JP2003172728A - Ultrasonic detector and ultrasonic inspection method - Google Patents

Ultrasonic detector and ultrasonic inspection method

Info

Publication number
JP2003172728A
JP2003172728A JP2001374468A JP2001374468A JP2003172728A JP 2003172728 A JP2003172728 A JP 2003172728A JP 2001374468 A JP2001374468 A JP 2001374468A JP 2001374468 A JP2001374468 A JP 2001374468A JP 2003172728 A JP2003172728 A JP 2003172728A
Authority
JP
Japan
Prior art keywords
ultrasonic
point
ultrasonic wave
molten metal
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001374468A
Other languages
Japanese (ja)
Inventor
Masayoshi Nakai
正義 中井
Masaaki Kurokawa
政秋 黒川
Shoji Suyama
昇司 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001374468A priority Critical patent/JP2003172728A/en
Publication of JP2003172728A publication Critical patent/JP2003172728A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the deterioration of flaw detection accuracy, detect the existence of a minute flaw when detecting a flaw in a deep part in the axial direction in a scanning manner, and improve an S/N ratio of a signal when detecting a flaw whose existence can be detected conventionally. <P>SOLUTION: An ultrasonic detector is composed of an ultrasonic transmitter 11 having an ultrasonic wave effective outgoing point P and an ultrasonic receiver 12 having an ultrasonic wave effective incident point Q. The shortest line segment connecting either P among the ultrasonic wave effective outgoing point P and the ultrasonic wave effective incident point Q with one arbitrary point R of a metal melting body 3 crosses a join face 9 on one side among opposite faces on which a body to be welded 2 and the metal melting body 3 join mutually. Since an incident path for ultrasonic waves crosses the join face 9 and enters a flaw detection point R, a length of an ultrasonic wave path in which the ultrasonic waves pass in the metal melting body 3 is shorter than a conventional ultrasonic wave path in which ultrasonic waves enter the metal melting body directly from an outer face of the metal melting body and reaches the flaw detection point R, if the flow detection point is at a deep position. Shortening of the ultrasonic wave path in the metal melting body receiving thermal denaturation improves an S/N ratio of a detection signal. Consequently, a minute flaw which cannot be detected in a conventional method can be detected by this ultrasonic detector, and a flaw which can be detected conventionally can be detected with further high accuracy. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波探傷装置、
及び、超音波探傷方法に関し、特に、配管、円筒状容器
を周方向に溶接された溶接部の軸方向欠陥の探傷を高精
度化する超音波探傷装置、及び、超音波探傷方法に関す
る。
TECHNICAL FIELD The present invention relates to an ultrasonic flaw detector,
The present invention also relates to an ultrasonic flaw detection method, and more particularly, to an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method for highly accurately detecting flaws in an axial defect of a welded portion where a pipe and a cylindrical container are circumferentially welded.

【0002】[0002]

【従来の技術】ボイラーの配管、円筒状容器のような筒
は、それが大口径である場合、周方向の環状的な突き合
わせ部位の突き合わせ溶接により一体化されて製作され
る。このような溶接部位又はセーフエンド部は、溶接熱
の影響を受けて材質が変化する。溶接部位の欠陥の存否
は、非破壊検査の検査対象の1つである。非破壊検査の
ために超音波探傷技術が用いられる。その材質変化に起
因して異常超音波が、その溶接部位の中で伝播する。ノ
イズが、異常超音波の伝播に起因してその溶接部位の中
で発生する。このようなノイズの発生は、探傷精度を劣
化させる。このような劣化は、オーステナイトステンレ
ス、インコネル合金のような溶接金属が用いられる溶接
部位で顕著に現れる。溶接後のパイプの溶接部の探傷
は、外側面から行わざるをえない。従って、内側である
奥深い部位の高精度の探傷が求められる。
2. Description of the Related Art A pipe such as a boiler pipe or a cylindrical container, when it has a large diameter, is integrally manufactured by butt-welding annular butting portions in the circumferential direction. The material of such a welded portion or safe end portion changes under the influence of welding heat. The presence / absence of defects in the welded part is one of the inspection targets of the nondestructive inspection. Ultrasonic flaw detection technology is used for nondestructive inspection. Due to the material change, abnormal ultrasonic waves propagate inside the welding site. Noise is generated in the weld site due to the propagation of abnormal ultrasonic waves. The generation of such noise deteriorates the flaw detection accuracy. Such deterioration is prominent at welded portions where weld metals such as austenitic stainless steel and Inconel alloy are used. The flaw detection of the welded part of the pipe after welding must be performed from the outer side surface. Therefore, highly accurate flaw detection of the deep inside portion is required.

【0003】周方向溶接部位又はセーフエンド部位の軸
方向欠陥対象の周方向探傷では、超音波が溶接部位に深
く透過的に侵入し欠陥部位で反射して戻ってくる途中の
超音波路程で、顕著な探傷精度劣化の影響を受ける。周
方向探傷は、軸方向探傷に比べてより強く探傷精度劣化
の影響を受ける。接合面を透過する超音波の探傷が、公
知である。
In the circumferential flaw detection of an axial defect target of a circumferential welded portion or a safe end portion, ultrasonic waves penetrate deeply and transparently into the welded portion, are reflected by the defective portion, and return along the ultrasonic path. It is affected by the remarkable deterioration of flaw detection accuracy. The circumferential flaw detection is more strongly affected by the flaw detection accuracy deterioration than the axial flaw detection. Ultrasonic flaw detection that passes through the joint surface is known.

【0004】探傷精度の劣化を抑制することが求められ
る。特に、深くにある軸方向欠陥を周方向に走査的に探
傷する際に、微小欠陥の存在の検出を可能にし、存在検
出が従来可能であった欠陥の検出時の信号のS/N比を
改善することが望まれる。
It is required to suppress deterioration of flaw detection accuracy. In particular, when scanning a deep axial defect in the circumferential direction in a scanning manner, it is possible to detect the presence of a minute defect, and the S / N ratio of the signal at the time of defect detection, which has been possible to detect the presence, can be improved. Improvement is desired.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、探傷
精度の劣化を抑制することができる超音波探傷装置、及
び、超音波探傷方法を提供することにある。本発明の他
の課題は、深くにある軸方向欠陥を周方向に走査的に探
傷する際に、微小欠陥の存在の検出を可能にし、存在検
出が従来可能であった欠陥の検出時の信号のS/N比を
改善することができる超音波探傷装置、及び、超音波探
傷方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method capable of suppressing deterioration of flaw detection accuracy. Another object of the present invention is to enable detection of the presence of a microdefect when scanningly detecting a deep axial defect in the circumferential direction, and to detect the presence of a signal that was previously possible for the detection of a defect. An ultrasonic flaw detection apparatus and an ultrasonic flaw detection method capable of improving the S / N ratio of

【0006】[0006]

【課題を解決するための手段】その課題を解決するため
の手段が、下記のように表現される。その表現中に現れ
る技術的事項には、括弧()つきで、番号、記号等が添
記されている。その番号、記号等は、本発明の実施の複
数の形態又は複数の実施例のうちの少なくとも1つの実
施の形態又は複数の実施例を構成する技術的事項、特
に、その実施の形態又は実施例に対応する図面に表現さ
れている技術的事項に付せられている参照番号、参照記
号等に一致している。このような参照番号、参照記号
は、請求項記載の技術的事項と実施の形態又は実施例の
技術的事項との対応・橋渡しを明確にしている。このよ
うな対応・橋渡しは、請求項記載の技術的事項が実施の
形態又は実施例の技術的事項に限定されて解釈されるこ
とを意味しない。
Means for solving the problem Means for solving the problem are expressed as follows. The technical matters appearing in the expression are accompanied by parentheses (), and numbers, symbols and the like are added. The numbers, symbols and the like are technical matters constituting at least one embodiment or a plurality of examples of the plurality of embodiments or a plurality of examples of the present invention, particularly, the embodiment or the example. It corresponds to the reference numbers, reference symbols, etc. attached to the technical matters expressed in the drawings corresponding to. Such reference numbers and reference symbols clarify correspondences and bridges between the technical matters described in the claims and the technical matters of the embodiments or examples. Such correspondence / bridge does not mean that the technical matters described in the claims are limited to the technical matters of the embodiment or the examples.

【0007】本発明による超音波探傷装置は、超音波有
効出射点(P)を持つ超音波送信器(11)と、超音波
有効入射点(Q)を持つ超音波受信器(12)とから構
成されている。超音波有効出射点(P)と超音波有効入
射点(Q)のうちの一方(P)と、溶金体(3)の任意
の1点(R)とを結ぶ最短線分は、被溶接体(2)と溶
金体(3)とが接合する対向面のうちの一方の接合面
(9)に交叉する。このような超音波の入射路が接合面
(9)に交叉して探傷点(R)に入射するので、探傷点
が深い位置にあれば、その超音波が溶金体(3)の中で
通過する超音波路の長さは、溶金体の外側面から直接に
溶金体に入射して探傷点(R)に届く従来の超音波路よ
り短い。熱変性を受けた溶金体の中の超音波路の短縮
は、検出信号のS/N比を改善する。
The ultrasonic flaw detector according to the present invention comprises an ultrasonic transmitter (11) having an effective ultrasonic emission point (P) and an ultrasonic receiver (12) having an effective ultrasonic incidence point (Q). It is configured. The shortest line segment that connects one (P) of the ultrasonic wave effective emission point (P) and the ultrasonic wave effective incidence point (Q) and any one point (R) of the molten metal (3) is to be welded. The body (2) and the molten metal body (3) are intersected with one of the facing surfaces (9) of the facing surfaces. Since such an ultrasonic wave incident path crosses the joint surface (9) and is incident on the flaw detection point (R), if the flaw detection point is located at a deep position, the ultrasonic wave is generated in the molten metal body (3). The length of the ultrasonic path that passes through is shorter than that of a conventional ultrasonic path that directly enters the molten metal from the outer surface of the molten metal and reaches the flaw detection point (R). The shortening of the ultrasonic path in the heat-modified metal melt improves the S / N ratio of the detection signal.

【0008】超音波有効出射点(P)と超音波有効入射
点(Q)のうちの他方(Q)と、既述の任意の1点
(R)とを結ぶ最短線分は、対向面のうちの他方の接合
面(8)に交叉する。既述の通り、探傷点(R)で反射
する超音波の溶金体の中の超音波路が短縮化される。
The shortest line segment connecting the other (Q) of the effective ultrasonic wave emission point (P) and the effective ultrasonic wave incident point (Q) and the arbitrary one point (R) described above is the opposite surface. It intersects with the other joint surface (8). As described above, the ultrasonic path in the molten metal of ultrasonic waves reflected at the flaw detection point (R) is shortened.

【0009】溶金体(3)は一方方向に長く延び、超音
波有効出射点(P)と超音波有効入射点(Q)は一方方
向に移動する。このような走査により、深い位置の探索
領域について連続的に探傷することができる。被溶接体
(2)と溶金体(3)とが円筒体を形成し、外側面から
内側面の近傍の深い位置の欠陥の存在を探索する場合
に、特に有効な探索が可能である。円筒体が円筒状の容
器、配管用のパイプである場合に、その探索が有効に実
行される。そのような一方方向は、円周方向であり、溶
金体(3)は、環である。環は、その特殊な形態として
円板を含む。
The molten metal body (3) extends in one direction, and the ultrasonic wave effective emission point (P) and the ultrasonic wave effective incidence point (Q) move in one direction. By such scanning, flaw detection can be continuously performed in a deep search area. A particularly effective search is possible when searching for the presence of a defect at a deep position from the outer surface to the inner surface, where the welded body (2) and the molten metal body (3) form a cylindrical body. If the cylindrical body is a cylindrical container or pipe for piping, the search is effectively executed. One such direction is the circumferential direction and the metal melt (3) is a ring. The ring includes a disc as its special form.

【0010】溶金体(3)は、超音波ノイズを発生しや
すい金属である。そのような金属は、オーステナイトス
テンレス又はインコネル合金である。このような金属で
形成される溶金体である溶接部位は、超音波にノイズを
発生させやすいことが、本発明者により見出されてい
る。
The molten metal body (3) is a metal that easily generates ultrasonic noise. Such metals are austenitic stainless steels or Inconel alloys. The inventor has found that a welded portion which is a molten metal body formed of such a metal is likely to generate noise in ultrasonic waves.

【0011】被溶接体と溶金体とは、配管用のパイプで
ある。細い配管用パイプは、超音波発信・受信機器の導
入が困難であり、外側からしか探傷できない程度にその
内径が小さい。
The object to be welded and the molten metal are pipes for piping. It is difficult to introduce ultrasonic wave transmitting / receiving equipment into a thin pipe, and its inner diameter is small enough to allow flaw detection only from the outside.

【0012】本発明による超音波探傷方法は、溶接の接
合面に超音波を透過させるステップと、超音波を受信す
るステップと、そのステップで受信する超音波に基づい
て溶接部位の中の欠陥を探傷するステップとから構成さ
れ、溶金体が環状である場合に特に有用である。
In the ultrasonic flaw detection method according to the present invention, a step of transmitting ultrasonic waves to the joint surface of welding, a step of receiving ultrasonic waves, and a defect in the welded portion based on the ultrasonic waves received at the step are detected. It is particularly useful when the molten metal has an annular shape.

【0013】[0013]

【発明の実施の形態】図に対応して、本発明による超音
波探傷装置の実施の形態は、円筒容器の突き合わせ部位
に関して例示されている。円筒容器1は、図1に示され
るように、軸方向に対向する2つの対向円筒部分2から
形成され、対向円筒部分2の対向面の間の空隙部が突き
合わせ溶接により溶金部分3により埋められて形成され
る。実施の下記形態は、表現の便宜のため軸方向が鉛直
方向であることとして記述される。対向円筒部分2は、
下側円筒部分2−1と上側円筒部分2−2とから形成さ
れている。
BEST MODE FOR CARRYING OUT THE INVENTION Corresponding to the drawings, an embodiment of an ultrasonic flaw detector according to the present invention is illustrated with respect to a butt portion of a cylindrical container. As shown in FIG. 1, the cylindrical container 1 is formed of two opposed cylindrical portions 2 that are axially opposed to each other, and a gap between opposed surfaces of the opposed cylindrical portion 2 is filled with a molten metal portion 3 by butt welding. Formed. The following embodiment will be described as an axial direction being a vertical direction for convenience of expression. The opposed cylindrical portion 2 is
It is formed of a lower cylindrical portion 2-1 and an upper cylindrical portion 2-2.

【0014】溶金部分3の形状は、軸心線を含む面で切
断した断面上で概台形である。下側円筒部分2−1は、
下側外側円筒面4−1と下側内側円筒面4−2とを有し
ている。上側円筒部分2−2は、上側外側円筒面5−1
と上側内側円筒面5−2とを有している。溶金部分3
は、下側外側円筒面4−1と上側外側円筒面5−1に概
ね同一面的である外側溶金部位面6と、下側内側円筒面
4−2と上側内側円筒面5−2とに概ね同一面的である
内側溶金部位面7とを有している。対向円筒部分2と溶
金部分3は、突き合わせ対向面である第1接合面8と第
2接合面9とを共有している。溶金部分3は、外側溶金
部位面6と内側溶金部位面7と第1接合面8と第2接合
面9とで囲まれる断面概台形環として形成されている溶
接領域の溶接金属に一致している。第1接合面8と第2
接合面9とは、共に、外側溶金部位面6と内側溶金部位
面7に直交し、又は、第1接合面8と第2接合面9と
は、共に、外側溶金部位面6と内側溶金部位面7に対し
て斜交し、又は、それらの一方のみが外側溶金部位面6
又は内側溶金部位面7に斜交している。
The shape of the molten metal portion 3 is approximately trapezoidal on a cross section taken along a plane including the axis. The lower cylindrical portion 2-1 is
It has a lower outer cylindrical surface 4-1 and a lower inner cylindrical surface 4-2. The upper cylindrical portion 2-2 has an upper outer cylindrical surface 5-1.
And an upper inner cylindrical surface 5-2. Metal part 3
Is an outer molten metal portion surface 6 that is substantially flush with the lower outer cylindrical surface 4-1 and the upper outer cylindrical surface 5-1; the lower inner cylindrical surface 4-2 and the upper inner cylindrical surface 5-2. And an inner molten metal portion surface 7 that is substantially coplanar. The opposed cylindrical portion 2 and the molten metal portion 3 share a first joint surface 8 and a second joint surface 9 which are butt opposed surfaces. The molten metal portion 3 is used as a weld metal in a welding region formed as a substantially trapezoidal ring in cross section surrounded by an outer molten metal portion surface 6, an inner molten metal portion surface 7, a first joint surface 8 and a second joint surface 9. Match. First joint surface 8 and second
The joint surface 9 is orthogonal to the outer molten metal portion surface 6 and the inner molten metal portion surface 7, or the first joint surface 8 and the second joint surface 9 are both the outer molten metal portion surface 6 and the outer molten metal portion surface 6. It is oblique to the inner molten metal portion surface 7, or only one of them crosses the outer molten metal portion surface 6
Alternatively, the inner molten metal portion surface 7 is obliquely crossed.

【0015】超音波探傷器は、超音波送信器11と超音
波受信器12とから構成されている。超音波送信器11
と超音波受信器12は、電波送信アンテナと電波受信ア
ンテナの関係と同様に、物理的対称構造を有している。
超音波送信器11と超音波受信器12は、互いに送信側
と受信側とが入れ替わることができる。超音波送信器1
1の超音波放出点状領域Pは、外側溶金部位面6(の
上)に存在せず上側外側円筒面5−1(の上)に存在し
ている。超音波受信器12の超音波受容点状領域Qは、
外側溶金部位面6(の上)に存在せず下側外側円筒面4
−1(の上)に存在している。超音波放出点状領域(超
音波有効出射点)Pは、外側溶金部位面6を跨いで超音
波受容点状領域(超音波有効入射点)Qに軸方向に対向
している。
The ultrasonic flaw detector comprises an ultrasonic transmitter 11 and an ultrasonic receiver 12. Ultrasonic transmitter 11
The ultrasonic receiver 12 has a physically symmetric structure similar to the relationship between the radio wave transmitting antenna and the radio wave receiving antenna.
The ultrasonic transmitter 11 and the ultrasonic receiver 12 can exchange the transmitting side and the receiving side with each other. Ultrasonic transmitter 1
The ultrasonic wave emission point region P of No. 1 does not exist on the outer molten metal portion surface 6 (upper) but exists on the upper outer cylindrical surface 5-1 (upper). The ultrasonic receiving point area Q of the ultrasonic receiver 12 is
The lower outer cylindrical surface 4 that does not exist on the outer molten metal portion surface 6 (upper)
-1 (above). The ultrasonic wave emission point-like region (ultrasonic wave effective emission point) P is axially opposed to the ultrasonic wave reception point-like region (ultrasonic wave effective incidence point) Q across the outer molten metal site 6.

【0016】他の表現では、超音波放出点状領域Pと超
音波受容点状領域Qとを結ぶ最短線は、外側溶金部位面
6の上にある。超音波放出点状領域Pと超音波受容点状
領域Qの両点は、上側内側円筒面5−2と下側内側円筒
面4−2の上に配置され得る。この場合、超音波放出点
状領域Pは、内側溶金部位面7を跨いで超音波受容点状
領域(超音波有効入射点)Qに軸方向に対向している。
又は、超音波放出点状領域Pは上側外側円筒面5−1の
上に配置され、超音波受容点状領域Qは下側内側円筒面
4−2の上に配置され得る。この場合、超音波放出点状
領域Pは、溶金部分3を跨いで超音波受容点状領域Qに
対向している。
In other words, the shortest line connecting the ultrasonic wave emission point area P and the ultrasonic wave reception point area Q is on the outer molten metal site surface 6. Both points of the ultrasonic emission point-like region P and the ultrasonic reception point-like region Q can be arranged on the upper inner cylindrical surface 5-2 and the lower inner cylindrical surface 4-2. In this case, the ultrasonic wave emission spot-like region P is axially opposed to the ultrasonic wave reception spot-like region (effective ultrasonic wave incident point) Q across the inner molten metal site 7.
Alternatively, the ultrasonic wave emission spot-like region P may be arranged on the upper outer cylindrical surface 5-1 and the ultrasonic wave reception spot-like region Q may be arranged on the lower inner cylindrical surface 4-2. In this case, the ultrasonic wave emission spot-like region P faces the ultrasonic wave reception spot-like region Q across the molten metal portion 3.

【0017】図1には、溶接欠陥探傷目標領域13が示
されている。溶接欠陥探傷目標領域(既述の断面概台形
環)13としては、外側溶金部位面6から遠く内側溶金
部位面7により近く、外側溶金部位面6から見て深い領
域にある断面概矩形環領域として想定されている。今の
場合、超音波放出点状領域Pと超音波受容点状領域Q
は、それぞれに、上側外側円筒面5−1と下側外側円筒
面4−1とに存在している。溶接欠陥探傷目標領域13
は、超音波放出点状領域Pと超音波受容点状領域Qの周
方向(円筒座標系の円周方向としてY方向)の走査的移
動により、Y方向に連続的に又は間欠的に探査される。
FIG. 1 shows a target area 13 for welding defect inspection. The welding defect inspection target area (the trapezoidal ring having the above-described cross-section) is a cross-sectional area in a region far from the outer molten metal portion surface 6 and closer to the inner molten metal portion surface 7 and deeper than the outer molten metal portion surface 6. It is assumed to be a rectangular ring area. In the present case, the ultrasonic wave emission point region P and the ultrasonic wave reception point region Q
Respectively exist on the upper outer cylindrical surface 5-1 and the lower outer cylindrical surface 4-1. Weld defect inspection target area 13
Is scanned continuously or intermittently in the Y direction by scanning movement of the ultrasonic emission point-shaped region P and the ultrasonic reception point-shaped region Q in the circumferential direction (Y direction as the circumferential direction of the cylindrical coordinate system). It

【0018】図2は、超音波放出点状領域Pと超音波受
容点状領域Qが同体的に周方向に移動させられて、ある
周方向位置で停止又は固定された位置関係を示してい
る。その位置関係は、軸心線を含む平面で切断された周
直角断面で示されている。溶接欠陥探傷目標領域13の
点状領域が代表的に点Rで示されている。線分PRは、
第2接合面9に点Sで交叉している。線分QRは、第1
接合面8に点Tで交叉している。方向付き線分PR(P
→R)は、入射側有効超音波路に一致している。方向付
き線分RQ(R→Q)は、反射側有効超音波路に一致し
ている。
FIG. 2 shows a positional relationship in which the ultrasonic wave emitting point region P and the ultrasonic wave receiving point region Q are integrally moved in the circumferential direction and stopped or fixed at a certain circumferential position. . The positional relationship is shown by a cross-section perpendicular to the circumference cut by a plane including the axis. A point region of the welding defect inspection target region 13 is typically shown by a point R. The line segment PR is
The point S intersects the second joint surface 9. The line segment QR is the first
It intersects with the joint surface 8 at a point T. Directional line segment PR (P
→ R) coincides with the incident-side effective ultrasonic wave path. The directional line segment RQ (R → Q) coincides with the reflection-side effective ultrasonic wave path.

【0019】公知装置では、超音波放出点状領域Pに対
応する公知対応点P’と、超音波受容点状領域Qに対応
する公知対応点Q’とは、外側溶金部位面6に存在して
いる。(線分P’R+線分Q’R)を最小化する点P’
と点Q’は、外側溶金部位面6の上で1点Mとして存在
する。(線分MR+線分MR)より短くする点P又は点
Qは、外側溶金部位面6には存在しえない。図示例の場
合、 線分SR+線分TR<2・線分MR<(線分P’R+線
分Q’R)
In the known device, a known corresponding point P'corresponding to the ultrasonic wave emitting point area P and a known corresponding point Q'corresponding to the ultrasonic wave receiving point area Q are present on the outer molten metal portion surface 6. is doing. Point P'that minimizes (segment P'R + segment Q'R)
And point Q'exists as one point M on the outer molten metal site surface 6. A point P or a point Q that is shorter than (line segment MR + line segment MR) cannot exist on the outer molten metal site 6. In the case of the illustrated example, line segment SR + line segment TR <2, line segment MR <(line segment P′R + line segment Q′R)

【0020】溶金部分3としてオーステナイトステンレ
ス、インコネル合金が用いられる場合に特に、溶接熱の
影響に基づく材質変化に起因する異常超音波ノイズが発
生しやすい。本発明では、溶金内入射側超音波路SRと
溶金内反射側超音波路RTとで、異常超音波の伝播に起
因してノイズが発生する可能性がある。公知技術では、
溶金内入射側超音波路P’Rと溶金内反射側超音波路R
Q’とで、異常超音波の伝播に起因してノイズが発生す
る可能性がある。本発明の異常ノイズ発生確率は、公知
技術の異常ノイズ発生確率より少ない。このようなノイ
ズ発生確率の低減は、探傷精度の劣化を有効に抑制する
ことができる。ノイズ発生確率が小さくなれば、検出信
号のSN比が向上し、より微小な欠陥を検出する微小欠
陥検出性能が向上する。
Particularly when austenitic stainless steel or Inconel alloy is used as the molten metal portion 3, abnormal ultrasonic noise due to material change due to the influence of welding heat is likely to occur. In the present invention, noise may occur in the in-melt metal incident-side ultrasonic path SR and the in-metal reflection-side ultrasonic path RT due to the propagation of abnormal ultrasonic waves. In the known art,
Ultrasonic path P'R on incident side in molten metal and ultrasonic path R on reflective side in molten metal
With Q ′, noise may occur due to the propagation of abnormal ultrasonic waves. The abnormal noise occurrence probability of the present invention is lower than the known art abnormal noise occurrence probability. Such reduction in noise occurrence probability can effectively suppress deterioration in flaw detection accuracy. If the probability of noise occurrence is reduced, the SN ratio of the detection signal is improved, and the microdefect detection performance for detecting microscopic defects is improved.

【0021】図3は、本発明による超音波探傷装置の実
施の他の形態を示している。実施の本形態では、溶接対
象は、1直線上に延びる2本の四角柱金属棒2−1,2
である。溶金部分3’は、立方体領域又は直方体領域を
占めている。探傷探査領域として、第1直線状探査領域
13’−1と第2直線状探査領域13’−2が示されて
いる。第1直線状探査領域13’−1と第2直線状探査
領域13’−2は、互いに直交している。第1探査点R
1は、第1直線状探査領域13’−1の上にある。第1
超音波有効出射点P1は、一方側第1走査線14の上に
ある。第1超音波有効入射点Q1は、他方側第1走査線
15の上にある。第1超音波有効出射点P1と第1超音
波有効入射点Q1は、同一平面又は概同一平面上にあ
る。一方側第1走査線14は、他方側第1走査線15に
平行である。
FIG. 3 shows another embodiment of the ultrasonic flaw detector according to the present invention. In the present embodiment, the welding target is two square pole metal rods 2-1 and 2-1 extending in a straight line.
Is. The molten metal portion 3 ′ occupies a cubic area or a rectangular area. As the flaw detection search area, a first linear search area 13'-1 and a second linear search area 13'-2 are shown. The first linear search area 13'-1 and the second linear search area 13'-2 are orthogonal to each other. First exploration point R
1 is above the first linear survey area 13'-1. First
The ultrasonic effective emission point P1 is located on the one side first scanning line 14. The first ultrasonic effective incident point Q1 is on the other side first scanning line 15. The first effective ultrasonic wave emission point P1 and the first effective ultrasonic wave incident point Q1 are on the same plane or substantially the same plane. The first scanning line 14 on one side is parallel to the first scanning line 15 on the other side.

【0022】第2探査点R2は、第2直線状探査領域1
3’−2の上にある。第2超音波有効出射点P2は、一
方側第2走査線16の上にある。第2超音波有効入射点
Q2は、他方側第2走査線17の上にある。第2超音波
有効出射点P2と第2超音波有効入射点Q2は、同一平
面又は概同一平面上にある。一方側第2走査線16は、
他方側第2走査線17に平行である。一方側第1走査線
14は、一方側第2走査線16に直交している。線分P
1R1と線分P2R2は、共に、一方側接合面18に交
叉し、線分R1Q1と線分R2Q2は、共に、他方側接
合面19に交叉している。一方側接合面18と他方側接
合面19とは、互いに平行である。
The second search point R2 is the second linear search area 1
Above 3'-2. The second ultrasonic effective emission point P2 is located on the one side second scanning line 16. The second ultrasonic effective incident point Q2 is on the other side second scanning line 17. The second effective ultrasonic wave emission point P2 and the second effective ultrasonic wave incident point Q2 are on the same plane or substantially the same plane. The second scanning line 16 on one side is
It is parallel to the second scanning line 17 on the other side. The one side first scanning line 14 is orthogonal to the one side second scanning line 16. Line segment P
1R1 and the line segment P2R2 both intersect the one side joint surface 18, and both the line segment R1Q1 and the line segment R2Q2 intersect the other side joint surface 19. The one side joint surface 18 and the other side joint surface 19 are parallel to each other.

【0023】2つの柱状体に挟まれる溶接領域が立方体
のように横長さと縦長さと奥行き長さの間の互いの長さ
の差が大きくなく、測定対象線状領域をそれに近い側の
面とそれに遠い側の面とからより高精度に測定する場
合、測定対象線状領域に遠い側の面から測定する際に、
本発明による測定方法が有効に利用され得る。
The welding area sandwiched between the two columnar bodies does not have a large difference between the horizontal length, the vertical length and the depth length as in the case of a cube, and the linear region to be measured is close to the surface and When measuring from the surface on the far side with higher accuracy, when measuring from the surface on the far side to the linear region to be measured,
The measuring method according to the present invention can be effectively used.

【0024】図4は、本発明による超音波探傷装置の実
施の更に他の形態を示している。実施の本形態では、溶
接対象は、1直線上に延びる2本の円柱金属棒2”−
1,2である。溶金部分3”は、円柱体領域を占めてい
る。探傷探査領域として、円環状探査領域13”が例示
されている。探査点Rは、円環状探査領域13”の上に
ある。超音波有効出射点Pは、一方側走査円21の上に
ある。超音波有効入射点Qは、他方側走査円22の上に
ある。対向する両側の接合面は、円面23,24であ
る。線分PRは接合面23に交叉し、線分RQは接合面
24に交叉している。
FIG. 4 shows still another embodiment of the ultrasonic flaw detector according to the present invention. In the present embodiment, the welding target is two cylindrical metal rods 2 ″ − extending in a straight line.
One and two. The molten metal portion 3 ″ occupies a cylindrical body region. An annular inspection region 13 ″ is illustrated as the flaw detection inspection region. The search point R is on the annular search region 13 ″. The ultrasonic wave effective emission point P is on the one side scanning circle 21. The ultrasonic wave effective incident point Q is on the other side scanning circle 22. The joining surfaces on both sides facing each other are circular surfaces 23 and 24. The line segment PR intersects the joining surface 23, and the line segment RQ intersects the joining surface 24.

【0025】出射点Pと探索点Rを結ぶ直線が一方側接
合面を貫通し、入射点Qと探索点Rを結ぶ直線が他方側
接合面を貫通することによる超音波路の短縮化は、ノイ
ズ発生量を低減する。同じ点Rについて、遠い側と近い
側から測定が行われることにより、より高精度な探傷が
可能である。
The shortening of the ultrasonic path by the straight line connecting the output point P and the search point R penetrating the one-side joint surface and the straight line connecting the incident point Q and the search point R penetrating the other-side joint surface, Reduce the amount of noise generated. By measuring the same point R from the far side and the near side, it is possible to perform flaw detection with higher accuracy.

【0026】本発明による超音波探傷装置は、溶接対象
が内部に測定機器を導入することが困難であるパイプ、
中実体である場合に、特に有効に適用され得る。それら
のパイプの外側に配置される超音波発信・受信器によ
り、そのパイプの内周面側の領域の欠陥を探傷すること
により、従来であれば検出することができなかった微小
欠陥を検出することができるようになり、更に、従来検
出できていた欠陥をより高精度に検出することができる
ようになる。
In the ultrasonic flaw detector according to the present invention, the pipe to be welded is difficult to introduce a measuring instrument into,
It can be applied particularly effectively when it is a solid body. Ultrasonic transmitters / receivers placed outside these pipes detect defects in the area on the inner peripheral surface side of the pipes, thereby detecting minute defects that could not be detected by conventional methods. Therefore, it becomes possible to detect a defect that could be detected in the past with higher accuracy.

【0027】図5は、溶接対象領域が開板である場合と
環状体である場合の超音波の拡散的伝播を示している。
点Pから点Qに真っ直ぐに向かわずに点Rの近傍に向か
う超音波は、平面Sで反射して面内方向に拡散する。そ
の拡散の度合いは、平面Sで反射する場合に比べて、点
Fの方に周方向により大きくずれて円筒面S’で反射す
る場合の方が大きい。点Rからのずれが僅かにでも大き
くなれば、その拡散度合いは飛躍的に大きくなる。その
拡散が溶金体の内部でのみ起こって伝播距離が長い場
合、拡散超音波がマルテンサイトステンレス溶金体で拾
うノイズは相乗的に多くなるが、本発明の跨ぎ伝播によ
れば、円周方向の拡散が大きく溶金体の中の伝播距離が
短いこととの相乗的結果として、拾い集めるノイズの総
量が相乗的に少なくなる。本発明は、従って、軸方向に
2つの円筒体(例示:パイプ、タンク)を連結する環状
溶金体の探傷のために特に有用である。
FIG. 5 shows diffused propagation of ultrasonic waves when the welding target area is an open plate and an annular body.
An ultrasonic wave that does not go straight from the point P to the point Q toward the vicinity of the point R is reflected by the plane S and diffuses in the in-plane direction. The degree of diffusion is greater in the case where the point F is largely displaced in the circumferential direction and reflected in the cylindrical surface S ′ than when it is reflected in the plane S. If the deviation from the point R is increased even slightly, the degree of diffusion will be dramatically increased. When the diffusion occurs only inside the molten metal and the propagation distance is long, the noise picked up by the diffusion ultrasonic waves in the martensitic stainless molten metal becomes synergistically increased. The total amount of noise picked up is synergistically low, as a synergistic result of the large directional diffusion and the short propagation distance in the melt. The present invention is therefore particularly useful for flaw detection of an annular metal body that connects two cylindrical bodies (eg pipe, tank) in the axial direction.

【0028】[0028]

【発明の効果】本発明による超音波探傷装置、及び、超
音波探傷方法は、従来であれば検出することができなか
った微小欠陥を検出することができるようになり、更
に、従来検出できていた欠陥をより高精度に検出するこ
とができるようになった。
The ultrasonic flaw detector and the ultrasonic flaw detection method according to the present invention can detect minute defects which could not be detected by the conventional method, and further can detect them. It has become possible to detect defects that have occurred more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明による超音波探傷装置の適用対
象を示す斜軸投影図である。
FIG. 1 is an oblique-axis projection view showing an application target of an ultrasonic flaw detector according to the present invention.

【図2】図2は、本発明による超音波探傷装置の実施の
形態を示す断面図である。
FIG. 2 is a sectional view showing an embodiment of an ultrasonic flaw detector according to the present invention.

【図3】図3は、超音波の直線的伝播を示す斜軸投影図
である。
FIG. 3 is an oblique-axis projection view showing linear propagation of ultrasonic waves.

【図4】図4は、本発明による超音波探傷装置の実施の
他の形態を示す斜軸投影図である。
FIG. 4 is an oblique-axis projection view showing another embodiment of the ultrasonic flaw detector according to the present invention.

【図5】図5は、超音波の拡散的伝播を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing diffused propagation of ultrasonic waves.

【符号の説明】[Explanation of symbols]

2…被溶接体 3…溶金体 8…接合面 9…接合面 11…超音波送信器 12…超音波受信器 P…超音波有効出射点 Q…超音波有効入射点 R…探傷点 2 ... Object to be welded 3 ... Fused metal 8 ... Bonding surface 9 ... Bonding surface 11 ... Ultrasonic transmitter 12 ... Ultrasonic receiver P ... Effective output point of ultrasonic waves Q: Effective point of ultrasonic wave incidence R: flaw detection point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須山 昇司 兵庫県高砂市荒井町新浜2丁目8番19号 高菱エンジニアリング株式会社内 Fターム(参考) 2G047 AA07 AB01 AB02 AB07 BA02 BB02 BC09 CA01 DB17 EA04 GF34    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, Shoji Suyama             2-8-19 Niihama, Arai-cho, Takasago-shi, Hyogo             Takaryo Engineering Co., Ltd. F-term (reference) 2G047 AA07 AB01 AB02 AB07 BA02                       BB02 BC09 CA01 DB17 EA04                       GF34

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】超音波有効出射点を持つ超音波送信器と、 超音波有効入射点を持つ超音波受信器とを具え、 前記超音波有効出射点と前記超音波有効入射点のうちの
一方と、溶金体の任意の1点とを結ぶ最短線分は、被溶
接体と前記溶金体とが接合する対向面のうちの一方の接
合面に交叉する超音波探傷装置。
1. An ultrasonic transmitter having an ultrasonic effective emitting point and an ultrasonic receiver having an ultrasonic effective incident point, wherein one of the ultrasonic effective emitting point and the ultrasonic effective incident point is provided. An ultrasonic flaw detection device in which a shortest line segment connecting the point and any one point of the molten metal intersects with one of the facing surfaces where the body to be welded and the molten metal are bonded.
【請求項2】前記超音波有効出射点と前記超音波有効入
射点のうちの他方と、前記任意の1点とを結ぶ最短線分
は、前記対向面のうちの他方の接合面に交叉する請求項
1の超音波探傷装置。
2. A shortest line segment connecting the other one of the ultrasonic wave effective emission point and the ultrasonic wave effective incident point and the arbitrary one point intersects with the other joint surface of the facing surfaces. The ultrasonic flaw detector according to claim 1.
【請求項3】前記溶金体は一方方向に長く延び、前記超
音波有効出射点と前記超音波有効入射点は前記一方方向
に移動する請求項1又は2の超音波探傷装置。
3. The ultrasonic flaw detector according to claim 1, wherein the molten metal extends in one direction, and the ultrasonic effective emission point and the ultrasonic effective incident point move in the one direction.
【請求項4】前記被溶接体と前記溶金体とは円筒体を形
成する請求項1〜3から選択される1請求項の超音波探
傷装置。
4. The ultrasonic flaw detector according to claim 1, wherein the body to be welded and the molten metal form a cylindrical body.
【請求項5】前記円筒体は配管用のパイプである請求項
4の超音波探傷装置。
5. The ultrasonic flaw detector according to claim 4, wherein the cylindrical body is a pipe for piping.
【請求項6】前記一方方向は円周方向であり、前記溶金
体は閉じた環を形成している請求項5の名称。
6. The name according to claim 5, wherein said one direction is a circumferential direction and said molten metal forms a closed ring.
【請求項7】前記溶金体は、超音波ノイズを発生しやす
い金属であり、前記金属は、オーステナイトステンレ
ス、インコネル合金を要素とする集合から選択される1
要素である請求項6の超音波探傷装置。
7. The molten metal is a metal that easily generates ultrasonic noise, and the metal is selected from the group consisting of austenitic stainless steel and Inconel alloy.
The ultrasonic flaw detector according to claim 6, which is an element.
【請求項8】前記溶金体は、超音波ノイズを発生しやす
い金属であり、前記金属は、オーステナイトステンレ
ス、インコネル合金を要素とする集合から選択される1
要素である請求項1〜5から選択される1請求項の超音
波探傷装置。
8. The molten metal is a metal that easily generates ultrasonic noise, and the metal is selected from the group consisting of austenitic stainless steel and Inconel alloy.
The ultrasonic flaw detector according to claim 1, which is an element selected from claims 1 to 5.
【請求項9】溶接の接合面に超音波を透過させるステッ
プと、 前記超音波を受信するステップと、 前記ステップで受信する超音波に基づいて溶接部位の中
の欠陥を探傷するステップとを具え、 前記接合面は円周方向に閉じた環状面である超音波探傷
方法。
9. A method comprising: transmitting an ultrasonic wave to a joint surface of welding; receiving the ultrasonic wave; and detecting a defect in a welded portion based on the ultrasonic wave received in the step. The ultrasonic flaw detection method, wherein the joint surface is an annular surface closed in the circumferential direction.
JP2001374468A 2001-12-07 2001-12-07 Ultrasonic detector and ultrasonic inspection method Withdrawn JP2003172728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001374468A JP2003172728A (en) 2001-12-07 2001-12-07 Ultrasonic detector and ultrasonic inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001374468A JP2003172728A (en) 2001-12-07 2001-12-07 Ultrasonic detector and ultrasonic inspection method

Publications (1)

Publication Number Publication Date
JP2003172728A true JP2003172728A (en) 2003-06-20

Family

ID=19183024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001374468A Withdrawn JP2003172728A (en) 2001-12-07 2001-12-07 Ultrasonic detector and ultrasonic inspection method

Country Status (1)

Country Link
JP (1) JP2003172728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928507A (en) * 2012-10-17 2013-02-13 浙江省电力公司电力科学研究院 Health monitoring device and method of GIS (gas insulated switchgears) tank
CN107607620A (en) * 2017-10-14 2018-01-19 江苏亚星锚链股份有限公司 A kind of mooring cable phased-array ultrasonic method of inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928507A (en) * 2012-10-17 2013-02-13 浙江省电力公司电力科学研究院 Health monitoring device and method of GIS (gas insulated switchgears) tank
CN107607620A (en) * 2017-10-14 2018-01-19 江苏亚星锚链股份有限公司 A kind of mooring cable phased-array ultrasonic method of inspection

Similar Documents

Publication Publication Date Title
JP4614150B2 (en) Ultrasonic flaw detection method and apparatus for welds
US9032802B2 (en) Phased array system and method for inspecting helical submerged arcs weld (HSAW)
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
CN106680374A (en) Phased array ultrasonic imaging detection method for large-diameter and thick-wall alloy steel weld with stainless steel surfacing layer
CN103969341A (en) Ultrasonic testing special probe for butt girth welding of austenitic stainless steel pipe
US4627289A (en) Method for the ultrasonic flaw detection of an electric welded pipe
JP5420525B2 (en) Apparatus and method for ultrasonic inspection of small diameter tube
CN206710388U (en) The ultrasonic wave detecting system of small diameter tube outside weld sliding block angle welding
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP2003172728A (en) Ultrasonic detector and ultrasonic inspection method
US20150131767A1 (en) Construction method, tubular member, and nuclear power plant
CN203758968U (en) Ultrasonic-detecting special probe for butt-joint ring welding seam of austenite stainless steel tube
CN113030272A (en) Advanced ultrasonic detection method and system for nuclear-grade component welding joint
Hörchens et al. Ultrasound imaging of stress corrosion cracking
JPH04142456A (en) Ultrasonic flaw detection for metal tube
CN110006998A (en) It is a kind of for detecting the detection system and detection method of hollow pipe fitting weld seam
Reber et al. Ultrasonic in-line inspection tools to inspect older pipelines for cracks in girth and long-seam welds
Cobb et al. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves
RU2794338C2 (en) Method for pipeline control using electromagnetic-acoustic technology
JPS5946553A (en) Angle beam ultrasonic flaw inspection
Matsui et al. Development of New Inspection Method for LSAW Pipes Using Matrix Phased Array UT
JP3623486B2 (en) Inspection method of seismic isolation damper
Guo et al. Experimental Investigation on Coupling Focusing Ultrasonic Technique for Inspection of Polyethylene Butt-Fusion Joint
JP2024055188A (en) Ultrasonic inspection method
Wagg The non-destructive testing of transition welds

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301