JP2003170048A - Methanol modifying catalyst and method for manufacturing hydrogen-containing gas - Google Patents

Methanol modifying catalyst and method for manufacturing hydrogen-containing gas

Info

Publication number
JP2003170048A
JP2003170048A JP2001372562A JP2001372562A JP2003170048A JP 2003170048 A JP2003170048 A JP 2003170048A JP 2001372562 A JP2001372562 A JP 2001372562A JP 2001372562 A JP2001372562 A JP 2001372562A JP 2003170048 A JP2003170048 A JP 2003170048A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
hydrogen
cerium
dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372562A
Other languages
Japanese (ja)
Inventor
Shigeyuki Hirose
重之 廣瀬
Yasushi Hiramatsu
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2001372562A priority Critical patent/JP2003170048A/en
Publication of JP2003170048A publication Critical patent/JP2003170048A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methanol modifying catalyst having high activity and high selectivity, excellent in heat resistance and capable of efficiently generating modified gas based on hydrogen in heat self-supplying type reaction, and a method for manufacturing a hydrogen-containing gas using this catalyst. <P>SOLUTION: The methanol modifying catalyst contains metal platinum as the main component, cerium dioxide, zirconium dioxide and/or titanium dioxide and is characterized in that an atomic ratio [cerium/(zirconium + titanium)] is 0.1-10. The method for manufacturing the hydrogen-containing gas is characterized by reacting methanol, steam and oxygen in the presence of the catalyst to manufacture the modified gas containing hydrogen as a main component. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、メタノールの水蒸
気改質反応により、水素を主体とする改質ガスを発生さ
せる水素含有ガスの製造方法、特に酸素の存在下で改質
反応を行う自己熱供給型反応および該反応で使用する触
媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen-containing gas in which a reformed gas containing hydrogen as a main component is produced by a steam reforming reaction of methanol, and more particularly, a self-heat treatment for carrying out the reforming reaction in the presence of oxygen. The present invention relates to a feed type reaction and a catalyst used in the reaction.

【0002】[0002]

【従来の技術】水蒸気を用いてメタノールを水素含有ガ
スに改質するメタノール水蒸気改質反応は、(1)式で示
す主反応の他に(2)式の逆シフト反応により少量の一酸
化炭素が副生する。 CH3OH + H2O = 3H2 + CO2 + 49.5kJ/mol (1) CO2 + H2 = CO + H2O + 41.17kJ/mol (2) (2)で副生する一酸化炭素は高純度水素に精製する際に
除去しにくく、極力少ない方が好ましい。熱力学平衡か
ら、低温程、また水蒸気とメタノールのモル比(以下、S
/C比)が大きいほど改質ガス中の一酸化炭素濃度を低く
することができる。
2. Description of the Related Art Methanol steam reforming reaction for reforming methanol to hydrogen-containing gas by using steam includes a small amount of carbon monoxide by the reverse shift reaction of formula (2) in addition to the main reaction shown by formula (1). Is a byproduct. CH 3 OH + H 2 O = 3H 2 + CO 2 + 49.5 kJ / mol (1) CO 2 + H 2 = CO + H 2 O + 41.17 kJ / mol (2) (2) Carbon monoxide by-product Is difficult to remove during purification to high-purity hydrogen, and it is preferable that the amount is as small as possible. From thermodynamic equilibrium, the lower the temperature, the more the molar ratio of water vapor to methanol (hereinafter, S
The larger the / C ratio, the lower the carbon monoxide concentration in the reformed gas.

【0003】(1)式のメタノール水蒸気改質反応の主反
応は吸熱反応であるから外部より熱を供給しなければな
らず、熱供給設備が必要となり装置が煩雑になる欠点を
有する。これに対し、メタノールと水蒸気とともに空気
を導入してメタノールの一部を酸化し、その熱を利用し
て(1)式の水蒸気改質反応を起こさせる自己熱供給型反
応がある。この方法はメタノールの一部を(3)式に示す
ように水素と二酸化炭素に酸化し、この熱を利用して
(1)式のメタノール改質反応を行うものである。 CH3OH + 1/2O2 = 2H2 + CO2 192.3kJ/mol (3) この方法によれば反応開始に必要な温度レベルにまで昇
温する熱以外は、反応が継続されると熱の供給を必要と
しない特徴を有する。
Since the main reaction of the methanol steam reforming reaction of the formula (1) is an endothermic reaction, heat must be supplied from the outside, and a heat supply facility is required and the apparatus becomes complicated. On the other hand, there is a self-heat supply type reaction in which air is introduced together with methanol and steam to oxidize a part of methanol and the heat is used to cause a steam reforming reaction of the formula (1). This method oxidizes a part of methanol into hydrogen and carbon dioxide as shown in equation (3) and utilizes this heat.
The methanol reforming reaction of the formula (1) is performed. CH 3 OH + 1 / 2O 2 = 2H 2 + CO 2 192.3kJ / mol (3) According to this method, heat is generated when the reaction is continued, except for heat that raises the temperature to the temperature level required for starting the reaction. It has the feature that it does not require supply.

【0004】従来のメタノール改質触媒は、銅と亜鉛か
らなる複合酸化物が一般的であるが、これらの触媒は、
メタノールの水蒸気改質反応に高活性を示すものの、耐
熱性や耐久性に劣るという問題点があった。
[0004] Conventional methanol reforming catalysts are generally composite oxides composed of copper and zinc, but these catalysts are
Although it exhibits high activity in the steam reforming reaction of methanol, it has a problem of poor heat resistance and durability.

【0005】一方、耐熱性多孔質無機化合物と卑金属ま
たは貴金属とアルカリ金属またはアルカリ土類金属との
混合物からなる触媒(例えば、特開昭62-250948号公報な
ど)や、希土類元素の酸化物を含有する担体に貴金属を
担持させてなる触媒(例えば、特開昭58-174237、特開昭
59-199042号公報など)などが提案されている。しかしな
がら、これらの触媒では、得られる水素含有ガスが高濃
度の一酸化炭素を含むという問題があった。上述式(2)
のシフト反応は反応速度が遅いため、一般に水素含有ガ
スには一酸化炭素が含まれており、特に水素含有ガス中
に含まれる一酸化炭素により効率を低下させる場合、例
えば水素含有ガス中に含まれる一酸化炭素により被毒す
る燃料電池などの場合では、水素含有ガス中の一酸化炭
素濃度を低くする必要がある。
On the other hand, a catalyst comprising a mixture of a heat-resistant porous inorganic compound and a base metal or a noble metal and an alkali metal or an alkaline earth metal (for example, Japanese Patent Laid-Open No. 62-250948) or an oxide of a rare earth element is used. A catalyst in which a noble metal is supported on a carrier (for example, JP-A-58-174237, JP-A-58-174237).
59-199042, etc.) and the like have been proposed. However, these catalysts have a problem that the obtained hydrogen-containing gas contains a high concentration of carbon monoxide. Equation (2) above
Since the shift reaction of is slow, the hydrogen-containing gas generally contains carbon monoxide, and particularly when the efficiency is reduced by the carbon monoxide contained in the hydrogen-containing gas, for example, in the hydrogen-containing gas. In the case of a fuel cell or the like which is poisoned by carbon monoxide, it is necessary to lower the carbon monoxide concentration in the hydrogen-containing gas.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高活
性、高選択性であるとともに耐熱性に優れ、自己熱供給
型反応においても水素を主体とする改質ガスを効率良く
発生させることができるメタノール改質用触媒、および
該触媒を用いた水素含有ガス製造法を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to efficiently generate a reformed gas mainly containing hydrogen even in a self-heat supply type reaction, which has high activity, high selectivity and excellent heat resistance. The present invention provides a catalyst for reforming methanol capable of producing hydrogen, and a method for producing a hydrogen-containing gas using the catalyst.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題に
ついて鋭意研究した結果、金属白金および二酸化セリウ
ムと、二酸化ジルコニウムおよび/または二酸化チタン
を主成分とする触媒が自己熱供給型反応に好適であり、
また得られる水素含有ガス中の一酸化炭素濃度が少ない
ことを見出し本発明に到達した。
Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors have found that a catalyst containing metal platinum and cerium dioxide and zirconium dioxide and / or titanium dioxide as a main component is suitable for a self-heat supply type reaction. And
Further, they have found that the concentration of carbon monoxide in the obtained hydrogen-containing gas is low and have reached the present invention.

【0008】即ち本発明は、主成分として金属白金およ
び二酸化セリウムと、二酸化ジルコニウムおよび/また
は二酸化チタンを含有し、かつセリウムとジルコニウム
およびチタンの原子比(セリウム/(ジルコニウム+チ
タン))が0.1〜10の範囲であるメタノール改質用触
媒、および該触媒の存在下、メタノールと水蒸気および
酸素を反応させて水素を主成分とする改質ガスを製造す
ることを特徴とする水素含有ガスの製造法に関するもの
である。
That is, the present invention contains metallic platinum and cerium dioxide as main components, zirconium dioxide and / or titanium dioxide, and has an atomic ratio of cerium to zirconium and titanium (cerium / (zirconium + titanium)) of 0.1 to. A catalyst for reforming methanol in the range of 10 and a method for producing a hydrogen-containing gas, characterized in that a reformed gas containing hydrogen as a main component is produced by reacting methanol with steam and oxygen in the presence of the catalyst. It is about.

【0009】[0009]

【発明の実施の形態】本発明の触媒の白金源としては、
酸化白金、塩化白金酸およびそのアルカリ金属塩、アセ
チルアセトナート白金、ジニトロジアンミン白金等が使
用できる。水に溶解させて触媒調製する場合は塩化白金
酸カリウムを用いるのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As a platinum source of the catalyst of the present invention,
Platinum oxide, chloroplatinic acid and its alkali metal salts, acetylacetonato platinum, dinitrodiammine platinum and the like can be used. When the catalyst is prepared by dissolving it in water, it is preferable to use potassium chloroplatinate.

【0010】本発明の触媒のセリウム源、ジルコニウム
源およびチタン源としては、焼成後または還元後または
反応中に二酸化セリウム、二酸化ジルコニウムおよび二
酸化チタンとなる化合物であれば特に制限はない。
The cerium source, zirconium source and titanium source of the catalyst of the present invention are not particularly limited as long as they are compounds which become cerium dioxide, zirconium dioxide and titanium dioxide after firing or reduction or during the reaction.

【0011】本発明における触媒調製方法としては、金
属白金、二酸化セリウムと、二酸化ジルコニウムおよび
/または二酸化チタンが共存するような触媒調製法であ
れば特に制限はなく、含浸法、共沈法、析出沈殿法等の
調製手法を用いることができる。例えば塩化白金酸カリ
ウムと硝酸セリウムおよび硝酸ジルコニルの混合溶液を
適当な沈殿剤を用いて共沈させる方法、硝酸セリウムと
硝酸ジルコニルより共沈にて調製した二酸化セリウム−
二酸化ジルコニウム焼成粉に塩化白金酸カリウムを担持
する方法等を用いることができる。沈殿剤には水酸化ナ
トリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリ
ウム、炭酸水素ナトリウムなどのアルカリ化合物が用い
られる。沈澱剤の量は、化学等量の1〜2倍、好ましく
は1.1〜1.6倍である。また、沈澱調製時の温度は
20〜90℃、好ましくは35〜85℃である。沈澱法
により得られた沈澱はイオン交換水、蒸留水などで洗浄
するのが好ましい。
The catalyst preparation method in the present invention is not particularly limited as long as it is a catalyst preparation method in which metallic platinum, cerium dioxide and zirconium dioxide and / or titanium dioxide coexist. Impregnation method, coprecipitation method, precipitation method A preparation method such as a precipitation method can be used. For example, a method of coprecipitating a mixed solution of potassium chloroplatinate with cerium nitrate and zirconyl nitrate using a suitable precipitant, cerium dioxide prepared by coprecipitation from cerium nitrate and zirconyl nitrate.
A method of supporting potassium chloroplatinate on the zirconium dioxide calcined powder can be used. As the precipitating agent, an alkali compound such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate or sodium hydrogen carbonate is used. The amount of precipitating agent is 1-2 times the chemical equivalent, preferably 1.1-1.6 times. The temperature at the time of preparation of the precipitate is 20 to 90 ° C, preferably 35 to 85 ° C. The precipitate obtained by the precipitation method is preferably washed with ion-exchanged water, distilled water or the like.

【0012】また本発明の触媒中に含まれるセリウムと
ジルコニウムおよびチタンの原子比(セリウム/(ジル
コニウム+チタン))は0.1〜10、好ましくは0.5〜4.0
の範囲である。触媒中に含まれるセリウムとジルコニウ
ムおよびチタンの原子比(セリウム/(ジルコニウム+
チタン))をこの範囲に調整することで、メタノールの
水蒸気改質反応により水素を主体とする改質ガスを発生
させる水素含有ガスの製造方法、特に酸素の存在下で改
質反応を行う自己熱供給型反応において、得られる水素
含有ガス中の一酸化炭素濃度を少なくすることができ
る。
The atomic ratio of cerium to zirconium and titanium contained in the catalyst of the present invention (cerium / (zirconium + titanium)) is 0.1 to 10, preferably 0.5 to 4.0.
Is the range. The atomic ratio of cerium to zirconium and titanium contained in the catalyst (cerium / (zirconium +
Titanium)) is adjusted within this range to produce a hydrogen-containing reformed gas by the steam reforming reaction of methanol, and in particular the self-heating for reforming reaction in the presence of oxygen. In the feed-type reaction, the concentration of carbon monoxide in the obtained hydrogen-containing gas can be reduced.

【0013】本発明の触媒中に含まれる白金含有量は、
金属白金、二酸化セリウム、二酸化ジルコニウムおよび
二酸化チタンの合計量に対して、1〜50重量%の範囲で
あることが好ましく、10〜30重量%であることがより好
ましい。白金含有量が1重量%未満であると、活性、選
択性が十分でなく、また、50重量%を超えると担持が困
難となる。
The platinum content contained in the catalyst of the present invention is
It is preferably in the range of 1 to 50% by weight, more preferably 10 to 30% by weight, based on the total amount of metallic platinum, cerium dioxide, zirconium dioxide and titanium dioxide. When the platinum content is less than 1% by weight, the activity and selectivity are insufficient, and when it exceeds 50% by weight, it becomes difficult to support the platinum.

【0014】以上の方法により調製して得られた沈澱
は、乾燥し、または乾燥・焼成し、破砕して大きさを揃
えて、或いは成型して使用される。また、スラリーの乾
燥品、或いは乾燥、焼成したものを粉砕し、水に懸濁さ
せ、必要に応じてアルミナゾルのようなバインダーを添
加して、担体および担体構造物に担持しても使用するこ
とができる。この場合、担持後乾燥してそのまま、ある
いは焼成後使用することができる。乾燥温度は50〜1
50℃が好ましい。また、焼成方法には特に制限はな
く、一般に焼成炉内に静置して空気中180〜800
℃、好ましくは350〜450℃の温度範囲で処理する
ことが好ましい。
The precipitate obtained by the above method is dried, or dried and calcined, and then crushed to a uniform size or molded. Also, it can be used by pulverizing a dried product of a slurry, or a product obtained by drying and firing, suspending it in water, adding a binder such as alumina sol if necessary, and supporting it on a carrier and a carrier structure. You can In this case, it can be used after being carried and dried, or after firing. Drying temperature is 50-1
50 ° C is preferred. The firing method is not particularly limited, and is generally 180-800
It is preferable to carry out the treatment at a temperature range of ℃, preferably 350 to 450 ℃.

【0015】本発明の方法においては、前記のようにし
て調製されたメタノール改質用触媒の存在下、メタノー
ルに水蒸気及び空気を反応させ、自己熱供給型反応によ
り、水素を主体とする改質ガスを製造する。この反応に
おいては、上記メタノール改質用触媒は、水蒸気改質の
場合と同様に、たとえば水素、一酸化炭素含有ガスによ
って活性化処理を行っても良く、また、活性化処理する
ことなく反応に供することもできる。酸素源としては空
気が通常用いられる。メタノールに水蒸気および空気を
反応させる際の反応条件としては、水蒸気/メタノール
比(S/C比)は1.0〜2.0、空気/メタノール比は0.3〜3.0
であり、燃焼反応による発熱とメタノール改質反応によ
る吸熱がバランスするような条件が選定される。単位触
媒体積あたりの液空間速度(LHSV)は、0.1〜60(hr-1)で
ある。反応温度は200〜500℃で、反応圧力は常圧〜0.5M
Paの範囲で選定される。
In the method of the present invention, methanol is reacted with steam and air in the presence of the catalyst for reforming methanol prepared as described above, and the reforming mainly comprising hydrogen is carried out by an autoheat supply type reaction. Produce gas. In this reaction, the methanol reforming catalyst may be activated by, for example, hydrogen or a carbon monoxide-containing gas as in the case of steam reforming, or the reaction may be performed without activation. You can also offer it. Air is usually used as the oxygen source. The reaction conditions for reacting methanol with water vapor and air include a water vapor / methanol ratio (S / C ratio) of 1.0 to 2.0 and an air / methanol ratio of 0.3 to 3.0.
Therefore, conditions are selected so that the heat generated by the combustion reaction and the heat absorbed by the methanol reforming reaction are balanced. The liquid hourly space velocity (LHSV) per unit catalyst volume is 0.1 to 60 (hr −1 ). The reaction temperature is 200-500 ℃, and the reaction pressure is atmospheric pressure-0.5M.
Selected in the range of Pa.

【0016】[0016]

【実施例】次に実施例、比較例により本発明をさらに詳
しく説明するが、本発明はこれらの実施例に制限される
ものではない。なお、以下の実施例および比較例におい
て、次式による反応器出口ガス組成からのメタノール反
応率、およびCO選択率により触媒活性の評価を行った。 メタノール反応率(%)=([CO]+[CO2])/([CO]+[CO2]+[CH3
OH])×100 CO選択率(%)=[CO]/([CO]+[CO2])×100 式中、[CO]、[CO2]および[CH3OH]は、それぞれ反応器出
口ガス中のCO、CO2およびCH3OHのモル濃度である。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In the following examples and comparative examples, the catalytic activity was evaluated by the methanol reaction rate from the reactor outlet gas composition and the CO selectivity according to the following formula. Methanol reaction rate (%) = ([CO] + [CO 2 ]) / ([CO] + [CO 2 ] + [CH 3
OH]) × 100 CO selectivity (%) = [CO] / ([CO] + [CO 2 ]) × 100 where [CO], [CO 2 ], and [CH 3 OH] are reactors, respectively. It is the molar concentration of CO, CO 2 and CH 3 OH in the outlet gas.

【0017】実施例1 市販のチタニアゾルに硝酸セリウム水溶液をセリウムと
チタンの原子比が1になるように混合したスラリーを、
コージェライト製のハニカム(400セル/平方センチ)
に、浸漬、過剰分の吹き飛ばし、および乾燥の工程を繰
り返し、乾燥後の担持量が200g/Lになるように触媒を担
持し、400℃で10分焼成した。そこにアセチルアセトナ
ート白金( Pt(C5H7O2) )アセトン溶液を白金金属として
乾燥後の担持量が3.5g/Lとなるように含浸し、これを80
℃で乾燥させ、Pt-Ce-Ti触媒を得た。これを触媒Aとす
る。
Example 1 A slurry prepared by mixing a commercially available titania sol with an aqueous cerium nitrate solution so that the atomic ratio of cerium and titanium was 1 was obtained.
Honeycomb made of cordierite (400 cells / cm2)
The steps of dipping, blowing off the excess amount, and drying were repeated, the catalyst was loaded so that the loading amount after drying was 200 g / L, and the mixture was baked at 400 ° C. for 10 minutes. Acetylacetonato platinum (Pt (C 5 H 7 O 2 )) acetone solution was impregnated therein as platinum metal so that the supported amount after drying was 3.5 g / L.
After drying at ℃, Pt-Ce-Ti catalyst was obtained. This is designated as catalyst A.

【0018】実施例2 市販のジルコニアゾルに硝酸セリウム水溶液をセリウム
とジルコニウムの原子比が1になるように混合したスラ
リーを、コージェライト製のハニカム(400セル/平方セ
ンチ)に、浸漬、過剰分の吹き飛ばし、および乾燥の工
程を繰り返し、乾燥後の担持量が200g/Lになるように触
媒を担持し、400℃で10分焼成した。そこにアセチルア
セトナート白金( Pt(C5H7O2) )アセトン溶液を白金金属
として乾燥後の担持量が3.5g/Lとなるように含浸し、こ
れを80℃で乾燥させ、Pt-Ce-Zr触媒を得た。これを触媒
Bとする。
Example 2 A slurry prepared by mixing a commercially available zirconia sol with an aqueous cerium nitrate solution so that the atomic ratio of cerium and zirconium was 1 was dipped in a cordierite honeycomb (400 cells / cm 2) and the excess amount was added. The steps of blowing off and drying were repeated, and the catalyst was loaded so that the loaded amount after drying was 200 g / L, and the mixture was baked at 400 ° C. for 10 minutes. Acetylacetonato platinum (Pt (C 5 H 7 O 2 )) acetone solution was impregnated as platinum metal so that the supported amount after drying was 3.5 g / L, and this was dried at 80 ° C., and Pt- A Ce-Zr catalyst was obtained. This is designated as catalyst B.

【0019】実施例3 炭酸カリウム(K2CO3)33.64gを溶解した60℃水溶液500ml
に、塩化白金酸カリウム(K2PtCl4)3.57g、硝酸セリウム
(Ce(NO3)3・6H2O)22.50gおよび硝酸ジルコニル(ZrO(N
O3)2・2H2O)13.72gの60℃混合水溶液1000mlを約30分か
けてゆっくり添加し、60分間攪拌した。その後濾過し
て、濾液中の塩素が1ppm以下になるまで水洗浄を繰り返
した。そして80℃で15時間乾燥させた後に、380℃で2時
間焼成し、セリウムとジルコニウムの原子比が1、白金
金属含有量10重量%のPt-Ce-Zr触媒を得た。この10wt%Pt
-Ce-Zr触媒を湿式粉砕し、アルミナゾルを混合してスラ
リーとした後、コージェライト製のハニカム(400セル/
平方センチ)に、浸漬、過剰分の吹き飛ばし、および乾
燥の工程を繰り返し、乾燥後の触媒担持量が200g/Lにな
るように触媒を担持した。これを触媒Cとする。
Example 3 500 ml of a 60 ° C. aqueous solution in which 33.64 g of potassium carbonate (K 2 CO 3 ) was dissolved
, Potassium chloroplatinate (K 2 PtCl 4 ) 3.57 g, cerium nitrate
(Ce (NO 3) 3 · 6H 2 O) 22.50g and zirconyl nitrate (ZrO (N
O 3) 2 · 2H 2 O ) was slowly added to 60 ° C. mixed aqueous solution 1000ml of 13.72g over about 30 minutes, and stirred for 60 minutes. After that, the solution was filtered, and washing with water was repeated until chlorine in the filtrate became 1 ppm or less. Then, it was dried at 80 ° C. for 15 hours and then calcined at 380 ° C. for 2 hours to obtain a Pt-Ce-Zr catalyst having an atomic ratio of cerium to zirconium of 1 and a platinum metal content of 10% by weight. This 10wt% Pt
-Ce-Zr catalyst was wet pulverized and mixed with alumina sol to form a slurry, and then a cordierite honeycomb (400 cells /
The process of dipping, blowing off the excess amount, and drying was repeated in a square centimeter, and the catalyst was loaded so that the amount of the catalyst loaded after drying was 200 g / L. This is designated as catalyst C.

【0020】比較例1 市販のチタニアゾルを、コージェライト製のハニカム(4
00セル/平方センチ)に、浸漬、過剰分の吹き飛ばし、
および乾燥の工程を繰り返し、乾燥後の担持量が200g/L
になるように触媒を担持し、400℃で10分焼成した。そ
こにアセチルアセトナート白金( Pt(C5H7O2) )アセトン
溶液を白金金属として乾燥後の担持量が3.5g/Lとなるよ
うに含浸し、これを80℃で乾燥させ、Pt-Ti触媒を得
た。これを触媒Dとする。
Comparative Example 1 Commercially available titania sol was mixed with cordierite honeycomb (4
(00 cells / square centimeter), soak, blow off excess
The drying and drying process is repeated, and the supported amount after drying is 200 g / L.
The catalyst was supported so as to become, and calcined at 400 ° C. for 10 minutes. Acetylacetonato platinum (Pt (C 5 H 7 O 2 )) acetone solution was impregnated as platinum metal so that the supported amount after drying was 3.5 g / L, and this was dried at 80 ° C., and Pt- A Ti catalyst was obtained. This is designated as catalyst D.

【0021】比較例2 市販のジルコニアゾルを、コージェライト製のハニカム
(400セル/平方センチ)に、浸漬、過剰分の吹き飛ば
し、および乾燥の工程を繰り返し、乾燥後の担持量が20
0g/Lになるように触媒を担持し、400℃で10分焼成し
た。そこにアセチルアセトナート白金( Pt(C5H7O2) )ア
セトン溶液を白金金属として乾燥後の担持量が3.5g/Lと
なるように含浸し、これを80℃で乾燥させ、Pt-Zr触媒
を得た。これを触媒Eとする。
Comparative Example 2 A commercially available zirconia sol was added to a cordierite honeycomb.
Repeat the steps of dipping, blowing off the excess amount, and drying in (400 cells / square centimeter), and the supported amount after drying is 20
The catalyst was supported so that the concentration would be 0 g / L, and the mixture was baked at 400 ° C. for 10 minutes. Acetylacetonato platinum (Pt (C 5 H 7 O 2 )) acetone solution was impregnated as platinum metal so that the supported amount after drying was 3.5 g / L, and this was dried at 80 ° C., and Pt- A Zr catalyst was obtained. This is designated as catalyst E.

【0022】比較例3 市販のセリアゾルを、コージェライト製のハニカム(400
セル/平方センチ)に、浸漬、過剰分の吹き飛ばし、お
よび乾燥の工程を繰り返し、乾燥後の担持量が200g/Lに
なるように触媒を担持し、400℃で10分焼成した。そこ
にアセチルアセトナート白金( Pt(C5H7O2) )アセトン溶
液を白金金属として乾燥後の担持量が3.5g/Lとなるよう
に含浸し、これを80℃で乾燥させ、Pt-Ce触媒を得た。
これを触媒Fとする。
Comparative Example 3 Commercially available ceria sol was added to a cordierite honeycomb (400
The steps of dipping, blowing off excess amount, and drying were repeated in (cell / square centimeter), the catalyst was carried so that the carried amount after drying was 200 g / L, and the mixture was baked at 400 ° C. for 10 minutes. Acetylacetonato platinum (Pt (C 5 H 7 O 2 )) acetone solution was impregnated as platinum metal so that the supported amount after drying was 3.5 g / L, and this was dried at 80 ° C., and Pt- A Ce catalyst was obtained.
This is designated as catalyst F.

【0023】比較例4 炭酸ナトリウム(無水)36.29gを溶解した60℃水溶液700m
lに、硝酸セリウム(Ce(NO3)3・6H2O)77.18gの60℃水溶
液500mlをゆっくり注加し、30分間攪拌した。このよう
に調製したスラリーを濾過し、得られた沈澱をイオン交
換水6Lで洗浄した。続いて80℃で乾燥し、その後、380
℃にて2時間焼成することにより、二酸化セリウムを得
た。この二酸化セリウムの粉末7.5gをボールミルにて粉
砕して60℃水溶液250mlに分散し、塩化白金酸カリウム
(K2PtCl4)1.79gの60℃水溶液250mlを加え、30分後に1NK
OH 8mlを加え、60分間攪拌した。その後濾過して、濾液
中の塩素が1ppm以下になるまで水洗浄を繰り返した。そ
して80℃で15時間乾燥させた後に、380℃で2時間焼成
し、白金金属含有量10重量%のPt-Ce触媒を得た。この10
wt%Pt-Ce触媒を湿式粉砕し、アルミナゾルを混合してス
ラリーとした後、コージェライト製のハニカム(400セル
/平方センチ)に、浸漬、過剰分の吹き飛ばし、および
乾燥の工程を繰り返し、乾燥後の触媒担持量が200g/Lに
なるように触媒を担持した。これを触媒Gとする。
Comparative Example 4 700 m of a 60 ° C. aqueous solution in which 36.29 g of sodium carbonate (anhydrous) was dissolved
500 ml of a 60 ° C. aqueous solution of 77.18 g of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O) was slowly added to 1 l, and the mixture was stirred for 30 minutes. The slurry thus prepared was filtered, and the obtained precipitate was washed with 6 L of ion-exchanged water. It is then dried at 80 ° C and then 380
By firing at ℃ for 2 hours, cerium dioxide was obtained. 7.5 g of this cerium dioxide powder was crushed with a ball mill and dispersed in 250 ml of a 60 ° C. aqueous solution, and potassium chloroplatinate was added.
Add (K 2 PtCl 4 ) 1.79 g of 60 ° C aqueous solution 250 ml, and after 30 minutes, add 1NK
8 ml of OH was added and stirred for 60 minutes. After that, the solution was filtered, and washing with water was repeated until chlorine in the filtrate became 1 ppm or less. Then, after drying at 80 ° C. for 15 hours, it was calcined at 380 ° C. for 2 hours to obtain a Pt—Ce catalyst having a platinum metal content of 10% by weight. This 10
The wt% Pt-Ce catalyst is wet pulverized, mixed with alumina sol to form a slurry, and then dipped in a cordierite honeycomb (400 cells / square centimeter), the excess is blown off, and the drying process is repeated to dry it. The catalyst was loaded so that the amount of the catalyst loaded later was 200 g / L. This is designated as catalyst G.

【0024】(メタノール改質反応) 実施例4、5および比較例5〜7 水/メタノール比1.5のメタノール水溶液をメタノールL
HSV=5hr-1で蒸発器に導入し、蒸発器出口後に空気を混
合し、200℃で触媒層に入るように導入ラインの温度調
節を行なった。反応はLHSV=20hr-1で触媒層の出口温度
が350℃になるように空気量で制御した。反応後のガス
組成はガスクロマトグラフィにより分析した。触媒層の
出口温度350℃における活性評価結果を表1に示す。
(Methanol reforming reaction) Examples 4 and 5 and Comparative Examples 5 to 7 An aqueous methanol solution having a water / methanol ratio of 1.5 was added to methanol L.
It was introduced into the evaporator at HSV = 5 hr −1 , air was mixed after the evaporator outlet, and the temperature of the introduction line was adjusted so as to enter the catalyst layer at 200 ° C. The reaction was controlled by the amount of air so that the outlet temperature of the catalyst layer was 350 ° C. at LHSV = 20 hr −1 . The gas composition after the reaction was analyzed by gas chromatography. Table 1 shows the results of activity evaluation at the outlet temperature of the catalyst layer of 350 ° C.

【0025】 表1 (触媒層出口温度350℃) 触媒の種類 メタノール反応率 CO選択率 実施例4 触媒A(Pt-Ce-Ti) 96.4 46.7 実施例5 触媒B(Pt-Ce-Zr) 98.3 38.0 比較例5 触媒D(Pt-Ti) 97.6 77.4 比較例6 触媒E(Pt-Zr) 95.7 65.4 比較例7 触媒F(Pt-Ce) 94.4 65.2[0025] Table 1 (Catalyst layer outlet temperature 350 ° C)                 Catalyst type Methanol reaction rate CO selectivity Example 4 Catalyst A (Pt-Ce-Ti) 96.4 46.7 Example 5 Catalyst B (Pt-Ce-Zr) 98.3 38.0 Comparative Example 5 Catalyst D (Pt-Ti) 97.6 77.4 Comparative Example 6 Catalyst E (Pt-Zr) 95.7 65.4 Comparative Example 7 Catalyst F (Pt-Ce) 94.4 65.2

【0026】表1から分かるように、本発明に係る触媒
を用いた実施例4および5は、触媒層の出口温度350℃
において、いずれも比較例5〜7に比べてCO選択率が低
く、水蒸気改質反応の選択性が向上している。
As can be seen from Table 1, in Examples 4 and 5 using the catalyst according to the present invention, the outlet temperature of the catalyst layer was 350 ° C.
In all, the CO selectivity was lower than in Comparative Examples 5 to 7, and the selectivity of the steam reforming reaction was improved.

【0027】実施例6および比較例8 水/メタノール比1.5のメタノール水溶液をメタノールL
HSV=5hr-1で蒸発器に導入し、蒸発器出口後に空気を混
合し、200℃で触媒層に入るように導入ラインの温度調
節を行なった。反応はLHSV=15hr-1で所定の転化率にな
るように空気量で制御した。反応後のガス組成はガスク
ロマトグラフィにより分析した。各記載の反応時間にお
ける活性評価結果を表2に示す。
Example 6 and Comparative Example 8 A methanol / water solution having a water / methanol ratio of 1.5 was added to methanol L.
It was introduced into the evaporator at HSV = 5 hr −1 , air was mixed after the evaporator outlet, and the temperature of the introduction line was adjusted so as to enter the catalyst layer at 200 ° C. The reaction was controlled by the amount of air so that a predetermined conversion was obtained at LHSV = 15 hr −1 . The gas composition after the reaction was analyzed by gas chromatography. Table 2 shows the results of activity evaluation at each reaction time described.

【0028】 表2 (LHSV=15hr-1) (反応初期 → 各反応時間後) 触媒の種類 メタノール CO選択率 反応時間 反応率(%) (%) (hr) 実施例6 触媒C(10wt%Pt-Ce-Zr) 98.8 → 98.2 10.8 → 11.3 67 比較例8 触媒G(10wt%Pt-Ce) 98.1 → 96.4 29.7 → 37.5 44Table 2 (LHSV = 15 hr −1 ) (Initial reaction → After each reaction time) Type of catalyst Methanol CO selectivity Reaction time Reaction rate (%) (%) (hr) Example 6 Catalyst C (10 wt% Pt -Ce-Zr) 98.8 → 98.2 10.8 → 11.3 67 Comparative Example 8 Catalyst G (10wt% Pt-Ce) 98.1 → 96.4 29.7 → 37.5 44

【0029】表2から分かるように、本発明に係る触媒
を用いた実施例6は、比較例8に比べて耐熱性に優れ、
かつ得られる水素含有ガス中のCO濃度を低く押さえるこ
とができる。
As can be seen from Table 2, Example 6 using the catalyst according to the present invention is superior in heat resistance to Comparative Example 8,
Moreover, the CO concentration in the obtained hydrogen-containing gas can be kept low.

【0030】[0030]

【発明の効果】本発明の方法によれば、耐熱性に優れる
とともに、高活性のメタノール改質用触媒を用い、メタ
ノールに水蒸気と酸素を反応させて、自己熱供給型反応
により、水素を主体とする改質ガスを効率良く発生さ
せ、改質ガス中の一酸化炭素濃度を低下させ、水素含有
ガスを工業的に有利に製造することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, hydrogen is mainly produced by a self-heat supply reaction by reacting methanol with steam and oxygen by using a highly active catalyst for reforming methanol with excellent heat resistance. The hydrogen-containing gas can be produced industrially advantageously by efficiently generating the reformed gas as described below and reducing the carbon monoxide concentration in the reformed gas.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA02 EA06 EA07 EC01 EC03 4G069 AA03 AA08 BB02A BB02B BB04A BB04B BC43A BC43B BC50A BC50B BC51A BC51B BC75A BC75B CC25 DA06 EA19 FA01 FA03 FB15 FC08   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G040 EA02 EA06 EA07 EC01 EC03                 4G069 AA03 AA08 BB02A BB02B                       BB04A BB04B BC43A BC43B                       BC50A BC50B BC51A BC51B                       BC75A BC75B CC25 DA06                       EA19 FA01 FA03 FB15 FC08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】主成分として金属白金および二酸化セリウ
ムと、二酸化ジルコニウムおよび/または二酸化チタン
を含有し、かつセリウムとジルコニウムおよびチタンの
原子比(セリウム/(ジルコニウム+チタン))が0.1
〜10の範囲であるメタノール改質用触媒。
1. A metal containing platinum and cerium dioxide as main components, zirconium dioxide and / or titanium dioxide, and having an atomic ratio of cerium to zirconium and titanium (cerium / (zirconium + titanium)) of 0.1.
Catalyst for methanol reforming in the range of ~ 10.
【請求項2】金属白金、二酸化セリウム、二酸化ジルコ
ニウムおよび二酸化チタンの合計量に対する金属白金の
量が1〜50重量%の範囲である請求項1に記載のメタノ
ール改質用触媒。
2. The catalyst for reforming methanol according to claim 1, wherein the amount of metallic platinum is in the range of 1 to 50% by weight based on the total amount of metallic platinum, cerium dioxide, zirconium dioxide and titanium dioxide.
【請求項3】請求項1または2に記載の触媒の存在下、
メタノールと水蒸気および酸素を反応させて水素を主成
分とする改質ガスを製造することを特徴とする水素含有
ガスの製造法。
3. In the presence of the catalyst according to claim 1 or 2,
A method for producing a hydrogen-containing gas, which comprises reacting methanol with water vapor and oxygen to produce a reformed gas containing hydrogen as a main component.
JP2001372562A 2001-12-06 2001-12-06 Methanol modifying catalyst and method for manufacturing hydrogen-containing gas Pending JP2003170048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372562A JP2003170048A (en) 2001-12-06 2001-12-06 Methanol modifying catalyst and method for manufacturing hydrogen-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372562A JP2003170048A (en) 2001-12-06 2001-12-06 Methanol modifying catalyst and method for manufacturing hydrogen-containing gas

Publications (1)

Publication Number Publication Date
JP2003170048A true JP2003170048A (en) 2003-06-17

Family

ID=19181432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372562A Pending JP2003170048A (en) 2001-12-06 2001-12-06 Methanol modifying catalyst and method for manufacturing hydrogen-containing gas

Country Status (1)

Country Link
JP (1) JP2003170048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130197A2 (en) * 2008-04-22 2009-10-29 Basf Se Method for prereforming ethanol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130197A2 (en) * 2008-04-22 2009-10-29 Basf Se Method for prereforming ethanol
WO2009130197A3 (en) * 2008-04-22 2009-12-17 Basf Se Method for prereforming ethanol
JP2011521900A (en) * 2008-04-22 2011-07-28 ビーエーエスエフ ソシエタス・ヨーロピア Method for pre-reforming ethanol

Similar Documents

Publication Publication Date Title
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2008149313A (en) Catalyst for fuel reforming reaction and method for manufacturing hydrogen using the same
JP3715482B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide removal method using the catalyst, and solid polymer electrolyte fuel cell system
EP1174386B1 (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
WO2003086627A1 (en) Modification catalyst composition
JP4398670B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
WO2005070536A1 (en) Catalyst for production of hydrogen
US6926881B2 (en) Process for producing hydrogen-containing gas
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
EP1298089B1 (en) Method for obtaining hydrogen by partial methanol oxidation
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JPH05221602A (en) Production of synthesis gas
JP2003170048A (en) Methanol modifying catalyst and method for manufacturing hydrogen-containing gas
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP2000246102A (en) Production of catalyst
JP4038651B2 (en) Methanol reforming catalyst and method for producing hydrogen-containing gas
JP3226556B2 (en) Catalyst for steam reforming of hydrocarbons
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JP2664997B2 (en) Methanol reforming method
JP4092538B2 (en) Method for producing hydrogen-containing gas
JP4463914B2 (en) Method for producing hydrogen-containing gas for fuel cell
JP4350835B2 (en) On-vehicle reforming method and apparatus for dimethyl ether
JP2000246106A (en) Catalyst
JP4206813B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst