11-13 2016-06-22 松下知识产权经营株式会社 Equalizing apparatus
KR101683603B1 (en) * 2015-07-10 2016-12-21 ㈜ 에이치엠지 apparatus for balancing cell of battery pack and method thereof
CN107825977A (en) * 2017-10-27 2018-03-23 北京华特时代电动汽车技术有限公司 The adjusting method and system of battery case pressure difference
US20210156926A1 (en) * 2019-11-25 2021-05-27 Alan C. Knudson Battery charge and discharge cycling with predictive load and availability control system
US11747403B2 (en) * 2020-02-07 2023-09-05 Robert Bosch Gmbh Method for ascertaining the state of charge of an electrical energy storage unit

Also Published As

Publication number Publication date
WO2009017009A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP2009038876A (en) Voltage equalizer for battery pack
US8704488B2 (en) Battery pack and method of controlling the same
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
EP2068420B1 (en) Secondary battery charging method and device
EP2418751B1 (en) Battery charger and battery charging method
JP5312768B2 (en) Battery system
US20090184685A1 (en) Battery pack and method of charging the same
US8854780B2 (en) Protection circuit of battery pack and battery pack using the same
US20150061601A1 (en) Discharge device for electricity storage device
US20100194398A1 (en) Rechargeable battery abnormality detection apparatus and rechargeable battery apparatus
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
JP2010032412A (en) Power supply for vehicle
JP7199021B2 (en) Management device, power storage system
WO2009107236A1 (en) Charging device and quality judging device of pack cell
US20110025272A1 (en) Charging method, charging device, and battery pack
JP2009089566A (en) Cell-voltage regulator
WO2014133009A1 (en) Storage battery, storage battery control method, control device, and control method
JP5664310B2 (en) DC power supply
JP2023529507A (en) Battery bank power control apparatus and method
EP3839532B1 (en) Soc estimating apparatus and method
JP6822358B2 (en) Rechargeable battery system
JP2005151679A (en) Regulating method for voltage of battery pack
JP2009207332A (en) Charger apparatus for pack battery, and quality decision apparatus for pack battery
KR102008518B1 (en) Charging system for multi-cell
JP6624035B2 (en) Battery system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090226