JP2003172682A - Container for flowing-down test - Google Patents

Container for flowing-down test

Info

Publication number
JP2003172682A
JP2003172682A JP2001376394A JP2001376394A JP2003172682A JP 2003172682 A JP2003172682 A JP 2003172682A JP 2001376394 A JP2001376394 A JP 2001376394A JP 2001376394 A JP2001376394 A JP 2001376394A JP 2003172682 A JP2003172682 A JP 2003172682A
Authority
JP
Japan
Prior art keywords
flow
container
lower opening
opening
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001376394A
Other languages
Japanese (ja)
Inventor
Hiroshi Jinnai
浩 陣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2001376394A priority Critical patent/JP2003172682A/en
Publication of JP2003172682A publication Critical patent/JP2003172682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a container A for a flowing-down test by which an execution property can be evaluated properly regarding a high-viscosity cement-based material. <P>SOLUTION: As the container A for the flowing-down test, a container A whose opening diameter D1 of a lower-side opening 1 is 50 mm, whose opening diameter D2 of an upper-side opening 2 is 100 mm and whose height is 150 mm is used, and the execution property of the high-viscosity cement-based material is evaluated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、高強度コンクリー
トや高流動コンクリートに代表される高粘性なセメント
系材料の流動性等を評価するために使用される流下試験
用容器に関するものである。 【0002】 【従来の技術】グラウト材料などのセメント系材料の施
工性を評価する方法としては、種々存在するが、土木学
会規準では流下方式による試験評価を規準としている。
この流下方式の試験では、ロートと呼ばれる先細りの流
下試験用容器が使用される。この試験方法は、ロート内
に試料を充填し、ロートの下側開口を塞いでいる指を外
すことによる下側開口からの流下速度や流出時間によっ
て、試料に対応するセメント系材料の流動性、さらには
施工性を評価するものである。 【0003】上記ロートBとしては、例えば図5に示す
Jロートがある。このJロートBの代表的な寸法は、下
側開口1の開口径D1が直径で10mm、上側開口2の開
口径D2が直径で70mm、高さが450mmである。な
お、この場合には、上側の開口面積に対する下側の開口
面積の比の平方根は、約0.14である。なお、従来の
ロートでは、通常、下側開口1の開口径D1が、当該下
側開口1を指の腹などで塞げる程度の大きさとなってい
る。 【0004】 【発明が解決しようとする課題】しかしながら、上記従
来のロートB(流下試験用容器)は、水のような流動性
の高い材料の評価には有効であるが、高粘性なセメント
系材料では、流れ落ちる前に試料で下側開口1が閉塞し
てしまったり、閉塞しない場合であっても適切な評価が
可能な状態で流下しない場合があり、適切に試料の評価
ができない。本発明は、上記のような点に着目してなさ
れたもので、高粘性なセメント系材料について適正な施
工性評価が可能な流下試験用容器を提供することを課題
としている。 【0005】 【課題を解決するための手段】上記課題を解決するため
に、本発明は、下側の開口の開口面積よりも上側の開口
が開口面積が大きい先細の筒状の容器であって、容器内
に充填した試料の上記下側開口からの流下に基づき評価
する流下試験用容器において、下側の開口面積を、円の
面積に換算して開口径を直径で30〜60mmの範囲と
し、上側の開口面積に対する下側の開口面積の比の平方
根が0.3〜0.6の範囲であることを特徴とするもの
である。 【0006】ここで、上側の開口面積に対する下側の開
口面積の比の平方根は、開口形状が円であれば、上側開
口の開口径に対する下側開口の開口径に相当する。下側
の開口径を30mm以上としたのは、30mm以上の場合
に、高粘性なセメント系材料であっても閉塞することな
く流下することを確認したためである。また、下側の開
口径を60mm以下としたのは、高粘性なセメント系材料
であっても下側の開口径が60mmを超えると流下速度が
速くなりすぎ、粘性評価が低下するためである。 【0007】また、上側の開口面積に対する下側の開口
面積の比の平方根を30〜60%としたのは、容器側面
の勾配が大きいと高粘性なセメント系材料にあっては流
下しにくく、流下による評価の精度に悪影響が出る。そ
して、30%以上で閉塞することなく適切に流下するこ
とを確認したため、下限値を30%としている。また、
所定以上の勾配がないと流下速度が早くなりすぎたりし
て、評価精度が落ちる。そして、60%以下であれば、
流下速度が適切な範囲となることを確認したため、上限
値を60%としている。 【0008】 【発明の実施の形態】次に、本発明の実施形態について
図面を参照しつつ説明する。本実施形態の流下試験用容
器Aは、図1に示すように、上下の開口形状が円形で且
つ先細りの円筒形状をしていて、下側開口1の開口径D
1が直径で50mm、上側開口2の開口径D2が直径で1
00mmとなっている。また、高さは150mmである。こ
の容器Aでは、上側開口径D2に対する下側開口径D2
の比の平方根は、0.5となる。 【0009】上記実施形態の流下試験用容器Aでは、従
来と異なり、下側開口1を指で閉塞するには大きすぎる
ことから、当該下側開口1を開閉可能な受け板(不図
示)を備える。例えば、この受け板を、下から手で押さ
えることで、下側開口1を閉塞し、その受け板を撤去す
ることで、下側開口1からの流下を可能するものを使用
すればよい。また、流下試験の装置としては、図2に示
すように、上記容器Aの下方にはかり3が設置されてい
る。そのはかり3で、流出した試料の量を計測すること
で、目的とする量の試料が流下したか否かが判定でき
る。 【0010】次に、上記容器Aを使用した流下試験を説
明する。まず、図2に示すように、上記試験用容器Aを
支持治具5に設置する。次に、受け板で下側開口1を閉
塞した状態で、評価したいセメント系材料の試料を容器
A内に充填する。次に、受け板4を外して下側開口1か
ら試料を流下させると同時に、流下時間の計測を開始
し、はかり3の計測結果に基づき、試料が完全に流下す
るまでの流下時間を求める。 【0011】この流下時間によって、試料に対応するセ
メント系材料の流動性、つまり施工性を評価する。ま
た、例えば、粘性の分かっている複数の試料によって上
記流下時間を計測して、流下時間と流動性についての関
係を求めておき、この関係と上記計測した流下時間を照
合して評価する。そして、対象とする施工場所に応じ
て、適切な流動性を有しているか否かを判定する。一般
的には、流下時間が遅いほど、施工性が悪いと判定す
る。 【0012】本実施形態では、高粘性なセメント系試料
について、容器Aの閉塞を起こすことなく、適切な流下
が確保させる結果、適切に流動性、さらには施工性を評
価することが可能となる。ここで、上記容器Aの寸法
は、一例であり、下側開口1の開口径D1は、直径で3
0〜60mmの範囲に有れば良い。また、上側開口2の開
口径D2は、下側開口1の開口径D1に応じて、下側開
口径D1の約1.66〜3.3倍の範囲に、つまり、上
側開口2の開口径D2の0.3〜0.6倍が下側開口1
の開口径D1となるように容器A側面の勾配を規定した
ものとなっていれば良い。 【0013】また、上記容器Aの開口断面が円形の場合
を例示しているが、矩形など別の形状であても良い。た
だし、この場合であっても、容器Aは、鉛直方向に延び
る中心軸に対して対称な形状となることが好ましい。 【0014】 【実施例】本発明の流下試験用容器Aを使用した、高粘
性なセメント系材料に対する評価の試験を行った。結果
を、図3に示す。また、比較のため、同じ材料につい
て、フロー試験を行い、その結果も図3に併記する。な
お、上記説明した従来例の流下試験用容器Aを使用した
場合には、容器Aの閉塞が生じたため、評価不能であっ
た。 【0015】流下試験の条件は、上記実施形態で説明し
た流下試験用容器A及び装置を使用して、容器Aに充填
した試料が完全に流出した時点をもって流下時間とし
た。また、試料としては、水セメント比が13%、15
%、20%のセメント系材料を使用し、また、各水セメ
ント比において、フロー値の異なる4種類の試料を用意
して、試験を行った。。また、比較のためのフロー試験
は、JIS R 5201に記載の方法でおこなったも
のである。 【0016】図3から分かるように、本発明を用いれ
ば、従来の器具では閉塞して試験することのできなかっ
た水セメント比13〜20%の高粘性なセメント系材料
においても、水セメント比が低くなるにつれ、同等なフ
ロー値であっても流下速度の遅い、粘性の高いものにな
ることが評価できる。本発明を用いてこのような結果を
得ることで、高粘性なセメント系材料の流動性、及び施
工性を評価できる。このように、本発明の流下試験用容
器Aを使用すれば、実際の評価時には、同じ水セメント
比であっても、セメントの種類などを変更させて、流下
試験を繰り返すことで、施工性の良好なセメントを選定
することが可能である。 【0017】また、水セメント比が13%と20%の試
料を使用し、容器の下側開口径を種々変更して流下時間
を求めたところ図4に示す結果を得た。なお、上側開口
径に対する下側開口径の比の平方根を、0.5に設定し
た。この図4から分かるように、下側開口径が20mmで
は閉塞が生じたが、30mm以上では閉塞することなく流
下していた。また、水セメント比20%の試料では、開
口径が60mmを超えると流下速度が速すぎることが分か
った。 【0018】 【発明の効果】以上説明してきたように、本発明を採用
すれば、高粘性なセメント系材料の流動性や施工性を評
価することが可能となる。例えば、水セメント比が同じ
でも、施工場所に合った施工性のセメント系材料を使用
することが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used to evaluate the fluidity of a highly viscous cement material represented by high-strength concrete and high-fluidity concrete. The present invention relates to a flow-down test container. 2. Description of the Related Art There are various methods for evaluating the workability of a cement-based material such as a grout material. However, the standards of the Japan Society of Civil Engineers are based on a test evaluation based on a flow-down method.
In this flow-down type test, a tapered flow-down test container called a funnel is used. This test method fills the funnel with the sample, and removes the finger closing the lower opening of the funnel, and the flow rate and the flow time from the lower opening by removing the finger, the fluidity of the cement-based material corresponding to the sample, Furthermore, the workability is evaluated. As the funnel B, for example, there is a J funnel shown in FIG. Typical dimensions of the J funnel B are that the opening diameter D1 of the lower opening 1 is 10 mm in diameter, the opening diameter D2 of the upper opening 2 is 70 mm in diameter, and the height is 450 mm. In this case, the square root of the ratio of the lower opening area to the upper opening area is about 0.14. In a conventional funnel, the opening diameter D1 of the lower opening 1 is usually large enough to close the lower opening 1 with a finger pad or the like. [0004] However, the above-mentioned conventional funnel B (flow-down test container) is effective for evaluating a material having a high fluidity such as water, but a highly viscous cement system. In the case of the material, the lower opening 1 may be closed by the sample before flowing down, or even if the lower opening 1 is not closed, the sample may not flow down in a state where appropriate evaluation is possible, and the sample cannot be evaluated properly. The present invention has been made in view of the above points, and an object of the present invention is to provide a flow-down test container capable of appropriately evaluating the workability of a highly viscous cement-based material. [0005] In order to solve the above-mentioned problems, the present invention is directed to a tapered cylindrical container whose upper opening has a larger opening area than the lower opening. In a flow-down test container to be evaluated based on the flow of the sample filled in the container from the lower opening, the lower opening area is converted to a circle area, and the opening diameter is in a range of 30 to 60 mm in diameter. , Wherein the square root of the ratio of the lower opening area to the upper opening area is in the range of 0.3 to 0.6. Here, the square root of the ratio of the lower opening area to the upper opening area corresponds to the opening diameter of the lower opening relative to the opening diameter of the upper opening if the opening shape is a circle. The reason why the lower opening diameter is set to 30 mm or more is that it has been confirmed that, when the diameter is 30 mm or more, even a highly viscous cement-based material flows down without clogging. In addition, the reason why the lower opening diameter is set to 60 mm or less is that, even with a highly viscous cement-based material, if the lower opening diameter exceeds 60 mm, the flow velocity becomes too fast, and the viscosity evaluation is reduced. . Further, the reason why the square root of the ratio of the lower opening area to the upper opening area is set to 30 to 60% is that if the slope of the container side is large, it is difficult to flow down in a highly viscous cementitious material. The accuracy of the evaluation due to the flow will be adversely affected. Then, since it was confirmed that the water flowed properly without blocking at 30% or more, the lower limit was set to 30%. Also,
If there is no gradient higher than a predetermined value, the flow speed becomes too high, and the evaluation accuracy is reduced. And if it is 60% or less,
Since it was confirmed that the flow velocity was in an appropriate range, the upper limit was set to 60%. Next, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the flow-down test container A of the present embodiment has a circular upper and lower opening shape and a tapered cylindrical shape.
1 is 50 mm in diameter, and the opening diameter D2 of the upper opening 2 is 1 in diameter.
00 mm. The height is 150 mm. In this container A, the lower opening diameter D2 with respect to the upper opening diameter D2
Is 0.5. In the flow-down test container A of the above embodiment, unlike the conventional case, the lower opening 1 is too large to be closed with a finger, so that a receiving plate (not shown) capable of opening and closing the lower opening 1 is provided. Prepare. For example, it is only necessary to use a material that allows the lower opening 1 to be closed by holding down the receiving plate by hand from below, and removing the receiving plate to allow the lower opening 1 to flow down. As a device for the flow-down test, a scale 3 is provided below the container A as shown in FIG. By measuring the amount of the sample that has flowed out with the scale 3, it can be determined whether or not the target amount of the sample has flowed down. Next, a flow-down test using the container A will be described. First, as shown in FIG. 2, the test container A is set on the support jig 5. Next, the container A is filled with a sample of the cement-based material to be evaluated while the lower opening 1 is closed by the receiving plate. Next, the receiving plate 4 is removed and the sample is caused to flow down from the lower opening 1, and at the same time, the measurement of the flowing time is started. Based on the measurement result of the scale 3, the flowing time until the sample completely flows is obtained. The flow time, that is, the fluidity of the cement material corresponding to the sample, that is, the workability is evaluated. Further, for example, the above-mentioned flow-down time is measured by using a plurality of samples whose viscosity is known, a relationship between the flow-down time and the fluidity is obtained, and this relationship is compared with the above-mentioned measured flow-down time to evaluate. Then, it is determined whether or not it has appropriate fluidity according to the target construction site. Generally, it is determined that the lower the flow time, the poorer the workability. In this embodiment, for a highly viscous cement-based sample, proper flow-down is ensured without blocking the container A, so that it is possible to appropriately evaluate fluidity and workability. . Here, the size of the container A is an example, and the opening diameter D1 of the lower opening 1 is 3 mm in diameter.
What is necessary is just to be in the range of 0-60 mm. Further, the opening diameter D2 of the upper opening 2 is in the range of about 1.66 to 3.3 times the lower opening diameter D1 according to the opening diameter D1 of the lower opening 1, that is, the opening diameter of the upper opening 2. 0.3 to 0.6 times D2 is lower opening 1
It is sufficient that the slope of the side surface of the container A is defined so that the opening diameter D1 becomes. Although the case where the cross section of the opening of the container A is circular is illustrated, other shapes such as a rectangle may be used. However, even in this case, the container A preferably has a symmetrical shape with respect to a central axis extending in the vertical direction. EXAMPLE An evaluation test was performed on a highly viscous cement-based material using the flow-down test container A of the present invention. The results are shown in FIG. For comparison, the same material was subjected to a flow test, and the results are also shown in FIG. In addition, when the container A for the flow-down test of the conventional example described above was used, the container A was blocked, and thus the evaluation was not possible. The conditions for the flow-down test were defined as the flow-down time when the sample filled in the container A completely flowed out using the flow-down test container A and the apparatus described in the above embodiment. As a sample, the water-cement ratio was 13%, 15%.
% And 20% cement-based materials, and four types of samples having different flow values at each water-cement ratio were prepared and tested. . The flow test for comparison was performed by the method described in JIS R5201. As can be seen from FIG. 3, according to the present invention, even in a highly viscous cement-based material having a water-cement ratio of 13 to 20%, which could not be tested with a conventional device, the water-cement ratio was low. It can be evaluated that as the flow rate becomes lower, the flow rate becomes lower and the viscosity becomes higher even with the same flow value. By obtaining such a result using the present invention, the fluidity and workability of a highly viscous cement-based material can be evaluated. As described above, by using the flow-down test container A of the present invention, at the time of actual evaluation, even if the water-cement ratio is the same, the flow-down test is repeated by changing the type of cement and the like, thereby improving workability. It is possible to select a good cement. Using the samples having a water-cement ratio of 13% and 20%, the flow-down time was determined by variously changing the lower opening diameter of the container. The results shown in FIG. 4 were obtained. The square root of the ratio of the lower opening diameter to the upper opening diameter was set to 0.5. As can be seen from FIG. 4, the blockage occurred when the lower opening diameter was 20 mm, but flowed down without blockage when the lower opening diameter was 30 mm or more. In addition, in the sample having a water cement ratio of 20%, it was found that the flow rate was too high when the opening diameter exceeded 60 mm. As described above, the present invention makes it possible to evaluate the fluidity and workability of a highly viscous cementitious material. For example, even if the water-cement ratio is the same, it is possible to use a workable cement-based material suitable for the work site.

【図面の簡単な説明】 【図1】本発明に基づく実施形態に係る流下試験用容器
の寸法を示す図である。 【図2】本発明に基づく実施形態に係る流下試験の装置
例を示す図である。 【図3】フロー値と流下試験との関係を示す図である。 【図4】下側開口径と流下時間との関係を示す図であ
る。 【図5】従来例の流下試験用容器の寸法を示す図であ
る。 【符号の説明】 A 流下測定用容器 1 下側開口 2 上側開口 3 はかり 4 受け板 5 支持治具
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing dimensions of a flow-down test container according to an embodiment based on the present invention. FIG. 2 is a diagram showing an example of an apparatus for a flow-down test according to an embodiment of the present invention. FIG. 3 is a diagram showing a relationship between a flow value and a flow-down test. FIG. 4 is a diagram illustrating a relationship between a lower opening diameter and a flowing time. FIG. 5 is a view showing dimensions of a conventional flow-down test container. [Description of Symbols] A Downflow measurement container 1 Lower opening 2 Upper opening 3 Scale 4 Receiving plate 5 Supporting jig

Claims (1)

【特許請求の範囲】 【請求項1】 下側の開口の開口面積よりも上側の開口
が開口面積が大きい先細の筒状の容器であって、容器内
に充填した試料の上記下側開口からの流下に基づき評価
する流下試験用容器において、 下側の開口面積を、円の面積に換算して開口径を直径で
30〜60mmの範囲とし、上側の開口面積に対する下側
の開口面積の比の平方根が0.3〜0.6の範囲である
ことを特徴とする流下試験用容器。
Claims: 1. A tapered cylindrical container whose opening area is larger than the opening area of a lower opening, wherein the opening area is larger than the opening area of a sample filled in the container. In the flow test container to be evaluated based on the flow down, the opening area on the lower side is converted to the area of a circle, the opening diameter is in the range of 30 to 60 mm in diameter, and the ratio of the opening area on the lower side to the opening area on the upper side Characterized in that the square root of the falling range is 0.3 to 0.6.
JP2001376394A 2001-12-10 2001-12-10 Container for flowing-down test Pending JP2003172682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376394A JP2003172682A (en) 2001-12-10 2001-12-10 Container for flowing-down test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376394A JP2003172682A (en) 2001-12-10 2001-12-10 Container for flowing-down test

Publications (1)

Publication Number Publication Date
JP2003172682A true JP2003172682A (en) 2003-06-20

Family

ID=19184597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376394A Pending JP2003172682A (en) 2001-12-10 2001-12-10 Container for flowing-down test

Country Status (1)

Country Link
JP (1) JP2003172682A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308668C (en) * 2005-01-18 2007-04-04 武汉理工大学 Tester and testing method for high-sensitivity cement thick liquid flowability
CN1904582B (en) * 2006-06-09 2010-05-12 宁波工程学院 Concrete slurry reological performance universal test method
CN102353617A (en) * 2011-09-14 2012-02-15 武汉理工大学 Cement paste fluidity test device with high precision and high sensitivity and test method
CN102519841A (en) * 2011-12-31 2012-06-27 中联重科股份有限公司 Method and device for detecting pumpability of concrete
CN104833796A (en) * 2015-05-29 2015-08-12 南通理工学院 Electric concrete mixture workability tester
CN106198314A (en) * 2016-07-07 2016-12-07 江苏苏博特新材料股份有限公司 A kind of simple viscosity detecting device being applicable to water reducer and using method thereof
JP2020071134A (en) * 2018-10-31 2020-05-07 株式会社リバティ Slump and slump flow value estimation method and facility
CN114383974A (en) * 2022-03-23 2022-04-22 中南大学 Device and method for measuring viscosity of low-fluidity paste

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308668C (en) * 2005-01-18 2007-04-04 武汉理工大学 Tester and testing method for high-sensitivity cement thick liquid flowability
CN1904582B (en) * 2006-06-09 2010-05-12 宁波工程学院 Concrete slurry reological performance universal test method
CN102353617A (en) * 2011-09-14 2012-02-15 武汉理工大学 Cement paste fluidity test device with high precision and high sensitivity and test method
CN102519841A (en) * 2011-12-31 2012-06-27 中联重科股份有限公司 Method and device for detecting pumpability of concrete
CN104833796A (en) * 2015-05-29 2015-08-12 南通理工学院 Electric concrete mixture workability tester
CN106198314A (en) * 2016-07-07 2016-12-07 江苏苏博特新材料股份有限公司 A kind of simple viscosity detecting device being applicable to water reducer and using method thereof
JP2020071134A (en) * 2018-10-31 2020-05-07 株式会社リバティ Slump and slump flow value estimation method and facility
CN114383974A (en) * 2022-03-23 2022-04-22 中南大学 Device and method for measuring viscosity of low-fluidity paste

Similar Documents

Publication Publication Date Title
Hwang et al. Performance-based specifications of self-consolidating concrete used in structural applications
Khayat et al. Factorial design model for proportioning self-consolidating concrete
CN105784526B (en) The measuring device and its application method of cement concrete road surface scour resistance
CN1308668C (en) Tester and testing method for high-sensitivity cement thick liquid flowability
JP2003172682A (en) Container for flowing-down test
EP3749497A2 (en) Methods and systems for handling fresh concrete based on hydraulic pressure and on rheological probe pressure
CN108982294A (en) A kind of V-type funnel device measuring concrete flowability
JP2017223490A (en) Concrete workability evaluation method
Bartos Testing-SCC: towards new European standards for fresh SCC
JP6482918B2 (en) Apparatus and method for measuring rheological constant of fluid
CN109856010A (en) A kind of metal powder mobility-detected device and method
Lowke et al. A simple and significant segregation test for SCC
JP3963800B2 (en) Method and apparatus for testing concrete
JP2003322602A (en) Testing method for evaluating material separation resistance of high liquidity concrete
CN112131632B (en) Fine control method and system for grouting construction time of prestressed corrugated pipeline
CN106018177A (en) Quantitative concrete workability testing device and method
JP2001133380A (en) Fluidity testing method for fresh concrete and testing device used therefor
JP2019117093A (en) Method for measuring rheology constant of concrete and device therefor
CN109100265A (en) A kind of fine aggregate is marched into the arena method for quickly detecting
De la Varga et al. Application of internal curing in cementitious grouts for prefabricated bridge concrete elements connections
Fr6hlich et al. Influences on repeatability and reproducibility of testing methods for fresh UHPC
JP2984087B2 (en) Concrete flowability test method
JP4262167B2 (en) Evaluation parameter estimation method for high fluidity concrete
JPH09218196A (en) Ready mixed concrete evaluation method
JP2016156264A (en) Concrete re-vibration control method