JP2003167127A - Birefringent holographic optical element and method for manufacturing the same - Google Patents

Birefringent holographic optical element and method for manufacturing the same

Info

Publication number
JP2003167127A
JP2003167127A JP2001366401A JP2001366401A JP2003167127A JP 2003167127 A JP2003167127 A JP 2003167127A JP 2001366401 A JP2001366401 A JP 2001366401A JP 2001366401 A JP2001366401 A JP 2001366401A JP 2003167127 A JP2003167127 A JP 2003167127A
Authority
JP
Japan
Prior art keywords
light
optical element
birefringent
film
holographic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001366401A
Other languages
Japanese (ja)
Inventor
Yukitoshi Hattori
幸年 服部
Mitsuru Mikami
充 三上
Takeya Sakai
丈也 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2001366401A priority Critical patent/JP2003167127A/en
Publication of JP2003167127A publication Critical patent/JP2003167127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element featuring that the element is produced by irradiating a mixture material film of a photosensitive polymer and a low molecular weight compound with two interfering luminous fluxes and that the element has functions to separate natural light into two polarized light components perpendicular to each other, to transmit one component and to reflect the other and to provide a method for manufacturing the optical element. <P>SOLUTION: A mixture material of a photosensitive polymer and a low molecular weight compound is applied on a substrate to form a film. The film is irradiated with two laser beams each divided into two luminous fluxes by beam splitters to interfere with each other, or the film is irradiated with light using a mask pattern and then irradiated with two interfering luminous fluxes. The birefringent holographic optical element manufactured by this method has functions to separate natural light into two polarized light components perpendicular to each other, to transmit one component and to reflect the other component, and to refract the transmitted polarized light component. The obtained element is used as an optical anisotropic element effective to improve the use efficiency of light of a surface light source device. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば面光源装
置より出射される光の利用効率を向上させるために用い
るに好適の複屈折ホログラフィ光学素子、およびその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringent holographic optical element suitable for use in, for example, improving the utilization efficiency of light emitted from a surface light source device, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の液晶表示装置などに用いられるサ
イドライト型の面光源装置では、導光体より出射される
光を略法線方向に向けるために、特開昭62−1441
02号に記載されているような薄い弾性フィルムの表面
に概ね直角二等辺三角形のプリズムを直線配列させたシ
ート(以降、プリズムシートと呼ぶ)が面光源装置に装
着される。また、液晶表示装置は、自然光を偏光板によ
り偏光させ画像表示に用いる。このため、自然光の2つ
の直交する偏光成分のうち、片方は偏光シートに吸収さ
れ光の利用効率は、最大でも50%であり、面光源装置
から出射される光の損失が大きい。この光の損失を解消
するために、米国特許3610792号、米国特許56
12820号、米国特許5486946号では、透明材
料からなる多層構造体であり、層間で面内にあるある方
向について屈折率差が0に近く、それに直交する方向で
屈折率差を有する光学素子、また、特開平8−2718
37号では、コレステリック液晶と4分の1波長板を用
いた構造の光学素子により、自然光を2つの直交する偏
光成分に分離し、一方を透過し、もう一方を反射させ
る、直線偏光素子が提案されている。このような素子で
は、面光源装置から出射された光のうち、片方の偏光成
分の光は反射され面光源装置の導光体に戻り、この光が
反射や散乱により偏光状態が乱され再度出射される。こ
れを繰り返すことにより、光の利用効率が向上する。ま
た、米国特許5161039号にホログラフィを用いた
偏光分離素子が提案されており、図4に示す紙面垂直方
向の屈折率を周期的に変化させた(屈折率の高い領域
(42)と、屈折率の低い領域(43)が交互に層をな
す)構造の偏光分離素子(41)により、自然光
(L”)を2つの偏光成分(L1”、L2”)に分離し
出射方向を分ける方法が提案されている。この周期構造
は、二つの光を照射し、干渉で強められた部分が二光子
吸収過程を経て屈折率が変化する性質を利用して製作さ
れている。
2. Description of the Related Art In a sidelight type surface light source device used in a conventional liquid crystal display device or the like, in order to direct light emitted from a light guide in a substantially normal direction, Japanese Patent Laid-Open No. 62-14441.
A sheet (hereinafter, referred to as a prism sheet) in which prisms each having an isosceles right triangle are linearly arranged on the surface of a thin elastic film as described in No. 02 is attached to the surface light source device. Further, in the liquid crystal display device, natural light is polarized by a polarizing plate and used for image display. Therefore, one of the two orthogonal polarization components of natural light is absorbed by the polarizing sheet, and the light utilization efficiency is 50% at maximum, and the loss of light emitted from the surface light source device is large. In order to eliminate this light loss, US Pat. No. 3,610,792 and US Pat.
No. 12820 and US Pat. No. 5,486,946, an optical element which is a multilayer structure made of a transparent material, in which a difference in refractive index between layers is close to 0 in a certain direction in a plane and a difference in refractive index in a direction perpendicular to the direction, JP-A-8-2718
No. 37 proposes a linear polarization element that separates natural light into two orthogonal polarization components with an optical element that uses a cholesteric liquid crystal and a quarter-wave plate, transmits one, and reflects the other. Has been done. In such an element, of the light emitted from the surface light source device, the light of one polarization component is reflected and returned to the light guide of the surface light source device, and this light is reflected and scattered and the polarization state is disturbed and emitted again. To be done. By repeating this, the utilization efficiency of light is improved. A polarization separation element using holography has been proposed in US Pat. No. 5,161,039, in which the refractive index in the direction perpendicular to the paper surface shown in FIG. 4 is periodically changed (a high refractive index region (42) and a refractive index). A method of separating natural light (L ″) into two polarization components (L1 ″, L2 ″) and separating the emission direction by a polarization separation element (41) having a structure in which low regions (43) are alternately layered) is proposed. This periodic structure is manufactured by utilizing the property that the part that is irradiated with two lights and strengthened by interference undergoes a two-photon absorption process to change its refractive index.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、シート
表面に微小なプリズムを配列させたプリズムシートで
は、面光源装置からの光を屈折させ正面輝度を向上させ
るなど面光源装置の光を所望の方向に指向性方向を持た
せることは可能であるが、面光源装置からの光のうち片
方の偏光成分が偏光板に吸収されてしまうため光の損失
が大きい。これに対し、透明材料からなる多層構造体の
光学素子やコレステリック液晶と4分の1波長板を用い
た構造の光学素子により、片方の偏光成分の光を反射さ
せ光の利用効率を図る光学素子では、面光源装置から出
射される光を屈折させることが出来ず結果として十分に
光を利用できない場合がある為、結局、前述のプリズム
シート併用して面光源装置に装着される場合が多い。結
果として液晶表示装置の構造が複雑となる問題がある。
更に、透明材料からなる多層構造体を利用した光学素子
では、光の干渉を利用するため一層当たりの膜厚が精密
に制御された多層構造体とする必要があり低コストで製
造することが困難である。また、単に周期構造を面内に
有するホログラム素子では、片方の偏光成分の光を反射
させることは困難であり利用効率を向上させることは期
待できない。
However, in the prism sheet in which minute prisms are arranged on the surface of the sheet, the light from the surface light source device is refracted in a desired direction by refracting the light from the surface light source device to improve the front brightness. Although it is possible to have a directional direction, one polarization component of the light from the surface light source device is absorbed by the polarizing plate, resulting in a large light loss. On the other hand, an optical element having a multilayer structure made of a transparent material or an optical element having a structure using a cholesteric liquid crystal and a quarter-wave plate is used to reflect light of one polarization component to improve light utilization efficiency. However, in some cases, the light emitted from the surface light source device cannot be refracted and, as a result, the light cannot be fully utilized, and in the end, the prism sheet is often used together with the surface light source device. As a result, there is a problem that the structure of the liquid crystal display device becomes complicated.
Further, in an optical element using a multilayer structure made of a transparent material, it is necessary to form a multilayer structure in which the film thickness per layer is precisely controlled because light interference is used, and it is difficult to manufacture at low cost. Is. Further, it is difficult to reflect the light of one polarization component in a hologram element that simply has a periodic structure in the plane, and it cannot be expected to improve the utilization efficiency.

【0004】[0004]

【課題を解決する手段】本発明の複屈折ホログラフィ光
学素子およびその製造方法では、光照射により光学的変
調を生じる材料の膜を基板上に形成し、該膜に少なくと
も2つの光束を干渉させ照射し、光学的変調を周期的に
膜中に発現させることにより、片方の偏光成分の光を反
射させ、且つ透過する偏光成分を屈折させる機能を有す
るホログラフィ光学素子を作製でき、前述の従来技術の
課題が解決される。
In the birefringent holographic optical element and the method for manufacturing the same according to the present invention, a film of a material that causes optical modulation by light irradiation is formed on a substrate, and the film is irradiated with at least two light beams to interfere with each other. Then, by periodically expressing the optical modulation in the film, it is possible to manufacture a holographic optical element having a function of reflecting the light of one polarization component and refracting the transmitted polarization component. Issues are solved.

【0005】[0005]

【発明の実施の形態】以下に、本発明の詳細を説明す
る。本発明の光学素子の製造には、本発明者が、特開平
11−189665号、特願2000−400356号
で記載したような、光照射により光学的変調を生じる材
料が好適に用いられる。この材料は、直線偏光性の光の
照射により、分子配向し複屈折性を生じる感光性材料で
ある。但し、光の照射により光学的変調を生じる材料で
あれば、このような材料に限定されるものではない。前
述のような光照射により光学的変調を生じる感光性材料
を製膜し、異なる2方向からレーザー光のような干渉性
の良い直線偏光性の光束を膜に照射すると、図2に示す
ような2光束(L、L’)の干渉において、2光束の波
面(a、a’)が干渉し強め合う部分(21)で光学的
変調が促進され、2光束が干渉し弱め合う部分(22)
では光学的変調が起こらないので、結果として、製膜さ
れた感光性材料には、複屈折性の周期変化を生じる。製
造方法としては、例えば、図3に示すような2つの光源
(31、31’)ビームスプリッタ(32、32’)、
ミラー(33、33’)からなる光学系を用い、2光束
を干渉させ透明基板(34)上に製膜した感光性材料
(35)を照射すると、光学的変調の周期的な構造が発
現し、この構造を膜中固定することにより複屈折ホログ
ラフィ光学素子を作製することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below. For the production of the optical element of the present invention, materials such as those described by the present inventor in JP-A No. 11-189665 and Japanese Patent Application No. 2000-400356 that cause optical modulation by light irradiation are preferably used. This material is a photosensitive material that undergoes molecular orientation and birefringence when irradiated with linearly polarized light. However, the material is not limited to such a material as long as the material causes optical modulation by irradiation of light. As shown in FIG. 2, when a photosensitive material that causes optical modulation by light irradiation as described above is formed into a film, and a linearly polarized light flux with good coherence such as laser light is applied to the film from two different directions. In the interference of two light fluxes (L, L '), optical modulation is promoted in the portion (21) where the wavefronts (a, a') of the two light fluxes interfere and strengthen each other, and the two light fluxes interfere and weaken each other (22).
Since no optical modulation occurs, the resulting photosensitive material thus formed undergoes birefringent periodic changes. As a manufacturing method, for example, two light sources (31, 31 ') and beam splitters (32, 32') as shown in FIG.
When an optical system consisting of mirrors (33, 33 ') is used and two light beams are interfered and a photosensitive material (35) formed on a transparent substrate (34) is irradiated, a periodic structure of optical modulation appears. By fixing this structure in the film, a birefringent holographic optical element can be manufactured.

【0006】図1は、このようにして得られた、本発明
の複屈折ホログラフィ光学素子(11)を示す。図1に
示す複屈折ホログラフィ光学素子(11)中には、複屈
折の大きい部分(12)と複屈折の小さい部分または無
い部分(13)による光学的微小変調構造が層を成して
いる。この層は製膜の厚さ方向に対して傾斜している。
発明の複屈折ホログラフィ光学素子(11)は、自然光
(L)を2つの直交する偏光成分(L1、L2)に分離
し、一方の偏光成分(L1)を透過し、もう一方の偏光
成分(L2)を反射させ、且つ透過する偏光成分の光を
屈折させる機能を付与することができる。(これに対し
て、従来のホログラフィ光学素子では、自然光を2つの
直交する偏光成分に分離し、2つの偏光成分の屈折方向
を分ける機能に止まる)
FIG. 1 shows the birefringent holographic optical element (11) of the present invention obtained in this way. In the birefringent holographic optical element (11) shown in FIG. 1, a layer having an optical micro-modulation structure composed of a portion (12) with a large birefringence and a portion (13) with a small or no birefringence. This layer is inclined with respect to the film thickness direction.
The birefringent holographic optical element (11) of the invention splits natural light (L) into two orthogonal polarization components (L1, L2), transmits one polarization component (L1), and transmits the other polarization component (L2). ) Is reflected, and the function of refracting the light of the polarized component that transmits can be added. (On the other hand, in the conventional holographic optical element, the function of separating natural light into two orthogonal polarization components and dividing the refraction directions of the two polarization components is limited.)

【0007】本発明の光学素子は、製膜全体に均一に複
屈折楕円体の変調構造を有していなくても自然光を2つ
の直交する偏光成分に分離し、一方を透過し、もう一方
を反射させる機能とこの素子を透過する光において入射
光と出射光の方向を変える機能を発現する。
The optical element of the present invention splits natural light into two orthogonal polarization components, transmits one of them and transmits the other, even if it does not have a birefringent ellipsoidal modulation structure uniformly throughout the film formation. It has the function of reflecting light and the function of changing the direction of incident light and emitted light in light transmitted through this element.

【0008】本発明の光学素子の製造法の例として、波
長の異なる2つの2光束の干渉を用いる図6の方法が挙
げられる。この方法では、干渉光を照射される感光性材
料の波長による吸光度の違いを利用している。更に説明
すると、感光性材料の吸光度が低い波長を照射した場
合、膜の深部あるいは膜全体において変調構造が形成さ
れ、感光性材料の吸光度が高い波長を照射した場合、膜
の比較的浅い部分にのみ変調構造が形成される。図6に
おいて、光源(71)の配置より吸光度が低い波長の光
(L71)を干渉させ不図示の基板上に製膜した感光性
材料(75)に照射した場合、光学的変調の微小構造が
層を成す構造、いわゆるリップマンホログラムを製膜
(75)全体に付与することができる。一方、光源(7
1’)の配置より吸光度がより高い波長を干渉させ照射
することで、膜表面の近傍(75’)に周期構造を面内
に付与することができる。
An example of the method of manufacturing the optical element of the present invention is the method of FIG. 6 which uses the interference of two light beams having different wavelengths. This method utilizes the difference in absorbance depending on the wavelength of the photosensitive material irradiated with the interference light. To further explain, when a wavelength of light having a low absorbance of the photosensitive material is irradiated, a modulation structure is formed in a deep portion of the film or the whole film, and when a wavelength of light having a high absorbance of the photosensitive material is irradiated, a relatively shallow portion of the film is irradiated. Only the modulation structure is formed. In FIG. 6, when a light (L71) having a wavelength lower than that of the light source (71) is made to interfere and a photosensitive material (75) formed on a substrate (not shown) is irradiated, a minute structure of optical modulation is generated. A layered structure, a so-called Lippmann hologram, can be applied to the entire film formation (75). On the other hand, the light source (7
By interfering and irradiating with a wavelength having a higher absorbance than the arrangement of 1 ′), a periodic structure can be provided in the plane in the vicinity (75 ′) of the film surface.

【0009】他の製造方法として、図7に示すように基
板上に製膜した感光性材料(85)に、吸光度が高い波
長の光(L82)をマスクパターン(86)を用いて照
射して製膜の表面近傍に複屈折楕円体の変調構造をマス
クパターンに合わせ形成したものに、加えて、前記製膜
に感光性材料の吸光度が低い波長の光(L81)を干渉
させ照射することで製膜全体に複屈折楕円体の変調構造
を付加形成する例がある。この方法でも、製膜(85)
全体にわたるリップマンホログラムと膜表面の近傍(8
5’)に周期構造を面内に付与することができる。この
ような構造の光学素子では、製膜全体に付与されたリッ
プマンホログラムで自然光を2つの直交する偏光成分に
分離し一方を透過しもう一方を反射させる機能を担い、
製膜表面の近傍の周期構造で透過する偏光成分を屈折す
る機能を担うことができるため偏光を分離し反射する機
能と透過光を屈折する機能を高めることができる。
As another manufacturing method, as shown in FIG. 7, a photosensitive material (85) formed on a substrate is irradiated with light (L82) having a wavelength of high absorbance using a mask pattern (86). In addition to the one in which the modulation structure of the birefringent ellipsoid is formed in the vicinity of the surface of the film formation in accordance with the mask pattern, in addition to the film formation, the light (L81) having the wavelength of the low absorption of the photosensitive material is interfered and irradiated. There is an example in which a birefringent ellipsoidal modulation structure is additionally formed on the entire film formation. This method also produces a film (85)
The entire Lippmann hologram and the vicinity of the film surface (8
5 ') can be provided with a periodic structure in the plane. The optical element having such a structure has a function of separating natural light into two orthogonal polarization components by the Lippmann hologram provided on the entire film formation, transmitting one and reflecting the other,
Since the periodic structure in the vicinity of the film-forming surface can play the function of refracting the polarized component to be transmitted, the function of separating and reflecting the polarized light and the function of refracting the transmitted light can be enhanced.

【0010】前述の感光性材料は、例えば、液晶性高分
子のメソゲン成分として多用されているビフェニル、タ
ーフェニル、フェニルベンゾエート、アゾベンゼンなど
の置換基と、桂皮酸基(または、その誘導体基)などの
感光性基を結合した構造を含む側鎖を有し、炭化水素、
アクリレート、メタクリレート、マレイミド、N−フェ
ニルマレイミド、シロキサンなどの構造を主鎖に有する
高分子である。該重合体は同一の繰り返し単位からなる
単一重合体または構造の異なる側鎖を有する単位の共重
合体でもよく、あるいは感光性基を含まない側鎖を有す
る単位を共重合させることも可能である。また、混合す
る低分子化合物も、メソゲン成分として多用されている
ビフェニル、ターフェニル、フェニルベンゾエート、ア
ゾベンゼンなどの置換基を有し、該メソゲン成分とアリ
ル、アクリレート、メタクリレート、桂皮酸基(また
は、その誘導体基)などの官能基を、屈曲性成分を介し
てまたは、介さず結合した結晶性または、液晶性を有す
る化合物である。これら低分子化合物を混合する場合、
単一の化合物のみとは限らず複数種の化合物を混合する
ことも可能である。 該材料において、直線偏光性の光
の照射により分子配向し複屈折性を生じさせるには、感
光性基の部分が反応し得る波長の光の照射を要する。こ
の波長は、感光性基の種類によっても異なるが、一般に
200−500nmであり、中でも250−400nm
の有効性が高い場合が多い。
The above-mentioned photosensitive materials include, for example, substituents such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are often used as mesogenic components of liquid crystalline polymers, and cinnamic acid groups (or their derivative groups). Hydrocarbon having a side chain containing a structure in which a photosensitive group of is bonded,
It is a polymer having a structure such as acrylate, methacrylate, maleimide, N-phenylmaleimide, and siloxane in the main chain. The polymer may be a homopolymer of the same repeating unit or a copolymer of units having side chains with different structures, or it is also possible to copolymerize units having side chains containing no photosensitive group. . The low-molecular compound to be mixed also has a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene which are often used as a mesogenic component, and the mesogenic component and allyl, acrylate, methacrylate, cinnamic acid group (or its A compound having crystallinity or liquid crystallinity in which a functional group such as a derivative group) is bonded with or without a flexible component. When mixing these low molecular weight compounds,
Not only a single compound but also a plurality of types of compounds can be mixed. In order to cause molecular orientation and birefringence in the material by irradiation with linearly polarized light, irradiation with light having a wavelength with which the photosensitive group moiety can react is necessary. This wavelength is generally 200-500 nm, especially 250-400 nm, although it varies depending on the type of the photosensitive group.
Is often highly effective.

【0011】本発明の光学素子を製造するのに好適に用
いられる材料の例を原料化合物の合成方法とともに以下
に示す。 (単量体1)4,4’−ビフェニルジオールと2−クロ
ロエタノールを、アルカリ条件下で加熱することによ
り、4−ヒドロキシ−4’−ヒドロキシエトキシビフェ
ニルを合成した。この生成物に、アルカリ条件下で1,
6−ジブロモヘキサンを反応させ、4−(6−ブロモヘ
キシルオキシ)−4’−ヒドロキシエトキシビフェニル
を合成した。次いで、リチウムメタクリレートを反応さ
せ、4−(2−ヒドロキシエトキシ−4’−(6−メタ
クリロイルオキシヘキシルオキシ)ビフェニルを合成し
た。最後に、塩基性の条件下において、塩化シンナモイ
ルを加え、化学式1に示されるメタクリル酸エステルを
合成した。
Examples of materials suitably used for producing the optical element of the present invention are shown below together with the method of synthesizing the raw material compounds. (Monomer 1) 4,4′-biphenyldiol and 2-chloroethanol were heated under alkaline conditions to synthesize 4-hydroxy-4′-hydroxyethoxybiphenyl. This product is
6-Dibromohexane was reacted to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Then, lithium methacrylate was reacted to synthesize 4- (2-hydroxyethoxy-4 ′-(6-methacryloyloxyhexyloxy) biphenyl.Finally, cinnamoyl chloride was added under basic conditions to give Formula 1. The indicated methacrylic acid ester was synthesized.

【化1】 [Chemical 1]

【0012】(重合体1)単量体1をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体1
を得た。この重合体1は、47−75℃の温度領域にお
いて、液晶性を呈した。
(Polymer 1) Polymer 1 is prepared by dissolving Monomer 1 in tetrahydrofuran, adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing.
Got This polymer 1 exhibited liquid crystallinity in the temperature range of 47 to 75 ° C.

【0013】(低分子化合物1)4,4’−ビフェニル
ジオールと1,6−ジブロモヘキサンを、アルカリ条件
下で反応させ、4,4’− ビス(6−ブロモヘキシル
オキシ)ビフェニルを合成した。次いで、リチウムメタ
クリレートを反応させ、生成物をカラム精製することに
より化学式2に示される低分子化合物1を合成した。
(Low molecular weight compound 1) 4,4'-biphenyldiol and 1,6-dibromohexane were reacted under alkaline conditions to synthesize 4,4'-bis (6-bromohexyloxy) biphenyl. Next, the low molecular compound 1 represented by the chemical formula 2 was synthesized by reacting with lithium methacrylate and purifying the product with a column.

【化2】 [Chemical 2]

【0014】(実施例)本発明の製造法により作製した
複屈折ホログラフィ光学素子の実施例を以下に示す。実
施例の複屈折ホログラフィ光学素子は、出射される光の
出射ピーク強度が法線方向から60°傾く性質のある導
光板をもってなる面光源装置に用いて、光の出射ピーク
強度を特定の方向に変換するものとして設計した。一般
に、入射角度P、Qから入射された2光束の干渉によ
り、感光性材料には、(P+Q)/2の向きにλ/{2
sin((P+Q)/2)}の間隔で干渉稿が形成され
る。この干渉稿が記録されたホログラムに入射角度Pで
光を入射させることにより、出射角度Q方向に光が取り
出される。
(Example) An example of a birefringent holographic optical element manufactured by the manufacturing method of the present invention will be described below. The birefringent holographic optical element of the embodiment is used in a surface light source device having a light guide plate having a property that the emission peak intensity of emitted light is inclined by 60 ° from the normal direction, and the emission peak intensity of light is emitted in a specific direction. Designed to convert. In general, due to the interference of two light beams incident from the incident angles P and Q, the photosensitive material has λ / {2 in the direction of (P + Q) / 2.
Interference manuscripts are formed at intervals of sin ((P + Q) / 2)}. The light is extracted in the direction of the emission angle Q by making the light incident on the hologram in which the interference pattern is recorded at the incident angle P.

【0015】〔実施例1〕 (製造方法)3.75重量%の重合体1および1.25
重量%の低分子化合物1をジクロロエタンに溶解し、基
板上に約4μmの厚さで塗布し製膜した。基板に、光源
としてYAGレーザー(355nm)からの光を図3に
示される光学系により、上面から面法線方向、下面から
法線方向から60°の向きで同時に二方向からレーザー
光を照射し、膜内で二つの光が重なり干渉する様にし
た。該基板に、光源として2つのYAGレーザー(35
5nm)からの光を図3に示される光学系により2光束
の干渉光として200mJ/cm2照射した後、100
℃に加熱した後、室温まで冷却した。続いて、複屈折変
調構造を固定することを目的に、低圧水銀ランプを用い
て紫外線を1J/cm2照射した。 (評価)図5に示すように、実施例の基板(50)を、
裏面が絞加工された透明アクリル樹脂楔型導光板(5
1)、冷陰極管(52)、反射シート(53)からなる
面光源装置上に配置した。この面光源装置の導光板から
出射される光のピーク強度は、法線方向から60°傾い
ている。ここに実施例1の基板を装着すると、出射光の
ピーク強度は法線方向から30°傾いた方向であり、そ
の偏光度V(V=(I0−I90)/(I0+I90):こ
こで、I0は2つの完全偏光性分のうち強度の大きい偏
光成分の強度、I90は強度の小さい偏光成分の強度で
ある。)は、0.70であった。また、この基板を用い
た面光源装置を装着した液晶表示装置の法線方向輝度
は、プリズムシートを用いた場合と比較して10%増強
されていた。
Example 1 (Production Method) 3.75% by Weight of Polymer 1 and 1.25
A low molecular weight compound 1 (wt%) was dissolved in dichloroethane, and the solution was applied onto a substrate to a thickness of about 4 μm to form a film. The substrate is irradiated with light from a YAG laser (355 nm) as a light source in two directions at the same time from the upper surface to the surface normal direction and from the lower surface at 60 ° from the normal direction by the optical system shown in FIG. , So that the two lights overlap and interfere with each other in the film. Two YAG lasers (35
(5 nm) is irradiated with 200 mJ / cm 2 as interference light of two light fluxes by the optical system shown in FIG.
After heating to ℃, it was cooled to room temperature. Then, for the purpose of fixing the birefringence modulation structure, ultraviolet rays were irradiated at 1 J / cm 2 using a low pressure mercury lamp. (Evaluation) As shown in FIG. 5, the substrate (50) of the example was
Transparent acrylic resin wedge-shaped light guide plate (5
1), a cold cathode tube (52), and a reflection sheet (53). The peak intensity of light emitted from the light guide plate of this surface light source device is inclined by 60 ° from the normal direction. When the substrate of Example 1 is mounted here, the peak intensity of emitted light is in a direction inclined by 30 ° from the normal direction, and the degree of polarization V (V = (I0-I90) / (I0 + I90): where I0 Was 0.70, and I90 was the intensity of the polarized component having the smaller intensity, and I90 was the intensity of the polarized component having the smaller intensity. Further, the luminance in the normal direction of the liquid crystal display device equipped with the surface light source device using this substrate was enhanced by 10% as compared with the case where the prism sheet was used.

【0016】〔実施例2〕 (製造方法)3.75重量%の重合体1および1.25
重量%の低分子化合物1をジクロロエタンに溶解し、基
板上に約4μmの厚さで塗布し製膜した。該基板に、光
源としてYAGレーザー(355nm)からの光を図3
に示される光源(31)の配置から2光束の干渉光とし
て200mJ/cm2照射し、もう一方の光源としてA
rレーザー(300nm)からの光を図3に示される光
源(31’)の配置から2光束の干渉光として100m
J/cm2照射した後、100℃に加熱した後、室温ま
で冷却した。続いて、ホログラム構造を固定することを
目的に、低圧水銀ランプを用いて紫外線を1J/cm2
照射した。 (評価)実施例1と同様に実施例2の基板を面光源装置
上に配置したところ、出射光のピーク強度は法線方向か
ら5°傾いた方向であり、その偏光度V(V=(I0−I
90)/(I0+I90):ここで、I0は2つの完全偏
光性分のうち強度の大きい偏光成分の強度、I90は強
度の小さい偏光成分の強度である。)は、0.85であ
った。また、この基板を用いた面光源装置を装着した液
晶表示装置の法線方向輝度は、プリズムシートを用いた
場合と比較して23%増強されていた。
Example 2 (Production method) 3.75% by weight of Polymer 1 and 1.25
A low molecular weight compound 1 (wt%) was dissolved in dichloroethane, and the solution was applied onto a substrate to a thickness of about 4 μm to form a film. Light from a YAG laser (355 nm) was used as a light source on the substrate as shown in FIG.
From the arrangement of the light source (31) shown in Fig. 2, 200 mJ / cm 2 is irradiated as interference light of two light fluxes, and A is used as the other light source.
The light from the r laser (300 nm) is 100 m from the arrangement of the light source (31 ′) shown in FIG.
After irradiation with J / cm 2 , the temperature was raised to 100 ° C. and then cooled to room temperature. Subsequently, for the purpose of fixing the hologram structure, ultraviolet rays of 1 J / cm 2 were applied using a low pressure mercury lamp.
Irradiated. (Evaluation) When the substrate of Example 2 was placed on the surface light source device in the same manner as in Example 1, the peak intensity of the emitted light was in the direction inclined by 5 ° from the normal direction, and the polarization degree V (V = ( I0-I
90) / (I0 + I90): Here, I0 is the intensity of the polarization component with the higher intensity of the two complete polarization components, and I90 is the intensity of the polarization component with the lower intensity. ) Was 0.85. Further, the luminance in the normal direction of the liquid crystal display device equipped with the surface light source device using this substrate was enhanced by 23% as compared with the case where the prism sheet was used.

【0017】〔実施例3〕 (製造方法)3.75重量%の重合体1および1.25
重量%の低分子化合物1をジクロロエタンに溶解し、基
板上に約4μmの厚さで塗布し製膜した。該基板に、低
圧水銀灯からの平行光をグランテーラープリズムを用い
て直線偏光性として、格子パターンを有するマスクを用
いて照射した、続いて、YAGレーザー(355nm)
からの光を図3に示される光源(31)の配置から2光
束の干渉光として200mJ/cm2照射した後、10
0℃に加熱した後、室温まで冷却した。続いて、ホログ
ラム構造を固定することを目的に、低圧水銀ランプを用
いて紫外線を1J/cm2照射した。 (評価)実施例1と同様に実施例3の基板を面光源装置
上に配置したところ、出射光のピーク強度は法線方向か
ら2°傾いた方向であり、その偏光度V(V=(I0−I
90)/(I0+I90):ここで、I0は2つの完全偏
光性分のうち強度の大きい偏光成分の強度、I90は強
度の小さい偏光成分の強度である。)は、0.85であ
った。また、この基板を用いた面光源装置を装着した液
晶表示装置の法線方向輝度は、プリズムシートを用いた
場合と比較して26%増強されていた。
Example 3 (Production Method) 3.75% by Weight of Polymer 1 and 1.25
A low molecular weight compound 1 (wt%) was dissolved in dichloroethane, and the solution was applied onto a substrate to a thickness of about 4 μm to form a film. The substrate was irradiated with parallel light from a low-pressure mercury lamp using a Glan-Taylor prism as linearly polarized light and using a mask having a grating pattern, followed by YAG laser (355 nm).
From the arrangement of the light source (31) shown in FIG. 3 as interference light of two light fluxes at 200 mJ / cm 2 and then 10
After heating to 0 ° C., it was cooled to room temperature. Then, for the purpose of fixing the hologram structure, ultraviolet rays were irradiated at 1 J / cm 2 using a low pressure mercury lamp. (Evaluation) When the substrate of Example 3 was placed on the surface light source device in the same manner as in Example 1, the peak intensity of the emitted light was in the direction inclined by 2 ° from the normal direction, and the polarization degree V (V = ( I0-I
90) / (I0 + I90): Here, I0 is the intensity of the polarization component with the higher intensity of the two complete polarization components, and I90 is the intensity of the polarization component with the lower intensity. ) Was 0.85. Further, the luminance in the normal direction of the liquid crystal display device equipped with the surface light source device using this substrate was enhanced by 26% as compared with the case where the prism sheet was used.

【0018】[0018]

【発明の効果】従来、面光源装置において、光の利用効
率の向上させるため自然光を2つの直交する偏光成分に
分離し、一方を透過し、もう一方を反射させる機能を有
する光学素子では透過する偏光成分を屈折することがで
きず、面光源装置からの出射光を正面方向に向けるには
プリズムシートを併用する必要がある上、該光学素子を
製造するには煩雑な工程を要したが、本発明により、感
光性材料の膜を2つの2光束の干渉光を照射する、ある
いは、2光束の干渉光を照射し続いてマスクパターンを
用いて光照射するという簡便な工程で、自然光を2つの
直交する偏光成分に分離し、一方を透過し、もう一方を
反射させる機能と透過する偏光成分を屈折させる機能と
を有する、面光源装置の光の利用効率を向上させる光学
素子の製造が可能となった。
In the conventional surface light source device, in order to improve the light utilization efficiency, natural light is separated into two orthogonal polarization components, and one is transmitted through the optical element having the function of transmitting one and reflecting the other. The polarized component cannot be refracted, and it is necessary to use a prism sheet together to direct the light emitted from the surface light source device to the front direction, and a complicated process was required to manufacture the optical element. According to the present invention, natural light is emitted in a simple process of irradiating a film of a photosensitive material with two beams of interference light, or irradiating two beams of interference light and then irradiating with light using a mask pattern. It is possible to manufacture an optical element that has the function of separating two orthogonal polarization components, transmitting one, and reflecting the other, and the function of refracting the transmitted polarization component to improve the light utilization efficiency of the surface light source device. It became.

【0019】[0019]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のホログラム素子による偏光成分の分離
を示す概念図。
FIG. 1 is a conceptual diagram showing separation of polarization components by a hologram element of the present invention.

【図2】2光束の干渉を示す模式図。FIG. 2 is a schematic diagram showing interference of two light fluxes.

【図3】本発明のホログラム素子の製造方法を示す概念
図。
FIG. 3 is a conceptual diagram showing a method for manufacturing a hologram element of the present invention.

【図4】周期構造を面内に有するホログラフィ光学素子
による偏光成分の分離を示す概念図
FIG. 4 is a conceptual diagram showing separation of polarization components by a holographic optical element having a periodic structure in a plane.

【図5】実施例複屈折ホログラフィ光学素子の性能評価
に用いた面光源装置を示す。
FIG. 5 shows a surface light source device used for performance evaluation of an example birefringent holographic optical element.

【図6】本発明の光学素子の製造法の一例を示す。FIG. 6 shows an example of a method for manufacturing the optical element of the present invention.

【図7】本発明の光学素子の製造法の別の一例を示す。FIG. 7 shows another example of a method for manufacturing an optical element of the present invention.

【符号の説明】[Explanation of symbols]

11・・・本発明の光学素子 L、L’・・・自然光 L1・・・透過する偏光成分 L2・・・反射する偏光成分 11 ... Optical element of the present invention L, L '... natural light L1 ... Polarization component that transmits L2: Reflected polarization component

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 101:00 C08L 101:00 Fターム(参考) 2H049 AA25 AA34 AA43 AA48 AA60 BA05 BA42 BA45 BC05 BC22 CA05 CA22 CA28 CA30 2H099 BA17 CA05 DA00 4F071 AA33X AA77X AF31 AF35 AG02 AG15 BA02 BA09 BB02 BB12 BC01 BC02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C08L 101: 00 C08L 101: 00 F term (reference) 2H049 AA25 AA34 AA43 AA48 AA60 BA05 BA42 BA45 BC05 BC22 CA05 CA22 CA28 CA30 2H099 BA17 CA05 DA00 4F071 AA33X AA77X AF31 AF35 AG02 AG15 BA02 BA09 BB02 BB12 BC01 BC02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】感光性材料の製膜に、異なる2方向から直
線偏光性の光束を相互に干渉状態に照射することによ
り、前記製膜の面内において前記照射された光束の干渉
度に相応した複屈折楕円体の変調構造を形成してなる複
屈折ホログラフィ光学素子であって、前記複屈折楕円体
の変調構造は、製膜の厚さ方向で不均質に形成されてい
ることを特徴とする複屈折ホログラフィ光学素子。
1. A film of a photosensitive material is irradiated with linearly polarized light beams from two different directions so as to interfere with each other, so that the degree of interference of the irradiated light beams can be adjusted in the plane of the film. A birefringent holographic optical element formed by forming a modulated structure of a birefringent ellipsoid, wherein the modulated structure of the birefringent ellipsoid is formed inhomogeneously in the thickness direction of film formation. Birefringent holographic optical element.
【請求項2】前記複屈折楕円体の変調構造が、製膜の厚
さ方向で層を成して不均質に形成されていることを特徴
とする請求項1に記載の複屈折ホログラフィ光学素子。
2. The birefringent holographic optical element according to claim 1, wherein the birefringent ellipsoidal modulation structure is formed as a layer inhomogeneous in the thickness direction of film formation. .
【請求項3】請求項1または請求項2に記載の複屈折ホ
ログラフィ光学素子の製造方法であって、前記製膜に照
射する前記光束の波長を感光性材料の吸光度が低い波長
として製膜の深部あるいは製膜全体において複屈折楕円
体の変調構造を形成し、加えて、前記製膜に照射する前
記光束の波長を感光性材料の吸光度が高い波長として製
膜の比較的浅い部分に複屈折楕円体の変調構造を形成す
ることを特徴とする複屈折ホログラフィ光学素子の製造
方法。
3. The method of manufacturing a birefringent holographic optical element according to claim 1, wherein the wavelength of the light beam with which the film is irradiated is set to a wavelength at which the light-absorbing property of the photosensitive material is low. A birefringent ellipsoidal modulation structure is formed in the deep part or the entire film formation, and in addition, the wavelength of the light flux irradiating the film formation is set to a wavelength where the light absorption of the photosensitive material is high, and the birefringence is caused in a relatively shallow part of the film formation. A method of manufacturing a birefringent holographic optical element, which comprises forming an ellipsoidal modulation structure.
【請求項4】請求項1または請求項2に記載の複屈折ホ
ログラフィ光学素子の製造方法であって、あらかじめ、
前記製膜に感光性材料の吸光度が高い波長の光束をマス
クパターンを介して照射して製膜の比較的浅い部分に複
屈折楕円体の変調構造をマスクパターンに合わせ形成し
たものに、加えて、前記製膜に照射する前記光束の波長
を感光性材料の吸光度が低い波長の光として干渉状態に
照射することで製膜全体に複屈折楕円体の変調構造を付
加形成することを特徴とする複屈折ホログラフィ光学素
子の製造方法。
4. A method of manufacturing a birefringent holographic optical element according to claim 1 or 2, which comprises:
In addition to the one in which the modulation structure of the birefringent ellipsoid is formed to the mask pattern by irradiating the film formation with a light flux having a high absorbance of the photosensitive material through the mask pattern, in a relatively shallow portion of the film formation, , A birefringent ellipsoidal modulation structure is additionally formed on the entire film formation by irradiating the film formation with the wavelength of the light flux in a state of interference as light having a wavelength at which the photosensitive material has low absorbance. Method for manufacturing birefringent holographic optical element.
JP2001366401A 2001-11-30 2001-11-30 Birefringent holographic optical element and method for manufacturing the same Pending JP2003167127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366401A JP2003167127A (en) 2001-11-30 2001-11-30 Birefringent holographic optical element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366401A JP2003167127A (en) 2001-11-30 2001-11-30 Birefringent holographic optical element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003167127A true JP2003167127A (en) 2003-06-13

Family

ID=19176305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366401A Pending JP2003167127A (en) 2001-11-30 2001-11-30 Birefringent holographic optical element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003167127A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052145A (en) * 2005-08-17 2007-03-01 Hayashi Telempu Co Ltd Manufacturing method of polarization diffraction element, and polarization diffraction element or hologram element obtained by the manufacturing method
JP2007052144A (en) * 2005-08-17 2007-03-01 Hayashi Telempu Co Ltd Manufacturing method of polarization diffraction element, and polarization diffraction element or hologram element obtained by the manufacturing method
US7572490B2 (en) 2004-04-27 2009-08-11 Samsung Electronics Co., Ltd. Brightness enhancement film for liquid crystal display and manufacturing method thereof
WO2011062036A1 (en) * 2009-11-18 2011-05-26 日本電気株式会社 Optical element, light source device, and projection display device
WO2019026720A1 (en) * 2017-08-04 2019-02-07 株式会社エガリム Polarization beam splitter, surface light source device, and display device
JP2020056881A (en) * 2018-10-01 2020-04-09 株式会社デンソー Virtual image display device
US10989854B2 (en) 2016-10-13 2021-04-27 Lg Chem, Ltd. Polarization conversion element and optical isolation device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572490B2 (en) 2004-04-27 2009-08-11 Samsung Electronics Co., Ltd. Brightness enhancement film for liquid crystal display and manufacturing method thereof
US7776411B2 (en) 2004-04-27 2010-08-17 Samsung Electronics Co., Ltd Brightness enhancement film for liquid crystal display and manufacturing method thereof
JP4697538B2 (en) * 2005-08-17 2011-06-08 林テレンプ株式会社 Method for manufacturing polarization diffraction element and polarization diffraction element
JP2007052144A (en) * 2005-08-17 2007-03-01 Hayashi Telempu Co Ltd Manufacturing method of polarization diffraction element, and polarization diffraction element or hologram element obtained by the manufacturing method
JP2007052145A (en) * 2005-08-17 2007-03-01 Hayashi Telempu Co Ltd Manufacturing method of polarization diffraction element, and polarization diffraction element or hologram element obtained by the manufacturing method
US8998420B2 (en) 2009-11-18 2015-04-07 Nec Corporation Optical element, light source device, and projection-type display device
JPWO2011062036A1 (en) * 2009-11-18 2013-04-04 日本電気株式会社 Optical element, light source device and projection display device
JP5660047B2 (en) * 2009-11-18 2015-01-28 日本電気株式会社 Optical element, light source device and projection display device
WO2011062036A1 (en) * 2009-11-18 2011-05-26 日本電気株式会社 Optical element, light source device, and projection display device
US10989854B2 (en) 2016-10-13 2021-04-27 Lg Chem, Ltd. Polarization conversion element and optical isolation device
WO2019026720A1 (en) * 2017-08-04 2019-02-07 株式会社エガリム Polarization beam splitter, surface light source device, and display device
CN111373305A (en) * 2017-08-04 2020-07-03 株式会社绘画缘 Polarization beam splitter, surface light source device, and display device
JPWO2019026720A1 (en) * 2017-08-04 2020-07-27 株式会社エガリム Polarization beam splitter, surface light source device or display device
US11789285B2 (en) 2017-08-04 2023-10-17 Egarim Corporation Japan Polarization beam splitter, surface light source device, and display device
JP2020056881A (en) * 2018-10-01 2020-04-09 株式会社デンソー Virtual image display device
JP7119862B2 (en) 2018-10-01 2022-08-17 株式会社デンソー virtual image display

Similar Documents

Publication Publication Date Title
US11630308B2 (en) Optical element, light guide element, and image display device
US20210311259A1 (en) Light guide element, image display device, and sensing apparatus
JP6975321B2 (en) Optical element and light guide element
US11561507B2 (en) Methods for three-dimensional arrangement of anisotropic molecules, patterned anisotropic films, and optical elements therewith
WO2019189586A1 (en) Optical element
JP2003270419A (en) Diffractive optical element and image display device
WO2020022513A1 (en) Method for producing optical element, and optical element
US20210311352A1 (en) Liquid crystal diffraction element and light guide element
KR102226644B1 (en) Photoreactive liquid crystal composition, display element, optical element, method for manufacturing display element, and method for manufacturing optical element
JP2008276149A (en) Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
US20210011319A1 (en) Optical element, light guide element, and image display device
US20220057638A1 (en) Light guide element and image display apparatus
JP7483111B2 (en) Optical element and image display device
WO2019131918A1 (en) Optical element and lightguide element
US20220283464A1 (en) Optical member and image display apparatus
JP2003167124A (en) Method for manufacturing birefringent holographic optical element and birefringent holographic optical element
JP2003167127A (en) Birefringent holographic optical element and method for manufacturing the same
JP4333914B2 (en) Method for manufacturing polarization diffraction element
US20210011208A1 (en) Optical element
JP7360481B2 (en) Optical elements and image display devices
JP4033424B2 (en) Multicolor reflector manufacturing method
JP2000165898A (en) Polarization lighting device and its manufacture
WO2023149211A1 (en) Onboard lighting device, automobile, and diffraction element
WO2021060528A1 (en) Optical laminate, light guide element, and image display device
JP4163305B2 (en) Multicolor reflector and manufacturing method thereof