JP2003174393A - Repeating amplifier - Google Patents

Repeating amplifier

Info

Publication number
JP2003174393A
JP2003174393A JP2002058894A JP2002058894A JP2003174393A JP 2003174393 A JP2003174393 A JP 2003174393A JP 2002058894 A JP2002058894 A JP 2002058894A JP 2002058894 A JP2002058894 A JP 2002058894A JP 2003174393 A JP2003174393 A JP 2003174393A
Authority
JP
Japan
Prior art keywords
gain
unit
gain control
section
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002058894A
Other languages
Japanese (ja)
Other versions
JP3926649B2 (en
Inventor
Koya Kato
康哉 加藤
Tei Ito
悌 伊東
Shusuke Takamukai
秀典 高向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Hitachi Kokusai Electric Inc
Original Assignee
NTT Docomo Inc
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc, Hitachi Kokusai Electric Inc filed Critical NTT Docomo Inc
Priority to JP2002058894A priority Critical patent/JP3926649B2/en
Publication of JP2003174393A publication Critical patent/JP2003174393A/en
Application granted granted Critical
Publication of JP3926649B2 publication Critical patent/JP3926649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a repeating amplifier in which generation of heat is suppressed by reducing power consumption. <P>SOLUTION: Gain control values calculated at a gain operating section 10 are delivered to the downlink gain control section 14 and the uplink gain control section 15 in a control section 13 and gain control of a transmission amplifying section 3 for downlink communication and a transmission amplifying section 6 for uplink communication is performed using these gain control values. A CPU (not shown) in the control section 13 controls a stand-by control section 17 while monitoring a timer 16 to generate an on/off control signal S of a switch 19 thus setting an operating period and a stand-by period of specified time lengths alternately. The switch 19 is turned on during the operating period to supply power to the gain operating section 10 where the gain control values are generated and delivered to the control section 13. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、携帯電話システム
や移動無線システムなどの無線通信システムに用いられ
る中継増幅装置に係わり、特に、その増幅部の利得を制
御する利得制御部に関する。 【0002】 【従来の技術】無線通信システムでは、トンネル内や地
下街などの電波が届かない地域に有効に電波を送るため
に、基地局からの電波を一旦受信して増幅し、これを再
度送信する中継増幅装置(ブースタ)が設置される。 【0003】図3は双方向移動通信システムに用いられ
る中継増幅装置の一従来例を示すブロック構成図であっ
て、1はデュプレクサー、2は低雑音増幅部、3は送信
増幅部、4はデュプレクサー、5は低雑音増幅部、6は
送信増幅部、7aは親局(基地局)側の送受信用アンテ
ナ(以下、単に、アンテナという)、7bは子局(移動
局)側の送受信用アンテナ(以下、単に、アンテナとい
う)である。 【0004】同図において、ここでは、基地局(親局)
から移動局(子局)への通信(これを下り通信という)
と移動局から基地局への通信(これを上り通信という)
とがある。下り通信の場合には、図示しない基地局から
の送信電波がアンテナ7aで受信され、デュプレクサー
1を介し、低雑音増幅部2と送信増幅部3とで増幅され
た後、デュプレクサー4を介してアンテナ7bから図示
しない移動局に送信される。これにより、送信信号は、
充分に増幅されて移動局に送られる。また、上り通信の
場合には、移動局からの送信電波がアンテナ7bで受信
され、デュプレクサー4を介し、低雑音増幅部5と送信
増幅部6とで増幅された後、デュプレクサ1を介してア
ンテナ7aから図示しない移動局に送信される。これに
より、送信信号は、充分に増幅されて基地局に送られ
る。ここで、トンネルの場合、アンテナ7aはトンネル
外に設置され、アンテナ7bはトンネル内に設置され
る。 【0005】ところで、携帯電話などの移動通信システ
ムでは、複数の移動局が通信回線を分割共有するが、か
かる分割共有する多元接続方式として、CDMA(Code
Division Multiple Access:符号分割多元接続)やW(W
ideband)−CDMAが知られている。これは、ユーザ毎
にその固有の拡散符号で信号を拡散するスペクトル拡散
変調方式が採られ、このように変調された信号を同一周
波数帯で送信するものであり、符号の違いによって各ユ
ーザの信号を区別できるようにし、これにより、これら
信号が同一の通信回線を共有するものである。受信側
(上り通信では、基地局、下り通信では、移動局)で
は、受信希望の信号をこれに割り当てられている拡散符
号を用いることによって復調することができる。W−C
DMAは、さらに使用周波数帯を広くしたものである。 【0006】このCDMAやW−CDMAでは、セル内
において、基地局周辺やセル境界などいろんな位置に在
る移動局からの信号を受信するが、基地局でのこれら移
動局からの電波の受信強度は基地局から移動局までの距
離に応じて異なり、このような受信信号を一括処理する
のは問題があって(遠近問題)、これを解決するため
に、移動局夫々が基地局からの距離に応じて送信電力を
制御してセル内の全ての移動局からの電波の基地局での
受信強度が均一になるようにしている。 【0007】このようにして、CDMAやW−CDMA
による移動通信システムにおいては、遠近問題を解決し
ているが、特に、W−CDMAにおいては、約2GHz
帯という高い周波数帯を使用するため、天候などの環境
変化に影響されて伝搬損失が変動し、送信電波強度が変
動し易い。また、このような自然環境ばかりでなく、移
動局の周囲の環境(市街地や田園地,移動局の周囲分
布)により、伝搬損失が変動し、送信電波強度が変動し
易い。例えば、トンネル内で携帯電話機を使用すること
を例に挙げると、トンネル内では、伝搬損失が増大し、
受信レベルが低下する。従って、伝搬損失が増大し、受
信レベルが低下した場合には、基地局、移動局ともに、
送信電波の電力を大きくし、これらが少ない場合には、
基地局、移動局ともに、送信電力を、相手側が受信し易
いように(つまり、受信強度が大きくなり過ぎないよう
に)、小さくする必要がある。 【0008】また、CDMAやW−CDMAによる移動
通信システムにおいては、上記のように、移動局からの
送信電力は、基地局からの送信電波の受信強度に応じた
値となるように規定されているが、移動局の誤動作など
によってこの規定される値よりも大きな電力で送信する
可能性もある。このような電波に対しては、中継増幅装
置での送信増幅部6に設定されている利得は、大き過ぎ
て最適な利得とはならない。一方、当該移動局の送信と
同じ時間帯には、これと同一周波数帯で他の移動局も送
信を行なっており、中継増幅装置の送信増幅部6以降で
は、当該移動局からの異常に増幅された信号が他の移動
局からの受信信号に対して著しく干渉することになり、
他の移動局からの受信信号にとっては雑音(ブースタ雑
音)が異常に増加することになる。 【0009】中継増幅装置から送信されるこれら移動局
からの信号は基地局で受信されるが、このようなブース
タ雑音が基地局の受信LNA(Low Noise Amplifier)の
雑音よりも高くなると、かかる雑音を持つ信号に対して
大きな負荷がかかることになり、このような信号の正常
な処理ができなくなる。このことは、換言すると、当該
セル内で通信ができない移動局が存在することになる。 【0010】以上のようなことから、中継増幅装置にA
GC(Automatic Gain Control)機能を持たせ、基地局,
中継増幅装置間の環境変化に対して送信増幅部3,6の
利得を制御したり、異常に大きい送信電力の電波を受信
しても、これに対して送信増幅部3,6の利得を最適に
設定したりすることが知られている。 【0011】図4はかかるAGC機能を備えた中継増幅
装置を示すブロック構成図であって、8は受信部、9は
利得制御部であり、図3に対応する部分には同一符号を
付けて重複する説明を省略する。 【0012】同図において、低雑音増幅部2の出力は、
可変利得の送信増幅部3に供給されるとともに、受信部
8を介して利得制御部9にも供給され、この受信出力に
応じた利得制御信号が生成される。この利得制御信号に
よって送信増幅部3,6の利得が最適となるように制御
される。 【0013】図5は図4における利得制御部9の一従来
例を受信部8及び送信増幅部3,6とともに示す構成図
であって、10は利得演算部、11は止まり木受信部、
12は演算部、13は制御部、14は下り利得制御部、
15は上り利得制御部であり、図4に対応する部分には
同一符号を付けている。 【0014】同図において、受信部8からの下り通信の
受信出力は利得演算部10の止まり木受信部11(基地
局からは、セル内に存在する移動局を確認するために、
間欠的に信号を送信するが、この様子を止まり木とい
う)に供給され、この受信出力が演算処理されることに
よって基地局からこの中継増幅装置までの無線伝送路に
おける伝搬損失が推定される。演算部12は、止まり木
受信部11での推定伝搬損失をもとに演算し、受信部8
からの受信出力でのこの推定伝搬損失をキャンセルする
ような利得を送信増幅部3,6に設定可能とする値の利
得制御値を算出する。この利得制御値は制御部13の下
り利得制御部14と上り利得制御部15とに供給され、
下り利得制御部14は、この利得制御値に基いて、送信
増幅部3の利得を制御し、上り利得制御部15は、この
利得制御値に基いて、送信増幅部6の利得を制御する。
これにより、送信増幅部3,6では、伝搬損失がキャン
セルされた受信信号が得られることになる。 【0015】 【発明が解決しようとする課題】ところで、上記のよう
に、利得制御部を設けて中継増幅装置にAGC機能を持
たせると、そこでの消費電力が増大化し、また、これに
伴って発熱量も大きくなって回路特性を劣化させること
になる。 【0016】本発明の目的は、かかる問題を解消し、消
費電力を低減してAGC機能が効果的に得られるように
した中継増幅装置を提供することにある。 【0017】 【課題を解決するための手段】上記目的を達成するため
に、本発明は、利得制御部の利得演算部を間欠的に動作
させるようにして、消費電力と熱の発生を低減させるも
のである。 【0018】 【発明の実施の形態】以下、本発明の実施形態を図面に
よつて説明する。 【0019】図1は本発明による中継増幅装置の一実施
形態の要部を示すブロック図であって、16はタイマ、
17はスタンバイ制御部、18は電源装置、19は開閉
スイッチであり、図5に対応する部分には同一符号を付
けて重複する説明を省略する。 【0020】この実施形態の中継増幅装置の全体構成
は、図4に示した構成と同様である。 【0021】同図において、制御部13はタイマ16を
備えており、制御部13でのCPU(Central Processin
g Unit)がこれを監視している。なお、このタイマ16
は、このCPU内蔵のものであってもよいし、別体のも
のであってもよい。また、電源部18はこの実施形態の
中継増幅装置での受信部8(図4)や送信増幅部3,
6、利得制御部9(図4)の利得演算部10や制御部1
3などの各部に電力を供給するものであるが、利得演算
部10には、開閉スイッチ19を介して電力を供給す
る。また、この開閉スイッチ19は、機械的なものであ
っても、電子的なものであってもよい。なお、この開閉
スイッチ19は、制御部13のスタンバイ制御部17か
らの制御信号SによってON/OFF制御される。 【0022】次に、図2に示すタイミングチャートを用
いてこの実施形態の動作の一具体例を説明する。但し、
同図(a)はスタンバイ制御部17から出力される制御
信号Sを示し、同図(b)はこの制御信号Sによる開閉
スイッチ19の動作(ON/OFF状態)を示すもので
ある。 【0023】いま、スタンバイ制御部17から出力され
る制御信号Sのレベルが“1”とすると、開閉スイッチ
19はOFF状態にあり、利得演算部10は電源が供給
されずにスタンバイ状態にある。図2に示すTSがこの
スタンバイ状態にある期間(スタンバイ期間)である。 【0024】上記のCPUは、タイマ16を監視してい
て、所定のスタンバイ期間TSが経過すると、スタンバ
イ制御部17を制御して制御信号Sをレベル“0”に反
転させる。これにより、開閉スイッチ19はONとな
り、利得演算部10に電源装置18から電源が投入され
る。利得演算部10は図2で説明した動作を開始し、利
得演算部10で算出した利得制御値を夫々制御部13の
下り利得制御部14及び上り利得制御部15に供給す
る。これら下り利得制御部14及び上り利得制御部15
では、供給された利得制御値を保持するレジスタなどの
保持手段を備えており、これらに新たに供給された利得
制御値でこれまで保持されていた利得制御値と入れ換え
(更新)がなされる。これら保持手段に保持された利得
制御値によって送信増幅部3,6の利得が制御される。 【0025】このように、電源投入,利得の再計算が行
なわれ、利得が再設定(更新)されるまでの時間をTM
とし、再設定後、CPUは、スタンバイ制御部17を制
御して制御信号Sをレベル“1”に反転させる。これに
より、開閉スイッチ19がOFF状態に反転して利得演
算部10への電源供給が停止され、この利得演算部10
がスタンバイ状態のスタンバイ期間TSに入る。 【0026】このように、CPUがタイマ16を監視し
ながらスタンバイ制御部17を制御することにより、ス
タンバイ期間TSと動作期間TMとが繰り返し、所定の周
期で繰り返し利得演算部10が下り通信,上り通信毎に
利得制御値を生成して制御部13の下り利得制御部14
と上り利得制御部15とに送る。 【0027】ここで、基地局,中継増幅装置間や中継増
幅装置,移動局間の環境はそれほど急激に変化するもの
ではない。このため、スタンバイ期間TSを環境条件を
ほぼ一定とみなせる程度以下の時間長に設定することに
より、送信増幅部3,6の利得を環境変化に応じた最適
な利得に常に維持することができることになる。 【0028】なお、この実施形態では、スタンバイ制御
部17からの制御信号Sのレベルを、スタンバイ期間T
S では“1”とし、動作期間TM では“0”としたが、
これは説明の都合上このように表現したものに過ぎず、
つまり、これら期間TS,TM間では、レベルが異なるこ
とを表わしているものである。勿論、これら期間TS
Mの内の長い方の期間で制御信号Sの電流値が0また
はほぼ0となるようにする方が好ましい。 【0029】また、この実施形態では、開閉スイッチ1
9を設けて利得演算部10の電源をON/OFFするよ
うにしたが、利得演算部10に電源を供給したまま、ス
タンバイ期間TSでは、消費電力が小さい待機状態とす
るようにしてもよい。 【0030】さらに、この実施形態では、制御部13の
CPUを用いて上記の利得演算部10の電源制御を行な
うようにしたが、制御部13とは別に電源制御部を設
け、これによって開閉スイッチ19のON/OFF制
御、もしくは利得演算部10の上記動作/待機状態切換
制御を行なうようにしてもよい。かかる電源制御部も、
タイマを備えたCPUによって動作することはいうまで
もない。なお、受信部8についても、利得演算部10と
同期して、電源のON/OFF、もしくは動作/待機状
態切換制御を行なうようにしてもよい。 【0031】 【発明の効果】以上説明したように、本発明によれば、
利得制御部での利得演算部が間欠的に動作するようにす
るものであるから、消費電力が低減し、発生熱量を抑圧
することができる。また、利得演算部の動作によって得
られる受信信号の増幅部の利得を最適にするための利得
制御値に基いて、該利得演算部が動作しない期間も受信
信号の増幅部の利得を制御するものであるから、利得演
算部を間欠的に動作させても、かかる増幅部の利得を常
に最適な状態に維持することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a relay amplifying device used in a radio communication system such as a portable telephone system or a mobile radio system, and more particularly, to a method for controlling the gain of an amplifying unit. The present invention relates to a gain control unit for controlling. 2. Description of the Related Art In a radio communication system, a radio wave from a base station is once received, amplified, and transmitted again in order to effectively transmit the radio wave to an area where radio waves do not reach, such as in a tunnel or an underground mall. A relay amplifying device (booster) is installed. FIG. 3 is a block diagram showing a conventional example of a relay amplifying device used in a bidirectional mobile communication system, wherein 1 is a duplexer, 2 is a low-noise amplifier, 3 is a transmission amplifier, and 4 is Duplexer, 5 is a low noise amplifier, 6 is a transmission amplifier, 7a is a transmitting / receiving antenna (hereinafter simply referred to as an antenna) on a master station (base station) side, and 7b is a transmitting / receiving antenna on a slave station (mobile station) side. An antenna (hereinafter simply referred to as an antenna). [0004] In the figure, here, a base station (master station) is shown.
Communication from the mobile station (slave station) (this is called downlink communication)
And communication from the mobile station to the base station (this is called uplink communication)
There is. In the case of downlink communication, a transmission radio wave from a base station (not shown) is received by the antenna 7a, is amplified by the low noise amplification unit 2 and the transmission amplification unit 3 via the duplexer 1, and then is transmitted via the duplexer 4. From the antenna 7b to a mobile station (not shown). Thus, the transmission signal is
It is sufficiently amplified and sent to the mobile station. In the case of uplink communication, a transmission radio wave from the mobile station is received by the antenna 7b, amplified by the low noise amplifier 5 and the transmission amplifier 6 through the duplexer 4, and then transmitted through the duplexer 1. The signal is transmitted from the antenna 7a to a mobile station (not shown). Thereby, the transmission signal is sufficiently amplified and sent to the base station. Here, in the case of a tunnel, the antenna 7a is installed outside the tunnel, and the antenna 7b is installed inside the tunnel. In a mobile communication system such as a mobile phone, a plurality of mobile stations divide and share a communication line.
Division Multiple Access: code division multiple access or W (W
ideband) -CDMA is known. This employs a spread spectrum modulation method for spreading a signal with a unique spreading code for each user, and transmits a signal modulated in this way in the same frequency band. , So that these signals share the same communication line. On the receiving side (a base station in uplink communication and a mobile station in downlink communication), a signal desired to be received can be demodulated by using a spreading code assigned to the signal. WC
DMA has a wider use frequency band. In CDMA and W-CDMA, signals from mobile stations located at various positions such as around a base station and a cell boundary are received in a cell, and the reception strength of radio waves from these mobile stations at the base station is received. Differs depending on the distance from the base station to the mobile station, and there is a problem in processing such received signals collectively (far-far problem). In order to solve this, each of the mobile stations must be located at a distance from the base station. , The transmission power is controlled in accordance with, so that the reception intensities of radio waves from all the mobile stations in the cell at the base station become uniform. As described above, CDMA and W-CDMA
Solves the near-far problem, especially in W-CDMA, which is about 2 GHz.
Since a high frequency band is used, the propagation loss fluctuates due to environmental changes such as weather and the like, and the transmission radio wave intensity tends to fluctuate. In addition to such a natural environment, the propagation loss fluctuates due to the environment around the mobile station (urban area, countryside, distribution around the mobile station), and the transmission radio field intensity tends to fluctuate. For example, using a mobile phone in a tunnel as an example, propagation loss increases in a tunnel,
The reception level decreases. Therefore, when the propagation loss increases and the reception level decreases, both the base station and the mobile station
If you increase the power of the transmitted radio waves and they are small,
In both the base station and the mobile station, it is necessary to reduce the transmission power so that the other party can easily receive the signal (that is, the reception intensity does not become too large). Further, in a mobile communication system based on CDMA or W-CDMA, as described above, the transmission power from the mobile station is defined to be a value corresponding to the reception strength of the radio wave transmitted from the base station. However, there is a possibility that transmission will be performed with power larger than the specified value due to a malfunction of the mobile station or the like. For such a radio wave, the gain set in the transmission amplifier 6 in the relay amplifier is too large to be an optimal gain. On the other hand, in the same time zone as the transmission of the mobile station, other mobile stations are also transmitting in the same frequency band, and abnormal amplification from the mobile station is performed after the transmission amplification unit 6 of the relay amplifier. Signal will significantly interfere with the received signal from other mobile stations,
Noise (booster noise) increases abnormally for received signals from other mobile stations. [0009] These signals from the mobile station transmitted from the relay amplifier are received by the base station. If such booster noise becomes higher than the noise of the reception LNA (Low Noise Amplifier) of the base station, the noise is reduced. Therefore, a large load is applied to a signal having the above-mentioned signal, and normal processing of such a signal cannot be performed. This means that, in other words, there are mobile stations that cannot communicate within the cell. [0010] From the above, the relay amplifying device A
With GC (Automatic Gain Control) function, base station,
The gain of the transmission amplifiers 3 and 6 is controlled in response to environmental changes between the relay amplifiers, and the gain of the transmission amplifiers 3 and 6 is optimized for the reception of radio waves with abnormally high transmission power. It is known to set FIG. 4 is a block diagram showing a repeater amplifying apparatus having such an AGC function. Reference numeral 8 denotes a receiving section, 9 denotes a gain control section, and portions corresponding to FIG. A duplicate description will be omitted. In FIG. 1, the output of the low noise amplifier 2 is
The signal is supplied to the variable gain transmission amplifier 3 and also to the gain controller 9 via the receiver 8 to generate a gain control signal corresponding to the received output. The gain control signal controls the transmission amplifiers 3 and 6 to optimize the gain. FIG. 5 is a block diagram showing a conventional example of the gain control unit 9 in FIG. 4 together with the reception unit 8 and the transmission amplification units 3 and 6, where 10 is a gain calculation unit, 11 is a perch reception unit,
12 is an arithmetic unit, 13 is a control unit, 14 is a downlink gain control unit,
Reference numeral 15 denotes an uplink gain control unit, and portions corresponding to those in FIG. In FIG. 1, the reception output of the downlink communication from the receiving unit 8 is a perch receiving unit 11 of the gain calculating unit 10 (from the base station, in order to confirm the mobile station existing in the cell,
The signal is intermittently transmitted, but this state is supplied to a perch, and the received output is subjected to arithmetic processing to estimate the propagation loss in the radio transmission path from the base station to the relay amplifier. The operation unit 12 performs an operation based on the estimated propagation loss in the perch reception unit 11, and
Then, a gain control value is calculated which enables the transmission amplifiers 3 and 6 to set a gain that cancels the estimated propagation loss in the reception output from the transmission amplifiers 3 and 6. This gain control value is supplied to the downlink gain control unit 14 and the uplink gain control unit 15 of the control unit 13,
The downlink gain control section 14 controls the gain of the transmission amplification section 3 based on the gain control value, and the uplink gain control section 15 controls the gain of the transmission amplification section 6 based on the gain control value.
As a result, the transmission amplifiers 3 and 6 can obtain received signals in which the propagation loss has been canceled. By the way, as described above, when the gain control section is provided and the relay amplifier has the AGC function, the power consumption there increases, and the power consumption increases. The amount of heat generated also increases, and circuit characteristics deteriorate. An object of the present invention is to provide a relay amplifying apparatus which solves such a problem and reduces power consumption so that an AGC function can be effectively obtained. In order to achieve the above object, the present invention reduces the power consumption and heat generation by intermittently operating a gain calculation section of a gain control section. Things. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a main part of an embodiment of a relay amplifying apparatus according to the present invention.
Reference numeral 17 denotes a standby control unit, reference numeral 18 denotes a power supply device, and reference numeral 19 denotes an open / close switch. Parts corresponding to those in FIG. The overall configuration of the relay amplifying device of this embodiment is the same as the configuration shown in FIG. In FIG. 1, the control unit 13 includes a timer 16, and the CPU (Central Process
g Unit) monitors this. Note that this timer 16
May be built into the CPU or may be separate. In addition, the power supply unit 18 includes the receiving unit 8 (FIG. 4) and the transmitting amplifying unit 3 in the relay amplifying device of this embodiment.
6. The gain calculator 10 and the controller 1 of the gain controller 9 (FIG. 4)
Although power is supplied to each unit such as 3, power is supplied to the gain calculation unit 10 via the open / close switch 19. The open / close switch 19 may be mechanical or electronic. The open / close switch 19 is ON / OFF controlled by a control signal S from the standby control unit 17 of the control unit 13. Next, a specific example of the operation of this embodiment will be described with reference to the timing chart shown in FIG. However,
3A shows a control signal S output from the standby control unit 17, and FIG. 3B shows the operation (ON / OFF state) of the open / close switch 19 by the control signal S. When the level of the control signal S output from the standby control unit 17 is "1", the open / close switch 19 is in the OFF state, and the gain calculation unit 10 is in the standby state without supplying power. T S shown in FIG. 2 is a period in the standby state (standby period). The CPU monitors the timer 16, and when a predetermined standby period T S has elapsed, controls the standby control unit 17 to invert the control signal S to the level “0”. As a result, the open / close switch 19 is turned on, and the power is supplied to the gain calculation unit 10 from the power supply device 18. The gain calculator 10 starts the operation described with reference to FIG. 2 and supplies the gain control values calculated by the gain calculator 10 to the downlink gain controller 14 and the uplink gain controller 15 of the controller 13, respectively. These downlink gain controller 14 and uplink gain controller 15
Has a holding means such as a register for holding the supplied gain control value, and the gain control value newly supplied to these is replaced (updated) with the previously stored gain control value. The gains of the transmission amplifiers 3 and 6 are controlled by the gain control values held in these holding units. As described above, the power-on time and the recalculation of the gain are performed, and the time until the gain is reset (updated) is T M.
After resetting, the CPU controls the standby control unit 17 to invert the control signal S to the level “1”. As a result, the open / close switch 19 is turned off and the power supply to the gain calculator 10 is stopped.
Enters a standby period T S in a standby state. As described above, the CPU controls the standby control unit 17 while monitoring the timer 16, so that the standby period T S and the operation period T M are repeated, and the gain operation unit 10 repeatedly performs the downlink communication in a predetermined cycle. , A gain control value is generated for each uplink communication and the downlink gain control unit 14 of the control unit 13 is generated.
And the uplink gain control unit 15. Here, the environment between the base station and the relay amplifier and between the relay amplifier and the mobile station does not change so rapidly. Therefore, by setting the standby period T S to a time length that is less than or equal to a value that allows environmental conditions to be regarded as substantially constant, it is possible to always maintain the gains of the transmission amplifiers 3 and 6 at optimal gains according to environmental changes. become. In this embodiment, the level of the control signal S from the standby control unit 17 is changed to the standby period T
Although it was set to "1" in S and "0" in the operation period T M ,
This is only the expression for the sake of explanation,
That is, the level is different between these periods T S and T M. Of course, these periods T S ,
It is preferable that the current value of the control signal S be 0 or almost 0 in the longer period of T M. In this embodiment, the open / close switch 1
9 is provided to turn on / off the power of the gain calculation unit 10, but the power may be supplied to the gain calculation unit 10 and the standby period TS may be a standby state with low power consumption. Further, in this embodiment, the power supply control of the above-described gain calculation section 10 is performed by using the CPU of the control section 13. However, a power supply control section is provided separately from the control section 13 so that the open / close switch is provided. The ON / OFF control of the control unit 19 or the operation / standby state switching control of the gain calculation unit 10 may be performed. Such a power control unit also
Needless to say, the operation is performed by the CPU having the timer. It should be noted that the receiving unit 8 may also perform power ON / OFF or operation / standby state switching control in synchronization with the gain calculating unit 10. As described above, according to the present invention,
Since the gain calculation section in the gain control section operates intermittently, power consumption can be reduced and the amount of generated heat can be suppressed. Further, based on a gain control value for optimizing the gain of the received signal amplifying unit obtained by the operation of the gain calculating unit, the gain of the received signal amplifying unit is controlled during the period when the gain calculating unit is not operated. Therefore, even if the gain calculating section is operated intermittently, the gain of the amplifying section can always be maintained in an optimum state.

【図面の簡単な説明】 【図1】本発明による中継増幅装置の一実施形態の要部
を示す構成図である。 【図2】図1に示す実施形態の動作の一具体例を示すタ
イミングチャートである。 【図3】中継増幅装置の一従来例を示すブロック図であ
る。 【図4】AGC機能を備えた中継増幅装置を示すブロッ
ク図である。 【図5】図4における利得制御部の一例を示す構成図で
ある。 【符号の説明】 1 デュプレクサー 2 低雑音増幅部 3 送信増幅部 4 デュプレクサー 5 低雑音増幅部 6 送信増幅部 8 受信部 9 利得制御部 10 利得演算部 11 止まり木受信部 12 演算部 13 制御部 14 下り制御部 15 上り制御部 16 タイマ 17 スタンバイ制御部 18 電源装置 19 開閉スイッチ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing a main part of an embodiment of a relay amplification device according to the present invention. FIG. 2 is a timing chart showing a specific example of the operation of the embodiment shown in FIG. FIG. 3 is a block diagram showing a conventional example of a relay amplifier. FIG. 4 is a block diagram showing a relay amplification device having an AGC function. FIG. 5 is a configuration diagram illustrating an example of a gain control unit in FIG. 4; [Description of Signs] 1 Duplexer 2 Low noise amplifying unit 3 Transmission amplifying unit 4 Duplexer 5 Low noise amplifying unit 6 Transmission amplifying unit 8 Receiving unit 9 Gain control unit 10 Gain computing unit 11 Perch receiving unit 12 Computing unit 13 Control Unit 14 downlink control unit 15 uplink control unit 16 timer 17 standby control unit 18 power supply device 19 open / close switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 悌 東京都千代田区永田町二丁目11番1号 株 式会社エヌ・ティ・ティ・ドコモ内 (72)発明者 高向 秀典 東京都千代田区永田町二丁目11番1号 株 式会社エヌ・ティ・ティ・ドコモ内 Fターム(参考) 5K067 AA43 DD27 DD41 EE02 EE06 EE10 GG08 5K072 AA20 AA29 BB13 BB25 BB27 CC31 DD11 DD16 EE19 EE34 GG14 GG25 GG26    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Tei Ito             2-11-1, Nagatacho, Chiyoda-ku, Tokyo, Japan             NTT DoCoMo (72) Inventor Hidenori Takamukai             2-11-1, Nagatacho, Chiyoda-ku, Tokyo, Japan             NTT DoCoMo F term (reference) 5K067 AA43 DD27 DD41 EE02 EE06                       EE10 GG08                 5K072 AA20 AA29 BB13 BB25 BB27                       CC31 DD11 DD16 EE19 EE34                       GG14 GG25 GG26

Claims (1)

【特許請求の範囲】 【請求項1】 上り,下り夫々の通信での受信信号か
ら、これら信号を増幅する増幅部の利得を最適に設定す
るための利得制御値を算出する利得演算部と、該利得演
算部で算出された該利得制御値に応じて該増幅部の利得
を制御する制御部とを備えた中継増幅装置において、 該利得演算部を、該利得制御値を算出する動作モードと
該利得演算部の消費電力を低減する消費電力低減モード
とに交互に切り換える手段を設け、 該消費電力低減モードでは、その直前の該動作モードで
算出された該利得制御値に基いて該増幅部の利得を制御
することを特徴とする中継増幅装置。
Claims: 1. A gain calculation unit for calculating a gain control value for optimally setting a gain of an amplification unit for amplifying these signals from received signals in uplink and downlink communications, and A relay amplifying device comprising a control unit for controlling the gain of the amplifying unit according to the gain control value calculated by the gain calculating unit, wherein the gain calculating unit includes an operation mode for calculating the gain control value; Means for alternately switching to a power consumption reduction mode for reducing the power consumption of the gain operation unit, wherein in the power consumption reduction mode, the amplifying unit based on the gain control value calculated in the immediately preceding operation mode. And a gain control unit.
JP2002058894A 2001-09-26 2002-03-05 Relay amplifier Expired - Lifetime JP3926649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058894A JP3926649B2 (en) 2001-09-26 2002-03-05 Relay amplifier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-294437 2001-09-26
JP2001294437 2001-09-26
JP2002058894A JP3926649B2 (en) 2001-09-26 2002-03-05 Relay amplifier

Publications (2)

Publication Number Publication Date
JP2003174393A true JP2003174393A (en) 2003-06-20
JP3926649B2 JP3926649B2 (en) 2007-06-06

Family

ID=26622963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058894A Expired - Lifetime JP3926649B2 (en) 2001-09-26 2002-03-05 Relay amplifier

Country Status (1)

Country Link
JP (1) JP3926649B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228169A (en) * 2007-03-15 2008-09-25 Matsushita Electric Works Ltd Communication apparatus
JP2010187188A (en) * 2009-02-12 2010-08-26 Softbank Mobile Corp Radio relay device and radio relay system
JP2011071645A (en) * 2009-09-24 2011-04-07 Toshiba Digital Media Engineering Corp Non-reproducing radio repeater and radio relay system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228169A (en) * 2007-03-15 2008-09-25 Matsushita Electric Works Ltd Communication apparatus
JP2010187188A (en) * 2009-02-12 2010-08-26 Softbank Mobile Corp Radio relay device and radio relay system
JP2011071645A (en) * 2009-09-24 2011-04-07 Toshiba Digital Media Engineering Corp Non-reproducing radio repeater and radio relay system

Also Published As

Publication number Publication date
JP3926649B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
CN101569113B (en) Wcdma power saving with transmit diversity
US6807235B2 (en) Wireless communication apparatus processing intermittent data
HK1057828A1 (en) Apparatus and method for automatically switching communication/communication suppression mode of wireless communication terminal
JP2005328513A (en) Method for rf output power control of wireless communication device
GB2337897A (en) Battery saving arrangement for mobile phone with power controlled RF amplifier
JP2004356838A (en) System, method and program for controlling power consumption of radio base station equipment
JP2003174393A (en) Repeating amplifier
KR100474055B1 (en) Cdma mobile radio terminal
JP2000349704A (en) Radio communication unit, transmission power control method for radio communication unit and recording medium
US7221222B2 (en) Methods and apparatus of managing a power amplifier
JP2004048197A (en) Radio relay apparatus
US7221223B2 (en) Methods and apparatus of managing a power amplifier
WO2000060754A1 (en) Radio transmitter and power supply unit for radio transmitter
KR100690325B1 (en) Apparatus And Method For Controlling Bias Of Power Amplifier Using Repeater And Base Station Of Time Division Duplex Type Portable Internet System
JP2001292037A (en) Distortion characteristic control system
KR20050009345A (en) Radio signal transmit/receive switching circuit using low power switch in time division duplex system
TWI450618B (en) Mobile communication device capable of controlling output power and method thereof
KR20040016665A (en) Mobile communication repeater system using frequency conversion method
JP2004236350A (en) Radio communication apparatus for handling intermittent signal
KR20090085300A (en) Apparatus and method for improving sensitivity of dual-standby portable terminal
JP2005277648A (en) Communication device and method for controlling power supply therein
JPH10327082A (en) Transmission amplifier circuit for mobile radio equipment
JP2004023730A (en) Transmission circuit
KR20000013188U (en) Power control device of dual mode / triple mode mobile terminal
KR100557090B1 (en) Mobile complex communication terminal for reducing noise during a high-speed data communication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R150 Certificate of patent or registration of utility model

Ref document number: 3926649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term