JP2003174102A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device

Info

Publication number
JP2003174102A
JP2003174102A JP2001369830A JP2001369830A JP2003174102A JP 2003174102 A JP2003174102 A JP 2003174102A JP 2001369830 A JP2001369830 A JP 2001369830A JP 2001369830 A JP2001369830 A JP 2001369830A JP 2003174102 A JP2003174102 A JP 2003174102A
Authority
JP
Japan
Prior art keywords
storage electrode
film
silicon oxide
capacity
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001369830A
Other languages
Japanese (ja)
Other versions
JP4045791B2 (en
Inventor
Toyoyuki Shimazaki
豊幸 嶋崎
Tetsuo Chato
哲夫 茶藤
Yuzo Shimizu
雄三 志水
Kenji Imaizumi
憲二 今泉
Katsuichi Osawa
勝市 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001369830A priority Critical patent/JP4045791B2/en
Publication of JP2003174102A publication Critical patent/JP2003174102A/en
Application granted granted Critical
Publication of JP4045791B2 publication Critical patent/JP4045791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Weting (AREA)
  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enlarge the surface area of a capacity storage electrode in order to increase the capacity of the capacitor of a semiconductor device for memory that is minute and highly integrated. <P>SOLUTION: Two or more layers of silicon oxide films having different impurity concentrations and fluorine contents are stacked as the spare layer of a capacity storage electrode 11 that is formed to a semiconductor device. An opening that is the predetermined zone of the spare layer removed selectively is provided to get etching treatment. The shape of bellows is formed on the sidewall surface of the opening due to the difference in the etching rate of the spare layer. After a conductive film is deposited on the sidewall surface of the opening to form the capacity storage electrode 11, the spare layer is removed. Moreover, a capacity insulator film 12 and a capacity counter-electrode 13 are formed to the capacity storage electrode 11. The surface of the cylindrical capacity storage electrode 11 can be formed into bellows without performing high-temperature heat treatment, and the surface area is enlarged to increase the capacity of the capacitor. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、記憶用あるいは記
憶部を有する半導体装置における電荷蓄積用キャパシタ
の蓄積容量向上のために、電荷蓄積用電極の表面積を拡
大した半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device in which the surface area of a charge storage electrode is increased in order to improve the storage capacity of a charge storage capacitor in a semiconductor device for storage or having a storage portion. is there.

【0002】[0002]

【従来の技術】近年、情報機器分野においては半導体装
置のDRAM(記憶保持動作が必要な随時書き込み読み
出しメモリ)が多く用いられている。このDRAMは、
キャパシタによる電荷保持の有無によって情報を記憶し
ており、キャパシタに蓄積された電荷はトランジスタの
スイッチを介してビット線と接続され、キャパシタから
の電荷の流出によるビット線の電位の変化を差動アンプ
によって増幅しデータとして読み出している。
2. Description of the Related Art Recently, in the field of information equipment, a semiconductor device DRAM (an occasional write / read memory requiring a memory holding operation) has been widely used. This DRAM is
Information is stored depending on the presence or absence of charge retention by the capacitor, and the charge accumulated in the capacitor is connected to the bit line through the switch of the transistor. It is amplified and read out as data.

【0003】しかしながら、キャパシタに蓄積される電
荷は時間が経過すると減少していくため、DRAMでは
定期的にキャパシタの電荷を読み出して再度書き込むと
いうリフレッシュ動作を行う必要がある。このリフレッ
シュ動作自体の誤動作によるデータ消失、リフレッシュ
動作により消費される電力増加等の問題がある為、定期
的に行うリフレッシュ動作の回数を減らすことが、DR
AMの信頼性向上には有効である。これらは、キャパシ
タの容量を大きくすることにより実現できる。しかしな
がら、メモリの記憶容量の増加に伴う高密度な集積化
で、半導体素子が微細化されキャパシタの占有面積は小
さくなり、キャパシタの容量を大きくすることが困難に
なってきている。
However, since the electric charge accumulated in the capacitor decreases with the passage of time, it is necessary for the DRAM to perform a refresh operation of periodically reading the electric charge of the capacitor and rewriting the electric charge. Since there are problems such as data loss due to malfunction of the refresh operation itself and increase in power consumed by the refresh operation, it is necessary to reduce the number of refresh operations that are regularly performed.
It is effective for improving the reliability of AM. These can be realized by increasing the capacitance of the capacitor. However, due to the high-density integration that accompanies an increase in the storage capacity of the memory, the semiconductor element is miniaturized, the occupied area of the capacitor is reduced, and it is becoming difficult to increase the capacitance of the capacitor.

【0004】この問題を解決する技術の一つとしてとし
て、単位面積あたりのキャパシタの表面積を拡大する技
術が考えられる。例えば、従来からメモリセルのキャパ
シタを形成する容量蓄積電極の構造を王冠型あるいはフ
ィン型構造として、容量蓄積電極の表面積を増大させる
技術が用いられてきた。さらに、近年シリコン系材料か
らなる容量蓄積電極の表面を、多結晶シリコンからなる
微細粒子(粒径が約0.05μm)で被覆することで表
面積を増大させるHSG法(Hemispherical Grain法)
が実用化されている。
As one of the techniques for solving this problem, a technique for enlarging the surface area of the capacitor per unit area can be considered. For example, conventionally, a technique of increasing the surface area of the capacitance storage electrode by making the structure of the capacitance storage electrode forming the capacitor of the memory cell into a crown type or fin type structure has been used. Furthermore, in recent years, the HSG method (Hemispherical Grain method) is used to increase the surface area by coating the surface of a capacitance storage electrode made of a silicon-based material with fine particles made of polycrystalline silicon (particle diameter is about 0.05 μm).
Has been put to practical use.

【0005】しかしながら、この技術を用いた場合、容
量蓄積電極表面に凹凸を形成するための熱処理によっ
て、ショートチャネル効果が顕著となりトランジスタ特
性が不安定化する問題や、接合抵抗増加の防止に必要な
0.2μm以下のシャロージャンクションの形成に問題
が発生する恐れがあった。
However, when this technique is used, it is necessary to prevent the problem that the short channel effect becomes remarkable and the transistor characteristics become unstable due to the heat treatment for forming the unevenness on the surface of the capacitance storage electrode, and the increase in the junction resistance. There is a possibility that a problem may occur in forming a shallow junction of 0.2 μm or less.

【0006】さらに、タンタル酸化膜やBSTのような
高誘電率絶縁膜を適用するには、容量蓄積電極の電極材
料としてタングステンやチタンなどの金属材料を用いる
必要があるが、前記HSG法は電極材料がシリコンであ
る場合にのみ適用可能な技術であり、金属材料からなる
容量蓄積電極には適用できなかった。
Furthermore, in order to apply a high dielectric constant insulating film such as a tantalum oxide film or BST, it is necessary to use a metal material such as tungsten or titanium as the electrode material of the capacitance storage electrode. This technology is applicable only when the material is silicon, and cannot be applied to the capacitance storage electrode made of a metal material.

【0007】そこで、筆者らは特開2000−1010
37号公報で示したような方法により、容量蓄積電極の
表面積を増大させることを提案した。
Therefore, the authors of the present invention, Japanese Patent Laid-Open No. 2000-1010.
It has been proposed to increase the surface area of the capacitance storage electrode by the method as disclosed in Japanese Patent Laid-Open No. 37.

【0008】図10から図17は上記した従来の発明の
実施の形態における断面構造工程図を示したものであ
る。
FIG. 10 to FIG. 17 show sectional structural process diagrams in the above-described conventional embodiment of the invention.

【0009】まず、図10に示すように、半導体基板1
上にボロン及びリンを低濃度に含むシリコン酸化膜15
とボロン及びリンを高濃度に含むシリコン酸化膜16と
をCVD法により交互に堆積する。シリコン酸化膜15と
シリコン酸化膜16との不純物濃度差は、10〜30パ
ーセントの範囲であり、好ましくは15パーセント程度
である。以降、同様にシリコン酸化膜15とシリコン酸
化膜16を交互に堆積する工程を繰り返し、積層膜を形
成する。次に図11に示すように、容量部形成用レジス
トパターン8でパターニングし、前記レジストパターン
8をマスクとしてドライエッチング等により容量形成部
9を形成する。図12は、図11で使用した不要となっ
たレジストパターンを選択的に除去したところである。
図13は、フッ化水素酸(以下、フッ酸という)を含ん
だ水溶液、過酸化水素とアンモニアを含んだ水溶液、あ
るいは気相フッ酸により開口部の側壁を処理した後の断
面図である。ボロン及びリンを低濃度に含むシリコン酸
化膜15とボロン及びリンを高濃度に含むシリコン酸化
膜16とではエッチングレートが異なる。このため、容
量形成部9の側壁面10に凹凸が形成され、前記容量蓄
積電極の側壁部をじゃばら形状29とすることができ
る。図14は、多結晶シリコンからなる容量蓄積電極用
の導電膜11を膜厚50nmで堆積したところである。
図15は、化学的機械研磨法(CMP法)によりシリコ
ン酸化膜16表面上の導電膜11のみを選択的に除去し
た段階である。図16は、例えばフッ化水素酸水溶液に
よりシリコン酸化膜15および16からなる積層膜を順
次選択的に除去し、導電膜11を容量蓄積電極としたと
ころである。図17は前記容量蓄積電極11上に容量絶
縁膜12、さらにその上に容量対向電極用の導電膜13
を堆積して完成したところである。以上のようにして、
メモリセル部の電荷蓄積容量のキャパシタまでが完成す
る。
First, as shown in FIG.
Silicon oxide film 15 containing a low concentration of boron and phosphorus on top
And a silicon oxide film 16 containing boron and phosphorus at a high concentration are alternately deposited by the CVD method. The impurity concentration difference between the silicon oxide film 15 and the silicon oxide film 16 is in the range of 10 to 30%, preferably about 15%. Thereafter, similarly, the steps of alternately depositing the silicon oxide film 15 and the silicon oxide film 16 are repeated to form a laminated film. Next, as shown in FIG. 11, patterning is performed with a resist pattern 8 for forming a capacitor portion, and a capacitor forming portion 9 is formed by dry etching or the like using the resist pattern 8 as a mask. FIG. 12 shows a state where the unnecessary resist pattern used in FIG. 11 is selectively removed.
FIG. 13 is a cross-sectional view after treating the side wall of the opening with an aqueous solution containing hydrofluoric acid (hereinafter referred to as hydrofluoric acid), an aqueous solution containing hydrogen peroxide and ammonia, or vapor phase hydrofluoric acid. The silicon oxide film 15 containing low concentration of boron and phosphorus and the silicon oxide film 16 containing high concentration of boron and phosphorus have different etching rates. Therefore, unevenness is formed on the side wall surface 10 of the capacitance forming portion 9, and the side wall portion of the capacitance storage electrode can be formed into a bellows shape 29. In FIG. 14, a conductive film 11 made of polycrystalline silicon for a capacitance storage electrode is deposited with a film thickness of 50 nm.
FIG. 15 shows a stage in which only the conductive film 11 on the surface of the silicon oxide film 16 is selectively removed by the chemical mechanical polishing method (CMP method). In FIG. 16, for example, the laminated film composed of the silicon oxide films 15 and 16 is sequentially and selectively removed with an aqueous solution of hydrofluoric acid, and the conductive film 11 is used as a capacitance storage electrode. In FIG. 17, a capacitance insulating film 12 is provided on the capacitance storage electrode 11, and a conductive film 13 for a capacitance counter electrode is further provided thereon.
Is just completed. As described above,
The capacitor of the charge storage capacity of the memory cell portion is completed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記し
た従来の方法では、容量電極形成部が直接接する下地
が、フッ酸水溶液や過酸化水素とアンモニアを含んだ水
溶液あるいは気相フッ酸に対して可溶な物質、例えばア
ルミやタングステン等の金属層の場合には適用すること
ができなかった。図18はメモリセルを多層配線の上層
に形成する構造において従来の方法を適用した場合の断
面構造図の一例である。このような構造においては、直
接半導体基板上に容量蓄積電極のコンタクトを取ろうと
すると、アスペクト比が高くなり過ぎ、コンタクト部へ
の導電膜の埋め込み不良が発生するため、金属層を介し
て基板へのコンタクトを取る必要がある。しかし、従来
の方法では、図18に示すように容量蓄積電極直下の金
属配線14が薬液にさらされて溶解・消失し、金属配線
と容量蓄積電極との導通がとれないため、メモリセルへ
のデータの書き込み・読み出し不良を起こすという問題
が発生する。
However, in the above-mentioned conventional method, the base directly contacting the capacitive electrode forming portion is compatible with hydrofluoric acid aqueous solution, aqueous solution containing hydrogen peroxide and ammonia, or vapor phase hydrofluoric acid. It could not be applied in the case of a soluble material, for example a metal layer of aluminum or tungsten. FIG. 18 is an example of a cross-sectional structure diagram when a conventional method is applied to a structure in which a memory cell is formed in an upper layer of a multilayer wiring. In such a structure, if an attempt is made to directly contact the capacitance storage electrode on the semiconductor substrate, the aspect ratio becomes too high and the conductive film may be imperfectly embedded in the contact portion. Need to contact. However, in the conventional method, as shown in FIG. 18, the metal wiring 14 immediately below the capacitance storage electrode is exposed to the chemical solution and is dissolved / disappeared, so that the metal wiring and the capacitance storage electrode cannot be electrically connected to each other. There is a problem that data write / read failure occurs.

【0011】そこで、本発明は、前記従来技術の問題を
解決することに指向するものであり、0.13μmルー
ル以下の微細なDRAMに代表される記憶用半導体装置
に対して、有効な表面積が拡大された容量蓄積電極を有
する半導体装置及びその製造方法を提供することを目的
とする。
Therefore, the present invention is directed to solving the above-mentioned problems of the prior art, and has an effective surface area for a memory semiconductor device represented by a fine DRAM of 0.13 μm rule or less. An object of the present invention is to provide a semiconductor device having an expanded capacitance storage electrode and a manufacturing method thereof.

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
に、本発明に係る半導体装置の製造方法は、半導体基板
上に、電荷蓄積用電極と、電荷蓄積用電極の対向電極
と、電荷蓄積用電極と対向電極との間に設けられた誘電
膜とで構成されるキャパシタを有し、電荷蓄積用電極の
表面はじゃばら形状となるよう形成することを特徴とす
る。
In order to achieve this object, a method of manufacturing a semiconductor device according to the present invention comprises a charge storage electrode, a counter electrode of the charge storage electrode, and a charge storage electrode on a semiconductor substrate. It is characterized in that it has a capacitor composed of a working electrode and a dielectric film provided between the counter electrode, and the surface of the charge storage electrode is formed into a bellows shape.

【0013】詳しくは、半導体基板上にフッ素含有率の
異なるシリコン酸化膜を少なくとも2層以上積層して積
層膜を形成する工程と、積層膜の所定領域を選択的に除
去して開口を形成する工程と、前記積層膜の開口部分を
水蒸気雰囲気で処理し、開口の側壁面をじゃばら形状と
する工程と、開口のじゃばら形状の側壁に電荷蓄積用電
極となる導電膜を被着する工程と、導電膜の電荷蓄積用
電極形成後に積層膜を除去する工程と、電荷蓄積用電極
上に誘電膜を形成する工程と、さらに誘電膜上に電荷蓄
積用電極と対向する対向電極を形成する工程とからな
る。
Specifically, a step of forming at least two layers of silicon oxide films having different fluorine contents on a semiconductor substrate to form a laminated film, and a predetermined region of the laminated film is selectively removed to form an opening. A step, a step of treating the opening portion of the laminated film in a water vapor atmosphere to form a side wall surface of the opening into a bellows shape, and a step of depositing a conductive film to be a charge storage electrode on the bellows side wall of the opening, A step of removing the laminated film after forming the charge storage electrode of the conductive film, a step of forming a dielectric film on the charge storage electrode, and a step of forming a counter electrode facing the charge storage electrode on the dielectric film. Consists of.

【0014】本発明の製造方法によれば、シリコン酸化
膜に含有されたフッ素と水蒸気が反応して、フッ酸が生
成され自己整合的にシリコン酸化膜がエッチングされる
ため、開口部の底面が直接フッ酸にさらされることがな
い。また、電荷蓄積用電極の側壁面をじゃばら形状とす
る工程を高温熱処理することなく行えるため、1個当た
りのキャパシタの表面積を実効的に増大させることがで
き、表面積の大きな電荷蓄積用電極によりキャパシタ容
量を大きくできる。さらに、積層膜に設けた開口の側壁
に電荷蓄積用電極となる導電膜を被着するので、高誘電
率膜または強誘電体膜に対応する金属またはその化合物
の材料であっても、ほぼ均一な膜厚でかつ電荷蓄積用電
極の表面をじゃばら形状にすることができる。
According to the manufacturing method of the present invention, fluorine contained in the silicon oxide film reacts with water vapor to generate hydrofluoric acid, and the silicon oxide film is etched in a self-aligned manner. No direct exposure to hydrofluoric acid. In addition, since the step of forming the side wall surface of the charge storage electrode into a bellows shape can be performed without performing high-temperature heat treatment, the surface area of each capacitor can be effectively increased, and the capacitor surface storage electrode having a large surface area can be used. The capacity can be increased. Furthermore, since a conductive film to be a charge storage electrode is deposited on the side wall of the opening provided in the laminated film, even if the material of the metal or its compound corresponding to the high dielectric constant film or the ferroelectric film is almost uniform. The thickness of the charge storage electrode can be varied and the surface of the charge storage electrode can be formed into a bellows shape.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明にお
ける実施の形態を詳細に説明する。図1〜図8は本発明
の実施の形態における断面構造工程図を示したものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 to 8 show sectional structure process diagrams in the embodiment of the present invention.

【0016】以下、この製造工程を、図面を参照しなが
ら詳細に説明する。
The manufacturing process will be described in detail below with reference to the drawings.

【0017】まず、図1に示すように、半導体基板1上
に重量比5%のフッ素を含有したシリコン酸化膜からな
る第1絶縁膜2をCVD法により形成し、さらに前記第1
絶縁膜2とはフッ素の含有率の異なるシリコン酸化膜と
して重量比2%のフッ素を含有した第2絶縁膜3を形成
した。以降、同様に接する下層とフッ素の含有率の異な
るシリコン酸化膜を絶縁膜として、第3絶縁膜4、第4
絶縁膜5、第5絶縁膜6、第6絶縁膜7と積層した。次
に図2に示すように、容量部形成用レジストパターン8
でパターニングし、前記レジストパターン8をマスクと
してドライエッチング等により容量形成部9を形成す
る。図3は、図2で使用した不要となったレジストパタ
ーンを選択的に除去したところである。図4は、例えば
80℃の水蒸気雰囲気中で1分間処理し、水洗、乾燥を
施したところである。
First, as shown in FIG. 1, a first insulating film 2 made of a silicon oxide film containing 5% by weight of fluorine is formed on a semiconductor substrate 1 by a CVD method, and the first insulating film 2 is formed.
A second insulating film 3 containing fluorine in a weight ratio of 2% was formed as a silicon oxide film having a fluorine content different from that of the insulating film 2. Thereafter, the third insulating film 4, the fourth insulating film 4
The insulating film 5, the fifth insulating film 6, and the sixth insulating film 7 were laminated. Next, as shown in FIG. 2, a resist pattern 8 for forming a capacitance portion is formed.
Then, the capacitance forming portion 9 is formed by dry etching or the like using the resist pattern 8 as a mask. FIG. 3 is a view in which the unnecessary resist pattern used in FIG. 2 is selectively removed. In FIG. 4, for example, the sample is treated in a steam atmosphere at 80 ° C. for 1 minute, washed with water, and dried.

【0018】図5は、多結晶シリコンからなる容量蓄積
電極用の導電膜11を膜厚50nmで堆積したところで
ある。図6は、化学的機械研磨法(CMP法)により絶
縁膜7表面上の導電膜11のみを選択的に除去した段階
である。図7は、例えばフッ化水素酸水溶液により第6
絶縁膜7から第1絶縁膜2までを順次選択的に除去し、
導電膜11を容量蓄積電極としたところである。図8は
前記容量蓄積電極11上に容量絶縁膜12、さらにその
上に容量対向電極用の導電膜13を堆積して完成する。
FIG. 5 shows a case where a conductive film 11 made of polycrystalline silicon for a capacitance storage electrode is deposited to a film thickness of 50 nm. FIG. 6 shows a stage in which only the conductive film 11 on the surface of the insulating film 7 is selectively removed by the chemical mechanical polishing method (CMP method). FIG. 7 shows, for example, that the
The insulating film 7 to the first insulating film 2 are selectively removed sequentially,
This is where the conductive film 11 is used as a capacitance storage electrode. 8 is completed by depositing a capacitance insulating film 12 on the capacitance storage electrode 11 and further depositing a conductive film 13 for a capacitance counter electrode thereon.

【0019】図4に示した工程において、側壁面10が
じゃばら形状となるメカニズムを、図9を用いて説明す
る。例えば、シリコン酸化膜2中にはフッ素を含むが、
これは主にシリコンや酸素と直接結合していない遊離フ
ッ素か、あるいはシリコンと結合したフッ素である。水
蒸気雰囲気中にシリコン酸化膜2をさらすと、前記した
フッ素と水蒸気が反応して、フッ酸が生成される(図9
(a))。フッ酸はシリコン酸化膜2中に生成されるた
め、次にフッ酸と酸化膜とが反応し、自己整合的にエッ
チングが進行する。生成されるフッ酸の濃度はシリコン
酸化膜中のフッ素の含有率によって決定されるため、前
記フッ素含有率の高い部分では、シリコン酸化膜のエッ
チング速度が速く、含有率の低い部分では、シリコン酸
化膜のエッチング速度が遅くなる(図9(b))。フッ
素を含むシリコン酸化膜を積層する工程において、膜中
のフッ素濃度が階段状に変化していれば、それを反映し
て、エッチ後の形状は図9(b)に示したごとく階段状
になるが、実際には、工程中に加わる熱処理により、遊
離フッ素の拡散が起こり、積層した膜の界面では連続的
にフッ素濃度が変化する(図9(c))。よって、実際
には、フッ素含有率の異なるシリコン酸化膜を積層形成
された絶縁膜に形成された容量形成部9の側壁面10は
階段状とならず、じゃばら形状となり、次の容量蓄積電
極用の導電膜を堆積した際にも段切れを起こさない。
The mechanism by which the side wall surface 10 has a bellows shape in the step shown in FIG. 4 will be described with reference to FIG. For example, although the silicon oxide film 2 contains fluorine,
This is mainly free fluorine that is not directly bonded to silicon or oxygen, or fluorine that is bonded to silicon. When the silicon oxide film 2 is exposed to a water vapor atmosphere, the above-mentioned fluorine reacts with water vapor to generate hydrofluoric acid (FIG. 9).
(A)). Since hydrofluoric acid is generated in the silicon oxide film 2, the hydrofluoric acid and the oxide film react next, and etching proceeds in a self-aligned manner. Since the concentration of the generated hydrofluoric acid is determined by the content ratio of fluorine in the silicon oxide film, the etching rate of the silicon oxide film is high in the portion where the fluorine content is high and the silicon oxide film is in the portion where the content of fluorine is low. The etching rate of the film becomes slow (FIG. 9B). In the step of stacking the silicon oxide film containing fluorine, if the fluorine concentration in the film changes stepwise, the shape after etching will be stepwise as shown in FIG. 9B. However, in reality, the heat treatment applied during the process causes diffusion of free fluorine, and the fluorine concentration continuously changes at the interface of the laminated films (FIG. 9C). Therefore, in actuality, the side wall surface 10 of the capacitance forming portion 9 formed on the insulating film formed by laminating silicon oxide films having different fluorine contents does not have a stepped shape but becomes a bellows shape, and is used for the next capacitance storage electrode. No step breakage occurs even when the conductive film is deposited.

【0020】本発明による方法によれば、水蒸気処理を
行うことにより自己整合的にフッ化水素酸が生成されエ
ッチング処理されるため、開口部の底面が直接フッ酸に
さらされることがなく、下地に金属層を用いた場合で
も、下地はエッチングされにくい。特に、第1絶縁膜2
にフッ素含有率が0%であるシリコン酸化膜を用いた場
合、下地近傍でフッ酸が発生せず、下地の金属配線の溶
解・消失の恐れが無くなる。
According to the method of the present invention, hydrofluoric acid is generated and etched in a self-aligned manner by performing steam treatment, so that the bottom surface of the opening is not directly exposed to hydrofluoric acid. Even if a metal layer is used for the base, the base is not easily etched. In particular, the first insulating film 2
When a silicon oxide film having a fluorine content of 0% is used, no hydrofluoric acid is generated in the vicinity of the underlayer, and there is no risk of dissolution or disappearance of the underlying metal wiring.

【0021】なお、本発明の実施の形態によれば、容量
蓄積電極用の導電膜を多結晶シリコンとし、フッ化水素
酸水溶液により第6絶縁膜から第1絶縁膜までを順次選
択的に除去したが、導電膜をタングステン等のような金
属膜か、あるいはシリサイド膜や金属酸化物とし、フッ
素を含有したシリコン酸化膜からなる積層膜を、金属膜
やシリサイド膜、金属酸化物に対して選択性を有する方
法、例えばCF系のガスにより等方的なドライエッチン
グを行って選択的に除去してもよい。
According to the embodiment of the present invention, the conductive film for the capacitance storage electrode is made of polycrystalline silicon, and the sixth insulating film to the first insulating film are selectively removed sequentially with an aqueous solution of hydrofluoric acid. However, the conductive film is a metal film such as tungsten, or a silicide film or a metal oxide, and a laminated film made of a silicon oxide film containing fluorine is selected for the metal film, the silicide film, or the metal oxide. Which has a property, for example, isotropic dry etching may be performed using a CF-based gas to selectively remove it.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
メモリセルのキャパシタを得るため容量蓄積電極の表面
積の拡大可能な半導体装置を提供し、具体的には、自己
整合的なエッチングを用いて容量蓄積電極の表面の形状
をじゃばら構造にすることにより、電極の表面積を拡大
でき、キャパシタ容量の増加が可能になる。
As described above, according to the present invention,
To provide a semiconductor device capable of increasing the surface area of a capacitance storage electrode in order to obtain a capacitor of a memory cell, and specifically, by forming the surface shape of the capacitance storage electrode into a bellows structure by using self-aligned etching, The surface area of the electrode can be increased, and the capacity of the capacitor can be increased.

【0023】さらに、容量蓄積電極の下地材料として金
属配線を用いることができ、例えば、多層配線の上に簡
便にメモリセルを形成できるため、メモリセルのレイア
ウトの自由度を増すことが可能である。
Further, since metal wiring can be used as a base material of the capacitance storage electrode, and for example, a memory cell can be easily formed on a multilayer wiring, it is possible to increase the degree of freedom in the layout of the memory cell. .

【0024】また、本発明によれば、容量蓄積電極の表
面積を拡大するために、HSG法のような高温の熱処理
を必要としないものであり、従来のHSG技術で問題と
なるショートチャネル効果の発生や接合抵抗増加の防止
に対して必要な0.2μm以下の極浅のシャロージャン
クションの形成に関する問題を回避できる。
Further, according to the present invention, in order to increase the surface area of the capacitance storage electrode, heat treatment at high temperature as in the HSG method is not required, and the short channel effect which is a problem in the conventional HSG technology can be obtained. It is possible to avoid the problem associated with the formation of an extremely shallow shallow junction of 0.2 μm or less, which is necessary for preventing the occurrence and increase of the junction resistance.

【0025】さらに、今後の微細メモリセルの容量絶縁
膜として高誘電率膜、強誘電体膜に対応する電極材料と
して使用の可能性が大きい金属、又は金属シリサイド材
料にも適用して容量蓄積電極の表面積を拡大可能であ
り、0.13μmルール以下の超LSIの製造に有用な
方法となり得る。
Further, the capacitor storage electrode is also applied to a metal or a metal silicide material that is highly likely to be used as an electrode material corresponding to a high dielectric constant film or a ferroelectric film as a capacitive insulating film of future fine memory cells. The surface area can be increased, and it can be a useful method for manufacturing a VLSI having a 0.13 μm rule or less.

【0026】また、本発明は0.13μmルール以下の
DRAMのような超LSI素子に対して、データ読み出
しの信頼性向上、ソフトエラーの防止、低消費電力の面
から、定期的に行うリフレッシュ動作の回数を減らすこ
とができるという効果を奏する。
Further, according to the present invention, a refresh operation which is regularly performed for a VLSI element such as a DRAM having a rule of 0.13 μm or less from the viewpoints of reliability improvement of data reading, prevention of soft error and low power consumption. There is an effect that the number of times can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す断面構造工程図FIG. 1 is a sectional structure process chart showing an embodiment of the present invention.

【図2】本発明の実施の形態を示す断面構造工程図FIG. 2 is a sectional structure process chart showing an embodiment of the present invention.

【図3】本発明の実施の形態を示す断面構造工程図FIG. 3 is a sectional structure process drawing showing an embodiment of the present invention.

【図4】本発明の実施の形態を示す断面構造工程図FIG. 4 is a sectional structure process chart showing an embodiment of the present invention.

【図5】本発明の実施の形態を示す断面構造工程図FIG. 5 is a sectional structural process diagram showing an embodiment of the present invention.

【図6】本発明の実施の形態を示す断面構造工程図FIG. 6 is a sectional structure process diagram showing an embodiment of the present invention.

【図7】本発明の実施の形態を示す断面構造工程図FIG. 7 is a sectional structure process diagram showing an embodiment of the present invention.

【図8】本発明の実施の形態を示す断面構造工程図FIG. 8 is a sectional structural process diagram showing an embodiment of the present invention.

【図9】本発明の実施の形態における側壁面での凹凸形
成メカニズムの説明図
FIG. 9 is an explanatory diagram of a concavo-convex forming mechanism on a side wall surface according to the embodiment of the present invention.

【図10】従来の形態を示す断面構造工程図FIG. 10 is a sectional structure process diagram showing a conventional embodiment.

【図11】従来の形態を示す断面構造工程図FIG. 11 is a sectional structure process diagram showing a conventional embodiment.

【図12】従来の形態を示す断面構造工程図FIG. 12 is a sectional structure process diagram showing a conventional form.

【図13】従来の形態を示す断面構造工程図FIG. 13 is a sectional structure process diagram showing a conventional form.

【図14】従来の形態を示す断面構造工程図FIG. 14 is a sectional structure process diagram showing a conventional embodiment.

【図15】従来の形態を示す断面構造工程図FIG. 15 is a sectional structure process chart showing a conventional embodiment.

【図16】従来の形態を示す断面構造工程図FIG. 16 is a sectional structure process diagram showing a conventional form.

【図17】従来の形態を示す断面構造工程図FIG. 17 is a sectional structural process diagram showing a conventional form.

【図18】メモリセルを多層配線の上層に形成する構造
において、従来の技術を適用した場合の断面構造図
FIG. 18 is a cross-sectional structure diagram when a conventional technique is applied to a structure in which a memory cell is formed in an upper layer of a multilayer wiring.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 第1絶縁膜 3 第2絶縁膜 4 第3絶縁膜 5 第4絶縁膜 6 第5絶縁膜 7 第6絶縁膜 8 レジストパターン 9 容量形成部 10 容量形成部の側壁面 11 容量蓄積電極 12 容量絶縁膜 13 容量対向電極 14 金属配線 15 ボロン、リンを高濃度に含むシリコン酸化膜 16 ボロン、リンを低濃度に含むシリコン酸化膜 1 Semiconductor substrate 2 First insulating film 3 Second insulating film 4 Third insulating film 5 Fourth insulating film 6 Fifth insulating film 7 6th insulating film 8 resist pattern 9 Capacity forming part 10 Side wall surface of the capacity forming part 11 Capacitance storage electrode 12 capacitance insulating film 13 Capacitance counter electrode 14 Metal wiring 15 Silicon oxide film containing high concentration of boron and phosphorus 16 Silicon oxide film containing low concentration of boron and phosphorus

フロントページの続き (72)発明者 志水 雄三 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 今泉 憲二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 大澤 勝市 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5F043 AA38 AA40 BB30 GG04 5F083 AD29 AD45 AD63 JA32 JA35 JA36 JA39 JA42 PR03 PR05 PR06 Continued front page    (72) Inventor Yuzo Shimizu             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Kenji Imaizumi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Katsuichi Osawa             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 5F043 AA38 AA40 BB30 GG04                 5F083 AD29 AD45 AD63 JA32 JA35                       JA36 JA39 JA42 PR03 PR05                       PR06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にフッ素含有率の異なるシ
リコン酸化膜を少なくとも2層以上積層して積層膜を形
成する工程と、前記積層膜の所定領域を選択的に除去し
て開口を形成する工程と、フッ素を含有した前記積層膜
の前記開口を水蒸気雰囲気で処理する工程および前記水
蒸気雰囲気で処理された開口の側壁に電荷蓄積用電極と
なる導電膜を被着する工程と、前記導電膜の電荷蓄積用
電極形成後に前記積層膜を除去する工程と、前記電荷蓄
積用電極上に誘電膜を形成する工程と、さらに前記誘電
膜上に前記電荷蓄積用電極と対向する対向電極を形成す
る工程とからなることを特徴とする半導体装置の製造方
法。
1. A step of forming a laminated film by laminating at least two layers of silicon oxide films having different fluorine contents on a semiconductor substrate, and a predetermined region of the laminated film is selectively removed to form an opening. A step of treating the opening of the laminated film containing fluorine in a steam atmosphere, a step of depositing a conductive film to be a charge storage electrode on a sidewall of the opening treated in the steam atmosphere, and the conductive film. Of removing the laminated film after forming the charge storage electrode, forming a dielectric film on the charge storage electrode, and further forming a counter electrode facing the charge storage electrode on the dielectric film. A method of manufacturing a semiconductor device, comprising the steps of:
【請求項2】 前記シリコン酸化膜を積層して積層膜を
形成する工程において、最初に少なくともフッ素を含ま
ないシリコン酸化膜を堆積することを特徴とする請求項
1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein in the step of forming the laminated film by laminating the silicon oxide films, a silicon oxide film containing at least fluorine is first deposited.
【請求項3】 前記電荷蓄積用電極は、金属またはその
化合物からなり、前記誘電膜は高誘電率膜または強誘電
体膜からなることを特徴とする請求項1または2いずれ
かに記載の半導体装置の製造方法。
3. The semiconductor according to claim 1, wherein the charge storage electrode is made of a metal or a compound thereof, and the dielectric film is made of a high dielectric constant film or a ferroelectric film. Device manufacturing method.
JP2001369830A 2001-12-04 2001-12-04 Manufacturing method of semiconductor device Expired - Fee Related JP4045791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369830A JP4045791B2 (en) 2001-12-04 2001-12-04 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369830A JP4045791B2 (en) 2001-12-04 2001-12-04 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003174102A true JP2003174102A (en) 2003-06-20
JP4045791B2 JP4045791B2 (en) 2008-02-13

Family

ID=19179151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369830A Expired - Fee Related JP4045791B2 (en) 2001-12-04 2001-12-04 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4045791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841623A (en) * 2017-11-28 2019-06-04 三星电子株式会社 Semiconductor storage unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841623A (en) * 2017-11-28 2019-06-04 三星电子株式会社 Semiconductor storage unit
CN109841623B (en) * 2017-11-28 2024-05-07 三星电子株式会社 Semiconductor memory device having a memory cell with a memory cell having a memory cell with a memory cell

Also Published As

Publication number Publication date
JP4045791B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US8580666B2 (en) Methods of forming conductive contacts
JP2005183918A (en) Method of forming bit-line of semiconductor device
US5656536A (en) Method of manufacturing a crown shaped capacitor with horizontal fins for high density DRAMs
CN100380594C (en) Capacitor bottom electrode of semiconductor device and its manufacture method
JPH10209399A (en) Contact wiring method of semiconductor device and manufacture of capacitor by utilizing the method
JP3523391B2 (en) Capacitor and method of manufacturing the same
JPH08204145A (en) Method of manufacturing semiconductor device
JP2005032800A (en) Method of manufacturing semiconductor device
JPH0774268A (en) Semiconductor memory and fabrication thereof
US6495418B2 (en) Method of manufacturing a semiconductor device having a capacitor
JP2003174102A (en) Method of manufacturing semiconductor device
WO2019151043A1 (en) Dram and production method of same
KR20060134344A (en) Method for forming a capacitor in semiconductor apparatus
JPH11150245A (en) Manufacture of semiconductor device
TW406415B (en) Method for forming a memory integrated circuit
TW383495B (en) Manufacturing method for DRAM capacitor
JP3151684B2 (en) Semiconductor device and manufacturing method thereof
KR100381028B1 (en) Method for forming capacitor capable of reducing leakage current
JP2000101037A (en) Semiconductor device and manufacture thereof
KR100440073B1 (en) A method for forming a capacitor of a semiconductor device
KR20050052211A (en) Fabricating method of capacitor in semiconductor device
TW415091B (en) Method for fabricating node capacitor in DRAM
TW202416794A (en) Method of forming semiconductor structure
JP3458217B2 (en) Capacitive element
JP2001102542A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees