JP2003173017A - Method for correction of mask defect - Google Patents
Method for correction of mask defectInfo
- Publication number
- JP2003173017A JP2003173017A JP2001371696A JP2001371696A JP2003173017A JP 2003173017 A JP2003173017 A JP 2003173017A JP 2001371696 A JP2001371696 A JP 2001371696A JP 2001371696 A JP2001371696 A JP 2001371696A JP 2003173017 A JP2003173017 A JP 2003173017A
- Authority
- JP
- Japan
- Prior art keywords
- defect
- ion beam
- drift
- correction
- atomic force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はマスクの欠陥修正方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mask defect correction method.
【0002】[0002]
【従来の技術】Si半導体集積回路の微細化はめざまし
く、それに伴って転写に用いるフォトマスクまたはレチ
クル上のパターン寸法も微細になってきている。縮小投
影露光装置はこの要請に対して高NA化と短波長化で対応
してきた。微細化の前倒しが求められる現在では、縮小
投影露光装置はそのままで、解像力と焦点深度を向上さ
せるために、超解像技術の一種である位相シフトマスク
も用いられるようになってきている。フォトマスクまた
はレチクル上に欠陥が存在すると、欠陥がウェーハに転
写されて歩留まりを減少する原因となるので、ウェーハ
にマスクパターンを転写する前に欠陥検査装置によりフ
ォトマスクまたはレチクルの欠陥の有無や存在場所が調
べられ、欠陥が存在する場合にはウェーハへ転写する前
に欠陥修正装置により欠陥修正処理が行われている。上
記のような技術的な趨勢により、フォトマスクまたはレ
チクルの欠陥修正にも小さな欠陥への対応が求められて
いる。液体金属Gaイオン源を用いた集束イオンビーム装
置は、その微細な加工寸法によりレーザーを用いた欠陥
修正装置に代わりマスク修正装置の主流となってきてい
る。上記のイオンビームを用いた欠陥修正装置では、白
欠陥修正時には表面に吸着した原料ガスを細く絞ったイ
オンビームが当たった所だけ分解させて薄膜を形成し(F
IB-CVD)、また黒欠陥修正時には集束したイオンビーム
によるスパッタリング効果またはアシストガス存在下で
細く絞ったイオンビームが当たった所だけエッチングす
る効果を利用して、高い加工精度を実現している。2. Description of the Related Art The miniaturization of Si semiconductor integrated circuits is remarkable, and along with this, the pattern size on a photomask or reticle used for transfer is also becoming fine. Reduction projection exposure systems have responded to this demand by increasing the NA and shortening the wavelength. Nowadays, in order to improve the resolution and the depth of focus, a phase shift mask, which is a kind of super-resolution technology, has come to be used while keeping the reduction projection exposure apparatus as it is. The presence of defects on the photomask or reticle causes defects to be transferred to the wafer and reduces the yield.Therefore, the presence or absence of defects on the photomask or reticle is checked by a defect inspection device before transferring the mask pattern to the wafer. The location is checked, and if there is a defect, the defect repairing device performs a defect repairing process before transferring to the wafer. Due to the above-mentioned technological trend, it is required to deal with small defects even in the defect correction of the photomask or the reticle. Focused ion beam devices that use liquid metal Ga ion sources have become the mainstream of mask repair devices instead of defect repair devices that use lasers due to their fine processing dimensions. In the defect repair system using the above ion beam, when repairing white defects, the raw material gas adsorbed on the surface is decomposed only at the point where it is hit by the ion beam (F
IB-CVD), the high-precision processing is achieved by utilizing the effect of sputtering with a focused ion beam when repairing black defects or the effect of etching only where it is hit by a finely focused ion beam in the presence of an assist gas.
【0003】イオンビーム欠陥修正装置で修正精度を向上さ
せるために、イオンビームでマスクの欠陥近傍のパター
ン上に縮小投影露光装置では露光されない程度の小さな
ホールを開けてマーカとし、黒欠陥や白欠陥修正加工中
に定期的に加工を中断し、マーカ周辺のパターン上のみ
二次イオン像もしくは二次電子像を観察して前回取得し
た像との比較からドリフト量を求め、加工の走査範囲に
フィードバックをかけてドリフトによる精度の低下を防
ぐことが行われてきた。[0003] In order to improve the correction accuracy in the ion beam defect correction device, a black hole or a white defect is formed by making a small hole on the pattern near the defect of the mask by the ion beam that is not exposed by the reduction projection exposure device as a marker. Machining is periodically interrupted during correction machining, the secondary ion image or secondary electron image is observed only on the pattern around the marker, the drift amount is calculated from the comparison with the previously acquired image, and it is fed back to the machining scanning range. Therefore, it has been attempted to prevent the accuracy from decreasing due to drift.
【0004】また最近のマスク上のパターンの微細化に対応
するために、イオンビーム欠陥修正装置も高分解能化や
電化中和の更なる向上が求められている。高分解能化と
電化中和の両方の要求を満たすため、イオンビームの低
プローブ電流化が行われるようになってきている。低プ
ローブ電流化を行うと、加工時間が長くなり、ドリフト
による精度の低下を防ぐためには上記の小さなホールや
マッチングを行うパターンの観察とイオンビーム照射範
囲へのフィードバックによるドリフト補正の頻度を増や
さなければならないが、像観察時のイオンビームによる
物理スパッタ効果により観察領域が削れてしまうので位
相シフトマスクでは位相が変わってしまうとか、小さな
ホールを観察する場合にはホールの径が徐々に大きくな
りウェーハ上に露光されてしまうという問題があった。Further, in order to cope with the recent miniaturization of patterns on a mask, an ion beam defect repairing device is also required to have higher resolution and further improve neutralization of electrification. In order to meet the requirements for both high resolution and neutralization by electrification, the probe current of the ion beam has been reduced. If the probe current is lowered, the processing time becomes longer, and in order to prevent the accuracy from decreasing due to drift, it is necessary to increase the frequency of drift correction by observing the above-mentioned small holes and matching patterns and feedback to the ion beam irradiation range. However, because the observation area is ablated by the physical sputtering effect of the ion beam during image observation, the phase changes with a phase shift mask, or when observing small holes, the diameter of the holes gradually increases and the wafer There was a problem that it was exposed above.
【0005】小さなホールまたは特徴的なパターンを観察し
て前回取得した像との比較からドリフト量を求める方法
以外にも、ステージの側面にミラーを設け、レーザーイ
ンターフェロメータによる距離測定から、イオンビーム
の走査範囲にフィードバックをかけてドリフトを補正す
る方法も広く用いられている。この方法では修正するマ
スクに加工箇所以外にダメージを与えないという長所も
あるが、マスクとステージで温度が異なっている場合や
マスクの近傍に熱源があるときのマスクの局所的な熱膨
張による場合などの熱ドリフトに対しては補正できない
という問題があった。パターンマッチングもドリフト量
を求めるのに有用な方法ではあるが、二次イオン像もし
くは二次電子像を観察する度にパターン周辺のガラス基
板にGaイオンが打ち込まれ、ガラス基板の透過率の低下
が起こるためイオンビーム欠陥装置のドリフト補正には
用いられていない。[0005] In addition to a method of observing a small hole or a characteristic pattern and calculating a drift amount from comparison with an image acquired last time, a mirror is provided on a side surface of a stage, and a distance is measured by a laser interferometer to measure an ion beam Also widely used is a method of correcting the drift by feeding back the scanning range of. This method has the advantage that it does not damage the mask to be repaired except for the processed part, but when the temperature differs between the mask and the stage or when there is a local heat expansion of the mask when there is a heat source near the mask. There was a problem that it could not be corrected for thermal drift such as. Pattern matching is also a useful method for determining the amount of drift, but Ga ions are implanted into the glass substrate around the pattern each time the secondary ion image or secondary electron image is observed, and the transmittance of the glass substrate decreases. Since it occurs, it is not used for drift correction of ion beam defectors.
【0006】[0006]
【発明が解決しようとする課題】本発明は、イオンビー
ム欠陥修正装置を用いたマスクの欠陥修正において、ド
リフト補正用のパターンやマーカを含む観察領域にダメ
ージを与えないで高精度なドリフト補正を実現すること
で、高精度かつ転写に悪影響を与えない欠陥修正を可能
にしようとするものである。SUMMARY OF THE INVENTION The present invention provides highly accurate drift correction in a mask defect correction using an ion beam defect correction device without damaging an observation region including a drift correction pattern and a marker. By realizing it, it is intended to enable defect correction with high accuracy and without adversely affecting transfer.
【0007】[0007]
【課題を解決するための手段】近年周波数変調検出技術
の向上により分解能の向上がめざましい非接触モードの
原子間力顕微鏡をイオンビーム欠陥修正装置に複合さ
せ、ドリフト検出に利用する。図1に示すようにイオン
ビームで欠陥を修正している間、修正領域のできるだけ
近くでなおかつイオンビームや電化中和の電子ビーム
(フォトマスクのように導電性の低い材質を修正する場
合)の電荷の影響を受けない場所で、加工と並行して観
察領域にダメージを与えない非接触型の原子間力顕微鏡
で特徴的なパターンもしくはイオンビーム欠陥修正装置
で作成したマーカの連続的な高分解能観察を行い、前回
のイメージとの比較からドリフト量を算出し、イオンビ
ームの走査範囲にフィードバックをかけドリフトを補正
する。A non-contact mode atomic force microscope, whose resolution is remarkably improved by improving frequency modulation detection technology in recent years, is combined with an ion beam defect repairing device and used for drift detection. As shown in Fig. 1, while the defect is being repaired by the ion beam, the ion beam and the electron beam for electrification neutralization should be as close to the repair area as possible.
A characteristic of non-contact atomic force microscopes that does not damage the observation area in parallel with processing in a place that is not affected by electric charges (when modifying a material with low conductivity such as a photomask). A marker created by a pattern or ion beam defect repair device is continuously observed at high resolution, a drift amount is calculated from comparison with a previous image, and feedback is applied to the scanning range of the ion beam to correct the drift.
【0008】[0008]
【作用】非接触型の原子間力顕微鏡で観察するため、ド
リフト補正の頻度を増やしてもマスクには何らダメージ
を与えない。イオンビーム欠陥修正装置でマーカを形成
し観察する場合にも、ホールの径が徐々に大きくなりウ
ェーハ上に露光されてしまうようなことは起こらない。
イオンビームの加工とドリフト補正の像の取得を並行し
て行うことができ、ドリフト補正の頻度が増えても加工
時間が長くなることもない。マスク上のパターンもしく
はマーカでなおかつ欠陥修正領域の近くでドリフトを補
正するため、レーザーインターフェロメータでの測長で
対処できないドリフトも補正できる。以上の理由から、
ドリフト補正のための観察領域の膜減りやホール径が大
きくなることもなく、高精度なドリフト補正が行えるの
で、高精度かつ転写に悪影響を与えない欠陥修正が行え
る。Since the observation is performed with the non-contact type atomic force microscope, the mask is not damaged even if the frequency of drift correction is increased. Even when a marker is formed and observed by the ion beam defect correction device, the diameter of the hole is gradually increased and the wafer is not exposed.
The ion beam processing and the drift correction image acquisition can be performed in parallel, and the processing time does not increase even if the frequency of drift correction increases. Since the drift is corrected by the pattern or the marker on the mask and in the vicinity of the defect correction area, it is possible to correct the drift which cannot be dealt with by the length measurement by the laser interferometer. For the above reasons,
Since the drift correction can be performed with high accuracy without reducing the film thickness or the hole diameter in the observation region for drift correction, it is possible to perform defect correction with high accuracy and without adversely affecting transfer.
【0009】[0009]
【発明の実施の形態】以下に、本発明をフォトマスクの
欠陥修正に適応した例について説明する。欠陥を含むフ
ォトマスク(バイナリマスクもしくは位相シフトマスク)
3を図2に示すようなイオンビーム欠陥修正装置1と非接
触型の原子間力顕微鏡2を複合した装置の真空チャンバ
内に導入し、欠陥検査装置で検出された欠陥位置にXYス
テージ4を移動する。フォトマスク3にイオンビーム5を
照射して発生した二次電子もしくは二次イオン6を走査
に同期して二次電子検出器もしくは二次イオン検出器7
で取りこみ、その二次電子像もしくは二次イオン像から
欠陥領域を認識する。フォトマスクは絶縁体であるガラ
ス基板13の上に導電性の遮光膜パターン14を堆積したも
のなので、イオンビーム5のプラスイオンの蓄積により
チャージアップして二次電子像もしくは二次イオン像が
見えなくなってしまうので、電荷中和用電子銃8で数100
Vに加速され集束された電子ビーム9を照射し電荷が中
和された状態で観察する。上記欠陥認識と並行して原子
間力顕微鏡探針10に静電力が悪影響しないようにイオン
ビーム5や電化中和の電子ビーム9の電荷の影響を受けな
い場所で、できるだけ加工しようとしている欠陥領域15
の近くを非接触型の原子間力顕微鏡2で広い範囲を観察
し、ドリフト補正に使用するパターン16を決め、今後こ
のパターンをドリフトの補正に十分な高倍率で観察す
る。BEST MODE FOR CARRYING OUT THE INVENTION An example in which the present invention is applied to a defect correction of a photomask will be described below. Photomask with defects (binary mask or phase shift mask)
3 is introduced into the vacuum chamber of the combined apparatus of the ion beam defect correction device 1 and the non-contact type atomic force microscope 2 as shown in FIG. 2, and the XY stage 4 is placed at the defect position detected by the defect inspection device. Moving. A secondary electron detector or secondary ion detector 7 synchronized with the scanning of secondary electrons or secondary ions 6 generated by irradiating the photomask 3 with an ion beam 5
Then, the defective area is recognized from the secondary electron image or secondary ion image. Since the photomask has a conductive light-shielding film pattern 14 deposited on the glass substrate 13 which is an insulator, the secondary electron image or secondary ion image can be seen by charging up due to the accumulation of positive ions of the ion beam 5. Because it disappears, several hundreds with the electron gun 8 for charge neutralization
The electron beam 9 which is accelerated to V and focused is irradiated to observe the state where the charge is neutralized. In parallel with the above-mentioned defect recognition, a defect area to be processed as much as possible in a place not affected by the charges of the ion beam 5 and the electron beam 9 for charge neutralization so that the electrostatic force does not adversely affect the atomic force microscope probe 10. 15
A wide range is observed in the vicinity of with a non-contact type atomic force microscope 2, a pattern 16 used for drift correction is determined, and this pattern is observed at a high magnification sufficient for drift correction in the future.
【0010】原子間力顕微鏡2は、欠陥修正加工中に遮蔽膜
原料ガスや増速エッチング用のガスを流すので、探針10
へのガスの吸着の影響を避けるために、ガス流の上流に
位置するパターンをドリフト補正に使用するようにし、
なおかつガス分子を遮るために遮蔽板11を設けておく。
原子間力顕微鏡探針10も白金のようにガスと反応しにく
い材質を選び、物理吸着した場合にも原子間力顕微鏡像
に悪影響がないように少々分解能が低下しても探針とフ
ォトマスクの間も広めにとるようにする。[0010] Since the atomic force microscope 2 flows a shielding film raw material gas and a gas for enhanced etching during the defect correction processing, the probe 10
In order to avoid the effect of gas adsorption on the gas, the pattern located upstream of the gas flow should be used for drift compensation,
Furthermore, a shielding plate 11 is provided to shield gas molecules.
Atomic force microscope probe 10 is also made of a material that does not easily react with gas, such as platinum, so that the probe and photomask do not have a negative effect on the image of the atomic force microscope even when physically adsorbed, even if the resolution is slightly degraded. Also try to take a wider space.
【0011】イオンビーム欠陥修正装置で白欠陥もしくは黒
欠陥と認識した領域15のみ遮蔽膜原料ガス(白欠陥時)も
しくは増速エッチング用のガス(黒欠陥時)をガス銃12か
ら流しながら選択的に走査し、欠陥領域15の加工を行
う。加工と並行して非接触型の原子間力顕微鏡2で選ん
だパターン16を連続的に観察し、前回の原子間力顕微鏡
像とパターン16の位置を比較してドリフト量を算出す
る。イオンビーム欠陥修正装置の加工を中断し、原子間
力顕微鏡像から算出したドリフト量をイオンビーム5の
走査範囲にフィードバックをかけドリフトを補正し、再
び欠陥修正のための加工を再開する。非接触型の原子間
力顕微鏡2によるフォトマスク上の特定のパターン観察
・ドリフト量算出とイオンビーム欠陥修正装置1のイオ
ンビーム5の走査範囲へのフィードバックを繰り返し、
ドリフトを補正しながら欠陥領域15の加工を行う。Only the region 15 recognized as a white defect or a black defect by the ion beam defect correction device is selectively supplied while flowing a shielding film material gas (at the time of white defect) or a gas for accelerated etching (at the time of black defect) from the gas gun 12. To scan the defective area 15. The pattern 16 selected by the non-contact type atomic force microscope 2 is continuously observed in parallel with the processing, and the position of the pattern 16 is compared with the previous atomic force microscope image to calculate the drift amount. The processing of the ion beam defect repairing device is interrupted, the drift amount calculated from the atomic force microscope image is fed back to the scanning range of the ion beam 5 to correct the drift, and the processing for defect repairing is restarted again. Observation of a specific pattern on the photomask by the non-contact type atomic force microscope 2, calculation of the amount of drift, and feedback to the scanning range of the ion beam 5 of the ion beam defect repairing apparatus 1 are repeated,
The defect region 15 is processed while correcting the drift.
【0012】ドリフトの補正は、非接触型の原子間力顕微鏡
で観察するため、探針がフォトマスクに接触することが
ないためドリフト補正の頻度を増やしてもマスクのパタ
ーン13やガラス基板14には何らダメージを与えない。イ
オンビームの加工とドリフト補正の像の取得を並行して
行うことができ、ドリフト補正の頻度が増えても加工時
間が長くなることもない。フォトマスク上のパターンで
なおかつ欠陥修正領域の近傍でドリフトを補正するた
め、レーザーインターフェロメータでの測長で対処でき
ないドリフトも補正できる。以上の理由から、ドリフト
補正用のパターンを含む観察領域にダメージを与えない
で高精度なドリフト補正が実現でき、高精度かつ転写に
悪影響を与えない欠陥修正が行える。[0012] Since the drift correction is observed with a non-contact type atomic force microscope, the probe does not come into contact with the photomask. Therefore, even if the drift correction frequency is increased, the mask pattern 13 and the glass substrate 14 are not changed. Does no damage. The ion beam processing and the drift correction image acquisition can be performed in parallel, and the processing time does not increase even if the frequency of drift correction increases. Since the drift is corrected in the pattern on the photomask and in the vicinity of the defect correction area, it is possible to correct the drift that cannot be dealt with by the length measurement with the laser interferometer. For the above reasons, highly accurate drift correction can be realized without damaging the observation region including the drift correction pattern, and defect correction that is highly accurate and does not adversely affect transfer can be performed.
【0013】上記修正手順においてパターンを観察するかわ
りに、イオンビーム5や電化中和の電子ビーム9の電荷の
影響を受けない場所にイオンビーム欠陥修正装置でパタ
ーン上に縮小投影露光装置では露光されない程度の小さ
なホールを開けてマーカ17とし、欠陥修正加工と並行し
てマーカ17を含む領域の連続的な観察を行って、前回の
原子間力顕微鏡像との比較からドリフト量を算出し、イ
オンビームの走査範囲にフィードバックをかける方法で
も高精度なドリフト補正が行えるので、高精度な欠陥修
正が行える。非接触型の原子間力顕微鏡でドリフトの補
正用のマーカ17を含む領域を観察しているため、観察領
域の膜減りやホールの径が大きくなり転写に悪影響を与
えることはない。[0013] Instead of observing the pattern in the above correction procedure, the pattern is not exposed by the reduction projection exposure device on the pattern by the ion beam defect repair device at a place not affected by the charges of the ion beam 5 and the electron beam 9 for charge neutralization. A small hole is opened as the marker 17, and the area including the marker 17 is continuously observed in parallel with the defect correction processing, and the drift amount is calculated from the comparison with the previous atomic force microscope image, Even if the feedback is applied to the scanning range of the beam, the drift correction can be performed with high accuracy, so that the defect can be corrected with high accuracy. Since the region including the marker 17 for drift correction is observed by the non-contact type atomic force microscope, the film thickness in the observation region and the diameter of the hole are increased and the transfer is not adversely affected.
【0014】フォトマスク以外のマスクを修正する場合に
は、導電性の低い材質を含む場合は上記と同様な方法で
修正を行う。導電性のあるマスクを修正する場合には、
上記の手順のうち電荷中和に関する手順を省いて同様な
方法で欠陥修正を行えば良い。When a mask other than the photomask is repaired, when a material having low conductivity is included, the repair is performed by the same method as described above. When modifying a conductive mask,
Of the above procedures, the procedure for charge neutralization may be omitted and the defect may be repaired in the same manner.
【0015】[0015]
【発明の効果】以上説明したように本発明によれば、ド
リフト補正のための観察領域の膜減りやマーカが転写さ
れることもなく高精度なドリフト補正が行えるので、高
精度かつ転写に悪影響を与えない欠陥修正を行うことが
できる。As described above, according to the present invention, highly accurate drift correction can be performed without film loss in the observation area for drift correction or transfer of markers, and therefore, high accuracy and adverse effect on transfer. The defect can be corrected without giving
【図1】本発明の特徴を最もよく表す概略断面図であ
る。FIG. 1 is a schematic cross-sectional view that best represents the features of the present invention.
【図2】本発明をフォトマスクの欠陥修正に適応した場
合を説明する図である。FIG. 2 is a diagram illustrating a case where the present invention is applied to defect correction of a photomask.
【図3】イオンビーム欠陥修正装置で作成したマーカを
加工と並行して非接触型の原子間力顕微鏡で観察する場
合の概略断面図である。FIG. 3 is a schematic cross-sectional view of observing a marker created by an ion beam defect repairing device with a non-contact type atomic force microscope in parallel with processing.
【符号の説明】
1 イオンビーム欠陥修正装置
2 非接触型の原子間力顕微鏡
3 フォトマスク
4 XYステージ
5 イオンビーム
6 二次電子もしくは二次イオン
7 二次電子検出器もしくは二次イオン検出器
8 電荷中和用電子銃
9 電子ビーム
10 原子間力顕微鏡探針
11 遮蔽板
12 遮蔽膜原料ガスもしくは増速エッチング用のガス銃
13 ガラス基板
14 遮光膜パターン
15 欠陥領域
16 ドリフト補正に使用する遮光膜パターン
17 イオンビーム欠陥修正装置で作成したドリフト補正
用のマーカ[Explanation of symbols] 1 Ion beam defect repair device 2 Non-contact atomic force microscope 3 Photomask 4 XY stage 5 Ion beam 6 Secondary electron or secondary ion 7 Secondary electron detector or secondary ion detector 8 Electron gun for charge neutralization 9 Electron beam 10 Atomic force microscope probe 11 Shielding plate 12 Shielding film Gas or gas gun for accelerated etching 13 Glass substrate 14 Shielding film pattern 15 Defect area 16 Shielding film used for drift correction Pattern 17 Marker for drift correction created with the ion beam defect repair system
Claims (2)
原子間力顕微鏡を複合した装置によるマスク欠陥修正方
法において、黒欠陥除去や白欠陥修正はイオンビーム欠
陥修正装置で行い、ドリフト補正は加工中に非接触型の
原子間力顕微鏡で視野を固定して繰り返し特徴的なパタ
ーンを観察し、観察像の比較からドリフト量をイオンビ
ームの走査範囲にフィードバックをかけることで行うこ
とを特徴とするフォトマスクの欠陥修正方法。1. In a mask defect repairing method using a combined device of an ion beam defect repairing device and a non-contact type atomic force microscope, black defect removal and white defect repairing are performed by an ion beam defect repairing device, and drift correction is processed. It is characterized in that the field of view is fixed with a non-contact type atomic force microscope, the characteristic pattern is repeatedly observed, and the amount of drift is fed back to the scanning range of the ion beam from the comparison of observed images. Photomask defect repair method.
において、イオンビーム欠陥修正装置で形成したマーカ
を加工中に非接触型の原子間力顕微鏡で視野を固定して
繰り返し観察し、観察像の比較からドリフト量をイオン
ビームの走査範囲にフィードバックをかけることでドリ
フトを補正することを特徴とするフォトマスクの欠陥修
正方法。2. The photomask defect repairing method according to claim 1, wherein the marker formed by the ion beam defect repairing device is repeatedly observed while the field of view is fixed by a non-contact type atomic force microscope during processing. The method of correcting a defect in a photomask, wherein the drift amount is corrected by feeding back the drift amount to the scanning range of the ion beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001371696A JP3908524B2 (en) | 2001-12-05 | 2001-12-05 | Mask defect correction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001371696A JP3908524B2 (en) | 2001-12-05 | 2001-12-05 | Mask defect correction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003173017A true JP2003173017A (en) | 2003-06-20 |
JP3908524B2 JP3908524B2 (en) | 2007-04-25 |
Family
ID=19180707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001371696A Expired - Fee Related JP3908524B2 (en) | 2001-12-05 | 2001-12-05 | Mask defect correction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3908524B2 (en) |
-
2001
- 2001-12-05 JP JP2001371696A patent/JP3908524B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3908524B2 (en) | 2007-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3130222B2 (en) | Method for analyzing minute foreign matter, analyzer, and method for producing semiconductor element or liquid crystal display element using the same | |
US7662524B2 (en) | Photolithography mask repair | |
JP5307181B2 (en) | Sample surface inspection method and inspection apparatus | |
US20090057557A1 (en) | Localized static charge distribution precision measurement method and device | |
US20010028045A1 (en) | Method for repairing MoSi attenuated phase shifting masks | |
US6703626B2 (en) | Mask defect repair method | |
US6030731A (en) | Method for removing the carbon halo caused by FIB clear defect repair of a photomask | |
US7018683B2 (en) | Electron beam processing method | |
JP2004294613A (en) | Method for correcting defect of photomask | |
Yasaka et al. | Nanoscale Imaging, Material Removal and Deposition for Fabrication of Cutting-edge Semiconductor Devices | |
JP2000010260A (en) | Method for correcting black defect of mask correction apparatus | |
JP2004265629A (en) | Ion beam machining method | |
US20080131792A1 (en) | Method of Correcting Photomask Defect | |
JP3908524B2 (en) | Mask defect correction method | |
JP2004279461A (en) | Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device | |
JP2003228161A (en) | Method of repairing defect of mask | |
JP3952997B2 (en) | Semiconductor manufacturing apparatus and semiconductor inspection apparatus | |
JP2004287321A (en) | Method for correcting defect in photomask | |
US20040209172A1 (en) | Defect correction method for a photomask | |
JP2004251964A (en) | Electron beam processing method | |
JP4702295B2 (en) | Semiconductor manufacturing apparatus and semiconductor inspection apparatus | |
JP2008158499A (en) | Method of correcting photomask defect | |
JP7508671B2 (en) | Electron beam inspection equipment using retarding voltage | |
JPH08220007A (en) | Method and apparatus for analyzing minute foreign matter, and manufacture of semiconductor element or liquid crystal display element using the method and apparatus | |
JP3908516B2 (en) | Photomask defect repair device using ion beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040304 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040526 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040817 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070118 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |