JP2003167195A - Optical device - Google Patents

Optical device

Info

Publication number
JP2003167195A
JP2003167195A JP2001369956A JP2001369956A JP2003167195A JP 2003167195 A JP2003167195 A JP 2003167195A JP 2001369956 A JP2001369956 A JP 2001369956A JP 2001369956 A JP2001369956 A JP 2001369956A JP 2003167195 A JP2003167195 A JP 2003167195A
Authority
JP
Japan
Prior art keywords
lens
image
optical
receiving surface
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001369956A
Other languages
Japanese (ja)
Other versions
JP3631718B2 (en
Inventor
Akihito Takeya
章仁 竹家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001369956A priority Critical patent/JP3631718B2/en
Publication of JP2003167195A publication Critical patent/JP2003167195A/en
Application granted granted Critical
Publication of JP3631718B2 publication Critical patent/JP3631718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical device capable of receiving an image in a wide area with less distortion. <P>SOLUTION: The optical device 10 is provided with a lens 14, an image receiving surface 18 for receiving an optical image transmitted through the lens, a 1st reflection mirror 22 arranged around the lens by taking the optical axis 12 of the lens as a center, and a 2nd reflection mirror 26 for reflecting the light reflected by the 1st reflection mirror toward the lens, the reflection surfaces 24 and 28 of the 1st and 2nd reflection mirrors are formed so that the optical image enlargement ratio at the center part of the image receiving surface may become larger or smaller than the optical image enlargement ratio at the peripheral part of the image receiving surface. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学装置、特に広
い視野の光像を撮影するために利用される光学装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device, and more particularly to an optical device used to capture a light image with a wide field of view.

【0002】[0002]

【従来の技術】非常に広い範囲を一つのカメラで撮像又
は監視するために魚眼レンズが用いられており、現在提
供されている魚眼レンズの殆どが等距離射影方式(小倉
敏布著、1995年、朝日ソノラマ発行を参照)を採用
している。
2. Description of the Related Art A fisheye lens is used to image or monitor a very wide range with a single camera, and most of the fisheye lenses currently offered are equidistant projection methods (Ogura Toshifu, 1995, Asahi). Sonorama issue)) has been adopted.

【0003】[0003]

【発明が解決しようとする課題】しかし、等距離射影方
式を採用している魚眼レンズを備えた監視カメラを天井
に下向きに取り付けて室内全体を監視する場合、カメラ
直下の被写体は大きく映るが、被写体がカメラ直下から
離れていくにしたがって像が小さくなり、しかも撮影さ
れた像の歪みが大きくなるという問題があった。
However, when a surveillance camera equipped with a fisheye lens adopting the equidistant projection method is mounted downward on the ceiling to monitor the entire room, the subject directly under the camera appears large, but However, there is a problem that the image becomes smaller as it goes away from directly under the camera, and the distortion of the captured image becomes large.

【0004】また、魚眼レンズを備えたカメラを水道管
等の管路の内壁検査に用いる場合、カメラの光軸を管路
に沿って挿入すると、カメラの真横にある内壁部分は大
きく映るが、前方の離れた場所にある内壁部分は小さく
映るという問題があった。
Further, when a camera equipped with a fisheye lens is used to inspect the inner wall of a conduit such as a water pipe, if the optical axis of the camera is inserted along the conduit, the inner wall part right next to the camera is largely reflected, There was a problem that the inner wall part in the remote place looks small.

【0005】[0005]

【課題を解決するための手段】本発明はこのような問題
を解消するためになされたもので、光学装置が、レンズ
と、レンズを透過した光像を受像する受像面と、第1の
反射鏡と、第1の反射鏡で反射した光をレンズに向けて
反射する第2の反射鏡とを備え、第1の反射鏡と第2の
反射鏡の反射面は、受像面中心部における光像拡大率が
受像面周辺部における光像拡大率よりも大きくなる形状
に形成されていることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an optical device includes a lens, an image receiving surface for receiving an optical image transmitted through the lens, and a first reflection member. A mirror and a second reflecting mirror that reflects the light reflected by the first reflecting mirror toward the lens, and the reflecting surfaces of the first reflecting mirror and the second reflecting mirror are the light at the center of the image receiving surface. It is characterized in that it is formed in a shape such that the image enlargement ratio is larger than the optical image enlargement ratio in the peripheral portion of the image receiving surface.

【0006】この光学装置の他の形態は、第1の反射鏡
と第2の反射鏡の反射面が、以下の関係を満足するよう
に形成されていることを特徴とする。
Another form of this optical device is characterized in that the reflecting surfaces of the first reflecting mirror and the second reflecting mirror are formed so as to satisfy the following relationship.

【0007】本発明の他の光学装置は、レンズと、レン
ズを透過した光像を受像する受像面と、第1の反射鏡
と、第1の反射鏡で反射した光をレンズに向けて反射す
る第2の反射鏡とを備え、第1の反射鏡と第2の反射鏡
の反射面は、受像面中心部における光像拡大率が受像面
周辺部における光像拡大率よりも小さくなる形状に形成
されていることを特徴とする。光学装置。
In another optical device of the present invention, a lens, an image receiving surface for receiving an optical image transmitted through the lens, a first reflecting mirror, and the light reflected by the first reflecting mirror are reflected toward the lens. And a second reflecting mirror for controlling the reflecting surface of the first reflecting mirror and the reflecting surface of the second reflecting mirror, wherein the optical image magnification at the central portion of the image receiving surface is smaller than that at the peripheral portion of the image receiving surface. It is characterized in that it is formed in. Optical device.

【0008】この光学装置の他の形態は、第1の反射鏡
と第2の反射鏡の反射面が、以下の関係を満足するよう
に形成されていることを特徴とする。
Another form of this optical device is characterized in that the reflecting surfaces of the first reflecting mirror and the second reflecting mirror are formed so as to satisfy the following relationship.

【0009】上述の光学装置の他の形態は、第2の反射
面は光軸を中心とする開口部を有し、この開口部に第2
のレンズが配置されていることを特徴とする。
In another form of the above-mentioned optical device, the second reflecting surface has an opening centered on the optical axis, and the second reflecting surface has a second opening.
The lens is arranged.

【0010】また、上述の光学装置の他の形態は、第1
のレンズと第2のレンズが、光軸を中心として対称形状
の略半球状又は略ドーム状の透明カバーによって覆われ
ていることを特徴とする。
Another form of the above-mentioned optical device is the first
The lens and the second lens are covered with a transparent cover having a substantially hemispherical shape or a substantially dome shape symmetrical with respect to the optical axis.

【0011】本発明の他の光学装置は、レンズ又は反射
鏡を含む光学系と、光学系によって案内された光を受像
する受像面とを有し、光学系は、受像面中心部における
光像拡大率が受像面周辺部における光像拡大率よりも大
きくなるように設計されていることを特徴とする。
Another optical device of the present invention has an optical system including a lens or a reflecting mirror, and an image receiving surface for receiving the light guided by the optical system, and the optical system is an optical image at the center of the image receiving surface. It is characterized in that the magnification is designed to be larger than the optical image magnification in the peripheral portion of the image receiving surface.

【0012】また、本発明の他の光学装置は、レンズ又
は反射鏡を含む光学系と、光学系によって案内された光
を受像する受像面とを有し、光学系は、受像面中心部に
おける光像拡大率が受像面周辺部における光像拡大率よ
りも小さくなるように設計されていることを特徴とす
る。
Further, another optical device of the present invention has an optical system including a lens or a reflecting mirror and an image receiving surface for receiving the light guided by the optical system, and the optical system has a central portion of the image receiving surface. It is characterized in that the optical image magnification is designed to be smaller than the optical image magnification in the peripheral portion of the image receiving surface.

【0013】[0013]

【発明の実施の形態】以下、添付図面を参照して本発明
の複数の実施の形態を説明する。なお、以下の説明で
は、理解を容易にするために種々の方向を示す用語(例
えば、「上」、「下」、「右」、「左」、「後」、
「前」及びこれらを含む用語)を用いているが、本発明
はこれらの用語によって限定的に解釈されるものでな
い。また、以下の説明において、「レンズ」とは、一枚
のレンズによって構成されるものだけでなく、複数枚の
レンズによって構成される組レンズも含む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A plurality of embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, in order to facilitate understanding, terms indicating various directions (for example, “up”, “down”, “right”, “left”, “rear”,
“Before” and terms including these are used, but the present invention is not limited to these terms. Further, in the following description, the “lens” includes not only a lens formed by one lens but also a combined lens formed by a plurality of lenses.

【0014】〔実施の形態1〕図1は、実施の形態1に
係る光学装置を具体化した監視カメラ10を示す。監視
カメラ10は、図面の上下方向に向けられた光軸12を
有するレンズ(結像レンズ)14備えている。レンズ1
4の下には撮像装置16が配置されており、レンズ14
によって結像された光像が撮像装置16の受像面18に
受像されるようにしてある。レンズ14の上には、光軸
12を中心とする対称形状の略半球状又は略ドーム状の
透明カバー20が配置されている。透明カバー20の内
側であってレンズ14の外側には、光軸12を中心とす
るドーナッツ状の主鏡(第1の反射鏡)22が配置され
ている。主鏡22の上面である反射面(第1の反射面)
24は、図1において断面で表された部分に明瞭に描か
れているように、上に向けて凸形状に加工されている。
また、透明カバー20の内側であってレンズ14の真上
には、副鏡(第1の反射鏡)26が配置されている。副
鏡26の下面である反射面(第2の反射面)28は、図
1において断面で表された部分に明瞭に描かれているよ
うに、下に向けて凸形状(例えば、円錐状)に加工され
ている。このように構成された監視カメラ10によれ
ば、図示するように、監視カメラ10に入る光のうち主
鏡22に入射された光30は、この主鏡22の反射面2
4で反射し、次に副鏡26の反射面28で反射し、レン
ズ14によって撮像装置16の受像面18に結像され
る。
[First Embodiment] FIG. 1 shows a surveillance camera 10 embodying an optical device according to a first embodiment. The surveillance camera 10 includes a lens (imaging lens) 14 having an optical axis 12 oriented in the vertical direction of the drawing. Lens 1
An image pickup device 16 is arranged under the lens 4
The optical image formed by is received by the image receiving surface 18 of the image pickup device 16. On the lens 14, a symmetrical semispherical or dome-shaped transparent cover 20 having a symmetrical shape about the optical axis 12 is arranged. A donut-shaped main mirror (first reflecting mirror) 22 centered on the optical axis 12 is arranged inside the transparent cover 20 and outside the lens 14. Reflecting surface (first reflecting surface) that is the upper surface of the primary mirror 22.
24 is processed to have a convex shape facing upward, as clearly shown in the portion shown by the cross section in FIG.
A sub-mirror (first reflecting mirror) 26 is arranged inside the transparent cover 20 and directly above the lens 14. The reflection surface (second reflection surface) 28, which is the lower surface of the secondary mirror 26, has a downwardly convex shape (for example, a conical shape), as clearly shown in the portion represented by the cross section in FIG. Has been processed into. According to the surveillance camera 10 configured in this way, as shown in the figure, the light 30 entering the primary mirror 22 among the lights entering the surveillance camera 10 is reflected by the reflecting surface 2 of the primary mirror 22.
4 and then the reflecting surface 28 of the secondary mirror 26, and the image is formed on the image receiving surface 18 of the image pickup device 16 by the lens 14.

【0015】主鏡22と副鏡26の反射面24,28の
形状について説明する。理解を容易にするために、図2
に示すように、監視カメラ10の視野角を180°と
し、監視カメラ10から直径dの半球の仮想表面32を
撮影する場合を考える。この場合、光軸12の方向を入
射角0の方向とすると、光軸12を中心として入射角φ
の方向に見える半球仮想表面32上の円34の周長cφ
は、式(1)で与えられる。
The shapes of the reflecting surfaces 24 and 28 of the primary mirror 22 and the secondary mirror 26 will be described. For ease of understanding, FIG.
As shown in, consider a case where the viewing angle of the surveillance camera 10 is 180 ° and the hemispherical virtual surface 32 of the diameter d is photographed from the surveillance camera 10. In this case, assuming that the direction of the optical axis 12 is the direction of the incident angle 0, the incident angle φ is centered on the optical axis 12.
Circumference c phi circle 34 on the hemisphere imaginary surface 32 which is visible in the direction of
Is given by equation (1).

【0016】また、入射角90°方向に見える半球仮想
表面32上の円36の周長cmaxは、式(2)で与え
られる。
The perimeter c max of the circle 36 on the virtual surface 32 of the hemisphere, which is visible in the direction of the incident angle of 90 °, is given by the equation (2).

【0017】ここで、入射角90°方向に見える半球仮
想表面32上の円36の監視カメラ10から見た見込み
角は2πであるから、入射角φ方向に見える半球仮想表
面32上の円34の見込み角は、式(3)で与えられ
る。
Here, since the prospective angle of the circle 36 on the hemispherical virtual surface 32 seen in the incident angle 90 ° direction as viewed from the surveillance camera 10 is 2π, the circle 34 on the hemispherical virtual surface 32 seen in the incident angle φ direction. The angle of view of is given by equation (3).

【0018】次に、図3に示すように、撮像装置16の
受像面18に半径1の円形像38が映っている場合を考
える。この場合、半径yの円40の周長cは、式
(4)で与えられる。
Next, let us consider a case where a circular image 38 having a radius of 1 appears on the image receiving surface 18 of the image pickup device 16 as shown in FIG. In this case, the circumferential length c y of a circle 40 of radius y is given by Equation (4).

【0019】また、この円40が、監視カメラ10から
見て入射角φ方向に見える半球仮想表面32上の円34
と完全に重なって映っているとすると、式(5)の関係
が成立する。
Further, this circle 40 is a circle 34 on the virtual surface 32 of the hemisphere which is seen from the surveillance camera 10 in the direction of the incident angle φ.
If the image is completely overlapped with, the relationship of Expression (5) is established.

【0020】式(5)を変形すると式(6)が得られ
る。
By modifying the equation (5), the equation (6) is obtained.

【0021】式(6)を積分すると、式(7)が得られ
る。
Integrating equation (6) yields equation (7).

【0022】ここで、φ=0のとき、y=0である。し
たがって、C=0である。よって、式(7)から式
(8)が導かれる。
Here, when φ = 0, y = 0. Therefore, C = 0. Therefore, Equation (8) is derived from Equation (7).

【0023】式(8)の関係が成立するとき、図4に示
すように、半球仮想表面32にある小さな球状被写体を
投影した受像面18の光像42において、光軸12を中
心とする径方向の幅ABと周方向の幅CDは等しくな
る。また、式(5)より、φ=0、y=0のとき、 となり、φ=π/2、y=1のとき、 となり、入射角90°方向の光像は入射角0°方向の光
像に比べて2倍の拡大率をもって受像される。そのた
め、図5に示すように、入射角を変化させて微小な球体
を撮像しても該球体の光像44は歪まず、大きさのみが
変化する。
When the relation of the expression (8) is established, as shown in FIG. 4, in the light image 42 of the image receiving surface 18 on which the small spherical object on the virtual hemispherical surface 32 is projected, the diameter around the optical axis 12 is the center. The width AB in the direction and the width CD in the circumferential direction are equal. Also, from equation (5), when φ = 0 and y = 0, When φ = π / 2 and y = 1, Therefore, the optical image with the incident angle of 90 ° is received with a magnification of 2 times that of the optical image with the incident angle of 0 °. Therefore, as shown in FIG. 5, even if the incident angle is changed and a minute sphere is imaged, the optical image 44 of the sphere does not distort and only the size changes.

【0024】以上より、主鏡22と副鏡26の反射面2
4,28が式(8)の関係を満足するように設計するこ
とで、受像面中心の像に比べて受像面周辺の像が拡大し
て表示される。そのため、例えば、天井に下向きに監視
カメラ10を取り付けて室内全体を監視する場合、被写
体が監視カメラ10の真下から離れていく(つまり、受
像面周辺部寄りになる)ほど被写体が監視カメラ10か
ら遠くなって見込み角が小さくなるが、拡大率が大きく
なることによって撮影される像は小さくならず、被写体
の監視が容易に行える。
From the above, the reflecting surfaces 2 of the primary mirror 22 and the secondary mirror 26
By designing 4 and 28 so as to satisfy the relationship of the expression (8), the image around the image receiving surface is enlarged and displayed compared to the image at the center of the image receiving surface. Therefore, for example, when the surveillance camera 10 is mounted downward on the ceiling to monitor the entire room, the subject is separated from the surveillance camera 10 as it is farther away from directly below the surveillance camera 10 (that is, closer to the periphery of the image receiving surface). Although the angle of view becomes smaller as the distance increases, the image taken does not become smaller as the magnification increases, and the subject can be easily monitored.

【0025】〔実施の形態2〕魚眼レンズを備えた監視
カメラを水道管等の管路の内壁検査に用いる場合、カメ
ラの光軸を管路に沿って挿入すると、カメラの真横にあ
る内壁部分は大きく映るが、前方の離れた場所にある内
壁部分は小さく映る。したがって、実施の形態1の監視
カメラ10に対する主鏡22と副鏡26の設計とは逆
に、主鏡22と副鏡26の反射面24,28は式(9)
の関係を満足するように設計する
[Embodiment 2] When a surveillance camera equipped with a fisheye lens is used to inspect the inner wall of a pipeline such as a water pipe, when the optical axis of the camera is inserted along the pipeline, the inner wall portion right next to the camera is It looks large, but the inner wall part at a distance in front looks small. Therefore, contrary to the design of the primary mirror 22 and the secondary mirror 26 for the surveillance camera 10 of the first embodiment, the reflecting surfaces 24 and 28 of the primary mirror 22 and the secondary mirror 26 are expressed by the formula (9).
To satisfy the relationship

【0026】このように設計された監視カメラによれ
ば、受像面周辺部の像に比べて受像面中心部の像が拡大
して表示されるので、例えば水道管の内壁検査に用いる
場合、カメラの光軸を水道管の回転対称軸(長軸)に平
行に挿入すると、カメラから見て前方にある内壁部分
(つまり、受像面中心部寄りになる)ほど被写体が監視
カメラから遠くなって見込み角が小さくなるが、拡大率
が大きくなることによって撮影される像は小さくなら
ず、水道管内壁の検査が容易に行える。
According to the surveillance camera thus designed, the image of the central portion of the image receiving surface is enlarged and displayed compared to the image of the peripheral portion of the image receiving surface. If the optical axis of is inserted parallel to the rotational symmetry axis (long axis) of the water pipe, the inner wall part in front of the camera (that is, closer to the center of the image receiving surface) will make the subject farther from the surveillance camera. Although the angle becomes smaller, the image taken does not become smaller as the magnification increases, and the inner wall of the water pipe can be easily inspected.

【0027】〔実施の形態3〕図1に示す実施の形態1
の監視カメラ10では、図6に示すように、視野46内
で副鏡26の背後が死角48となり、副鏡26の背後か
ら該副鏡26に向かって進行する光は副鏡26によって
遮断され、レンズ14に入射することがない。したがっ
て、図7に示すように、副鏡26の中心に光軸12を中
心とする円形の開口部50を形成すると共に、この開口
部50にレンズ(例えば凹レンズ)52を配置し、レン
ズ14の正面から該レンズ14に向かって進行する光を
レンズ52で集光してレンズ14に入射することが望ま
しい。これにより、監視カメラ10の視野46が拡大さ
れ、広範囲の被写体を撮像できる。
[Third Embodiment] A first embodiment shown in FIG.
As shown in FIG. 6, in the surveillance camera 10 of FIG. 6, the blind spot is behind the secondary mirror 26 in the field of view 46, and the light traveling from behind the secondary mirror 26 toward the secondary mirror 26 is blocked by the secondary mirror 26. , Does not enter the lens 14. Therefore, as shown in FIG. 7, a circular opening 50 having the optical axis 12 as the center is formed in the center of the secondary mirror 26, and a lens (for example, a concave lens) 52 is arranged in the opening 50, and It is desirable that the light traveling from the front toward the lens 14 is condensed by the lens 52 and is incident on the lens 14. As a result, the field of view 46 of the surveillance camera 10 is expanded, and a wide range of subjects can be imaged.

【0028】〔実施の形態4〕本発明は、反射鏡を含ま
ないレンズ又はレンズ系にも適用することができる。具
体的に、図8に示すように複数枚のレンズによって構成
されるレンズ系(組レンズ)54において、レンズ系5
4に入射される光の入射角をφ、受像面18における像
高をY、像高の最大値をYmaxとすると、このレンズ
系54が式(10)を満足するように設計することで、
受像面中心部に比べて受像面周辺部の拡大率を大きくす
ることができる。
[Fourth Embodiment] The present invention can be applied to a lens or a lens system which does not include a reflecting mirror. Specifically, as shown in FIG. 8, in the lens system (combined lens) 54 composed of a plurality of lenses, the lens system 5
The lens system 54 is designed so as to satisfy Expression (10), where φ is the incident angle of the light incident on 4, the image height on the image receiving surface 18 is Y, and the maximum value of the image height is Y max. ,
The enlargement ratio of the peripheral portion of the image receiving surface can be made larger than that of the central portion of the image receiving surface.

【0029】その結果、例えば、天井に下向きに監視カ
メラ10を取り付けて室内全体を監視する場合、被写体
が監視カメラ10の真下から離れていく(つまり、受像
面周辺部寄りになる)ほど被写体が監視カメラ10から
遠くなって見込み角が小さくなるが、拡大率が大きくな
ることによって撮影される像は小さくならず、被写体の
監視が容易に行える。
As a result, for example, when the surveillance camera 10 is mounted downward on the ceiling to monitor the entire room, the further the subject is from directly under the surveillance camera 10 (that is, the closer to the periphery of the image receiving surface), the more the subject becomes. Although the perspective angle becomes smaller as the distance from the surveillance camera 10 increases, the image taken by the enlargement ratio does not become smaller and the subject can be easily monitored.

【0030】逆に、レンズ系54が式(11)を満足す
るように設計することで、受像面周辺部に比べて受像面
中心部の拡大率を大きくすることができる。
On the contrary, by designing the lens system 54 so as to satisfy the expression (11), it is possible to increase the enlargement ratio of the central portion of the image receiving surface as compared with the peripheral portion of the image receiving surface.

【0031】その結果、受像面周辺部の像に比べて受像
面中心部の像が拡大して表示されるので、例えば水道管
の内壁検査に用いる場合、カメラの光軸を水道管の回転
対称軸(長軸)に平行に挿入すると、カメラから見て前
方にある内壁部分(つまり、受像面中心部寄りになる)
ほど被写体が監視カメラから遠くなって見込み角が小さ
くなるが、拡大率が大きくなることによって撮影される
像は小さくならず、水道管内壁の検査が容易に行える。
As a result, the image of the central portion of the image receiving surface is enlarged compared to the image of the peripheral portion of the image receiving surface. For example, when used for inspection of the inner wall of a water pipe, the optical axis of the camera is rotationally symmetrical with respect to the water pipe. Inserted parallel to the axis (major axis), the inner wall part in front of the camera (that is, closer to the center of the image receiving surface)
The farther the subject is from the surveillance camera, the smaller the angle of view becomes, but the image taken does not become smaller as the magnification increases, and the inner wall of the water pipe can be easily inspected.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
に係る光学装置によれば、広範囲の領域の像を少ない歪
で受像できる。
As is apparent from the above description, according to the optical device of the present invention, it is possible to receive an image of a wide area with little distortion.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る光学装置の実施の形態1を示す
斜視図。
FIG. 1 is a perspective view showing a first embodiment of an optical device according to the present invention.

【図2】 図1に示す光学装置を中心とする球形仮想表
面を示す斜視図。
FIG. 2 is a perspective view showing a spherical virtual surface centered on the optical device shown in FIG.

【図3】 受像面に受像される円形像を示す平面図。FIG. 3 is a plan view showing a circular image received on an image receiving surface.

【図4】 受像面に受像される球形被写体の像を示す平
面図。
FIG. 4 is a plan view showing an image of a spherical subject which is received on the image receiving surface.

【図5】 同一の大きさの球形被写体が受像面に受像さ
れた状態を示す平面図。
FIG. 5 is a plan view showing a state in which spherical objects of the same size are received on the image receiving surface.

【図6】 実施の形態1において副鏡によって遮断され
る光路を示す断面図。
FIG. 6 is a cross-sectional view showing an optical path blocked by a secondary mirror in the first embodiment.

【図7】 実施の形態3に係る光学装置の断面図。FIG. 7 is a sectional view of the optical device according to the third embodiment.

【図8】 実施の形態4に係る光学装置の断面図。FIG. 8 is a sectional view of the optical device according to the fourth embodiment.

【符号の説明】[Explanation of symbols]

10 監視カメラ、12 光軸、14 レンズ、16
撮像装置、18 受像面、20 透明カバー、22 主
鏡、24 反射面、26 副鏡、28 反射面、30
光。
10 surveillance camera, 12 optical axis, 14 lens, 16
Imaging device, 18 image receiving surface, 20 transparent cover, 22 primary mirror, 24 reflective surface, 26 secondary mirror, 28 reflective surface, 30
light.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 レンズと、 レンズを透過した光像を受像する受像面と、 第1の反射鏡と、 第1の反射鏡で反射した光をレンズに向けて反射する第
2の反射鏡とを備え、 第1の反射鏡と第2の反射鏡の反射面は、受像面中心部
における光像拡大率が受像面周辺部における光像拡大率
よりも大きくなる形状に形成されていることを特徴とす
る光学装置。
1. A lens, an image receiving surface for receiving an optical image transmitted through the lens, a first reflecting mirror, and a second reflecting mirror for reflecting the light reflected by the first reflecting mirror toward the lens. And the reflecting surfaces of the first reflecting mirror and the second reflecting mirror are formed in a shape such that the optical image magnification at the central portion of the image receiving surface is larger than the optical image magnification at the peripheral portion of the image receiving surface. Characterized optical device.
【請求項2】 第1の反射鏡と第2の反射鏡の反射面
が、以下の関係を満足するように形成されていることを
特徴とする請求項1に記載の光学装置。
2. The optical device according to claim 1, wherein the reflecting surfaces of the first reflecting mirror and the second reflecting mirror are formed so as to satisfy the following relationship.
【請求項3】 レンズと、 レンズを透過した光像を受像する受像面と、 第1の反射鏡と、 第1の反射鏡で反射した光をレンズに向けて反射する第
2の反射鏡とを備え、 第1の反射鏡と第2の反射鏡の反射面は、受像面中心部
における光像拡大率が受像面周辺部における光像拡大率
よりも小さくなる形状に形成されていることを特徴とす
る光学装置。
3. A lens, an image receiving surface for receiving an optical image transmitted through the lens, a first reflecting mirror, and a second reflecting mirror for reflecting the light reflected by the first reflecting mirror toward the lens. And the reflecting surfaces of the first reflecting mirror and the second reflecting mirror are formed in a shape such that the optical image magnification at the central portion of the image receiving surface is smaller than that at the peripheral portion of the image receiving surface. Characterized optical device.
【請求項4】 第1の反射鏡と第2の反射鏡の反射面
が、以下の関係を満足するように形成されていることを
特徴とする請求項1に記載のカメラ。
4. The camera according to claim 1, wherein the reflecting surfaces of the first reflecting mirror and the second reflecting mirror are formed so as to satisfy the following relationship.
【請求項5】 第2の反射面は光軸を中心とする開口部
を有し、この開口部に第2のレンズが配置されているこ
とを特徴とする請求項1から4のいずれか一に記載の光
学装置。
5. The second reflecting surface has an opening centered on the optical axis, and the second lens is arranged in this opening. The optical device according to.
【請求項6】 第1のレンズと第2のレンズが、光軸を
中心として対称形状の略半球状又は略ドーム状の透明カ
バーによって覆われていることを特徴とする請求項1か
ら5のいずれか一に記載の光学装置。
6. The first lens and the second lens are covered by a substantially hemispherical or substantially dome-shaped transparent cover which is symmetrical about the optical axis. The optical device according to any one of claims.
【請求項7】 レンズ又は反射鏡を含む光学系と、 光学系によって案内された光を受像する受像面とを有
し、 光学系は、受像面中心部における光像拡大率が受像面周
辺部における光像拡大率よりも大きくなるように設計さ
れていることを特徴とする光学装置。
7. An optical system including a lens or a reflecting mirror, and an image receiving surface for receiving the light guided by the optical system, wherein the optical system has a light image magnification ratio in a central portion of the image receiving surface and a peripheral portion of the image receiving surface. The optical device is designed to be larger than the optical image magnification ratio in.
【請求項8】 レンズ又は反射鏡を含む光学系と、 光学系によって案内された光を受像する受像面とを有
し、 光学系は、受像面中心部における光像拡大率が受像面周
辺部における光像拡大率よりも小さくなるように設計さ
れていることを特徴とする光学装置。
8. An optical system including a lens or a reflecting mirror, and an image receiving surface for receiving the light guided by the optical system, wherein the optical system has a light image enlargement ratio in a central portion of the image receiving surface. An optical device which is designed to be smaller than the optical image magnification ratio in.
JP2001369956A 2001-12-04 2001-12-04 Optical device Expired - Lifetime JP3631718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369956A JP3631718B2 (en) 2001-12-04 2001-12-04 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369956A JP3631718B2 (en) 2001-12-04 2001-12-04 Optical device

Publications (2)

Publication Number Publication Date
JP2003167195A true JP2003167195A (en) 2003-06-13
JP3631718B2 JP3631718B2 (en) 2005-03-23

Family

ID=19179267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369956A Expired - Lifetime JP3631718B2 (en) 2001-12-04 2001-12-04 Optical device

Country Status (1)

Country Link
JP (1) JP3631718B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063891A1 (en) 2005-12-02 2007-06-07 Nikon Corporation Fish-eye lens and imaging device
US7245443B2 (en) 2004-08-17 2007-07-17 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
US7403343B2 (en) 2004-08-18 2008-07-22 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
JP2008257121A (en) * 2007-04-09 2008-10-23 Olympus Corp Observation optical system
US7463431B2 (en) 2006-06-09 2008-12-09 Olympus Corporation Optical system
US8072693B2 (en) 2006-06-15 2011-12-06 Olympus Corporation Optical system
US8537263B2 (en) 2010-01-11 2013-09-17 STMicroelectronics (R&D) Ltd. Optical navigation devices and associated methods
JP7402236B2 (en) 2019-01-08 2023-12-20 セントレ サイエンティフィーク エ テクニーク デュ バティマン(シーエスティービー) Ultra-wide viewing angle accessories for infrared detectors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245443B2 (en) 2004-08-17 2007-07-17 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
US7403343B2 (en) 2004-08-18 2008-07-22 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
WO2007063891A1 (en) 2005-12-02 2007-06-07 Nikon Corporation Fish-eye lens and imaging device
US7554753B2 (en) 2005-12-02 2009-06-30 Nikon Corporation Fish-eye lens and imaging device
US7463431B2 (en) 2006-06-09 2008-12-09 Olympus Corporation Optical system
US8072693B2 (en) 2006-06-15 2011-12-06 Olympus Corporation Optical system
JP2008257121A (en) * 2007-04-09 2008-10-23 Olympus Corp Observation optical system
US8537263B2 (en) 2010-01-11 2013-09-17 STMicroelectronics (R&D) Ltd. Optical navigation devices and associated methods
JP7402236B2 (en) 2019-01-08 2023-12-20 セントレ サイエンティフィーク エ テクニーク デュ バティマン(シーエスティービー) Ultra-wide viewing angle accessories for infrared detectors
US11892355B2 (en) 2019-01-08 2024-02-06 Centre Scientifique et Technique du Bâtiment (CSTB) Very wide-angle viewing accessory for infrared detector

Also Published As

Publication number Publication date
JP3631718B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
RU2201607C2 (en) Omnidirectional facility to form images
US6327020B1 (en) Full-surround spherical screen projection system and recording apparatus therefor
WO2017202323A1 (en) Photosensitive image element, image collector, fingerprint collection device, and display device
TW528924B (en) Panorama image acquisition system, magnifying device for the panorama distorted image capture system, and the alignment device containing four fixed reflective surfaces
JP3841621B2 (en) Omnidirectional visual sensor
JPH0685019B2 (en) Panorama image block for 3D space
US9936112B2 (en) Monitoring camera
JP3631718B2 (en) Optical device
US20050117227A1 (en) Panoramic imaging system with optical zoom capability
TWI442166B (en) A single-camera panoramic stereo system
CN104024911A (en) Objective lens with hyper-hemispheric field of view
US20140340472A1 (en) Panoramic bifocal objective lens
JP2012090723A (en) Imaging device
JP2006235509A (en) Omnidirectional imaging device
JP2003344962A (en) Omnidirectional video display system
JP2007163637A (en) Lens unit and imaging apparatus
JP2010045555A (en) Omnidirectional camera
US6003998A (en) System and method for panoramic imaging using concentric spherical mirrors
JP3220462B2 (en) Reflection type angle-of-view conversion optical device and manufacturing method
JPH1054939A (en) Reflection type viewing angle converting optical device and optical system using the device
JP2003163819A (en) Wide angle imaging apparatus, and monitoring imaging apparatus and onboard imaging apparatus employing the same
JPS5816214A (en) Annular luminaire
US6429418B1 (en) Imaging system
JP2001154596A (en) Fresnel lens for magnification observation of display screen
JPH116904A (en) In-hole observation purpose rotary body lens and probe using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

R150 Certificate of patent or registration of utility model

Ref document number: 3631718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term