JP2003176943A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003176943A
JP2003176943A JP2001378115A JP2001378115A JP2003176943A JP 2003176943 A JP2003176943 A JP 2003176943A JP 2001378115 A JP2001378115 A JP 2001378115A JP 2001378115 A JP2001378115 A JP 2001378115A JP 2003176943 A JP2003176943 A JP 2003176943A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air conditioner
indoor heat
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001378115A
Other languages
Japanese (ja)
Other versions
JP3976561B2 (en
Inventor
Motoshi Matsushita
元士 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001378115A priority Critical patent/JP3976561B2/en
Publication of JP2003176943A publication Critical patent/JP2003176943A/en
Application granted granted Critical
Publication of JP3976561B2 publication Critical patent/JP3976561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner comprising an indoor heat exchanger having two or more refrigerant channels, and capable of preventing the dew condensation on a cooling air blow-out channel in the cooling operation or dehumidifying operation. <P>SOLUTION: In the air conditioner comprising a compressor 1, an outdoor heat exchanger 3, an expansion valve 4 and the indoor heat exchanger 6 successively connected through the piping, the indoor heat exchanger 6 has two or more refrigerant channels 6a, 6b, the refrigerant channels 6a, 6b are respectively provided with temperature sensors 13, 14, and a controller 12 is mounted for controlling the cooling operation to prevent the dew condensation in the cooling air blow-out channel 20 on the basis of output signals of the temperature sensors 13, 14. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機に関す
るものであり、より詳細には複数の冷媒流路を有する室
内熱交換器を備えた構成において、冷風吹出し経路での
露付を効果的に防止することが可能な空気調和機に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly, it is effective to prevent dew condensation in a cold air blowing path in a structure including an indoor heat exchanger having a plurality of refrigerant flow paths. The present invention relates to an air conditioner that can be prevented.

【0002】[0002]

【従来の技術】従来の空気調和機においては、図6に示
すように、室外に配置される圧縮機1、室外熱交換器3
及び電動膨張弁4をこの順に冷媒配管で接続し、さらに
電動膨張弁4から液側二方弁5を介して、室内に配置さ
れる室内熱交換器6を配管接続し、室内熱交換器6から
ガス側三方弁7を介して、再び室外の圧縮機1に配管接
続して冷凍サイクルを構成している。
2. Description of the Related Art In a conventional air conditioner, as shown in FIG. 6, a compressor 1 and an outdoor heat exchanger 3 arranged outdoors.
And the electric expansion valve 4 are connected in this order by the refrigerant pipes, and the electric heat expansion valve 4 is connected via the liquid side two-way valve 5 to the indoor heat exchanger 6 which is arranged indoors. To the outdoor compressor 1 via the gas side three-way valve 7 to form a refrigeration cycle.

【0003】圧縮機1は、四方弁2を介して冷凍サイク
ルに接続されており、四方弁2を切り替えることによ
り、室外熱交換器3側、又は、室内熱交換器6側のいず
れの方向へも圧縮した冷媒を送出可能な構成とされてい
る。
The compressor 1 is connected to a refrigerating cycle via a four-way valve 2, and by switching the four-way valve 2, either the outdoor heat exchanger 3 side or the indoor heat exchanger 6 side is directed. Also, the compressed refrigerant can be delivered.

【0004】上記構成において、冷房時は圧縮機1で圧
縮された冷媒が室外熱交換器3で凝縮され、電動膨張弁
4で減圧されて、室内熱交換器6で蒸発し、室内空気を
冷やした後、圧縮機1に戻るサイクルとなる。このよう
な冷凍サイクルにおいて、室内熱交換器6の入口側と出
口側の配管、すなわち、圧縮機1と室内熱交換器6の間
の配管及び膨張弁4と室内熱交換器6の間の配管にそれ
ぞれ温度センサ8、9が設けられている。
In the above structure, during cooling, the refrigerant compressed by the compressor 1 is condensed by the outdoor heat exchanger 3, decompressed by the electric expansion valve 4 and evaporated by the indoor heat exchanger 6 to cool the indoor air. After that, the cycle is returned to the compressor 1. In such a refrigeration cycle, piping on the inlet side and outlet side of the indoor heat exchanger 6, that is, piping between the compressor 1 and the indoor heat exchanger 6, and piping between the expansion valve 4 and the indoor heat exchanger 6. Are provided with temperature sensors 8 and 9, respectively.

【0005】制御装置12では、温度センサ8、9から
の検出信号を受けて両者の温度差を算出し、その温度差
が一定になるように膨張弁4の開度を制御することによ
って、室内熱交換器内における冷媒の蒸発を適正に保
ち、冷房能力の確保を行っていた。
The control device 12 receives the detection signals from the temperature sensors 8 and 9 to calculate the temperature difference between the temperature sensors 8 and 9 and controls the opening of the expansion valve 4 so that the temperature difference becomes constant. The evaporation of the refrigerant in the heat exchanger was properly maintained to ensure the cooling capacity.

【0006】ところで、近年、空気調和機の運転効率を
高めるために、室内熱交換器6として複数の冷媒流路を
備えたものが使用されている。図7は、2つの冷媒流路
6a,6bを備えた室内熱交換器6を使用した場合の空
気調和機の概略図を示したものである。冷媒流路6a,
6bは、室内熱交換器6の入口側と出口側とでそれぞれ
並列接続されている。
By the way, in recent years, in order to improve the operation efficiency of an air conditioner, an indoor heat exchanger 6 having a plurality of refrigerant flow paths has been used. FIG. 7 is a schematic diagram of an air conditioner when the indoor heat exchanger 6 including the two refrigerant flow paths 6a and 6b is used. Refrigerant flow path 6a,
6b are respectively connected in parallel on the inlet side and the outlet side of the indoor heat exchanger 6.

【0007】図8は、上記室内熱交換器が収容される室
内機の断面図である。室内機には、室内空気をできるだ
け多く吸込むために本体上面及び前面に吸込口17、1
8が形成されている。冷媒流路6a,6bは、これら吸
込口17、18から取り入れた室内空気と効率よく熱交
換を行うために立体的に配置されている。すなわち、2
つの冷媒流路6a,6bは、上下二段に配されており、
かつ上下段の冷媒流路6a,6bは設置スペースの関係
上、流路長さが異なるように形成されている。
FIG. 8 is a sectional view of an indoor unit in which the indoor heat exchanger is housed. The indoor unit has suction ports 17, 1 on the top and front of the main body in order to suck as much indoor air as possible.
8 is formed. The refrigerant flow paths 6a and 6b are three-dimensionally arranged in order to efficiently exchange heat with the indoor air taken in through the suction ports 17 and 18. Ie 2
The two refrigerant flow paths 6a and 6b are arranged in upper and lower two stages,
In addition, the upper and lower refrigerant channels 6a and 6b are formed to have different channel lengths due to the installation space.

【0008】上記構成の空気調和機においては、冷媒が
上段側の冷媒流路6aと下段側の冷媒流路6bを並列に
流れるため、冷媒の蒸発圧力の圧力損失を軽減して効率
のよい冷房運転を行うことができる。
In the air conditioner having the above structure, since the refrigerant flows in parallel in the upper refrigerant passage 6a and the lower refrigerant passage 6b, the pressure loss of the evaporation pressure of the refrigerant is reduced and the cooling is efficiently performed. You can drive.

【0009】[0009]

【発明が解決しようとする課題】図7のように、複数の
冷媒流路を有する室内熱交換器を備えた空気調和機にお
いて、温度センサ8、9によって得られる室内熱交換器
6の入口側温度及び出口側温度の差を一定になるように
制御する場合、前述のように設計上の観点から冷媒流路
6a、6bの長さが異なり、また、上下二段に配置され
ることにより各冷媒流路を流れる冷媒の流量に差が生じ
やすく、これにより冷媒流路6a、6bに温度差が発生
するおそれが生じていた。
As shown in FIG. 7, in the air conditioner provided with the indoor heat exchanger having a plurality of refrigerant flow paths, the inlet side of the indoor heat exchanger 6 obtained by the temperature sensors 8 and 9. When the difference between the temperature and the outlet side temperature is controlled to be constant, the lengths of the refrigerant flow paths 6a and 6b are different from the viewpoint of design as described above, and the refrigerant flow paths 6a and 6b are arranged in upper and lower two stages. Differences in the flow rates of the refrigerant flowing through the refrigerant passages are likely to occur, which may cause a temperature difference between the refrigerant passages 6a and 6b.

【0010】冷媒流路6a、6b間の温度差が大きくな
ると、低温側の冷媒流路に導入される室内空気は冷媒流
路を通過する間に十分冷却、除湿され、冷却空気として
室内熱交換器6から送出される一方、高温側の冷媒流路
を通過する室内空気はほとんど冷却されずに含湿状態の
まま未冷却空気として室内熱交換器6から送出されるこ
とになる。
When the temperature difference between the refrigerant flow paths 6a and 6b becomes large, the indoor air introduced into the low temperature side refrigerant flow path is sufficiently cooled and dehumidified while passing through the refrigerant flow path, and the indoor heat exchange is performed as cooling air. On the other hand, the indoor air passing through the high temperature side refrigerant flow path is sent out from the indoor heat exchanger 6 as uncooled air in a humid state without being cooled while being sent out from the air conditioner 6.

【0011】室内熱交換器6から送出された上記冷却空
気及び未冷却空気は、図8に示すように、室内熱交換器
から空気吹出し口19に至る空気吹出し経路20で合流
し、これにより未冷却空気が冷却されて結露し、冷風吹
出し経路内の露出面、即ち、経路の壁面、室内ファン1
1あるいはルーバ21表面に露が付き、最終的に室内に
水を飛散させるという問題が生じていた。
As shown in FIG. 8, the cooling air and the uncooled air sent from the indoor heat exchanger 6 join together in the air blowing path 20 from the indoor heat exchanger to the air blowing port 19, whereby the uncooled air The cooling air is cooled to cause dew condensation, and the exposed surface in the cold air blowing path, that is, the wall surface of the path, the indoor fan 1
1 or the surface of the louver 21 was exposed to dew, and finally water was scattered in the room.

【0012】そこで、本発明においては、複数の冷媒流
路を有する室内熱交換器を備え、冷房運転時又は除湿運
転時における冷風吹出し経路への露付きを防止可能な空
気調和機を提供することを目的とするものである。
In view of the above, the present invention provides an air conditioner having an indoor heat exchanger having a plurality of refrigerant flow paths and capable of preventing dew condensation on a cold air blowing path during a cooling operation or a dehumidifying operation. The purpose is.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明にかかる空気調和機は、圧縮機、室外熱交換
器、膨張弁及び室内熱交換器を配管を介して順次接続し
てなる冷凍サイクルを備え、前記室内熱交換器は、並列
接続された複数の冷媒流路と、各冷媒流路の温度を検出
する温度センサとを有し、冷房運転時に各冷媒流路の温
度差を低減する方向に冷房運転を制御する制御装置が設
けられたことを特徴とするものである。
In order to achieve the above object, an air conditioner according to the present invention comprises a compressor, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger, which are sequentially connected via piping. A refrigeration cycle is provided, and the indoor heat exchanger has a plurality of refrigerant channels connected in parallel and a temperature sensor that detects the temperature of each refrigerant channel, and the temperature difference of each refrigerant channel during the cooling operation. It is characterized in that a control device for controlling the cooling operation is provided in a decreasing direction.

【0014】すなわち、室内熱交換器として、複数の冷
媒流路を備えたものを使用する場合は、冷房運転時には
冷媒が各冷媒流路内をそれぞれ並列に流れ、前述のごと
く、各冷媒流路に温度差が生じ、その結果、冷風吹出し
経路において露付が発生するおそれが生じる。
That is, when an indoor heat exchanger having a plurality of refrigerant flow paths is used, the refrigerant flows in parallel in each refrigerant flow path during the cooling operation, and as described above, each refrigerant flow path. As a result, a temperature difference occurs, and as a result, dew condensation may occur in the cold air blowing path.

【0015】そこで、本発明においては、各冷媒流路に
それぞれ温度センサを設け、各冷媒流路の温度差を低減
する方向に冷房運転を制御する制御装置を設けることに
より、空気吹出し経路における露付を効果的に防止する
ようにしたものである。
Therefore, in the present invention, a temperature sensor is provided in each refrigerant flow passage, and a control device for controlling the cooling operation in the direction of reducing the temperature difference between the refrigerant flow passages is provided, so that the dew in the air blowing path is provided. The sticking is effectively prevented.

【0016】制御装置としては、制御マイコンを利用
し、温度センサによって検出された各冷媒流路の温度の
温度差を算出し、この温度差が小さくなるように冷房運
転を制御するようにすればよい。冷媒流路の温度差を小
さくすることにより、各冷媒流路を通過した後の空気の
温度も同程度となり、冷風吹出し経路における結露及び
露付を防止することができる。なお、冷房運転として
は、同じ冷房運転サイクルで運転される除湿運転をも含
むものである。
As the control device, a control microcomputer is used to calculate the temperature difference between the temperatures of the respective refrigerant channels detected by the temperature sensor, and the cooling operation is controlled so that the temperature difference is reduced. Good. By reducing the temperature difference in the refrigerant flow paths, the temperature of the air after passing through each refrigerant flow path becomes approximately the same, and it is possible to prevent dew condensation and dew condensation in the cold air blowing path. Note that the cooling operation also includes a dehumidifying operation that is operated in the same cooling operation cycle.

【0017】冷媒流路の温度差が小さくなるように冷房
運転を制御するには、制御装置に前記温度差が大きくな
るほど冷房能力を高める能力増強手段を設けるようにす
ればよい。能力増強手段としては、具体的に、冷媒流路
の温度差が大きいほど膨張弁の開度を開くように制御す
るものや、冷媒流路の温度差が大きいほど室外ファンモ
ータの回転数を上げるように制御するもの、或いは、冷
媒流路の温度差が大きいほど圧縮機の運転周波数を上げ
て冷媒流量を増やすように制御するものを用いることが
可能である。
In order to control the cooling operation so that the temperature difference in the refrigerant flow path becomes smaller, the control device may be provided with a capacity increasing means for increasing the cooling capacity as the temperature difference becomes larger. As the capacity increasing means, specifically, control is performed such that the opening of the expansion valve is opened as the temperature difference between the refrigerant passages is increased, or the rotation speed of the outdoor fan motor is increased as the temperature difference between the refrigerant passages is increased. It is possible to use such a control so that the operating frequency of the compressor is increased and the flow rate of the refrigerant is increased as the temperature difference between the refrigerant passages increases.

【0018】上記能力増強手段を設けることにより、高
温側の冷媒流路にも十分な冷媒が供給され、低温側の冷
媒の温度に近づけることが可能となる。なお、例示した
各能力増強手段は、単独で用いてもよいし、複数を組合
わせて使用することも可能である。
By providing the above capacity increasing means, sufficient refrigerant can be supplied also to the high temperature side refrigerant flow path, and it becomes possible to approach the temperature of the low temperature side refrigerant. Each of the exemplified capacity enhancing means may be used alone, or a plurality of them may be used in combination.

【0019】また、冷房能力を高めるだけでなく、室内
熱交換器において冷房能力を抑制する能力抑制手段を設
けることも可能である。冷媒の蒸発を抑制することによ
り低温側の冷媒流路の温度が高温側の冷媒流路の温度に
近づき、温度差を小さくすることができる。
In addition to increasing the cooling capacity, it is also possible to provide capacity suppressing means for suppressing the cooling capacity in the indoor heat exchanger. By suppressing the evaporation of the refrigerant, the temperature of the refrigerant passage on the low temperature side approaches the temperature of the refrigerant passage on the high temperature side, and the temperature difference can be reduced.

【0020】能力抑制手段としては、例えば、冷媒流路
に冷媒流量を調節する流量調整バルブを設け、冷媒流路
の温度差が大きいほど低温側の冷媒流路に設けられた流
量調整バルブを閉めて冷媒流量を少なくするように制御
するものを採用することができるほか、冷媒流路の温度
差が大きいほど室内ファンモータの回転数を下げるよう
に制御する構成を採用すれば、部品点数を増やすことな
く冷媒流路の温度差を小さくすることが可能となる。こ
れらの方法は単独で行ってもよいし、組合わせてもよ
い。
As the capacity suppressing means, for example, a flow rate adjusting valve for adjusting the flow rate of the refrigerant is provided in the refrigerant channel, and the flow rate adjusting valve provided in the refrigerant channel on the lower temperature side is closed as the temperature difference between the refrigerant channels becomes larger. It is possible to increase the number of parts by adopting a configuration in which the rotation speed of the indoor fan motor is controlled to decrease as the temperature difference of the refrigerant flow path increases It is possible to reduce the temperature difference in the refrigerant flow path without the need. These methods may be used alone or in combination.

【0021】なお、冷媒流路の温度差を低減する手段と
しては、能力増強手段、能力抑制手段のいずれの手段を
用いてもよいが、これら両方の手段を備え、運転状況に
応じていずれか一方を選択するようにすれば、より快適
な冷房運転が可能となる。
As means for reducing the temperature difference in the refrigerant flow passage, either capacity enhancing means or capacity suppressing means may be used, but both means are provided, and either of them is provided depending on the operating conditions. If one is selected, a more comfortable cooling operation can be performed.

【0022】すなわち、室内温度が設定温度よりもまだ
かなり高い場合は、能力増強手段を用い、冷房能力を増
強しつつ冷媒流路の温度差を低減するようにし、両者の
温度差が小さい場合には、能力抑制手段を用いて、冷房
能力を抑制しつつ冷媒流路の温度差を低減すれば、冷房
能力の過不足を生じることなく、快適性を維持しながら
露付を効果的に防止することができる。
That is, when the room temperature is still higher than the set temperature, the capacity increasing means is used to reduce the temperature difference between the refrigerant passages while increasing the cooling capacity, and when the temperature difference between the two is small. Reduces the temperature difference of the refrigerant flow path while suppressing the cooling capacity by using the capacity suppressing means, thereby effectively preventing the dew condensation while maintaining comfort without causing excess or deficiency of the cooling capacity. be able to.

【0023】本発明における空気調和機は、室内機と室
外機とからなるセパレート型であってもよいし、窓枠に
取付けるタイプのように凝縮器と蒸発器とが本体内に一
体的に収容された一体型であってもよい。
The air conditioner according to the present invention may be a separate type comprising an indoor unit and an outdoor unit, or a condenser and an evaporator are integrally housed in the main body like a type mounted on a window frame. It may be an integrated type.

【0024】また、冷房運転のみを行うものであっても
よいし、冷凍サイクルに冷凍サイクルを冷房運転サイク
ルと暖房運転サイクルのいずれかに切換える四方弁のよ
うな切換弁を設けることにより、冷房運転及び暖房運転
の両方の運転を可能としたものであってもよい。
The cooling operation may be carried out only, or the cooling operation may be performed by providing the refrigeration cycle with a switching valve such as a four-way valve for switching the refrigeration cycle to either the cooling operation cycle or the heating operation cycle. It may be one that enables both the heating operation and the heating operation.

【0025】いずれの場合であっても、本発明によれ
ば、冷房運転時に蒸発器が収容された本体内において、
蒸発器から冷風吹出し口に至る冷風吹出し経路内での結
露及び露付を効果的に防止することができる。
In any case, according to the present invention, in the main body containing the evaporator during the cooling operation,
It is possible to effectively prevent condensation and dew condensation in the cold air blowing path from the evaporator to the cold air blowing outlet.

【0026】[0026]

【発明の実施の形態】[第1の実施形態]図1及び2
は、本発明の第1の実施形態を示す図であり、本実施形
態においては、冷媒流路の温度差が大きくなったときに
各冷媒流路の温度差を低減する手段として冷房能力を高
める能力増強手段が設けられた点が特徴とされており、
具体的には能力増強手段として冷媒流路の温度差が大き
いほど膨張弁を開くように制御する構成が採用されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] FIGS. 1 and 2
FIG. 1 is a diagram showing a first embodiment of the present invention. In the present embodiment, when the temperature difference between the refrigerant passages becomes large, the cooling capacity is increased as a means for reducing the temperature difference between the refrigerant passages. It is characterized by the provision of capacity-enhancing means,
Specifically, as the capacity increasing means, a configuration is adopted in which the expansion valve is controlled to open as the temperature difference between the refrigerant passages increases.

【0027】図1は冷房時における空気調和機の冷媒の
流れを示す冷媒回路図を、図2は室内機の断面概略図を
それぞれ示す。本実施形態における空気調和機の基本的
な構成は、図7及び8に示す従来の空気調和機と同じと
されている。
FIG. 1 is a refrigerant circuit diagram showing the refrigerant flow in the air conditioner during cooling, and FIG. 2 is a schematic sectional view of the indoor unit. The basic configuration of the air conditioner in this embodiment is the same as that of the conventional air conditioner shown in FIGS. 7 and 8.

【0028】すなわち、本実施形態における空気調和機
は、室外機と室内機とからなるセパレート型であり、室
外機に収容される圧縮機1、室外熱交換器3及び電動膨
張弁4をこの順に冷媒配管で接続し、さらに電動膨張弁
4から液側二方弁5を介して、室内機に収容される室内
熱交換器6を配管接続し、室内熱交換器6からガス側三
方弁7を介して、再び室外の圧縮機1に配管接続して冷
凍サイクルを構成しており、室外熱交換器3と室内熱交
換器6とが、凝縮器又は蒸発器として使用されている。
That is, the air conditioner in this embodiment is a separate type consisting of an outdoor unit and an indoor unit, and the compressor 1, the outdoor heat exchanger 3 and the electric expansion valve 4 housed in the outdoor unit are arranged in this order. The indoor heat exchanger 6 accommodated in the indoor unit is connected by piping through the refrigerant pipe, the electric expansion valve 4 and the liquid side two-way valve 5, and the indoor heat exchanger 6 and the gas side three-way valve 7 are connected. A refrigerating cycle is constructed by connecting again to the outdoor compressor 1 via a pipe, and the outdoor heat exchanger 3 and the indoor heat exchanger 6 are used as a condenser or an evaporator.

【0029】圧縮機1は、切換弁である四方弁2を介し
て冷凍サイクルに接続されており、四方弁2を切り換え
ることにより、室外熱交換器3側、又は、室内熱交換器
6側のいずれの方向へも圧縮した冷媒を送出可能な構成
とされている。
The compressor 1 is connected to the refrigeration cycle via a four-way valve 2 which is a switching valve, and by switching the four-way valve 2, either the outdoor heat exchanger 3 side or the indoor heat exchanger 6 side is connected. The compressed refrigerant can be delivered in either direction.

【0030】室内熱交換器6は、2つの冷媒流路6a,
6bを有しており、図7と同様に、冷媒流路6a,6b
は、室内熱交換器6内において上下2段に配置されてお
り、室内熱交換器6の入口側と出口側とでそれぞれ並列
接続されている。上記空気調和機は、図1に示すよう
に、冷媒が冷媒流路6a,6b内を並列に流れるように
構成されている。なお、図中、矢印の向きが冷媒の流れ
る方向を示している。
The indoor heat exchanger 6 has two refrigerant flow paths 6a,
6b, and as in FIG. 7, the refrigerant flow paths 6a, 6b.
Are arranged in upper and lower two stages in the indoor heat exchanger 6, and are connected in parallel on the inlet side and the outlet side of the indoor heat exchanger 6, respectively. As shown in FIG. 1, the air conditioner is configured such that the refrigerant flows in parallel in the refrigerant channels 6a and 6b. In the figure, the direction of the arrow indicates the direction in which the refrigerant flows.

【0031】室内熱交換器6の冷媒流路6a,6bの各
々中間部付近には温度センサ13、14が設けられてお
り、さらに圧縮機1の冷媒入口側配管には温度センサ8
が設けられている。これら温度センサ8、13、14の
検出信号は制御装置12に入力される。制御装置12で
は、先ず温度センサ13、14の温度差を算出してその
温度差をなくすように能力増強手段である膨張弁4の開
度を制御する。
Temperature sensors 13 and 14 are provided near the respective intermediate portions of the refrigerant flow paths 6a and 6b of the indoor heat exchanger 6, and the temperature sensor 8 is provided in the refrigerant inlet side pipe of the compressor 1.
Is provided. The detection signals of these temperature sensors 8, 13, 14 are input to the control device 12. In the control device 12, first, the temperature difference between the temperature sensors 13 and 14 is calculated, and the opening degree of the expansion valve 4 as the capacity increasing means is controlled so as to eliminate the temperature difference.

【0032】このとき、膨張弁4の開度を制御する方法
としては、温度差の小さいときは、室温や入力温度等に
よって予め開度が決定される設定運転を実行し、ある温
度差以上になったときに一定の開度に開き、温度差が小
さくなったときに元の開度に戻す方法や、温度差に応じ
て比例的に開度を調整する方法等を採用することができ
る。
At this time, as a method of controlling the opening degree of the expansion valve 4, when the temperature difference is small, a setting operation in which the opening degree is previously determined according to the room temperature, the input temperature, etc., is executed so that the temperature difference exceeds a certain temperature. It is possible to employ a method of opening the opening degree to a certain degree when the temperature difference becomes small and returning to the original opening degree when the temperature difference becomes small, or a method of proportionally adjusting the opening degree according to the temperature difference.

【0033】例えば、温度センサ13、14の温度差が
基準以上と計測された場合は、温度の高い方の冷媒流路
内の冷媒は気相の割合が多くなっていると考えられる。
そこで、制御装置12は膨張弁4を開け、室内熱交換器
6により多くの冷媒を流すことによって、冷媒流路内の
液相の割合を気相の割合に対して増加させ、温度センサ
13、14の温度差を小さくする。
For example, when the temperature difference between the temperature sensors 13 and 14 is measured to be equal to or higher than the reference, it is considered that the refrigerant in the refrigerant channel having the higher temperature has a large gas phase ratio.
Therefore, the control device 12 opens the expansion valve 4 and causes more refrigerant to flow into the indoor heat exchanger 6, thereby increasing the ratio of the liquid phase in the refrigerant flow path to the ratio of the gas phase, and the temperature sensor 13, The temperature difference of 14 is reduced.

【0034】これにより、室内熱交換器6内の冷媒流路
6a,6bのどちらを通過する室内空気も十分に冷却、
除湿させることができ、室内熱交換器6の下流側の冷風
吹出し口19に至るまでの冷風吹出し経路20内、すな
わち、経路の壁面、室内ファン11、あるいはルーバ2
1の表面での露付を防止することが可能となる。
As a result, the indoor air passing through either of the refrigerant flow paths 6a and 6b in the indoor heat exchanger 6 is sufficiently cooled,
It can be dehumidified and is in the cold air blowing path 20 to the cold air blowing port 19 on the downstream side of the indoor heat exchanger 6, that is, the wall surface of the path, the indoor fan 11, or the louver 2.
It is possible to prevent dew on the surface of No. 1.

【0035】能力増強手段により冷房能力を高める場
合、室内熱交換器6内で冷媒が完全に蒸発しきらずに液
状のまま圧縮機1側に流れる、いわゆる液バック現象が
発生するおそれが生じる。そこで、本実施形態において
は、圧縮機1の冷媒吸込側配管の温度を検出する温度セ
ンサ8を設けてその検出信号を制御装置12に入力し、
制御装置12にて温度センサ13及び14と温度センサ
8との間の温度差を算出し、その温度差が一定になるよ
うに能力増強手段を制御し、これにより液バック現象の
発生を未然に防止する構成としている。
When the cooling capacity is increased by the capacity increasing means, a so-called liquid back phenomenon may occur in which the refrigerant in the indoor heat exchanger 6 does not completely evaporate and flows to the compressor 1 side in a liquid state. Therefore, in the present embodiment, a temperature sensor 8 that detects the temperature of the refrigerant suction side pipe of the compressor 1 is provided, and the detection signal is input to the control device 12,
The controller 12 calculates the temperature difference between the temperature sensors 13 and 14 and the temperature sensor 8, and controls the capacity increasing means so that the temperature difference becomes constant, thereby preventing the occurrence of the liquid back phenomenon. It is configured to prevent.

【0036】[第2の実施形態]図3は本発明の第2の
実施形態を示す空気調和機の冷媒の流れを示す冷媒回路
図である。本実施形態においては、温度センサ13、1
4の温度差が基準以上と計測された場合に、能力増強手
段として膨張弁4の開度を制御する代わりに室外ファン
10のモータ回転数を制御する点が特徴とされており、
その他の構成は第1の実施形態と同様となっている。
[Second Embodiment] FIG. 3 is a refrigerant circuit diagram showing a refrigerant flow in an air conditioner according to a second embodiment of the present invention. In the present embodiment, the temperature sensors 13, 1
When the temperature difference of 4 is measured to be equal to or higher than the reference, the motor increasing speed of the outdoor fan 10 is controlled instead of controlling the opening degree of the expansion valve 4 as the capacity increasing means.
Other configurations are similar to those of the first embodiment.

【0037】例えば、温度センサ13、14の温度差が
基準以上と計測された場合は、前述のごとく、温度の高
い方の冷媒流路内の冷媒は気相の割合が多くなっている
と考えられる。そこで、制御装置12は、室外ファンモ
ータ回転数を上げ、室外熱交換器3でより多くの放熱を
行い、冷媒流路6a,6bに導入される冷媒の温度を低
下させることで温度センサ13、14の温度差を小さく
し、室内空気を室内熱交換器6内で十分に冷却、除湿さ
せることができる。
For example, when the temperature difference between the temperature sensors 13 and 14 is measured to be equal to or higher than the reference, it is considered that the refrigerant in the refrigerant passage having the higher temperature has a large gas phase ratio as described above. To be Therefore, the control device 12 increases the outdoor fan motor rotation speed, radiates more heat in the outdoor heat exchanger 3, and lowers the temperature of the refrigerant introduced into the refrigerant flow passages 6a and 6b, whereby the temperature sensor 13, It is possible to reduce the temperature difference of 14 and sufficiently cool and dehumidify the indoor air in the indoor heat exchanger 6.

【0038】[第3の実施形態]図4は、本発明の第3
の実施形態を示す空気調和機の冷媒の流れを示す冷媒回
路図である。本実施形態においては、温度センサ13、
14の温度差が基準以上と計測された場合に、能力増強
手段として圧縮機1の運転周波数を制御する点が特徴と
されており、その他の構成は第1の実施形態と同様とな
っている。
[Third Embodiment] FIG. 4 shows a third embodiment of the present invention.
FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant of the air conditioner showing the embodiment of FIG. In this embodiment, the temperature sensor 13,
When the temperature difference of 14 is measured to be equal to or higher than the reference, the operating frequency of the compressor 1 is controlled as the capacity increasing means, and the other configurations are the same as those of the first embodiment. .

【0039】例えば、温度センサ13、14の温度差が
基準以上と計測された場合は、圧縮機1の運転周波数を
上げ、冷媒流路内の冷媒流量を増加させる。その結果、
室内熱交換器6で熱交換に必要な冷媒を十分に確保する
ことができ、室内熱交換器6全体において、冷媒流路6
a,6b内の液相の割合が気相の割合に対して増加し、
それぞれの冷媒流路間の温度差を小さくすることができ
る。したがって、室内熱交換器6で十分に室内空気を冷
却、除湿させることができる。
For example, when the temperature difference between the temperature sensors 13 and 14 is measured to be equal to or higher than the reference, the operating frequency of the compressor 1 is increased and the flow rate of the refrigerant in the refrigerant passage is increased. as a result,
The indoor heat exchanger 6 can sufficiently secure the refrigerant necessary for heat exchange, and the entire interior heat exchanger 6 has the refrigerant flow path 6
The proportion of the liquid phase in a and 6b increases with respect to the proportion of the gas phase,
The temperature difference between the respective coolant channels can be reduced. Therefore, the indoor heat exchanger 6 can sufficiently cool and dehumidify the indoor air.

【0040】[第4の実施形態]図5は、本発明の第4
の実施形態を示す空気調和機の冷媒の流れを示す冷媒回
路図である。本実施形態においては、温度センサ13、
14の温度差が基準以上と計測された場合に、各冷媒流
路の温度差を低減する手段として、冷媒流路内での冷房
能力を抑制する能力抑制手段が設けられた点が特徴とさ
れており、その他の構成は第1の実施形態と同様となっ
ている。
[Fourth Embodiment] FIG. 5 shows a fourth embodiment of the present invention.
FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant of the air conditioner showing the embodiment of FIG. In this embodiment, the temperature sensor 13,
When the temperature difference of 14 is measured to be equal to or more than the reference, as a means for reducing the temperature difference of each refrigerant flow path, a capacity suppressing means for suppressing the cooling capacity in the refrigerant flow path is provided. The other configurations are similar to those of the first embodiment.

【0041】本実施形態においては、能力抑制手段とし
て、冷媒流路の温度差が大きいほど室内ファン11のモ
ータの回転数を下げるように制御する構成が採用されて
いる。なお、他の能力抑制手段としては、各冷媒流路6
a,6bに冷媒流量を調節する流量調整バルブを設け、
冷媒流路6a,6b間の温度差が大きいほど低温側の冷
媒流路に設けられた流量調整バルブを閉めて冷媒流量を
少なくするように制御するものを採用することができ
る。
In the present embodiment, as the capacity suppressing means, a configuration is adopted in which the rotational speed of the motor of the indoor fan 11 is controlled to decrease as the temperature difference between the refrigerant passages increases. In addition, as another capability suppressing means, each refrigerant flow path 6
Provided with a flow rate adjusting valve for adjusting the flow rate of the refrigerant in a and 6b,
As the temperature difference between the refrigerant flow paths 6a and 6b increases, a control may be employed to close the flow rate adjusting valve provided in the refrigerant flow path on the low temperature side to reduce the refrigerant flow rate.

【0042】能力抑制手段の制御方法について説明する
と、例えば、温度センサ13、14の温度差が基準以上
と計測された場合は、室内ファン11のモータ回転数を
下げ、室内熱交換器6で冷却される空気の量を減らす。
その結果、室内熱交換器6で熱交換に必要な冷媒を十分
に確保することができ、室内熱交換器6全体において、
冷媒流路内の液相の割合が気相の割合に対して増加し、
冷媒流路6a及び6b間の温度差を小さくすることがで
きる。すなわち、室内熱交換器6で室内空気を十分に冷
却、除湿させることができる。
Explaining the control method of the capacity suppressing means, for example, when the temperature difference between the temperature sensors 13 and 14 is measured to be a reference value or more, the motor rotation speed of the indoor fan 11 is lowered and the indoor heat exchanger 6 cools. Reduce the amount of air that is taken.
As a result, the refrigerant necessary for heat exchange can be sufficiently secured in the indoor heat exchanger 6, and the indoor heat exchanger 6 as a whole is
The proportion of the liquid phase in the refrigerant channel increases with respect to the proportion of the gas phase,
The temperature difference between the coolant channels 6a and 6b can be reduced. That is, the indoor heat exchanger 6 can sufficiently cool and dehumidify the indoor air.

【0043】[0043]

【発明の効果】以上の説明から明らかなように、本発明
によると、複数の冷媒流路を有する蒸発器の各冷媒流路
に温度センサを設け、冷房運転時に各冷媒流路の温度差
を低減する方向に冷房運転を制御する制御装置を設けた
ため、冷風吹出し経路における露付を防止することが可
能となる。
As is apparent from the above description, according to the present invention, a temperature sensor is provided in each refrigerant flow passage of an evaporator having a plurality of refrigerant flow passages, and a temperature difference between the refrigerant flow passages during cooling operation is provided. Since the control device for controlling the cooling operation is provided in the decreasing direction, it is possible to prevent dew condensation in the cold air blowing path.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態を示す空気調和機の冷媒回路図FIG. 1 is a refrigerant circuit diagram of an air conditioner showing a first embodiment.

【図2】第1実施形態の室内機を示す断面概略図FIG. 2 is a schematic cross-sectional view showing the indoor unit of the first embodiment.

【図3】第2の実施形態を示す空気調和機の冷媒回路図FIG. 3 is a refrigerant circuit diagram of an air conditioner showing a second embodiment.

【図4】第3の実施形態を示す空気調和機の冷媒回路図FIG. 4 is a refrigerant circuit diagram of an air conditioner showing a third embodiment.

【図5】第4の実施形態を示す空気調和機の冷媒回路図FIG. 5 is a refrigerant circuit diagram of an air conditioner showing a fourth embodiment.

【図6】従来の空気調和機の概略構成図FIG. 6 is a schematic configuration diagram of a conventional air conditioner.

【図7】従来の空気調和機の別の形態を示す概略構成図FIG. 7 is a schematic configuration diagram showing another form of a conventional air conditioner.

【図8】図7における室内機の断面図FIG. 8 is a sectional view of the indoor unit in FIG.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 膨張弁 6 室内熱交換器 8 温度センサ 11 室内ファン 12 制御装置 13、14 温度センサ 17、18 吸込口 19 冷風吹出し口 20 冷風吹出し経路 21 ルーバ 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 expansion valve 6 Indoor heat exchanger 8 Temperature sensor 11 Indoor fan 12 Control device 13, 14 Temperature sensor 17,18 Suction port 19 Cold air outlet 20 Cold wind blowing route 21 Louver

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 5/00 102 F25B 5/00 102 301 301C 5/02 520 5/02 520C ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) F25B 5/00 102 F25B 5/00 102 301 301C 5/02 520 5/02 520C

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外熱交換器、膨張弁及び室内
熱交換器を配管を介して順次接続してなる冷凍サイクル
を備え、前記室内熱交換器は、並列接続された複数の冷
媒流路と、各冷媒流路の温度を検出する温度センサとを
有し、冷房運転時に各冷媒流路の温度差を低減する方向
に冷房運転を制御する制御装置が設けられたことを特徴
とする空気調和機。
1. A refrigeration cycle in which a compressor, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger are sequentially connected via piping, wherein the indoor heat exchanger has a plurality of refrigerant streams connected in parallel. And a temperature sensor that detects the temperature of each refrigerant flow path, and a control device that controls the cooling operation in a direction that reduces the temperature difference of each refrigerant flow path during the cooling operation is provided. Air conditioner.
【請求項2】 前記制御装置は、前記室内熱交換器の冷
媒入口側において冷房能力を高める能力増強手段が設け
られた請求項1記載の空気調和機。
2. The air conditioner according to claim 1, wherein the control device is provided with capacity enhancing means for enhancing a cooling capacity on a refrigerant inlet side of the indoor heat exchanger.
【請求項3】 前記能力増強手段は、前記冷媒流路の温
度差が大きいほど膨張弁を開くように制御することを特
徴とする請求項2記載の空気調和機。
3. The air conditioner according to claim 2, wherein the capacity increasing means controls the expansion valve to open as the temperature difference between the refrigerant flow paths increases.
【請求項4】 前記能力増強手段は、前記冷媒流路の温
度差が大きいほど前記室外熱交換器に送風するファンの
駆動モータの回転数を上げるように制御することを特徴
とする請求項2記載の空気調和機。
4. The capacity increasing means controls to increase the rotational speed of a drive motor of a fan that blows air to the outdoor heat exchanger, as the temperature difference of the refrigerant flow path increases. Air conditioner described.
【請求項5】 前記能力増強手段は、前記冷媒流路の温
度差が大きいほど前記圧縮機の運転周波数を上げるよう
に制御することを特徴とする請求項2記載の空気調和
機。
5. The air conditioner according to claim 2, wherein the capacity increasing means controls to increase the operating frequency of the compressor as the temperature difference in the refrigerant flow path increases.
【請求項6】 前記制御装置は、前記室内熱交換器にお
いて冷房能力を抑制する能力抑制手段を備えた請求項1
記載の空気調和機。
6. The control device comprises a capacity suppressing means for suppressing a cooling capacity in the indoor heat exchanger.
Air conditioner described.
【請求項7】 前記能力抑制手段は、前記冷媒流路の温
度差が大きいほど前記室内熱交換器に送風するファンの
駆動モータの回転数を下げるように制御することを特徴
とする請求項6記載の空気調和機。
7. The capacity suppressing means controls so that the rotational speed of a drive motor of a fan that blows air to the indoor heat exchanger decreases as the temperature difference of the refrigerant flow path increases. Air conditioner described.
JP2001378115A 2001-12-12 2001-12-12 Air conditioner Expired - Lifetime JP3976561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001378115A JP3976561B2 (en) 2001-12-12 2001-12-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378115A JP3976561B2 (en) 2001-12-12 2001-12-12 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003176943A true JP2003176943A (en) 2003-06-27
JP3976561B2 JP3976561B2 (en) 2007-09-19

Family

ID=19185928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378115A Expired - Lifetime JP3976561B2 (en) 2001-12-12 2001-12-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP3976561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300001A (en) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
US20150068238A1 (en) * 2012-04-16 2015-03-12 Daikin Industries, Ltd. Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844196B (en) * 2018-06-25 2019-07-09 珠海格力电器股份有限公司 Method and device for selecting indoor environment temperature sensing bulb and air conditioning equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300001A (en) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
US20150068238A1 (en) * 2012-04-16 2015-03-12 Daikin Industries, Ltd. Air conditioner
US9546806B2 (en) * 2012-04-16 2017-01-17 Daikin Industries, Ltd. Air conditioner

Also Published As

Publication number Publication date
JP3976561B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
EP2719966B1 (en) Refrigeration air-conditioning device
JP2723953B2 (en) Air conditioner
EP3862642A1 (en) Air conditioner
JP5061929B2 (en) Dehumidification unit and air conditioner
JP2010151337A (en) Air conditioning system
JP2008157557A (en) Air-conditioning system
WO2019053876A1 (en) Air conditioning device
JPWO2012085965A1 (en) Air conditioner
JPH09310927A (en) Device for controlling refrigerant of air conditioner
JP5594030B2 (en) Controller, humidity controller and air conditioning system
KR20060070885A (en) Air conditioner
JP4258117B2 (en) Air conditioner
JP2010078245A (en) Humidity control system
JP2008121997A (en) Air conditioner
JP2003176943A (en) Air conditioner
JP2006177599A (en) Air conditioner
CN110736142B (en) Air conditioner and rapid dehumidification control method without cooling
JP3724011B2 (en) Air conditioner
JPH11237135A (en) Air conditioner
JP6745895B2 (en) Air conditioning system
JPH08276720A (en) Air conditioner for vehicle
JP4012892B2 (en) Air conditioner
JP3748620B2 (en) Air conditioner
JP2004293941A (en) Air conditioner and operation control method for air conditioner
WO2022244182A1 (en) Ventilation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150