JP2003168335A - Power switching control device - Google Patents

Power switching control device

Info

Publication number
JP2003168335A
JP2003168335A JP2001368446A JP2001368446A JP2003168335A JP 2003168335 A JP2003168335 A JP 2003168335A JP 2001368446 A JP2001368446 A JP 2001368446A JP 2001368446 A JP2001368446 A JP 2001368446A JP 2003168335 A JP2003168335 A JP 2003168335A
Authority
JP
Japan
Prior art keywords
time
voltage
closing
closing time
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001368446A
Other languages
Japanese (ja)
Other versions
JP3986810B2 (en
Inventor
Hiroyuki Tsutada
広幸 蔦田
Takashi Hirai
隆史 平位
Hiromoto Ito
弘基 伊藤
Haruhiko Kayama
治彦 香山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001368446A priority Critical patent/JP3986810B2/en
Publication of JP2003168335A publication Critical patent/JP2003168335A/en
Application granted granted Critical
Publication of JP3986810B2 publication Critical patent/JP3986810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of the conventional device that only a zero point of power source side voltage is used as a reference, and overvoltage generated when a breaker is thrown in can not be suppressed dependent on the state of a load side voltage. <P>SOLUTION: This power switching device is equipped with a target checking means 10 functionally approximating power source side voltage and load side voltage and deciding a target pole closing time from a waveform obtained by synthesizing interpole voltage on and after the present time with an approximate function; a pole closing time measuring means 16 measuring the pole closing time based on the difference between the output time of a control signal 20 and an operation time of an auxiliary switch 6; a pole closing time prediction means 11 predicting based on the last pole closing time, a present environmental temperature, a control voltage, and an operation pressure; and a pole closing control means 12 outputting a control signal to a breaker at a point of time before by the predicting pole closing time from the target pole closing time so as to close the breaker in the target pole closing time when a pole closing command is inputted. Therefore, the breaker is closed at the optimum timing to suppress overvoltage generation when a power transmission line is closed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、遮断器等の電力
開閉装置の開閉タイミングを制御する電力開閉制御装置
に関するもので、特に、送電線投入時に発生する過電圧
を抑制する電力開閉制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power switching control device for controlling the switching timing of a power switching device such as a circuit breaker, and more particularly to a power switching control device for suppressing an overvoltage generated when a power transmission line is turned on. Is.

【0002】[0002]

【従来の技術】従来の電力開閉制御装置は、電源側電圧
の零点を基準として遮断器を閉極させるタイミングを制
御することで、遮断器投入時の過電圧を抑制している。
このような電力開閉制御装置は、例えば特許公報第28
92717号に示されている。
2. Description of the Related Art A conventional power switching control device suppresses an overvoltage when a circuit breaker is turned on by controlling a timing of closing a circuit breaker with reference to a zero point of a power supply side voltage.
Such a power switching control device is disclosed in, for example, Japanese Patent Publication No. 28
No. 92717.

【0003】例えば、送電線の事故遮断では、健全相に
電荷が残留することが知られている。この場合、遮断器
の電源側だけでなく、遮断器の負荷側にも送電線条件に
応じて様々な電圧が発生する。例えば、分路リアクトル
補償送電線の負荷側電圧には、一定周波数の正弦波電圧
が発生し、分路リアクトル非補償送電線では、直流電圧
が発生する。このような状況下で、遮断器投入時の過電
圧を抑制するためには、電源側電圧と負荷側電圧の差が
最小となるタイミングに投入されるように遮断器を閉極
させればよい。
For example, it is known that electric charges remain in a sound phase when an accident occurs in a transmission line. In this case, various voltages are generated not only on the power source side of the circuit breaker but also on the load side of the circuit breaker according to the transmission line conditions. For example, a sine wave voltage having a constant frequency is generated in the load side voltage of the shunt reactor compensation transmission line, and a DC voltage is generated in the shunt reactor non-compensation transmission line. Under such circumstances, in order to suppress the overvoltage when the circuit breaker is turned on, the circuit breaker may be closed so that the circuit is turned on at the timing when the difference between the power supply side voltage and the load side voltage is minimized.

【0004】しかし、このような電力開閉制御装置にあ
っては、電源側電圧の零点のみを基準としているので、
負荷側電圧の状態によっては遮断器投入時の過電圧を抑
制できないという欠点があった。
However, in such a power switching control device, since only the zero point of the power supply side voltage is used as a reference,
There is a drawback that the overvoltage when the breaker is turned on cannot be suppressed depending on the state of the load side voltage.

【0005】文献「Controlled Closi
ng on Shunt Reactor Compe
nsated Transmission Line
s」によれば、電源側電圧と負荷側電圧をそれぞれ計測
し、その差である極間電圧の波形パターンを用いて遮断
器の投入タイミングを制御する方法について示されてい
る。これによれば、パターンマッチングを用いて電圧波
形パターンの零点周期を調べ、最適投入タイミングを予
測すると示されている。
The document “Controlled Closi”
ng on Shunt Reactor Compe
Nested Transmission Line
s ”shows a method of measuring the power supply side voltage and the load side voltage, respectively, and controlling the closing timing of the circuit breaker using the waveform pattern of the voltage between contacts, which is the difference between them. According to this, pattern matching is used to check the zero-point period of the voltage waveform pattern to predict the optimum closing timing.

【0006】この文献では、電源側電圧と負荷側電圧を
それぞれ計測し、その差である極間電圧の波形パターン
を調べて遮断器の投入タイミングを制御するという概
念、及び電圧波形パターンの零点周期を求める方法につ
いては記述されているが、最適な閉極タイミングを決定
するための具体的実現方法が示されていない。
In this document, the concept of controlling the closing timing of the circuit breaker by measuring the voltage on the power source side and the voltage on the load side and examining the waveform pattern of the voltage between contacts, which is the difference between them, and the zero point period of the voltage waveform pattern. Although the method of obtaining the above is described, a concrete implementation method for determining the optimum closing timing is not shown.

【0007】また、遮断器のプレアーク特性、及び遮断
器の機械的動作バラツキ特性を考慮していないので、遮
断器の特性によっては、投入時の過電圧を抑制できない
という欠点があった。
Further, since the pre-arc characteristic of the circuit breaker and the mechanical operation variation characteristic of the circuit breaker are not taken into consideration, there is a drawback that the overvoltage at the time of closing cannot be suppressed depending on the characteristic of the circuit breaker.

【0008】[0008]

【発明が解決しようとする課題】上述したような従来の
電力開閉制御装置では、電源側電圧の零点のみを基準と
しているので、負荷側電圧の状態によっては遮断器投入
時の過電圧を抑制できないという問題点があった。
In the conventional power switching control device as described above, since only the zero point of the power supply side voltage is used as a reference, it is impossible to suppress the overvoltage when the breaker is turned on depending on the state of the load side voltage. There was a problem.

【0009】また、上述したような別の従来の電力開閉
制御装置では、遮断器のプレアーク特性、及び遮断器の
機械的動作バラツキ特性を考慮していないので、遮断器
の特性によっては、投入時の過電圧を抑制できないとい
う問題点があった。
Further, in another conventional power switching control device as described above, the pre-arc characteristic of the circuit breaker and the mechanical operation variation characteristic of the circuit breaker are not taken into consideration. However, there was a problem that the overvoltage of could not be suppressed.

【0010】この発明は、前述した問題点を解決するた
めになされたもので、最適タイミングで遮断器投入を行
うことができ、ひいては送電線投入時に発生する過電圧
を抑制することができる電力開閉制御装置を得ることを
目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to turn on the circuit breaker at an optimum timing, and thus to suppress the overvoltage generated when the power transmission line is turned on. The purpose is to obtain the device.

【0011】[0011]

【課題を解決するための手段】この発明に係る電力開閉
制御装置は、遮断器の電源側電圧と負荷側電圧の測定波
形を関数近似し、この近似関数を用いて現在時刻以降の
極間電圧を合成した波形から目標閉極時刻を決定する目
標点検出手段と、前記遮断器の閉極を行わせる制御信号
の出力時刻と、前記遮断器と連動した補助スイッチの動
作時刻の差に基づいて、前記遮断器の閉極時間を計測す
る閉極時間計測手段と、前記閉極時間計測手段により計
測された前回の閉極時間と、現在の環境温度、制御電
圧、及び操作圧力に基づいて、次回の閉極時間の予測値
である予測閉極時間を予測する閉極時間予測手段と、閉
極指令が入力されると、前記遮断器を前記目標閉極時刻
において閉極させるように、前記目標閉極時刻から前記
予測閉極時間だけ前の時点で前記制御信号を前記遮断器
へ出力する閉極制御手段とを備えたものである。
SUMMARY OF THE INVENTION A power switching control apparatus according to the present invention functionally approximates measured waveforms of a power source side voltage and a load side voltage of a circuit breaker, and uses this approximation function to calculate the inter-electrode voltage after the current time. Based on the difference between the target point detection means for determining the target closing time from the combined waveform, the output time of the control signal for closing the circuit breaker, and the operating time of the auxiliary switch linked with the circuit breaker. , A closing time measuring means for measuring the closing time of the circuit breaker, and the previous closing time measured by the closing time measuring means, based on the current environmental temperature, control voltage, and operating pressure, When a closing pole time predicting unit that predicts a predicted closing time that is a predicted value of the next closing time, and a closing command is input, the circuit breaker is closed at the target closing time. Before the target closing time by the predicted closing time It said control signal at a time is obtained and a closing control means for outputting to the breaker.

【0012】また、この発明に係る電力開閉制御装置
は、前記目標点検出手段が、前記極間電圧を合成した波
形に対して、前記遮断器のプレアーク特性に基づいた信
号変換、及び前記遮断器の機械的動作バラツキに基づい
た信号変換を行った上で前記目標閉極時刻を決定するも
のである。
Further, in the power switching control device according to the present invention, the target point detection means performs signal conversion based on a pre-arc characteristic of the circuit breaker with respect to a waveform obtained by combining the voltage between contacts, and the circuit breaker. The target closing time is determined after performing signal conversion based on the mechanical operation variation of the above.

【0013】さらに、この発明に係る電力開閉制御装置
は、電荷放電がなくかつ前記負荷側電圧の直流成分が測
定できない場合、前記遮断器の負荷側の主回路電流から
遮断時刻を検出し、前記遮断時刻以後の負荷側電圧を用
いて負荷側電圧の直流成分を推定する直流電圧推定手段
をさらに備えたものである。
Further, the power switching control device according to the present invention detects the interruption time from the load side main circuit current of the circuit breaker when the direct current component of the load side voltage cannot be measured and there is no charge discharge, It further comprises a DC voltage estimating means for estimating the DC component of the load side voltage by using the load side voltage after the interruption time.

【0014】[0014]

【発明の実施の形態】実施の形態1.この発明の実施の
形態1に係る電力開閉制御装置について図面を参照しな
がら説明する。図1は、この発明の実施の形態1に係る
電力開閉制御装置の構成を示す図である。なお、各図
中、同一符号は同一又は相当部分を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. A power switching control device according to Embodiment 1 of the present invention will be described with reference to the drawings. 1 is a diagram showing the configuration of a power switching control device according to a first embodiment of the present invention. In each figure, the same reference numerals indicate the same or corresponding parts.

【0015】図1において、1は主回路、2は遮断器、
3は送電線、4は電源側電圧計測手段、5は負荷側電圧
計測手段、6は補助スイッチ、7は電源側電圧、8は負
荷側電圧である。なお、電源側電圧計測手段4として
は、高電圧回路において一般的な交流電圧測定用センサ
を使用する。また、負荷側電圧計測手段5としては、高
電圧回路において交流電圧及び直流電圧成分が直接測定
可能なセンサを使用する。
In FIG. 1, 1 is a main circuit, 2 is a circuit breaker,
3 is a power transmission line, 4 is a power source side voltage measuring means, 5 is a load side voltage measuring means, 6 is an auxiliary switch, 7 is a power source side voltage, and 8 is a load side voltage. As the power supply side voltage measuring means 4, an AC voltage measuring sensor that is generally used in high voltage circuits is used. As the load side voltage measuring means 5, a sensor that can directly measure the AC voltage and the DC voltage component in the high voltage circuit is used.

【0016】また、同図において、10は目標点検出手
段、11は閉極時間予測手段、12は閉極制御手段、1
3は環境温度計測手段、14は制御電圧計測手段、15
は操作圧力計測手段、16は閉極時間計測手段、17は
目標閉極時刻、18は予測閉極時間、19は閉極指令、
20は制御信号である。
Further, in the figure, 10 is a target point detecting means, 11 is a closing time predicting means, 12 is a closing control means, 1
3 is environmental temperature measuring means, 14 is control voltage measuring means, 15
Is an operating pressure measuring means, 16 is a closing time measuring means, 17 is a target closing time, 18 is a predicted closing time, 19 is a closing command,
Reference numeral 20 is a control signal.

【0017】また、同図において、目標点検出手段10
は、電源側電圧計測手段4により計測された電源側電圧
7と、負荷側電圧計測手段5により計測された負荷側電
圧8から、目標閉極時刻17を出力する。
Further, in the figure, the target point detecting means 10
Outputs the target closing time 17 from the power supply side voltage 7 measured by the power supply side voltage measuring means 4 and the load side voltage 8 measured by the load side voltage measuring means 5.

【0018】閉極時間計測手段16は、遮断器2の閉極
を行わせる制御信号20と、遮断器2の可動接触子と連
動した補助スイッチ6から、遮断器2の閉極時間を計測
する。
The closing time measuring means 16 measures the closing time of the circuit breaker 2 from the control signal 20 for closing the circuit breaker 2 and the auxiliary switch 6 linked with the movable contactor of the circuit breaker 2. .

【0019】閉極時間予測手段11は、閉極時間計測手
段16により算出された前回閉極時の閉極時間と、環境
温度計測手段13により計測された環境温度と、制御電
圧計測手段14により計測された制御電圧と、操作圧力
計測手段15により計測された操作圧力から、次回閉極
時における遮断器2の閉極時間の予測値である予測閉極
時間18を出力する。
The closing-pole time predicting means 11 includes the closing time at the previous closing time calculated by the closing-time measuring means 16, the environmental temperature measured by the environmental temperature measuring means 13, and the control voltage measuring means 14. From the measured control voltage and the operating pressure measured by the operating pressure measuring means 15, the predicted closing time 18 which is the predicted value of the closing time of the circuit breaker 2 at the next closing time is output.

【0020】閉極制御手段12は、閉極指令19が入力
されると、遮断器2を目標閉極時刻17において閉極さ
せるように、目標閉極時刻17から予測閉極時間18だ
け前の時点で制御信号20を出力する。
When the closing command 19 is input, the closing control means 12 causes the circuit breaker 2 to close at the target closing time 17 by the predicted closing time 18 before the target closing time 17. At that time, the control signal 20 is output.

【0021】つぎに、この実施の形態1に係る電力開閉
制御装置の動作について図面を参照しながら説明する。
Next, the operation of the power switching control device according to the first embodiment will be described with reference to the drawings.

【0022】図2は、この発明の実施の形態1に係る電
力開閉制御装置の目標点検出手段の動作を示すフローチ
ャートである。
FIG. 2 is a flowchart showing the operation of the target point detecting means of the power switching control system according to the first embodiment of the present invention.

【0023】ステップ101において、電源側電圧7及
び負荷側電圧8のアナログ信号は、A/D変換器により
所定のサンプリング間隔で離散化し、一定時間分の電圧
信号を記憶する。
In step 101, the analog signals of the power supply side voltage 7 and the load side voltage 8 are discretized by the A / D converter at predetermined sampling intervals, and the voltage signals for a fixed time are stored.

【0024】次に、ステップ102において、得られた
電圧信号について符号が負から正、または正から負に変
化した点である複数の零点時刻を検出し、記憶する。
Next, in step 102, a plurality of zero point times at which the sign of the obtained voltage signal changes from negative to positive or from positive to negative are detected and stored.

【0025】次に、ステップ103において、電圧信号
が正弦波信号であるか直流信号であるかを判別する。例
えば、記憶された複数の零点時刻間の時間間隔をすべて
算出する。全ての時間間隔が一定範囲内にあれば、ゼロ
を中心として一定周波数で振動しているとして正弦波信
号であるとみなす。それ以外の場合は直流信号であると
みなす。電圧信号を高速フーリエ変換(FFT)して、
各周波数に対するパワー密度を算出し、ある周波数範囲
内のパワーが一定値以上であれば正弦波信号、そうでな
ければ直流信号であるとみなしてもよい。
Next, in step 103, it is determined whether the voltage signal is a sine wave signal or a DC signal. For example, all the time intervals between the stored zero point times are calculated. If all the time intervals are within a certain range, it is regarded as a sine wave signal because it oscillates at a certain frequency centered on zero. In other cases, it is regarded as a DC signal. Fast Fourier transform (FFT) of the voltage signal,
The power density for each frequency may be calculated, and if the power within a certain frequency range is a certain value or more, it may be regarded as a sine wave signal, and if not, it may be regarded as a DC signal.

【0026】次に、ステップ104において、正弦波信
号であった場合は、信号の周波数・位相・振幅をそれぞ
れ算出する。例えば、ステップ102で記憶した複数の
零点時刻から零点時刻間隔の平均値を求める。正弦波信
号では半周期毎に零点が得られるので、零点時刻間隔の
平均値の逆数をとって2倍した値を周波数とすればよ
い。位相については、ステップ102で記憶した複数の
零点時刻の中から、負から正に変化する零点で最も新し
い時刻の値を位相0度の時刻として記憶しておく。振幅
については、電圧信号を周期積分して実効値を求め、√
2倍を振幅とすればよい。以上の算出値を用いると位相
0度の時刻t=0として電圧信号は、電圧値=振幅×s
in(2π×周波数×t)と近似できる。
Next, in step 104, if the signal is a sine wave signal, the frequency, phase, and amplitude of the signal are calculated. For example, the average value of the zero point time intervals is calculated from the plurality of zero point times stored in step 102. Since a zero point is obtained every half cycle in a sine wave signal, a value obtained by taking the reciprocal of the average value of the zero point time interval and doubling it may be used. Regarding the phase, the value of the latest time of the zero point changing from negative to positive is stored as the time of phase 0 degree from the plurality of zero point times stored in step 102. For the amplitude, calculate the effective value by periodically integrating the voltage signal, and
The amplitude may be doubled. Using the above calculated values, the voltage signal is voltage value = amplitude × s at time t = 0 when the phase is 0 degrees.
It can be approximated as in (2π × frequency × t).

【0027】一方、ステップ105において、直流信号
であった場合は、例えば電圧信号の時間平均値を直流振
幅として算出する。
On the other hand, in step 105, when the signal is a DC signal, for example, the time average value of the voltage signal is calculated as the DC amplitude.

【0028】次に、ステップ106において、現在時刻
から一定時間後までの極間電圧信号を推定する。図3に
時間波形グラフの一例を示している。図3では負荷側電
圧が正弦波信号であるとした。図3において、206が
現在時刻、計測した電源側電圧が201、計測した負荷
側電圧が202である。ステップ104において201
及び202の正弦波信号が関数近似されているので、近
似関数を用いて現在時刻以降の電圧信号を外挿し、推定
した電源側電圧203、推定した負荷側電圧204を得
る。そして、電源側電圧信号203と負荷側電圧信号2
04の差の絶対値を取った信号である極間電圧の絶対値
205を算出する。
Next, at step 106, the voltage signal between contacts from the current time to a certain time later is estimated. FIG. 3 shows an example of a time waveform graph. In FIG. 3, the load side voltage is assumed to be a sine wave signal. In FIG. 3, 206 is the current time, the measured power supply side voltage is 201, and the measured load side voltage is 202. 201 in step 104
Since the sine wave signals 202 and 202 are function-approximated, the voltage signals after the current time are extrapolated using the approximation function to obtain the estimated power supply side voltage 203 and the estimated load side voltage 204. Then, the power supply side voltage signal 203 and the load side voltage signal 2
The absolute value 205 of the voltage between contacts, which is a signal obtained by taking the absolute value of the difference of 04, is calculated.

【0029】次に、ステップ107において、現在時刻
から一定時間後までの目標閉極時刻を推定する。図4に
その一例を示している。図4において、信号304は各
時間における極間電圧の絶対値を表しており、この値が
小さくなる時刻が最適な閉極タイミングとなる。そこ
で、極間電圧の絶対値信号304に対して、あらかじめ
設定しておいた閾値A(301)以下となる時間領域を
前から順に探していく。閾値A以下となる時間領域は領
域A〜領域Gである。これらの中であらかじめ設定して
おいた長さ以上の時間領域を選び出す。ここでは、領域
Eのみが選ばれたとする。最後に、この領域Eの中間点
である303を目標閉極時刻17として選ぶ。閾値Aで
あらかじめ設定しておいた長さ以上の時間領域が無かっ
た場合は、閾値Aよりも高い閾値B(302)に変更し
て同様の処理を行う。また、図4では、図示している時
間範囲が短いため目標閉極時刻17は303の1つしか
選ばれていないが、実際においては現在時刻から一定時
間内に複数の目標閉極時刻17が選ばれる。そこで、こ
れら全てを目標閉極時刻17であるとして記憶してお
く。
Next, at step 107, the target closing time from the present time to a certain time later is estimated. FIG. 4 shows an example thereof. In FIG. 4, a signal 304 represents the absolute value of the voltage between contacts at each time, and the time when this value becomes small is the optimum closing timing. Therefore, with respect to the absolute value signal 304 of the voltage between contacts, a time region that is equal to or less than the preset threshold value A (301) is sequentially searched from the front. The time regions that are equal to or less than the threshold A are regions A to G. From these, select a time domain that is longer than the preset length. Here, it is assumed that only the area E is selected. Finally, the intermediate point 303 of this area E is selected as the target closing time 17. If there is no time region longer than the length set in advance by the threshold A, the threshold B is changed to a threshold B (302) higher than the threshold A and the same processing is performed. Further, in FIG. 4, only one target closing time 17 is selected as 303 because the time range shown in the figure is short, but in reality, a plurality of target closing times 17 within the fixed time from the current time are set. To be elected. Therefore, all of these are stored as the target closing time 17.

【0030】次に、ステップ108において、目標閉極
時刻17の更新を行う。目標点検出処理は一定時間毎に
繰り返し行われるため、処理を行うたびに前回の目標点
検出処理で算出された目標閉極時刻17を更新する必要
がある。最新の結果が正しいとみなし、前回の目標点検
出処理で算出された目標閉極時刻を全て消去し、今回の
処理で算出された目標閉極時刻17で全て書きかえる処
理を行う。
Next, at step 108, the target closing time 17 is updated. Since the target point detection processing is repeatedly performed at regular intervals, it is necessary to update the target closing time 17 calculated in the previous target point detection processing each time the processing is performed. The latest result is regarded as correct, all target closing times calculated in the previous target point detection processing are deleted, and processing is performed to rewrite all the target closing times 17 calculated in this processing.

【0031】つづいて、図1に示す閉極時間計測手段1
6の動作について説明する。
Next, the closed pole time measuring means 1 shown in FIG.
The operation of No. 6 will be described.

【0032】遮断器2の可動接触子と連動して動作する
補助スイッチ6の動作時刻と制御信号20が出力された
時刻の差をとることにより閉極時間を算出する。なお、
閉極時間計測手段16として補助スイッチ6を用いるも
のとしたが、遮断器2の可動接触子駆動部回転軸にロー
タリーエンコーダ等による回転角計測手段を設け、これ
から得られる可動接触子の位置信号によって閉極時間を
算出するようにしてもよい。回転角計測手段を設けるこ
とによって、遮断器機構部の動作が容易にモニターでき
るという効果が得られる。
The closing time is calculated by taking the difference between the operating time of the auxiliary switch 6 which operates in conjunction with the movable contactor of the circuit breaker 2 and the time when the control signal 20 is output. In addition,
Although the auxiliary switch 6 is used as the closing-contact time measuring means 16, a rotation angle measuring means such as a rotary encoder is provided on the rotating shaft of the movable contactor drive unit of the circuit breaker 2, and the position signal of the movable contactor is obtained from this. The closing time may be calculated. By providing the rotation angle measuring means, it is possible to easily monitor the operation of the circuit breaker mechanism section.

【0033】次に、図1に示す閉極時間予測手段11の
動作について説明する。
Next, the operation of the closing time predicting means 11 shown in FIG. 1 will be described.

【0034】遮断器2の閉極時間変動は、環境温度、制
御電圧、及び操作圧力といった環境条件に依存し、同型
遮断器に対して共通の変動時間補正が可能である部分
と、接点摩耗、経時変化、及び微小な個体差等の遮断器
個々の状態変化によって変動し、個別に補正を必要とす
る部分に分離することができる。そこで、次回閉極時に
おける遮断器2の閉極時間の予測値である予測閉極時間
について、環境温度、制御電圧、及び操作圧力の環境条
件に基づいた補正時間ΔT1と、過去の動作履歴に基づ
いた補正時間ΔT2により補正を行う。
The change in the closing time of the circuit breaker 2 depends on the environmental conditions such as the environmental temperature, the control voltage, and the operating pressure. The circuit breaker varies depending on the change over time and the state change of each circuit breaker such as a minute individual difference, and the circuit breaker can be individually separated into parts requiring correction. Therefore, regarding the predicted closing time, which is the predicted value of the closing time of the circuit breaker 2 at the next closing time, the correction time ΔT1 based on the environmental conditions of the environmental temperature, the control voltage, and the operating pressure and the past operation history are recorded. The correction is performed based on the correction time ΔT2 based on the correction time.

【0035】具体的には、あらかじめ一定の環境温度、
制御電圧、及び操作圧力条件において閉極時間の平均値
である基準閉極時間T0を計測しておく。また、あらか
じめ環境温度、制御電圧、及び操作圧力条件を変化させ
て閉極させ、その時の閉極時間の平均値について、基準
閉極時間T0に対する差分値としてテーブルに記憶させ
ておく。
Specifically, a predetermined environmental temperature is set in advance,
The reference closing time T0, which is the average value of the closing times under control voltage and operating pressure conditions, is measured. Further, the environmental temperature, the control voltage, and the operating pressure condition are changed to close the electrodes, and the average value of the closing times at that time is stored in the table as a difference value with respect to the reference closing time T0.

【0036】運用時には、環境温度計測手段13により
計測された環境温度と、制御電圧計測手段14により計
測された制御電圧と、操作圧力計測手段15により計測
された操作圧力に基づき、テーブルの最も近い値から内
挿して、環境条件に基づいた補正時間ΔT1を算出す
る。
During operation, the table closest to the table is based on the environmental temperature measured by the environmental temperature measuring means 13, the control voltage measured by the control voltage measuring means 14, and the operating pressure measured by the operating pressure measuring means 15. By interpolating from the value, the correction time ΔT1 based on the environmental condition is calculated.

【0037】さらに、閉極時間計測手段16によって得
られた実際の閉極時間と、その動作時における予測閉極
時間について、過去n回(例えば、過去10回)につい
ての誤差を求め、誤差に重み付けをして過去の動作履歴
に基づいた補正時間ΔT2を算出する。すなわち、過去
i回目の動作における誤差に重み係数w(i)を乗じて
過去n回分にわたり加算し、補正時間ΔT2を算出す
る。 ΔT2=Σ{w(i)×(実際の閉極時間(i)−予測
閉極時間(i))}(i=1〜n) 重み係数w(i)は総和が1となるようにする。重み係
数については、閉極時間の変動に対する応答性をよくす
るために直近のデータに対する係数を大きくするのが望
ましい。
Further, regarding the actual closing time obtained by the closing time measuring means 16 and the predicted closing time during the operation, the error for the past n times (for example, the past 10 times) is calculated, and the error is calculated. Weighting is performed to calculate the correction time ΔT2 based on the past operation history. That is, the error in the i-th operation in the past is multiplied by the weighting coefficient w (i) and added over the past n times to calculate the correction time ΔT2. ΔT2 = Σ {w (i) × (actual closing time (i) -predicted closing time (i))} (i = 1 to n) The weighting coefficient w (i) has a sum of 1. . Regarding the weighting coefficient, it is desirable to increase the coefficient for the latest data in order to improve the response to the fluctuation of the closing time.

【0038】以上の値を用いて予測閉極時間18を算出
する。
The predicted closing time 18 is calculated using the above values.

【0039】予測閉極時間=T0+ΔT1+ΔT2Predicted closing time = T0 + ΔT1 + ΔT2

【0040】次に、図1に示す閉極制御手段12の動作
について説明する。
Next, the operation of the closing control means 12 shown in FIG. 1 will be described.

【0041】閉極指令19が入力されると、遮断器2を
目標点検出手段10により得られた目標閉極時刻17に
おいて閉極させるように制御信号20を出力する。閉極
時間予測手段11により得られた予測閉極時間18は、
制御信号20が出力されてから遮断器2が閉極するまで
の時間の予測値であるので、目標閉極時刻17において
閉極させるには、目標閉極時刻17から予測閉極時間1
8だけ前の時点で制御信号20を出力すればよい。
When the closing command 19 is input, the control signal 20 is output so as to close the circuit breaker 2 at the target closing time 17 obtained by the target point detecting means 10. The predicted closing time 18 obtained by the closing time prediction means 11 is
Since it is a predicted value of the time from when the control signal 20 is output until the circuit breaker 2 is closed, in order to close the target closing time 17, the predicted closing time 1 from the target closing time 17
It suffices to output the control signal 20 at a time point 8 before.

【0042】目標閉極時刻17は複数点記憶されている
ので、それぞれの値を読み出して予測閉極時間18との
差を取り、制御信号出力時刻の候補を算出する。制御信
号出力時刻の候補の中で、現在時刻よりも後にあり、か
つ最も現在時刻に近い時刻を一つえらびだし、制御信号
出力時刻とする。そして、制御信号出力時刻において制
御信号20を出力する。
Since the target closing time 17 is stored in plural points, the respective values are read out and the difference from the predicted closing time 18 is taken to calculate the candidate of the control signal output time. Among the candidates for the control signal output time, one time after the current time and closest to the current time is selected and set as the control signal output time. Then, the control signal 20 is output at the control signal output time.

【0043】なお、この動作においては閉極指令19が
入力されてから、制御信号20が出力されるまでの制御
遅れ時間についての制限がない。例えば、高速再閉路の
ような責務においては、制御遅れ時間の最大値を規定す
ることがある。負荷側電圧8が正弦波信号であり、その
周波数が電源側電圧7の周波数に近い場合は目標閉極時
刻17の出現時間間隔が大きくなるので、場合によって
は制御遅れ時間の最大値以内に制御信号出力時刻の候補
が存在しないことも想定される。
In this operation, there is no limitation on the control delay time from the input of the closing command 19 to the output of the control signal 20. For example, in an obligation such as fast reclosing, the maximum value of the control delay time may be specified. When the load side voltage 8 is a sine wave signal and the frequency thereof is close to the frequency of the power source side voltage 7, the appearance time interval of the target closing time 17 becomes large, so in some cases the control is performed within the maximum value of the control delay time. It is also assumed that there is no candidate for signal output time.

【0044】よって、制御遅れ時間について最大値をあ
らかじめ設定しておき、この最大値以内に制御信号出力
時刻の候補が存在しない場合は、強制的に制御信号20
を出力するように動作してもよい。あるいは、現在時刻
から予測閉極時間18以降に存在し、かつ最も直近の電
源側電圧7の零点を目標閉極時刻17として制御信号2
0を出力するように動作してもよい。この場合は最適目
標とはならないが、投入電圧は最悪でも負荷側電圧8の
ピーク値となるので、想定される過電圧の最悪条件を回
避することが可能となる。
Therefore, the maximum value of the control delay time is set in advance, and if there is no candidate for the control signal output time within this maximum value, the control signal 20 is forcibly forced.
May be output. Alternatively, the control signal 2 is set as the target closing time 17 with the zero point of the voltage 7 on the power supply side that is the closest to the current closing time and is after the predicted closing time 18.
It may operate so as to output 0. In this case, the target is not the optimum target, but since the applied voltage has the peak value of the load side voltage 8 even in the worst case, it is possible to avoid the worst case condition of the assumed overvoltage.

【0045】すなわち、この実施の形態1に係る電力開
閉制御装置は、遮断器2の電源側電圧と負荷側電圧の測
定波形を関数近似し、この近似関数を用いて現在時刻以
降の極間電圧を合成した波形から目標閉極時刻17を決
定する目標点検出手段10と、前記遮断器2の閉極を行
わせる制御信号20の出力時刻と、前記遮断器2と連動
した補助スイッチ6の動作時刻の差に基づいて、前記遮
断器2の閉極時間を計測する閉極時間計測手段16と、
前記閉極時間計測手段16により計測された前回の閉極
時間と、現在の環境温度、制御電圧、及び操作圧力に基
づいて、次回の閉極時間の予測値である予測閉極時間1
8を予測する閉極時間予測手段11と、閉極指令19が
入力されると、前記遮断器2を前記目標閉極時刻17に
おいて閉極させるように、前記目標閉極時刻17から前
記予測閉極時間18だけ前の時点で前記制御信号20を
前記遮断器2へ出力する閉極制御手段12等で構成した
ものである。
That is, the power switching control apparatus according to the first embodiment approximates the measured waveforms of the power source side voltage and the load side voltage of the circuit breaker 2 by a function, and uses this approximation function to calculate the inter-electrode voltage after the current time. Target point detecting means 10 for determining the target closing time 17 from the combined waveform, the output time of the control signal 20 for closing the circuit breaker 2, and the operation of the auxiliary switch 6 linked with the circuit breaker 2. A closing time measuring means 16 for measuring the closing time of the circuit breaker 2 based on the time difference;
Predicted closing time 1 which is a predicted value of the next closing time based on the previous closing time measured by the closing time measuring means 16 and the current environmental temperature, control voltage and operating pressure.
When the closing pole time predicting means 11 that predicts 8 and the closing pole command 19 are input, the predicted closing time is calculated from the target closing time 17 so that the circuit breaker 2 is closed at the target closing time 17. It is composed of a closing control means 12 for outputting the control signal 20 to the circuit breaker 2 and the like at a time point before the pole time 18.

【0046】この構成によれば、正確に極間電圧を予測
した上で目標閉極時刻17が決定できるので、最適タイ
ミングで遮断器投入を行えるという効果がある。よっ
て、送電線投入時に発生する過電圧を抑制することがで
き、系統や機器にとって有害な現象の発生を防止する装
置が提供できる。
According to this structure, the target closing time 17 can be determined after accurately predicting the inter-electrode voltage, so that the circuit breaker can be closed at the optimum timing. Therefore, it is possible to provide an apparatus that can suppress an overvoltage that occurs when the power transmission line is turned on, and that can prevent a phenomenon that is harmful to the grid and equipment.

【0047】なお、上記の実施の形態1は遮断器2が単
相であることを前提としたが、三相個別動作の遮断器に
ついても、上記構成を各相毎に備えることで適用可能で
あることは言うまでもない。
Although the above-described first embodiment is premised on that the circuit breaker 2 has a single phase, it can be applied to a three-phase individual operation circuit breaker by providing the above-described configuration for each phase. Needless to say.

【0048】実施の形態2.この発明の実施の形態2に
係る電力開閉制御装置について図面を参照しながら説明
する。図5は、この発明の実施の形態2に係る電力開閉
制御装置の目標点検出手段の動作を示すフローチャート
である。なお、構成は、上記実施の形態1と同様であ
る。
Embodiment 2. A power switching control device according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 5 is a flowchart showing the operation of the target point detecting means of the power switching control device according to the second embodiment of the present invention. The configuration is similar to that of the first embodiment.

【0049】図5に示すように、図2と比較して、プレ
アーク補正(ステップ401)と、動作バラツキ補正
(ステップ402)を新たに追加し、ステップ107の
目標閉極時刻推定を一部改変して目標閉極時刻推定(ス
テップ403)としたものである。
As shown in FIG. 5, as compared with FIG. 2, a pre-arc correction (step 401) and a motion variation correction (step 402) are newly added, and the target closing time estimation in step 107 is partially modified. Then, the target closing time is estimated (step 403).

【0050】目標点検出手段10の動作を説明する。ス
テップ101〜106、及び108の処理は、前記実施
の形態1と同様である。
The operation of the target point detecting means 10 will be described. The processing of steps 101 to 106 and 108 is similar to that of the first embodiment.

【0051】図6を用いて、遮断器2の特性について説
明する。遮断器2を投入する際には、接触子の機械的な
接触(閉極)前に先行放電によって主回路電流が流れ始
めることが知られている。この先行放電を『プレアー
ク』と呼び、主回路電流が流れ始める瞬間を投入と読ん
でいる。投入時刻は遮断器2の接触子間に印加される電
圧である極間電圧の絶対値に依存しており、同型遮断器
についてはその特性は同一である。
The characteristics of the circuit breaker 2 will be described with reference to FIG. It is known that when the circuit breaker 2 is turned on, the main circuit current starts to flow due to the preceding discharge before the mechanical contact (closing) of the contact. This preceding discharge is called "pre-arc" and the moment when the main circuit current begins to flow is read as turning on. The closing time depends on the absolute value of the voltage between contacts, which is the voltage applied between the contacts of the circuit breaker 2, and the same type of circuit breaker has the same characteristics.

【0052】図6に示した耐電圧直線501は、目標閉
極時刻A(502)に閉極させた遮断器における、ある
時刻での接触子間の耐電圧値を示している。ある時刻に
おいて耐電圧値よりも極間電圧の絶対値が低い場合は、
接触子間の耐電圧が上回っているため投入されないが、
耐電圧直線と極間電圧の交点である図中の503では、
接触子間の耐電圧が極間電圧に等しくなるのでプレアー
クが発生して、投入が行われる。最適投入タイミング
は、投入電圧が最も低くなる瞬間であるため、このよう
なプレアーク特性を考慮した上で目標閉極時刻17を決
定する必要がある。
The withstand voltage line 501 shown in FIG. 6 shows the withstand voltage value between the contacts at a certain time in the circuit breaker closed at the target closing time A (502). If the absolute value of the voltage between contacts is lower than the withstand voltage value at a certain time,
It is not turned on because the withstand voltage between contacts is higher, but
At 503 in the figure, which is the intersection of the withstand voltage straight line and the voltage between contacts,
Since the withstand voltage between the contacts becomes equal to the inter-electrode voltage, a pre-arc is generated and injection is performed. Since the optimum closing timing is the moment when the closing voltage becomes the lowest, it is necessary to determine the target closing time 17 in consideration of such pre-arc characteristics.

【0053】また、遮断器2には機械的な動作バラツキ
があることが知られており、環境温度、制御電圧、操作
圧力が一定条件においても、閉極時間は一定の広がりを
持った正規分布状となる。例えば、目標閉極時刻B(5
04)に閉極させると、実際の閉極時刻が505に示し
た最小値から506に示した最大値となる可能性があ
る。例えば、505に示した閉極時刻であった場合は、
投入時刻Bは507となり、高い投入電圧となってしま
う。最適投入タイミングは、投入電圧が最も低くなる瞬
間であるため、このような動作バラツキ特性を考慮した
上で目標閉極時刻17を決定する必要がある。
Further, it is known that the circuit breaker 2 has a mechanical operation variation, and even when the environmental temperature, the control voltage, and the operating pressure are constant, the closing time is normally distributed with a certain spread. Become a state. For example, the target closing time B (5
When the contact is closed at 04), the actual closing time may change from the minimum value shown at 505 to the maximum value shown at 506. For example, if the closing time is 505,
The turn-on time B is 507, which is a high turn-on voltage. Since the optimum closing timing is the moment when the closing voltage becomes the lowest, it is necessary to determine the target closing time 17 in consideration of such operation variation characteristics.

【0054】以上のような特性を考慮し、ステップ40
1のプレアーク補正の処理では、遮断器2のプレアーク
特性を考慮して極間電圧の絶対値信号を補正した信号を
求める。具体的な補正方法としては、耐電圧直線の方向
に射影した信号への変換を行う。
Considering the above characteristics, step 40
In the pre-arc correction processing of No. 1, a signal obtained by correcting the absolute value signal of the inter-electrode voltage is obtained in consideration of the pre-arc characteristic of the circuit breaker 2. As a specific correction method, conversion into a signal projected in the direction of the withstand voltage straight line is performed.

【0055】図7を用いて変換の一例を説明する。図7
において、耐電圧直線606の傾きをkとする。電圧値
ゼロの点601から開始して、耐電圧直線606上で1
サンプリングずつ前の位置に移動していき、極間電圧の
絶対値信号の値を超えた点602と、1点後ろの603
との値を内挿することで交点604の値が得られる。こ
の交点604の電圧値は、時刻601におけるプレアー
ク補正の結果であるので、交点604の電圧値と等し
く、時刻601にあたる点605がプレアーク補正信号
となる。これを全てのサンプリング点で繰り返し、図8
中の極間電圧の絶対値701に対するプレアーク補正信
号702を得る。
An example of conversion will be described with reference to FIG. Figure 7
In, the slope of the withstand voltage line 606 is k. Starting from the point 601 where the voltage value is zero, 1 on the withstand voltage line 606
It moves to the previous position sampling by sampling, and the point 602 where the absolute value signal of the voltage between contacts exceeds the value and the point 603 one point behind.
The value of the intersection 604 is obtained by interpolating the values of and. The voltage value at the intersection 604 is the result of the pre-arc correction at the time 601, so it is equal to the voltage value at the intersection 604, and the point 605 at the time 601 becomes the pre-arc correction signal. This is repeated at all sampling points, and
The pre-arc correction signal 702 for the absolute value 701 of the voltage between contacts is obtained.

【0056】次に、ステップ402の動作バラツキ補正
の処理では、プレアーク補正処理で得られたプレアーク
補正信号702に対して、さらに遮断器2の動作バラツ
キによる補正を行った信号を求める。予め適用する遮断
器機種毎に最大動作バラツキ時間±Emsecを計測し
ておくものとする。
Next, in the operation variation correction processing of step 402, a signal obtained by further correcting the prearc correction signal 702 obtained by the prearc correction processing by the operation variation of the circuit breaker 2 is obtained. The maximum operation variation time ± Emsec shall be measured in advance for each circuit breaker model applied.

【0057】図8に一例を示している。最大動作バラツ
キ時間が±Emsecである場合、プレアーク補正信号
702に対して幅2Emsecの最大値フィルタを適用
すればよい。最大値フィルタとは、フィルタ幅内の信号
の最大値を出力するフィルタのことである。本処理を行
った動作バラツキ補正信号を703に示す。この信号7
03は、E=1msecとした時の結果である。動作バ
ラツキ補正信号703は、ある目標閉極時刻を狙って閉
極させたときに、遮断器2の動作バラツキによって発生
する可能性のある最大電圧値を示している。
FIG. 8 shows an example. When the maximum operation variation time is ± Emsec, a maximum value filter with a width of 2 Emsec may be applied to the pre-arc correction signal 702. The maximum value filter is a filter that outputs the maximum value of the signal within the filter width. An operation variation correction signal subjected to this processing is shown at 703. This signal 7
03 is the result when E = 1 msec. The operation variation correction signal 703 indicates the maximum voltage value that may occur due to the operation variation of the circuit breaker 2 when the electrodes are closed by aiming at a certain target closing time.

【0058】次に、ステップ403の目標閉極時刻推定
の処理について説明する。図8に一例を示している。動
作バラツキ補正信号703は、極間電圧の絶対値にプレ
アーク特性及び動作バラツキ特性を考慮した信号であ
り、この値が小さくなる時刻が最適な閉極タイミングと
なる。そこで、動作バラツキ補正信号703に対して、
あらかじめ設定しておいた閾値705以下となる時間領
域を前から順に探していく。この閾値705以下となる
時間領域は、図8中では領域A〜領域Cとなる。それぞ
れの領域において中間点を目標閉極時刻として選ぶ。例
えば、領域Bにおける目標閉極時刻は706である。
Next, the process of estimating the target closing time at step 403 will be described. An example is shown in FIG. The operation variation correction signal 703 is a signal in which the pre-arc characteristic and the operation variation characteristic are taken into consideration in the absolute value of the voltage between contacts, and the time when this value becomes small is the optimum closing timing. Therefore, for the operation variation correction signal 703,
A time region having a preset threshold value 705 or less is searched in order from the front. The time region in which the threshold value is 705 or less is region A to region C in FIG. The midpoint is selected as the target closing time in each region. For example, the target closing time in region B is 706.

【0059】また、図8では、図示している時間範囲が
短いため目標閉極時刻は706の1つしか選ばれていな
いが、実際においては現在時刻から一定時間内に複数の
目標閉極時刻が選ばれる。そこで、これら全てを目標閉
極時刻であるとして記憶しておく。
Further, in FIG. 8, only one target closing time 706 is selected because the time range shown in the figure is short, but in reality, a plurality of target closing times are set within a fixed time from the current time. Is selected. Therefore, all of these are stored as the target closing time.

【0060】このような構成によれば、遮断器特性を考
慮して目標閉極時刻17を決定するようにしたので、最
適タイミングで遮断器投入を行えるという効果がある。
よって、送電線投入時に発生する過電圧を抑制すること
ができ、系統や機器にとって有害な現象の発生を防止す
る装置が提供できる。
According to such a configuration, the target closing time 17 is determined in consideration of the circuit breaker characteristic, so that there is an effect that the circuit breaker can be closed at the optimum timing.
Therefore, it is possible to provide an apparatus that can suppress an overvoltage that occurs when the power transmission line is turned on, and that can prevent a phenomenon that is harmful to the grid and equipment.

【0061】実施の形態3.この発明の実施の形態3に
係る電力開閉制御装置について図面を参照しながら説明
する。図9は、この発明の実施の形態3に係る電力開閉
制御装置の構成を示す図である。
Embodiment 3. A power switching control device according to Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 9 is a diagram showing a configuration of a power switching control device according to Embodiment 3 of the present invention.

【0062】上記実施の形態1に係る電力開閉制御装置
においては、負荷側PT5として直流成分が直接測定可
能なものを使用していたが、この実施の形態3では、例
えばコンデンサ分圧型計器用変圧器のような電荷放電が
なく、かつ直流成分が測定できない負荷側電圧計測手段
801を使用しても、上記実施の形態1と同様の効果が
得られるように構成したものである。
In the power switching control apparatus according to the first embodiment, the load side PT5 used has a direct current component that can be directly measured. However, in the third embodiment, for example, a transformer for a capacitor partial pressure type instrument is used. Even if the load side voltage measuring means 801 which does not have the electric charge discharge and the DC component cannot be measured, the same effect as that of the first embodiment can be obtained.

【0063】図9において、図1の実施の形態1と比較
して、電荷放電がなく、かつ直流成分が測定できない負
荷側電圧計測手段801と、変流器802により測定さ
れる主回路電流803を用いて、直流電圧を推定する直
流電圧推定手段805を追加したものである。
In FIG. 9, as compared with the first embodiment shown in FIG. 1, there is no charge discharge and the DC component cannot be measured, and the load side voltage measuring means 801 and the main circuit current 803 measured by the current transformer 802. Is added to the DC voltage estimating means 805 for estimating the DC voltage.

【0064】図10に動作の一例を示す。負荷側電圧計
測手段801により測定された信号が負荷側電圧90
1、変流器802により測定された信号803が主回路
電流902である。送電線3は分路リアクトル補償され
ておらず、遮断後の負荷側に電荷が残留し、負荷側電圧
の真値が直流電圧となる例を示している。負荷側電圧計
測手段801は直流電圧が測定できないので、負荷側電
圧901は遮断直後に一定の時定数をもった減衰信号と
して観測されることになる。
FIG. 10 shows an example of the operation. The signal measured by the load side voltage measuring unit 801 is the load side voltage 90.
1. The signal 803 measured by the current transformer 802 is the main circuit current 902. The transmission line 3 is not subjected to shunt reactor compensation, and an example in which electric charges remain on the load side after interruption and the true value of the load side voltage is a DC voltage is shown. Since the load side voltage measuring means 801 cannot measure the DC voltage, the load side voltage 901 is observed as an attenuation signal having a constant time constant immediately after the interruption.

【0065】負荷側電圧901および主回路電流902
については、常に現在時刻から一定時間前までのデータ
を記憶しておく。そして、補助スイッチ6が閉から開へ
変化するのを検知すると、一定時間経過した時点でデー
タの記憶を停止する。これにより、図10に示したよう
な遮断時刻903前後の信号を記憶することができる。
以下の処理ではこの記憶データを使用する。
Load side voltage 901 and main circuit current 902
As for, the data from the current time to a certain time before is always stored. Then, when it is detected that the auxiliary switch 6 changes from closed to open, the storage of the data is stopped when a certain time has elapsed. As a result, it is possible to store the signals before and after the cutoff time 903 as shown in FIG.
This stored data is used in the following processing.

【0066】まず、主回路電流902において電流ゼロ
となる点である遮断時刻903を見つける。次に、負荷
側電圧901について、遮断時刻903から一定時間の
電圧値の複数サンプリング点を用いて関数近似する。直
流成分があった場合は、遮断直後に一定の時定数で電圧
値が減衰する様子が観測されるので、例えば、電圧値=
K×exp(−α×時間)について前記複数サンプリン
グ点を最小自乗近似してK、αを求め、近似関数905
を作成する。得られた近似関数905より、遮断時刻9
03における電圧値を求め、直流電圧推定値904とす
る。
First, the cutoff time 903, which is the point where the main circuit current 902 becomes zero, is found. Next, the load side voltage 901 is function-approximated using a plurality of sampling points of voltage values for a fixed time from the cutoff time 903. When there is a direct current component, it is observed that the voltage value decays with a constant time constant immediately after the cutoff.
For K × exp (−α × time), the plurality of sampling points are least-squares approximated to obtain K and α, and an approximate function 905 is obtained.
To create. From the obtained approximate function 905, the cutoff time 9
The voltage value at 03 is obtained and used as a DC voltage estimated value 904.

【0067】そして、目標点検出手段10は、図2中の
負荷側電圧側のステップ105において直流振幅を算出
していた処理に代わり、この直流電圧推定値904を用
いるようにすればよい。
Then, the target point detecting means 10 may use this DC voltage estimated value 904 instead of the process of calculating the DC amplitude in step 105 on the load side voltage side in FIG.

【0068】いままでの説明では、送電線3が分路リア
クトル非補償であり、負荷側電圧が直流電圧となる例を
示したが、送電線3が分路リアクトル補償されている場
合においては、負荷側電圧は直流電圧ゼロであり正弦波
信号となる。この場合、近似関数905は、K=0、す
なわち電圧値=0と推定されるので、同様の処理で扱う
ことができる。
In the above description, the transmission line 3 is not shunt reactor compensated, and the load side voltage is a DC voltage. However, in the case where the transmission line 3 is shunt reactor compensated, The load side voltage is zero DC voltage and becomes a sine wave signal. In this case, since the approximate function 905 is estimated to be K = 0, that is, the voltage value = 0, it can be handled by the same processing.

【0069】なお、電源側電圧計測手段4については、
遮断器2を開閉する状況下において直流成分は通常ゼロ
値であるので、電圧計測手段の種類に関らず、上記処理
を行う必要はない。
Regarding the power supply side voltage measuring means 4,
Since the DC component is usually a zero value when the circuit breaker 2 is opened / closed, it is not necessary to perform the above process regardless of the type of voltage measuring means.

【0070】このような構成によれば、電荷放電がな
く、かつ直流成分が測定できない電圧計測手段を使用し
ても、遮断後に残留している負荷側電圧の直流成分値が
わかるようになるので、最適タイミングで遮断器投入を
行う装置を容易に構成できるという効果がある。
According to this structure, the value of the DC component of the load-side voltage remaining after the interruption can be found even if the voltage measuring means that does not discharge electric charges and cannot measure the DC component is used. The advantage is that it is possible to easily configure a device that turns on the circuit breaker at the optimum timing.

【0071】[0071]

【発明の効果】この発明に係る電力開閉制御装置は、以
上説明したとおり、遮断器の電源側電圧と負荷側電圧の
測定波形を関数近似し、この近似関数を用いて現在時刻
以降の極間電圧を合成した波形から目標閉極時刻を決定
する目標点検出手段と、前記遮断器の閉極を行わせる制
御信号の出力時刻と、前記遮断器と連動した補助スイッ
チの動作時刻の差に基づいて、前記遮断器の閉極時間を
計測する閉極時間計測手段と、前記閉極時間計測手段に
より計測された前回の閉極時間と、現在の環境温度、制
御電圧、及び操作圧力に基づいて、次回の閉極時間の予
測値である予測閉極時間を予測する閉極時間予測手段
と、閉極指令が入力されると、前記遮断器を前記目標閉
極時刻において閉極させるように、前記目標閉極時刻か
ら前記予測閉極時間だけ前の時点で前記制御信号を前記
遮断器へ出力する閉極制御手段とを備えたので、最適タ
イミングで遮断器投入を行うことができ、送電線投入時
に発生する過電圧を抑制することができ、系統や機器に
とって有害な現象の発生を防止することができるという
効果を奏する。
As described above, the power switching control device according to the present invention functionally approximates the measured waveforms of the power source side voltage and the load side voltage of the circuit breaker, and uses this approximation function to calculate the gap between Based on the difference between the target point detecting means for determining the target closing time from the waveform obtained by combining the voltages, the output time of the control signal for closing the circuit breaker, and the operating time of the auxiliary switch linked with the circuit breaker. Based on the closing time measuring means for measuring the closing time of the circuit breaker, the previous closing time measured by the closing time measuring means, the current environmental temperature, the control voltage, and the operating pressure. A closing pole time predicting unit that predicts a predicted closing time that is a predicted value of the next closing time, and a closing command is input, so that the circuit breaker is closed at the target closing time. The predicted closing time from the target closing time Since it has the closing control means for outputting the control signal to the circuit breaker at the time before the circuit breaker, the circuit breaker can be closed at the optimum timing, and the overvoltage generated when the power transmission line is closed can be suppressed. Therefore, it is possible to prevent the occurrence of a phenomenon that is harmful to the system or equipment.

【0072】また、この発明に係る電力開閉制御装置
は、以上説明したとおり、前記目標点検出手段が、前記
極間電圧を合成した波形に対して、前記遮断器のプレア
ーク特性に基づいた信号変換、及び前記遮断器の機械的
動作バラツキに基づいた信号変換を行った上で前記目標
閉極時刻を決定するので、最適タイミングで遮断器投入
を行うことができ、送電線投入時に発生する過電圧を抑
制することができ、系統や機器にとって有害な現象の発
生を防止することができるという効果を奏する。
Further, in the power switching control device according to the present invention, as described above, the target point detection means converts the waveform obtained by combining the inter-electrode voltage based on the pre-arc characteristic of the circuit breaker. , And the target closing time is determined after performing signal conversion based on the mechanical operation variation of the circuit breaker, so that the circuit breaker can be closed at the optimum timing, and the overvoltage generated when the power transmission line is closed can be reduced. The effect is that it can be suppressed and the occurrence of a phenomenon that is harmful to the system and equipment can be prevented.

【0073】さらに、この発明に係る電力開閉制御装置
は、以上説明したとおり、電荷放電がなくかつ前記負荷
側電圧の直流成分が測定できない場合、前記遮断器の負
荷側の主回路電流から遮断時刻を検出し、前記遮断時刻
以後の負荷側電圧を用いて負荷側電圧の直流成分を推定
する直流電圧推定手段をさらに備えたので、最適タイミ
ングで遮断器投入を行うことができ、送電線投入時に発
生する過電圧を抑制することができ、系統や機器にとっ
て有害な現象の発生を防止することができるという効果
を奏する。
Further, as described above, the power switching control apparatus according to the present invention, when there is no charge discharge and the DC component of the load side voltage cannot be measured, the cutoff time from the main circuit current on the load side of the circuit breaker is cut off. Since it further comprises a DC voltage estimating means for estimating the DC component of the load side voltage by using the load side voltage after the interruption time, the circuit breaker can be turned on at the optimum timing, and when the transmission line is turned on. It is possible to suppress an overvoltage that occurs and prevent an occurrence of a phenomenon that is harmful to the system or equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1に係る電力開閉制御
装置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a power switching control device according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1に係る電力開閉制御
装置の目標点検出手段の動作を示すフローチャートであ
る。
FIG. 2 is a flowchart showing an operation of target point detection means of the power switching control device according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1に係る電力開閉制御
装置の動作を示すタイミングチャートである。
FIG. 3 is a timing chart showing an operation of the power switching control device according to the first embodiment of the present invention.

【図4】 この発明の実施の形態1に係る電力開閉制御
装置の動作を示すタイミングチャートである。
FIG. 4 is a timing chart showing an operation of the power switching control device according to the first embodiment of the present invention.

【図5】 この発明の実施の形態2に係る電力開閉制御
装置の目標点検出手段の動作を示すフローチャートであ
る。
FIG. 5 is a flowchart showing an operation of target point detecting means of the power switching control apparatus according to the second embodiment of the present invention.

【図6】 この発明の実施の形態2に係る電力開閉制御
装置の動作を示すタイミングチャートである。
FIG. 6 is a timing chart showing an operation of the power switching control device according to the second embodiment of the present invention.

【図7】 この発明の実施の形態2に係る電力開閉制御
装置の動作を示すタイミングチャートである。
FIG. 7 is a timing chart showing an operation of the power switching control device according to the second embodiment of the present invention.

【図8】 この発明の実施の形態2に係る電力開閉制御
装置の動作を示すタイミングチャートである。
FIG. 8 is a timing chart showing an operation of the power switching control device according to the second embodiment of the present invention.

【図9】 この発明の実施の形態3に係る電力開閉制御
装置の構成を示す図である。
FIG. 9 is a diagram showing a configuration of a power switching control device according to a third embodiment of the present invention.

【図10】 この発明の実施の形態3に係る電力開閉制
御装置の動作を示すタイミングチャートである。
FIG. 10 is a timing chart showing an operation of the power switching control device according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 主回路、2 遮断器、3 送電線、4 電源側電圧
計測手段、5 負荷側電圧計測手段、6 補助スイッ
チ、10 目標点検出手段、11 閉極時間予測手段、
12 閉極、13 環境温度計測手段、14 制御電圧
計測手段、15操作圧力計測手段、16 閉極時間計測
手段、805 直流電圧推定手段。
DESCRIPTION OF SYMBOLS 1 main circuit, 2 circuit breaker, 3 power transmission line, 4 power supply side voltage measuring means, 5 load side voltage measuring means, 6 auxiliary switch, 10 target point detecting means, 11 closing time predicting means,
12 closing poles, 13 environmental temperature measuring means, 14 control voltage measuring means, 15 operating pressure measuring means, 16 closing time measuring means, 805 DC voltage estimating means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 弘基 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 香山 治彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5G034 AA06 AC09 AC20 AD01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroki Ito             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. (72) Inventor Haruhiko Kayama             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. F-term (reference) 5G034 AA06 AC09 AC20 AD01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 遮断器の電源側電圧と負荷側電圧の測定
波形を関数近似し、この近似関数を用いて現在時刻以降
の極間電圧を合成した波形から目標閉極時刻を決定する
目標点検出手段と、 前記遮断器の閉極を行わせる制御信号の出力時刻と、前
記遮断器と連動した補助スイッチの動作時刻の差に基づ
いて、前記遮断器の閉極時間を計測する閉極時間計測手
段と、 前記閉極時間計測手段により計測された前回の閉極時間
と、現在の環境温度、制御電圧、及び操作圧力に基づい
て、次回の閉極時間の予測値である予測閉極時間を予測
する閉極時間予測手段と、 閉極指令が入力されると、前記遮断器を前記目標閉極時
刻において閉極させるように、前記目標閉極時刻から前
記予測閉極時間だけ前の時点で前記制御信号を前記遮断
器へ出力する閉極制御手段とを備えたことを特徴とする
電力開閉制御装置。
1. A target inspection for approximating a measured waveform of a power source side voltage and a load side voltage of a circuit breaker by a function approximation and determining a target closing pole time from a waveform obtained by synthesizing an inter-electrode voltage after the present time using this approximation function. A closing time for measuring the closing time of the circuit breaker, based on the difference between the output means and the output time of the control signal for closing the circuit breaker, and the operating time of the auxiliary switch interlocking with the circuit breaker. Based on the measuring means and the previous closing time measured by the closing time measuring means, the current environmental temperature, the control voltage, and the operating pressure, the predicted closing time is the predicted value of the next closing time. When a closing command is input, a closing pole time predicting unit that predicts the closing pole time predicting means for closing the circuit breaker at the target closing time, so that the predicted closing time is before the target closing time. Closed control for outputting the control signal to the circuit breaker An electric power switching control device comprising: a control means.
【請求項2】 前記目標点検出手段は、前記極間電圧を
合成した波形に対して、前記遮断器のプレアーク特性に
基づいた信号変換、及び前記遮断器の機械的動作バラツ
キに基づいた信号変換を行った上で前記目標閉極時刻を
決定することを特徴とする請求項1記載の電力開閉制御
装置。
2. The target point detection means converts a signal based on a pre-arc characteristic of the circuit breaker and a signal conversion based on a variation in mechanical operation of the circuit breaker with respect to a waveform obtained by combining the voltage between contacts. The power switching control device according to claim 1, wherein the target closing time is determined after performing the above.
【請求項3】 電荷放電がなくかつ前記負荷側電圧の直
流成分が測定できない場合、前記遮断器の負荷側の主回
路電流から遮断時刻を検出し、前記遮断時刻以後の負荷
側電圧を用いて負荷側電圧の直流成分を推定する直流電
圧推定手段をさらに備えたことを特徴とする請求項1記
載の電力開閉制御装置。
3. When there is no charge discharge and the DC component of the load side voltage cannot be measured, the break time is detected from the load side main circuit current of the circuit breaker, and the load side voltage after the break time is used. The power switching control device according to claim 1, further comprising a DC voltage estimating means for estimating a DC component of the load side voltage.
JP2001368446A 2001-12-03 2001-12-03 Power switching control device Expired - Fee Related JP3986810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001368446A JP3986810B2 (en) 2001-12-03 2001-12-03 Power switching control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001368446A JP3986810B2 (en) 2001-12-03 2001-12-03 Power switching control device

Publications (2)

Publication Number Publication Date
JP2003168335A true JP2003168335A (en) 2003-06-13
JP3986810B2 JP3986810B2 (en) 2007-10-03

Family

ID=19178037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001368446A Expired - Fee Related JP3986810B2 (en) 2001-12-03 2001-12-03 Power switching control device

Country Status (1)

Country Link
JP (1) JP3986810B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179323A (en) * 2004-12-22 2006-07-06 Mitsubishi Electric Corp Switching pole phase control device
JP2006324125A (en) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp Closing pole phase controlling device for switching apparatus
JP2006344396A (en) * 2005-06-07 2006-12-21 Mitsubishi Electric Corp Close phase detecting device for electromagnetic induction device
JP2007305491A (en) * 2006-05-12 2007-11-22 Mitsubishi Electric Corp Phase-control switching device
JP2008136290A (en) * 2006-11-28 2008-06-12 Mitsubishi Electric Corp Switch controller
JP2008140690A (en) * 2006-12-04 2008-06-19 Toshiba Corp Contact closing control method of circuit breaker, and its device
JP2008529227A (en) * 2005-01-31 2008-07-31 シーメンス アクチエンゲゼルシヤフト Method and apparatus for determining the closing time of an electrical switchgear
JP2010020985A (en) * 2008-07-09 2010-01-28 Mitsubishi Electric Corp Phase-control switching device
WO2010043014A1 (en) * 2008-10-13 2010-04-22 Universidade Estadual De Campinas - Unicamp Fast three-phase reclosing method in shunt reactor compensated transmission lines
US7902696B2 (en) 2007-04-27 2011-03-08 Mitsubishi Electric Corporation Controlled switching device
US7936093B2 (en) 2007-02-15 2011-05-03 Mitsubishi Electric Corporation Phase control switching device
CN102163841A (en) * 2010-02-19 2011-08-24 株式会社东芝 Overvoltage suppressing device
JP4799712B1 (en) * 2011-01-12 2011-10-26 三菱電機株式会社 Power switching control device and its closing control method
CN103339702A (en) * 2011-02-02 2013-10-02 三菱电机株式会社 Power switch device operation time prediction equipment and method
EP2665078A1 (en) * 2011-01-11 2013-11-20 Mitsubishi Electric Corporation Power switching control device and closing control method thereof
JP2014079156A (en) * 2012-10-05 2014-05-01 Schneider Electric Industries Sas Reactive power compensator
WO2014091618A1 (en) * 2012-12-14 2014-06-19 三菱電機株式会社 Power switching control apparatus
RU2658673C1 (en) * 2017-09-26 2018-06-22 Александр Леонидович Куликов Method of automatic reclosure of overhead transmission line
CN111929572A (en) * 2019-12-20 2020-11-13 南京南瑞继保电气有限公司 Circuit breaker opening and closing time estimation device and method
CN113376515A (en) * 2020-03-09 2021-09-10 西门子股份公司 Method and device for determining closing time of circuit breaker and computer readable medium
US11300616B2 (en) * 2017-07-12 2022-04-12 Mayo Foundation For Medical Education And Research Systems and methods for non-invasive current estimation

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179323A (en) * 2004-12-22 2006-07-06 Mitsubishi Electric Corp Switching pole phase control device
JP4507092B2 (en) * 2004-12-22 2010-07-21 三菱電機株式会社 Switching pole phase controller
JP2008529227A (en) * 2005-01-31 2008-07-31 シーメンス アクチエンゲゼルシヤフト Method and apparatus for determining the closing time of an electrical switchgear
JP4495030B2 (en) * 2005-05-19 2010-06-30 三菱電機株式会社 Closed phase control device for switchgear
JP2006324125A (en) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp Closing pole phase controlling device for switching apparatus
JP2006344396A (en) * 2005-06-07 2006-12-21 Mitsubishi Electric Corp Close phase detecting device for electromagnetic induction device
JP2007305491A (en) * 2006-05-12 2007-11-22 Mitsubishi Electric Corp Phase-control switching device
JP2008136290A (en) * 2006-11-28 2008-06-12 Mitsubishi Electric Corp Switch controller
JP2008140690A (en) * 2006-12-04 2008-06-19 Toshiba Corp Contact closing control method of circuit breaker, and its device
US7936093B2 (en) 2007-02-15 2011-05-03 Mitsubishi Electric Corporation Phase control switching device
JP4700110B2 (en) * 2007-02-15 2011-06-15 三菱電機株式会社 Phase control switchgear
US7902696B2 (en) 2007-04-27 2011-03-08 Mitsubishi Electric Corporation Controlled switching device
JP2010020985A (en) * 2008-07-09 2010-01-28 Mitsubishi Electric Corp Phase-control switching device
WO2010043014A1 (en) * 2008-10-13 2010-04-22 Universidade Estadual De Campinas - Unicamp Fast three-phase reclosing method in shunt reactor compensated transmission lines
RU2518480C2 (en) * 2008-10-13 2014-06-10 Универсидаде Эстадуаль Де Кампинас - Юникамп Method for fast three-phase reclosure of transmission lines with compensation by shunt reactor
CN102163841A (en) * 2010-02-19 2011-08-24 株式会社东芝 Overvoltage suppressing device
JP2011171174A (en) * 2010-02-19 2011-09-01 Toshiba Corp Overvoltage suppression device
US8749100B2 (en) 2010-02-19 2014-06-10 Kabushiki Kaisha Toshiba Overvoltage suppressing device
EP2665078B1 (en) 2011-01-11 2015-12-16 Mitsubishi Electric Corporation Power switching control device and closing control method thereof
EP2665078A4 (en) * 2011-01-11 2014-11-26 Mitsubishi Electric Corp Power switching control device and closing control method thereof
EP2665078A1 (en) * 2011-01-11 2013-11-20 Mitsubishi Electric Corporation Power switching control device and closing control method thereof
JP4799712B1 (en) * 2011-01-12 2011-10-26 三菱電機株式会社 Power switching control device and its closing control method
CN103282990A (en) * 2011-01-12 2013-09-04 三菱电机株式会社 Power switching control device and closing control method thereof
WO2012095958A1 (en) * 2011-01-12 2012-07-19 三菱電機株式会社 Power switching control device and closing control method thereof
US9263213B2 (en) 2011-01-12 2016-02-16 Mitsubishi Electric Corporation Power switching control device and closing control method thereof
CN103339702A (en) * 2011-02-02 2013-10-02 三菱电机株式会社 Power switch device operation time prediction equipment and method
JP2014079156A (en) * 2012-10-05 2014-05-01 Schneider Electric Industries Sas Reactive power compensator
WO2014091618A1 (en) * 2012-12-14 2014-06-19 三菱電機株式会社 Power switching control apparatus
JP6045604B2 (en) * 2012-12-14 2016-12-14 三菱電機株式会社 Power switching control device
US9779892B2 (en) 2012-12-14 2017-10-03 Mitsubishi Electric Corporation Power switching control apparatus for switching timings of breaker to suppress transit voltage and current upon turning on the breaker
US11300616B2 (en) * 2017-07-12 2022-04-12 Mayo Foundation For Medical Education And Research Systems and methods for non-invasive current estimation
RU2658673C1 (en) * 2017-09-26 2018-06-22 Александр Леонидович Куликов Method of automatic reclosure of overhead transmission line
CN111929572A (en) * 2019-12-20 2020-11-13 南京南瑞继保电气有限公司 Circuit breaker opening and closing time estimation device and method
CN113376515A (en) * 2020-03-09 2021-09-10 西门子股份公司 Method and device for determining closing time of circuit breaker and computer readable medium

Also Published As

Publication number Publication date
JP3986810B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP2003168335A (en) Power switching control device
US6433980B1 (en) Controlled switching device
CA2664474C (en) Switching controlgear of circuit breaker
US7259947B2 (en) Phase control switching device
JP5170467B2 (en) Predictive control system
JP3804606B2 (en) Transformer excitation inrush current suppression device
JP4936974B2 (en) Power switching control device
JP5044188B2 (en) Magnetic flux measuring device for static induction electrical equipment, magnetic flux measuring method, and synchronous switching control device for circuit breaker
JP4407561B2 (en) Residual magnetic flux measuring device
JP4908171B2 (en) Circuit breaker closing control method and apparatus
JP5844015B1 (en) Power switching control device
JPH085679A (en) Method and apparatus for detecting frequency and power system stabilization system
KR102045898B1 (en) Control method of circuit breaker
JP4818488B1 (en) Power switching control device and its closing control method
CA2889935C (en) Power switching control apparatus
JP4666367B2 (en) Power switching control device
JPH05120945A (en) Contact wear monitoring device
US10924050B2 (en) Motor control circuit and motor controller
JP2000011824A (en) Power switch control device
JP3601406B2 (en) Inductive load switch opening method and control device
KR950030460A (en) Driving device of DC motor without commutator
JPS6286620A (en) Switch
JPH04190636A (en) Method for making electric power system synchronously and apparatus thereof
JPH10178796A (en) Control of brushless motor
JPH0562384A (en) Head positioning circuit for magnetic disk device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Ref document number: 3986810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees