WO2023149211A1 - Onboard lighting device, automobile, and diffraction element - Google Patents

Onboard lighting device, automobile, and diffraction element Download PDF

Info

Publication number
WO2023149211A1
WO2023149211A1 PCT/JP2023/001370 JP2023001370W WO2023149211A1 WO 2023149211 A1 WO2023149211 A1 WO 2023149211A1 JP 2023001370 W JP2023001370 W JP 2023001370W WO 2023149211 A1 WO2023149211 A1 WO 2023149211A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
diffraction element
layer
lighting device
Prior art date
Application number
PCT/JP2023/001370
Other languages
French (fr)
Japanese (ja)
Inventor
昭裕 安西
之人 齊藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023149211A1 publication Critical patent/WO2023149211A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/60Projection of signs from lighting devices, e.g. symbols or information being projected onto the road
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to an in-vehicle lighting device using a diffraction element suitable for miniaturization and weight reduction, an automobile equipped with this in-vehicle lighting device, and a diffraction element used in this in-vehicle lighting device.
  • Patent Literature 1 proposes a light source device and a lighting device that use laser light to excite a phosphor to provide a high-intensity light source.
  • the plate-like phosphor diffuses the light and cannot be efficiently introduced into the optical system for use.
  • the light emitted outside the vehicle often has multiple outlets for low beams, high beams, turn lamps, parking lights, etc.
  • in-vehicle lighting systems with functions such as adaptive headlights are difficult to adapt to road curves.
  • it is necessary to drive the direction in which the lamp is emitted and there is a demand for simplification of the internal structure of the lighting device and reduction in the weight of driving parts.
  • An object of the present invention is to provide an in-vehicle lighting device that utilizes a diffraction element that is suitable for miniaturization and weight reduction.
  • the present inventor found that it is possible to reduce the size and weight by using a diffraction element in order to efficiently introduce the diffused light spread by the phosphor or the diffuser plate. Further, the present inventors have found that, in the case of having a plurality of outlets to the outside of the vehicle, it is possible to reduce the size of the illumination device by using a driving device including a diffraction element, and have completed the present invention.
  • An in-vehicle lighting device comprising a light source, a diffusion member that diffuses the light emitted from the light source, and the diffusion member that diffracts the diffused light, and the pitch of the periodic structure gradually changes outward from the center.
  • An on-vehicle lighting device for distributing light to an exterior space of a motor vehicle comprising a first diffractive element.
  • the first diffraction element is a liquid crystal diffraction element formed using a composition containing a liquid crystal compound, wherein the direction of the optic axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction.
  • the vehicle-mounted lighting device comprising an optically anisotropic layer having a liquid crystal alignment pattern that changes as it moves.
  • the on-vehicle use according to any one of [1] to [3], further comprising a second diffraction element arranged on the light exit side of the light deflection element and having a periodic structure pitch that gradually changes outward from the center. lighting device.
  • the second diffraction element is a liquid crystal diffraction element formed using a composition containing a liquid crystal compound, wherein the direction of the optic axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction.
  • an in-vehicle lighting device that uses a diffraction element that is suitable for miniaturization and weight reduction.
  • FIG. 1 is a schematic diagram showing an example of the vehicle-mounted lighting device of the present invention.
  • FIG. 2 is a schematic diagram schematically showing another example of the vehicle-mounted lighting device of the present invention.
  • FIG. 3 is a schematic diagram schematically showing another example of the vehicle-mounted lighting device of the present invention.
  • FIG. 4 is a conceptual diagram of a liquid crystal diffraction element.
  • FIG. 5 is a schematic plan view of an optically anisotropic layer.
  • FIG. 6 is a conceptual diagram for explaining the action of the optically anisotropic layer.
  • FIG. 7 is a conceptual diagram for explaining the action of the optically anisotropic layer.
  • FIG. 8 is a conceptual diagram for explaining the action of the optically anisotropic layer.
  • FIG. 1 is a schematic diagram showing an example of the vehicle-mounted lighting device of the present invention.
  • FIG. 2 is a schematic diagram schematically showing another example of the vehicle-mounted lighting device of the present invention.
  • FIG. 3 is a schematic diagram schematic
  • FIG. 9 is a schematic plan view of another example of an optically anisotropic layer.
  • FIG. 10 is a conceptual diagram of an exposure apparatus that exposes an alignment film.
  • FIG. 11 is a conceptual diagram of another example of an exposure apparatus that exposes an alignment film.
  • FIG. 12 is a conceptual diagram of another example of an optically anisotropic layer.
  • FIG. 13 is a conceptual diagram of another example of an optically anisotropic layer.
  • FIG. 14 is a conceptual diagram for explaining the action of the optically anisotropic layer.
  • a numerical range represented by “to” means a range including the numerical values before and after “to” as lower and upper limits.
  • “perpendicular” and “parallel” with respect to angles mean a strict angle range of ⁇ 10°.
  • FIG. 1 In-vehicle lighting device
  • the vehicle-mounted lighting device shown in FIG. It is composed of a wavelength conversion member 105 for conversion and a first liquid crystal diffraction element 106 for condensing and collimating (parallelizing) the diffused light and projecting it out of the vehicle.
  • the vehicle-mounted lighting device shown in FIG. 1 has three laser light sources 101 .
  • the laser light emitted from the laser light source 101 positioned at the upper side of the figure and the laser light emitted from the laser light source 101 positioned at the lower side of the figure are reflected by the mirror 102 toward the optical axis of the lens 103.
  • a laser beam emitted from a laser light source 101 located in the center travels along the optical axis of the lens 103 and directly enters the lens 103 .
  • the three laser beams incident on the lens 103 are condensed by the lens 103 , reflected along a predetermined optical path by the mirror 104 , and incident on the wavelength conversion member 105 .
  • the wavelength conversion member 105 is a diffusion member in the present invention, and converts the laser light emitted from the laser light source 101 into white light.
  • the laser light source 101 emits blue light.
  • the wavelength conversion member 105 uses a phosphor that converts incident blue light into red light and green light. In this case, white light is emitted from wavelength conversion member 105 by red light and green light converted from blue light by the phosphor of wavelength conversion member 105 and blue light transmitted without being converted by the phosphor. be.
  • the laser light source 101 may emit light having a wavelength that allows the wavelength conversion member 105 to generate white light according to the wavelength conversion member 105 .
  • the example shown in FIG. 3, which will be described later, is the same. Therefore, the laser light emitted by the laser light source 101 may be any one that can generate white light according to the wavelength conversion member 105, and may be visible light, near infrared rays, far infrared rays, or longer wavelengths than far infrared rays. It may be an electromagnetic wave.
  • the white light incident on and converted by the wavelength converting member 105 using phosphor becomes diffused light diffused by the phosphor.
  • the white light emitted from the wavelength conversion member 105 is reflected toward a predetermined optical path by the first liquid crystal diffraction element 106, is condensed, and is projected as, for example, a headlight of an automobile. Light is distributed to the exterior space of the automobile.
  • the first diffraction element is a reflective diffraction element in which the pitch of the periodic structure of the diffraction element gradually changes from the center toward the outside.
  • the first liquid crystal diffraction element 106 is a liquid crystal diffraction element formed using a composition containing a liquid crystal compound, and the orientation of the optic axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction. It comprises an optically anisotropic layer having a liquid crystal alignment pattern that changes as it moves.
  • the first liquid crystal diffraction element 106 has a length of 180° along one direction of the optical axis, which is one period (one pitch) of the periodic structure of the diffraction element. ).
  • the diffraction angle of light by the diffraction element is determined by the wavelength of light incident on the diffraction element and one period of the periodic structure (periodic structure pitch). Specifically, the shorter one period and the longer the wavelength of light, the larger the diffraction angle. For example, when light enters from the normal direction of the diffraction element, the shorter the period, the larger the angle of the reflected light with respect to the normal direction.
  • the normal direction is a direction orthogonal to the surfaces of various members such as sheet-like objects (plate-like objects, films, layers).
  • the first liquid crystal diffraction element 106 is configured so that the center of the direction in which the rotation axis derived from the liquid crystal compound rotates is large and gradually decreases toward the outside, the light incident on the first liquid crystal diffraction element 106 The emitted light is reflected and collected.
  • the wavelength of light incident on the first liquid crystal diffraction element 106 is white light, that is, visible light. Therefore, if one period is in the range of 0.2 to 10 ⁇ m, a sufficient effect of condensing light can be obtained.
  • the wavelength range of visible light is, for example, 380 to 780 nm.
  • a combination of a concave mirror and a projection lens is used to direct the diffused light in a desired direction.
  • a method of concentrating and collimating the light by reflecting the light is conceivable.
  • the optical system also becomes large.
  • the vehicle-mounted lighting device of the present invention instead of the optical system having the concave mirror and the projection lens, one period of the diffraction element gradually changes from the center of the periodic structure toward the outside.
  • the white light diffused by the wavelength conversion member 105 (diffusion member) can be reflected by the first liquid crystal diffraction element 106 (first diffraction element), which is a diffraction element, and can be focused and collimated.
  • the first liquid crystal diffraction element 106 uses, for example, a cholesteric liquid crystal layer, and can diffract and reflect diffused light with a flat plate to condense light, so that a small optical system can be assembled.
  • the first liquid crystal diffraction element 106 will be detailed later.
  • FIG. 2 shows another example of the vehicle-mounted lighting device of the present invention.
  • the in-vehicle lighting device shown in FIG. 2 is a system for projecting (projecting) characters and images on roads and walls outside the vehicle.
  • the same reference numerals as those in the vehicle-mounted lighting device shown in FIG. 1 basically indicate the same members. This also applies to FIG. 3, which will be described later.
  • the in-vehicle lighting device shown in FIG. 2 is similar to the in-vehicle lighting device shown in FIG. have.
  • the intermediate screen 108 is the diffusing member in the present invention.
  • the three laser beams emitted by the laser light source 101 are condensed by the lens 103 and enter the drawing mirror 104a of the drawing element. .
  • the laser light emitted by the laser light source 101 may be monochromatic light such as red light, blue light and green light, or white light. Therefore, in this example, a light source such as an LED, which will be described later, can also be suitably used.
  • a MEMS optical deflection element is used as an example of the drawing element.
  • the drawing element swings the drawing mirror 104a in the x-direction by the driving device 107a to scan the laser light while changing the angle in the y-direction.
  • the drawing elements thereby form scanning lines elongated in the x direction and arranged in the y direction.
  • the laser light source 101 (its driving means) also constitutes a part of the drawing element.
  • the laser light scanned by the drawing mirror 104a enters the intermediate screen 108 and scans the intermediate screen 108 to form scanning lines.
  • the laser light is diffused by the intermediate screen 108 and images such as characters and patterns are realized on the intermediate screen 108 .
  • the image formed into a real image by the intermediate screen 108 enters the first liquid crystal diffraction element 106, is reflected, condensed and collimated, and is projected onto the road, wall, etc. projected as an image.
  • the first liquid crystal diffraction element 106 that can diffract and reflect diffused light with a flat plate and converge the light, it is possible to realize a compact and lightweight in-vehicle lighting device.
  • FIG. 3 shows another example of the vehicle-mounted lighting device of the present invention.
  • the in-vehicle lighting device shown in FIG. 3 is an example having a plurality of output ports (projection ports) for projecting illumination to the outside, such as a high beam output port and a low beam output port.
  • the vehicle-mounted lighting device shown in FIG. It has a second liquid crystal diffraction element 110 which is an element, and a second exit port composed of a lens 111 , an optical waveguide 112 , a concave mirror 113 and a projection lens 114 . Note that this in-vehicle lighting device does not have the mirror 104 .
  • the first liquid crystal diffraction element 106 (first diffraction element) constitutes the first exit, and the first liquid crystal diffraction element 106 of the first exit and the lens 111 of the second exit Correspondingly, it has two wavelength conversion members 105 .
  • a laser light source 101 emits linearly polarized laser light.
  • the ⁇ /4 plate 109 converts the linearly polarized laser light into circularly polarized light in a predetermined rotating direction.
  • the second liquid crystal diffraction element 110 refracts (diffracts) the transmitted light in a direction of diffusing or condensing, depending on the direction of rotation of the incident circularly polarized light.
  • the ⁇ /4 plate 109 converts the incident linearly polarized laser light into circularly polarized light in the direction in which the second liquid crystal diffraction element 110 diffuses. Therefore, when the laser light source 101 emits circularly polarized laser light, the ⁇ /4 plate 109 is unnecessary.
  • the above-described first liquid crystal diffraction element 106 selectively diffracts and reflects circularly polarized light in a predetermined turning direction. Therefore, for the same reason, the vehicle-mounted lighting device shown in FIG. Alternatively, the first liquid crystal diffraction element 106 may have a ⁇ /4 plate on the light incident side of the cholesteric liquid crystal layer.
  • the laser light converted into circularly polarized light by the ⁇ /4 plate 109 is incident on the deflection mirror 104b of the MEMS optical deflection element. Since this MEMS deflection element does not perform drawing, the scanning direction of the laser light may be one direction.
  • the MEMS optical deflection element has a deflection mirror 104b and a driver 107b. The MEMS optical deflection element deflects the incident circularly polarized laser light by swinging the deflection mirror 104b by the driving device 107b, and directs the laser light to the first liquid crystal diffraction element 106 side (first exit side) and the , and the lens 111 side (second exit side).
  • the circularly polarized laser light distributed by the MEMS optical deflection element enters the second liquid crystal diffraction element 110 .
  • the second liquid crystal diffraction element 110 refracts the transmitted light in the direction of diffusing or condensing according to the direction of rotation of the incident circularly polarized light. , the light is converted into circularly polarized light in the direction in which the second liquid crystal diffraction element 110 diffuses. Therefore, the laser light incident on the second liquid crystal diffraction element 110 is emitted from the second liquid crystal diffraction element 110 after the deflection angle of the MEMS optical deflection element is widened.
  • the second liquid crystal diffraction element 110 will be detailed later.
  • the laser light deflected to the first exit side and diffracted by the second liquid crystal diffraction element 110 is converted into white light by the wavelength conversion member 105 on the first exit side as in the example shown in FIG. 1
  • the light is reflected, condensed and collimated by the liquid crystal diffraction element 106 and projected outside the vehicle as a headlight of the vehicle, for example.
  • the laser light deflected to the second exit side and diffracted by the second liquid crystal diffraction element 110 is converted into white light by the wavelength conversion member 105 on the second exit side, condensed by the lens 111, and It enters the entrance of the optical waveguide 112 .
  • the laser light that has entered the optical waveguide 112 propagates through the optical waveguide 112 , is emitted from the exit port of the optical waveguide 112 , and enters the concave mirror 113 .
  • the laser light incident on the concave mirror 113 is reflected and condensed by the concave mirror 113, then condensed and collimated by the projection lens 114, and similarly projected outside the vehicle as a headlight of an automobile.
  • a compact and lightweight in-vehicle lighting device can be realized by using the first liquid crystal diffraction element 106 that can diffract and reflect diffused light and condense light with a flat plate.
  • the first liquid crystal diffraction element 106 may also be used on the second exit side. This makes it possible to more preferably reduce the size and weight of the vehicle-mounted lighting device.
  • the MEMS optical deflection element by switching the deflection toward the first exit port side and the deflection toward the second exit port side by the MEMS optical deflection element according to the exit port to be used, for example, a low beam
  • the switching at this time may be automatically performed by a MEMS optical deflection element according to the detection result by providing a sensor to detect the presence or absence of an oncoming vehicle.
  • the deflection to the first exit port side and the deflection to the second exit port side by the MEMS optical deflection element are continuously performed at high speed, and two types of projection are performed, such as simultaneous lighting of the low beam and the high beam. You may make it project light simultaneously.
  • switching between simultaneous lighting and low beam may be automatically performed by the MEMS optical deflection element according to the detection result of the presence or absence of an oncoming vehicle by the sensor.
  • the second liquid crystal diffraction element 110 is not required if the deflection mirror 104b has a sufficient swing angle in the MEMS optical deflection element having the deflection mirror 104b and the driving device 107b.
  • the distance between the MEMS optical deflection element and the first liquid crystal diffraction element 106 and/or the optical waveguide 112 must be increased, resulting in a large illuminating device.
  • the swing angle of the deflection mirror 104b it is necessary to increase the size of the MEMS optical deflection element.
  • the deflection angle of the laser light after passing through the second liquid crystal diffraction element 110 is can be increased.
  • the distance between the MEMS optical deflection element and the first liquid crystal diffraction element 106 and/or the optical waveguide 112 can be reduced, making it possible to reduce the size of the illumination device.
  • the lens 111 is arranged in front of the optical waveguide in order to collect the light diffused by the wavelength conversion member 105 into the optical waveguide, but a diffraction element may be used to collect the light. Since the light diffuses after passing through the optical waveguide 112, it is condensed and collimated using a concave mirror 113 and a projection lens 114 and projected outside the vehicle.
  • the means for condensing and collimating this diffused light may be the first liquid crystal diffraction element 106, in which case the optical system can be made more compact.
  • a driving device may be provided to adjust the projection direction of the projection light according to the situation.
  • Such adjustment of the projection direction is conceivable, for example, by directing the projection direction of the low beam to the traveling direction of the automobile according to the steering direction and steering angle by the steering wheel.
  • the in-vehicle lighting device of the present invention shown in FIG. 3 for example, when the first emission port side is a low beam, only by changing the angle of the plate-like first liquid crystal diffraction element 106, such You can change the projection direction. Therefore, according to the in-vehicle lighting device of the present invention, it is possible to change the projection direction of projection light with a small, simple, and lightweight driving device.
  • the angle of the first liquid crystal diffraction element 106 may be changed by using a known plate-like angle changing polarizing means.
  • the vehicle-mounted lighting device of the present invention shown in FIGS. 1 and 2 is similar.
  • the automobile of the present invention is an automobile (vehicle) equipped with such an in-vehicle lighting device of the present invention.
  • the diffraction element of the present invention is a diffraction element used in such a vehicle-mounted lighting device of the present invention.
  • the light source is a laser light source 101.
  • FIG. The laser light source 101 is not limited, and various known laser light sources such as a semiconductor laser (LD (Laser Diode)) can be used.
  • LD Laser Diode
  • the light source is not limited to the laser light source 101, and may be an LED, a halogen lamp, a xenon lamp, a light-emitting diode, an organic light-emitting diode (OLED (Organic Light Emitting Diode) is included), or the like.
  • OLED Organic Light Emitting Diode
  • a variety of known light sources are available. As described above, these light sources can be suitably used in an in-vehicle lighting device that projects the image shown in FIG.
  • the laser light source in the illustrated example can have a longer irradiation distance, can provide brighter illumination, has high energy efficiency, and can be easily miniaturized. It is preferably used.
  • Mirror 102 is a known mirror for reflecting light to change the optical path.
  • the optical path changing means is not limited to mirrors, and various known optical path changing members used in various optical devices can be used.
  • Lens 103 and lens 111 are known condenser lenses.
  • the condensing element is not limited to lenses, and all known optical elements capable of condensing light (light beams) can be used.
  • the wavelength conversion member 105 converts laser light into white light, and for example, one that converts incident light using a phosphor is preferably used.
  • the phosphor diffuses and emits incident light and wavelength-converted light. That is, in the examples shown in FIGS. 1 and 3, the wavelength converting member 105 is the diffusing member of the present invention.
  • the wavelength conversion member 105 converts incident blue laser light into red light and green light as described above, unconverted blue light (blue laser light), and converted blue light (blue laser light). Together with red and green light, white light is produced.
  • FIG. 4A conceptually shows the first liquid crystal diffraction element 106
  • FIG. 4B conceptually shows the second liquid crystal diffraction element 110.
  • FIG. 4A and 4B are both side views of the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110.
  • FIG. A liquid crystal diffraction element is formed using a composition containing a liquid crystal compound. Both the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are sheet-shaped.
  • the first liquid crystal diffraction element 106 has a support 12, an alignment film 13, and a cholesteric liquid crystal layer 14a as an optically anisotropic layer.
  • the first liquid crystal diffraction element 106 is a reflective liquid crystal diffraction element using the cholesteric liquid crystal layer 14a, and as described above, collects and collimates incident light, and reflects and projects it in a predetermined direction.
  • the second liquid crystal diffraction element 110 has a support 12, an alignment film 13, and an optically anisotropic layer 14b.
  • the second liquid crystal diffraction element 110 is a transmissive liquid crystal diffraction element using the optically anisotropic layer 14b. By doing so, the deflection angle is widened.
  • the sheet surface direction of the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 is defined as the xy direction
  • the thickness direction is defined as the z direction.
  • the horizontal direction in the drawing is the direction in which the optic axis derived from the liquid crystal compound rotates in one direction, that is, the direction of axis A (direction along axis A), which will be described later. and this direction is the x-direction. Therefore, the y-direction is a direction orthogonal to the planes of FIGS. 4(A) and 4(B).
  • the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are flat.
  • the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are not limited to flat plates, and may be curved.
  • the vehicle-mounted lighting device of the present invention may have an oxygen blocking layer adjacent to the first liquid crystal diffraction element 106 (first diffraction element) and/or the second liquid crystal diffraction element 110 (second diffraction element). good.
  • the oxygen blocking layer is an oxygen blocking film having an oxygen blocking function.
  • the oxygen blocking function is not limited to a state in which oxygen is not permeated at all, but also includes a state in which oxygen is slightly permeable depending on the intended performance.
  • the liquid crystal diffraction element high temperature resistance can be improved.
  • the oxygen blocking layer may be provided adjacent to the cholesteric liquid crystal layer 14a, but may be provided so as to sandwich both surfaces of the first liquid crystal diffraction element 106, if necessary.
  • the oxygen blocking layer may be provided adjacent to the optically anisotropic layer 14b, but if necessary, it may be provided so as to sandwich both surfaces of the second liquid crystal diffraction element 110.
  • oxygen-blocking layer there are no restrictions on the oxygen-blocking layer, and various types of oxygen-blocking layers (gas barrier layers) used in various products and members can be used.
  • Specific examples of the oxygen blocking layer include polyvinyl alcohol, modified polyvinyl alcohol, polyethylene vinyl alcohol, polyvinyl ether, polyvinylpyrrolidone, polyacrylamide, polyacrylic acid, cellulose ether, polyamide, polyimide, styrene/maleic acid copolymer, gelatin, Layers containing organic compounds such as vinylidene chloride and cellulose nanofibers are included. Among them, polyacrylic acid, polyvinyl alcohol, modified polyvinyl alcohol, and the like are preferable.
  • the oxygen-blocking layer may further contain a light resistance improver together with the organic compound from the viewpoint of further improving light resistance.
  • the content of the light resistance improver is preferably 0.1 to 5.0% by mass, preferably 0.3%, based on the total weight of the oxygen-blocking barrier layer. ⁇ 3.0% by mass is more preferred.
  • the thickness of the oxygen barrier layer is preferably 0.1-10 ⁇ m, more preferably 0.5-5.5 ⁇ m.
  • the refractive index of the oxygen blocking layer at a wavelength of 550 nm is preferably 1.40 to 1.60, more preferably 1.45 to 1.55.
  • the refractive index of the protective layer at a wavelength of 550 nm can be measured by the same method as for the average refractive index of the light absorption anisotropic film.
  • the support 12 and the alignment film 13 are basically the same except for the alignment pattern of the alignment film, for example.
  • Various sheet-like materials films, plate-like materials
  • the support 12 is preferably a transparent support, and examples thereof include polyacrylic resin films such as polymethyl methacrylate, cellulose resin films such as cellulose triacetate, and cycloolefin polymer films. Examples of the cycloolefin polymer film include JSR's trade name "ARTON" and Nippon Zeon's trade name "Zeonor". Note that the support of the first liquid crystal diffraction element 106 does not necessarily have to be transparent.
  • the support 12 may be a flexible film or a non-flexible substrate such as a glass substrate.
  • the orientation film 13 is formed on the surface of the support 12 .
  • the alignment film 13 is an alignment film for aligning the liquid crystal compound 20 in a predetermined liquid crystal alignment pattern when forming the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b.
  • the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b have an optical axis 22 (see FIG. 9) derived from the liquid crystal compound 20. It has a liquid crystal orientation pattern that changes while continuously rotating along at least one in-plane direction. 4A and 4B exemplify a rod-like liquid crystal compound as the liquid crystal compound 20. As shown in FIG. Therefore, in the illustrated example, the orientation of the optical axis 22 coincides with the longitudinal direction of the liquid crystal compound 20 . Therefore, the alignment films 13 of the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are formed so that the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b can form this liquid crystal alignment pattern.
  • the direction of the optical axis 22 in the liquid crystal alignment pattern changes while rotating continuously.
  • the length by which the direction of the optical axis 22 is rotated by 180° is defined as one period ⁇ (rotational period ⁇ (rotational period pitch)).
  • the one direction in which the direction of the optical axis 22 changes while rotating continuously is the direction along the axis A, which will be described later.
  • the cholesteric liquid crystal layer 14a of the first liquid crystal diffraction element 106 and the optically anisotropic layer 14b of the second liquid crystal diffraction element 110 are continuously rotated while the direction of the optical axis 22 rotates continuously.
  • One period ⁇ is gradually shortened outward from the center of the changing one direction.
  • the rotation direction of the optical axis 22 of the liquid crystal compound 20 in one direction is reversed at the center of the axis A direction toward the axis A direction (arrow x direction).
  • one direction in which the direction of the optical axis 22 changes while rotating continuously is the direction along the axis A, which will be described later. Therefore, the alignment films 13 of the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are formed so that the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b can form this liquid crystal alignment pattern.
  • the alignment film 13 examples include a rubbing treatment film made of an organic compound such as a polymer, an oblique vapor deposition film of an inorganic compound, a film having microgrooves, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, and methyl stearate.
  • LB Lightmuir-Blodgett
  • the rubbing treatment is performed by rubbing the surface of the polymer layer with paper or cloth several times in one direction.
  • the types of polymers used for the alignment film include polyimide, polyvinyl alcohol, polymers having a polymerizable group described in JP-A-9-152509, JP-A-2005-97377, JP-A-2005-99228, and , and the orthogonal alignment films described in JP-A-2005-128503 and the like can be preferably used.
  • the term “orthogonal alignment film” as used in the present invention means an alignment film in which the major axes of the molecules of the polymerizable rod-like liquid crystal compound of the present invention are oriented substantially perpendicular to the rubbing direction of the orthogonal alignment film.
  • the thickness of the alignment film does not need to be large as long as it can provide the alignment function, and is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • a so-called photo-alignment film obtained by irradiating a photo-alignment material with polarized or non-polarized light to form an alignment film can also be used. That is, a light-distribution material may be applied on the support 12 to form a light-alignment film. Irradiation with polarized light can be performed in a direction perpendicular to or oblique to the photo-alignment film, and irradiation with non-polarized light can be performed in a direction oblique to the photo-alignment film.
  • Examples of the photo-alignment material used in the photo-alignment film that can be used in the present invention include, for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, and JP-A-2007-94071.
  • FIG. 10 shows a schematic diagram of an alignment film exposure apparatus that applies a photo-alignment material onto a support 12 and dries it, and then exposes the alignment film to form an alignment pattern.
  • This exposure apparatus 50 forms an orientation pattern (liquid crystal orientation pattern) in which the optical axis 22 derived from the liquid crystal compound 20 continuously changes while rotating in one direction, as conceptually shown in FIG. is.
  • the exposure device 50 includes a light source 54 having a laser 52, a beam splitter 56 for splitting the laser light 70 from the laser 52 into two, and mirrors arranged on the optical paths of the two split light beams 72A and 72B. 58A and 58B and ⁇ /4 plates 60A and 60B.
  • the light source 64 has, for example, a polarizing plate and emits linearly polarized light P0.
  • the ⁇ / 4 plates 60A and 60B have optical axes perpendicular to each other. Convert to polarization P L .
  • the support 12 having the alignment film 13 before the alignment pattern is formed is placed in the exposure area, and the two light beams 72A and 72B are crossed and interfered on the alignment film 13, and the interference light is directed to the alignment film 13. Illuminate and expose. Due to the interference at this time, the polarization state of the light with which the alignment film 13 is irradiated periodically changes in the form of interference fringes. As a result, an alignment pattern in which the alignment state changes periodically is obtained. By changing the crossing angle ⁇ of the two light beams 72A and 72B in the exposure device 50, the period of the alignment pattern can be changed.
  • the exposure device 50 by adjusting the crossing angle ⁇ , in the orientation pattern in which the optical axis 22 derived from the liquid crystal compound 20 rotates continuously along one direction, , the length of one cycle in which the optical axis 22 is rotated by 180° (rotational cycle ⁇ ) can be adjusted.
  • a cholesteric liquid crystal layer 14a or an optically anisotropic layer 14b which will be described later, on the alignment film 13 having such an alignment pattern in which the alignment state changes periodically, a liquid crystal alignment pattern corresponding to this cycle is provided.
  • a cholesteric liquid crystal layer 14a or an optically anisotropic layer 14b can be formed.
  • the rotation direction of the optical axis 22 can be reversed. Therefore, one half of the alignment film 13 is masked and exposed, then the exposed area is masked, and the optical axes of the ⁇ /4 plates 60A and 60B are rotated by 90° for exposure. can reverse the rotation direction of the optical axis 22 at the center in one direction in which the optical axis 22 of the liquid crystal compound 20 rotates.
  • the length of one cycle (one cycle ⁇ ) can be gradually shortened outward from the center in one direction in which the optical axis 22 rotates.
  • an exposure device 80 conceptually shown in FIG. 11 is also preferably used.
  • An exposure device 80 shown in FIG. 11 is an exposure device used for forming a concentric alignment pattern (liquid crystal alignment pattern) as conceptually shown in FIG.
  • the exposure device 80 includes a light source 84 having a laser 82, a polarizing beam splitter 86 that splits the laser beam M from the laser 82 into S-polarized light MS and P-polarized light MP, and a mirror 90A arranged in the optical path of the P-polarized light MP.
  • a mirror 90B arranged in the optical path of the S-polarized MS, a lens 92 (convex lens) arranged in the optical path of the S-polarized MS, a polarizing beam splitter 94, and a ⁇ /4 plate 96.
  • the P-polarized light MP split by the polarizing beam splitter 86 is reflected by the mirror 90A and enters the polarizing beam splitter 94 .
  • the S-polarized light MS split by the polarizing beam splitter 86 is reflected by the mirror 90B, condensed by the lens 92, and enters the polarizing beam splitter 94.
  • FIG. The P-polarized MP and S-polarized light MS are combined by a polarizing beam splitter 94 into right-handed circularly polarized light and left-handed circularly polarized light according to the polarization direction by a ⁇ /4 plate 96, and are applied to the alignment film 13 on the support 12. incident on.
  • the polarization state of the light with which the alignment film 13 is irradiated changes periodically in the form of interference fringes. Since the crossing angle of the left-handed circularly polarized light and the right-handed circularly polarized light changes from the inside to the outside of the concentric circle, an exposure pattern is obtained in which the pitch changes from the inside to the outside. As a result, a concentric alignment pattern in which the alignment state changes periodically is obtained in the alignment film 13 .
  • the length of one cycle (one cycle ⁇ ) in which the optical axis 22 of the liquid crystal compound 20 rotates continuously by 180° along one direction is the refractive power of the lens 92, the focal length of the lens 92, Also, it can be controlled by changing the distance between the lens 92 and the alignment film 13 or the like.
  • the refractive power of the lens 92 is the F number of the lens 92 .
  • the length of one cycle in which the optical axis 22 rotates 180° can be changed in one direction in which the optical axis 22 rotates continuously.
  • the length of one cycle in which the optical axis 22 rotates by 180° depending on the degree of convergence of the light transmitted through the lens 92 that interferes with the parallel light. More specifically, when the refractive power of the lens 92 is weakened, the light becomes closer to parallel light. growing. Conversely, when the refractive power of the lens 92 is strengthened, the length of one cycle in which the optical axis 22 rotates by 180° becomes suddenly shorter from the inside to the outside, and the F-number becomes smaller.
  • one period ⁇ in which the optical axis 22 rotates by 180° is changed.
  • a continuously rotating variable configuration is also available. For example, by gradually shortening one cycle in which the optical axis 22 rotates 180° in the direction of the arrow x, an optical element that transmits light so as to converge can be obtained. Further, by reversing the direction in which the optical axis 22 is rotated by 180° in the liquid crystal orientation pattern, an optical element that transmits light so as to diffuse only in the arrow x direction can be obtained.
  • a method of patterning the photo-alignment film by scanning exposure while arbitrarily changing the polarization direction of the focused laser beam is used. be able to.
  • the alignment film 13 is provided as a preferred embodiment, and is not an essential component.
  • the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b are A configuration having a liquid crystal orientation pattern in which the orientation of the optical axis 22 derived from the liquid crystal compound 20 changes while continuously rotating along at least one in-plane direction is also possible.
  • first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 may be composed of an alignment film and an optically anisotropic layer from which the support 12 is peeled off.
  • the optically anisotropic layer from which the support 12 and the alignment film 13 are peeled off may be adhered to another support. That is, the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 that constitute the vehicle-mounted lighting device of the present invention may have various layer structures as long as they include an optically anisotropic layer (cholesteric liquid crystal layer). It is possible.
  • the surface of the alignment film 13 is provided with the cholesteric liquid crystal layer 14a as an optically anisotropic layer.
  • the cholesteric liquid crystal layer 14a is a layer having a fixed cholesteric liquid crystal phase.
  • the cholesteric liquid crystal layer is a layer in which liquid crystal compounds are fixed in a cholesteric alignment state.
  • the cholesteric liquid crystal layer that constitutes the first liquid crystal diffraction element 106 has an optical axis 22 derived from the liquid crystal compound 20 that continuously rotates along at least one in-plane direction.
  • a cholesteric liquid crystal layer with varying liquid crystal alignment patterns In FIG. 4A, since the liquid crystal compound 20 is a rod-like liquid crystal compound, the optical axis 22 coincides with the longitudinal direction of the liquid crystal compound 20 as described above.
  • the cholesteric liquid crystal layer 14a is a helical liquid crystal layer in which liquid crystal compounds 20 are helically rotated and stacked in the same manner as a cholesteric liquid crystal layer in which a normal cholesteric liquid crystal phase is fixed.
  • a structure in which the liquid crystal compound 20 is stacked with one spiral rotation (360° rotation) is defined as one spiral pitch, and the spirally rotating liquid crystal compound 20 has a structure in which multiple pitches are stacked. .
  • a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed has wavelength-selective reflectivity.
  • the selective reflection wavelength range of the cholesteric liquid crystal layer depends on the length in the thickness direction of the helical 1-pitch described above. The length of one spiral pitch in the thickness direction is the pitch P shown in FIG. 4(A).
  • the cholesteric liquid crystal layer selectively reflects right-handed circularly polarized light or left-handed circularly polarized light according to the spiral turning direction of the liquid crystal compound 20 .
  • the cholesteric liquid crystal layer transmits light other than the circularly polarized light in the selective reflection wavelength range, which is selectively reflected in the rotating direction.
  • the helical pitch P of the cholesteric liquid crystal layer is adjusted to selectively reflect the cholesteric liquid crystal layer.
  • the wavelength range may be appropriately set.
  • the first liquid crystal diffraction element 106 reflects the white light converted by the wavelength conversion member 105 . Therefore, the first liquid crystal diffraction element 106 has three layers: a cholesteric liquid crystal layer that selectively reflects red light, a cholesteric liquid crystal layer that selectively reflects green light, and a cholesteric liquid crystal layer that selectively reflects blue light. It is preferred to have a layer of cholesteric liquid crystal layers.
  • the cholesteric liquid crystal layer selectively reflects either right-handed circularly polarized light or left-handed circularly polarized light.
  • the first liquid crystal diffraction element 106 may have a cholesteric liquid crystal layer that selectively reflects right-handed circularly polarized light and a cholesteric liquid crystal layer that selectively reflects left-handed circularly polarized light for each color. good.
  • the central wavelength of selective reflection of the cholesteric liquid crystal phase becomes longer as the pitch P becomes longer.
  • the pitch P of the spiral is one pitch of the spiral structure of the cholesteric liquid crystal phase (the period of the spiral).
  • the pitch P of the helix is, in other words, the number of turns of the helix, that is, the length in the direction of the helix axis at which the director of the liquid crystal compound constituting the cholesteric liquid crystal phase rotates 360°.
  • the director of the liquid crystal compound is, for example, the long axis direction in the case of a rod-like liquid crystal compound.
  • the helical pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the liquid crystal compound and the addition concentration of the chiral agent when forming the cholesteric liquid crystal layer. Therefore, a desired helical pitch can be obtained by adjusting these.
  • the adjustment of the pitch refer to Fuji Film Research Report No. 50 (2005) p. 60-63 for a detailed description.
  • the method for measuring the sense and pitch of the helix the method described in "Introduction to Liquid Crystal Chemistry Experiments" edited by the Japan Liquid Crystal Society, published by Sigma Publishing, 2007, page 46, and "Liquid Crystal Handbook” Liquid Crystal Handbook Editing Committee, Maruzen, page 196 is used. be able to.
  • a cholesteric liquid crystal phase exhibits selective reflectivity for either left or right circularly polarized light at a specific wavelength. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction (sense) of the cholesteric liquid crystal phase.
  • the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right-handed circularly polarized light when the helical twist direction of the cholesteric liquid crystal layer is rightward, and reflects left-handed circularly polarized light when the helical twist direction is leftward.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer and/or the type of chiral agent added.
  • the half width of the reflected wavelength range is adjusted, for example, according to the spectral distribution of the white light emitted by the wavelength conversion member 105, and may be, for example, 10 to 500 nm, preferably 20 to 300 nm, more preferably 30 to 150 nm. be.
  • the cholesteric liquid crystal layer can be formed by fixing a cholesteric liquid crystal phase in layers.
  • the structure in which the cholesteric liquid crystal phase is fixed may be any structure as long as the alignment of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • the structure is polymerized and cured by UV irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the structure is changed to a state in which the orientation is not changed by an external field or external force.
  • the polymerizable liquid crystal compound may be polymerized by a curing reaction and lose liquid crystallinity.
  • Materials used for forming a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed include a liquid crystal composition containing a rod-like or disk-like liquid crystal compound.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • various rod-like liquid crystal compounds and discotic liquid crystal compounds exemplified in the later-described optically anisotropic layer 14b can be used.
  • the liquid crystal composition used for forming the cholesteric liquid crystal layer may further contain a surfactant and a chiral agent.
  • the liquid crystal composition used for forming the cholesteric liquid crystal layer may contain a surfactant.
  • the surfactant is preferably a compound that can stably or quickly function as an alignment control agent that contributes to the alignment of the cholesteric liquid crystal phase.
  • Examples of surfactants include silicone-based surfactants and fluorine-based surfactants, with fluorine-based surfactants being preferred examples.
  • the surfactant include compounds described in paragraphs [0082] to [0090] of JP-A-2014-119605, and compounds described in paragraphs [0031] to [0034] of JP-A-2012-203237. , compounds exemplified in paragraphs [0092] and [0093] of JP-A-2005-99248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A-2002-129162 compounds exemplified therein, and fluorine (meth)acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185.
  • surfactant may be used individually by 1 type, and may use 2 or more types together.
  • fluorosurfactant compounds described in paragraphs [0082] to [0090] of JP-A-2014-119605 are preferable.
  • the amount of the surfactant added in the liquid crystal composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and 0.02 to 1% by mass with respect to the total mass of the liquid crystal compound. is more preferred.
  • a chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral agent may be selected depending on the purpose, since the helical twist direction or helical pitch induced by the compound differs.
  • the chiral agent is not particularly limited, and known compounds (for example, liquid crystal device handbook, Chapter 3, Section 4-3, chiral agent for TN (twisted nematic), STN (Super Twisted Nematic), page 199, Japan Society for the Promotion of Science 142nd Committee, 1989), isosorbide, isomannide derivatives and the like can be used.
  • Chiral agents generally contain an asymmetric carbon atom, but axially chiral compounds or planar chiral compounds that do not contain an asymmetric carbon atom can also be used as chiral agents.
  • Examples of axially or planarly chiral compounds include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, a repeating unit derived from the polymerizable liquid crystal compound and a repeating unit derived from the chiral agent are formed by the polymerization reaction of the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same type of group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. More preferred. Also, the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerizable group
  • the photoisomerizable group is preferably an isomerization site of a compound exhibiting photochromic properties, an azo group, an azoxy group, or a cinnamoyl group.
  • Specific compounds include JP-A-2002-080478, JP-A-2002-080851, JP-A-2002-179668, JP-A-2002-179669, JP-A-2002-179670, JP-A-2002- 179681, JP-A-2002-179682, JP-A-2002-338575, JP-A-2002-338668, JP-A-2003-313189, and compounds described in JP-A-2003-313292, etc. can be used.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, relative to the content molar amount of the liquid crystal compound.
  • the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator.
  • the polymerization initiator used is preferably a photopolymerization initiator capable of initiating the polymerization reaction by ultraviolet irradiation.
  • photoinitiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), ⁇ -hydrocarbons substituted aromatic acyloin compounds (described in US Pat. No.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass, based on the content of the liquid crystal compound.
  • the liquid crystal composition may optionally contain a cross-linking agent in order to improve film strength and durability after curing.
  • a cross-linking agent one that is cured by ultraviolet rays, heat, humidity, and the like can be preferably used.
  • the cross-linking agent is not particularly limited and can be appropriately selected depending on the intended purpose.
  • polyfunctional acrylate compounds such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate
  • epoxy compounds such as ethylene glycol diglycidyl ether
  • aziridine compounds such as 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] and 4,4-bis(ethyleneiminocarbonylamino)diphenylmethane
  • hexa isocyanate compounds such as methylene diisocyanate and biuret-type isocyanate
  • alkoxysilane compounds such as vinyltrimethoxysilane and N-(2-aminoethyl)3-aminopropyltrimethoxysilane.
  • the content of the cross-linking agent is preferably 3 to 20% by mass, more preferably 5 to 15% by mass, based on the solid mass of the liquid crystal composition. When the content of the cross-linking agent is within the above range, the effect of improving the cross-linking density is likely to be obtained, and the stability of the cholesteric liquid crystal phase is further improved.
  • the liquid crystal composition may further contain polymerization inhibitors, antioxidants, ultraviolet absorbers, light stabilizers, colorants, metal oxide fine particles, etc., within a range that does not reduce the optical performance. can be added at
  • the liquid crystal composition is preferably used as a liquid when forming the cholesteric liquid crystal layer.
  • the liquid crystal composition may contain a solvent.
  • the solvent is not limited and can be appropriately selected depending on the purpose, but organic solvents are preferred.
  • the organic solvent is not limited and can be appropriately selected depending on the purpose. Examples include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters and ethers. etc. These may be used individually by 1 type, and may use 2 or more types together. Among these, ketones are preferable in consideration of the load on the environment.
  • a liquid crystal composition is applied to the surface on which the cholesteric liquid crystal layer is to be formed, the liquid crystal compound is aligned in a cholesteric liquid crystal phase state, and then the liquid crystal compound is cured to form a cholesteric liquid crystal layer.
  • a liquid crystal composition is applied to the alignment film 13 to align the liquid crystal compound in a cholesteric liquid crystal phase, and then the liquid crystal compound is cured to form a cholesteric liquid crystal phase. It is preferable to form a cholesteric liquid crystal layer in which the liquid crystal phase is fixed.
  • the liquid crystal composition can be applied by printing methods such as inkjet and scroll printing, and known methods such as spin coating, bar coating and spray coating, which can uniformly apply the liquid to the sheet.
  • the applied liquid crystal composition is dried and/or heated as necessary, and then cured to form a cholesteric liquid crystal layer.
  • the liquid crystal compound in the liquid crystal composition may be oriented in the cholesteric liquid crystal phase.
  • the heating temperature is preferably 200° C. or lower, more preferably 130° C. or lower.
  • the aligned liquid crystal compound is further polymerized as necessary.
  • Polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred.
  • the irradiation energy is preferably 20 mJ/cm 2 to 50 J/cm 2 , more preferably 50 to 1500 mJ/cm 2 .
  • light irradiation may be performed under heating conditions or under a nitrogen atmosphere.
  • the wavelength of the ultraviolet rays to be irradiated is preferably 250 to 430 nm.
  • the thickness of the cholesteric liquid crystal layer is not limited, and the required light reflectance is determined according to the application of the cholesteric liquid crystal layer, the light reflectance required for the cholesteric liquid crystal layer, and the material used to form the cholesteric liquid crystal layer.
  • the thickness at which is obtained can be set as appropriate.
  • the cholesteric liquid crystal layer has a liquid crystal orientation in which the direction of the optical axis 22 derived from the liquid crystal compound 20 forming the cholesteric liquid crystal phase changes while continuously rotating in one direction within the plane of the cholesteric liquid crystal layer. have a pattern.
  • the optical axis 22 derived from the liquid crystal compound 20 is an axis with the highest refractive index in the liquid crystal compound 20, a so-called slow axis.
  • the optical axis 22 extends along the longitudinal direction (major axis direction) of the rod shape.
  • the optic axis 22 derived from the liquid crystal compound 20 is also referred to as "the optic axis 22 of the liquid crystal compound 20" or "the optic axis 22".
  • FIG. 5 conceptually shows an example of the liquid crystal alignment pattern of the cholesteric liquid crystal layer 14a.
  • This figure is a plan view of the cholesteric liquid crystal layer 14a.
  • the plan view is a view of the cholesteric liquid crystal layer (optically anisotropic layer) in FIG. 4(A) viewed from above, that is, a view of the cholesteric liquid crystal layer 14a viewed from the thickness direction.
  • the thickness direction of the cholesteric liquid crystal layer 14a coincides with the stacking direction of each layer (film).
  • 5 shows only the liquid crystal compound 20 on the surface of the alignment film 13 in order to clearly show the structure of the cholesteric liquid crystal layer 14a.
  • the liquid crystal compound 20 is spirally oriented and laminated with several pitches.
  • this liquid crystal alignment pattern can also be suitably used in the optically anisotropic layer 14b of the second liquid crystal diffraction element 110.
  • FIG. 4A the liquid crystal compound 20 is spirally oriented and laminated with several pitches.
  • the liquid crystal compounds 20 forming the cholesteric liquid crystal layer 14a are aligned in the plane of the cholesteric liquid crystal layer according to the alignment pattern formed on the alignment film 13 below. It has a liquid crystal alignment pattern in which the direction of the optical axis 22 changes while rotating continuously along a predetermined direction indicated by A.
  • the liquid crystal compound 20 constituting the cholesteric liquid crystal layer 14a of the illustrated example is arranged two-dimensionally in one direction (axis A direction) in which the direction of the optical axis 22 rotates continuously and in a direction orthogonal to this one direction.
  • the y direction is the direction orthogonal to one direction in which the orientation of the optic axis 22 of the liquid crystal compound 20 changes while continuously rotating in the plane of the cholesteric liquid crystal layer. Therefore, in FIG. 4(A) and FIG. 4(B) described later, the y direction is a direction perpendicular to the plane of the paper.
  • the rotation direction of the optical axis of the liquid crystal compound 20 is reversed at the center of the cholesteric liquid crystal layer 14a (first liquid crystal diffraction element) in the direction of the axis A.
  • the optic axis 22 of the liquid crystal compound 20 rotates clockwise from the left end of the drawing toward the right side of the drawing, that is, toward the axis A, reverses the rotation direction at the center of the axis A direction, and rotates in the direction of the axis A. It rotates counterclockwise from the center toward the right in the figure. That is, in this example, the optic axis 22 of the liquid crystal compound 20 rotates counterclockwise from the center of the axis A direction to the left in the figure and from the center of the axis A direction to the right in the figure.
  • That the direction of the optic axis 22 of the liquid crystal compound 20 changes while continuously rotating in the direction of the axis A specifically means that the liquid crystal compound 20 is arranged along the direction of the axis A.
  • the angle formed between the optical axis 22 of the liquid crystal compound 20 and the axis A differs depending on the position along the axis A direction. °, or up to ⁇ -180°.
  • the angle difference between the optical axes 22 of the liquid crystal compounds 20 adjacent to each other in the direction of the axis A is preferably 45° or less, more preferably 15° or less, and even more preferably a smaller angle. .
  • the liquid crystal compound 20 forming the cholesteric liquid crystal layer 14a has an optical axis 22 directions are equal.
  • the liquid crystal compound 20 forming the cholesteric liquid crystal layer 14a has an equal angle between the optic axis 22 of the liquid crystal compound 20 and the axis A direction in the y direction.
  • the optical axis of the liquid crystal compound 20 is aligned in the direction of the axis A along which the optical axis 22 continuously rotates and changes in the plane.
  • the length (distance) by which 22 is rotated by 180° is defined as one period ⁇ (length of one period ⁇ ) in the liquid crystal alignment pattern. That is, the distance between the centers in the direction of the axis A of two liquid crystal compounds 20 having the same angle with respect to the direction of the axis A is defined as one period ⁇ .
  • the distance between the centers of the two liquid crystal compounds 20 in the direction of the axis A and the direction of the optical axis 22 is equal to one cycle.
  • this one period ⁇ is the pitch of the periodic structure in the diffraction element.
  • the liquid crystal orientation pattern of the cholesteric liquid crystal layer 14a repeats this one period ⁇ in the direction of the axis A (and the direction opposite to the direction of the axis A), that is, in one direction in which the direction of the optical axis 22 rotates continuously and changes.
  • one period ⁇ of the cholesteric liquid crystal layer 14a in one direction of rotation of the optical axis 22 is gradually shortened from the center of the axis A direction toward both outer directions of the axis A direction. That is, one period ⁇ of the cholesteric liquid crystal layer 14a gradually shortens from the center in the direction of the axis A toward the left and right in the drawing. note that.
  • One period ⁇ may be shortened continuously or stepwise from the center toward the outside.
  • the change (decrease) of one period ⁇ may be linear, non-linear, or have linear and non-linear regions.
  • a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed normally mirror-reflects incident light (circularly polarized light).
  • the cholesteric liquid crystal layer 14a reflects the incident light by tilting it in the direction opposite to the direction of the axis A with respect to the specular reflection.
  • the cholesteric liquid crystal layer 14a has a liquid crystal alignment pattern that changes while the optic axis 22 continuously rotates counterclockwise along the direction of the axis A (predetermined one direction) in the plane. Description will be made below with reference to FIG.
  • the cholesteric liquid crystal layer 14a is a cholesteric liquid crystal layer that selectively reflects right-handed circularly polarized red light R R . Therefore, when light is incident on the cholesteric liquid crystal layer 14a, the cholesteric liquid crystal layer 14a reflects only the right circularly polarized red light RR and transmits the other light.
  • the right circularly polarized red light R R incident on the cholesteric liquid crystal layer 14 a changes its absolute phase according to the orientation of the optical axis 22 of each liquid crystal compound 20 when reflected by the cholesteric liquid crystal layer.
  • the optical axis 22 of the liquid crystal compound 20 changes while rotating along the axis A direction (one direction). Therefore, the amount of change in the absolute phase of the right circularly polarized light RR of the incident red light differs depending on the direction of the optical axis 22 .
  • the liquid crystal alignment pattern formed in the cholesteric liquid crystal layer 14a is a periodic pattern in the axis A direction. Therefore, as conceptually shown in FIG.
  • the right-handed circularly polarized red light R R incident on the cholesteric liquid crystal layer 14 a has a periodic absolute phase Q in the direction of the axis A corresponding to the direction of each optical axis 22 . is given.
  • the orientation of the optical axis 22 of the liquid crystal compound 20 with respect to the direction of the axis A (the direction of the arrow x) is uniform in the alignment of the liquid crystal compound 20 in the y direction orthogonal to the direction of the axis A.
  • an equiphase plane E inclined in the direction of the axis A with respect to the XY plane is formed with respect to the right-handed circularly polarized red light R R .
  • the right-handed circularly polarized red light R R is reflected in the normal direction of the equiphase plane E, and the reflected right-handed circularly polarized light R R is directed to the XY plane (principal plane of the cholesteric liquid crystal layer). The light is reflected in a direction inclined opposite to the direction of the axis A.
  • the reflection direction of the right-handed circularly polarized light RR of red light can be adjusted. That is, if the direction of the axis A is reversed, the direction of reflection of the right-handed circularly polarized light R R of red light is also reversed from that in FIG.
  • the reflection direction of the right-handed circularly polarized light R R of red light can be reversed. That is, in FIGS. 4A and 14, the rotation direction of the optical axis 22 in the direction of the axis A is clockwise, and the right circularly polarized light RR of the red light is tilted in the direction of the axis A and reflected.
  • the rotation direction of the optical axis 22 in the direction of the axis A is adjusted to be counterclockwise, the right-handed circularly polarized light RR of the red light is tilted in the opposite direction to the direction of the axis A and reflected.
  • the optical axis 22 of the cholesteric liquid crystal layer 14a rotates counterclockwise from the center of the axis A toward the left side in the drawing and the right side in the drawing.
  • the optical axis 22 rotates clockwise from the right end of the drawing toward the center, the direction of rotation is reversed at the center, and the direction of rotation is reversed from the center toward the left end of the drawing.
  • the optical axis 22 rotates counterclockwise. Therefore, the right-handed circularly polarized light incident on the cholesteric liquid crystal layer 14a is diffracted and reflected rightward on the left side of the drawing in the direction of the axis A, and is diffracted and reflected leftward on the right side of the drawing.
  • the reflection direction is reversed depending on the spiraling direction of the liquid crystal compound 20, that is, the rotating direction of the reflected circularly polarized light.
  • the cholesteric liquid crystal layer 14a shown in FIG. 14 is a liquid crystal orientation pattern in which the helical turning direction is right-handed and selectively reflects right-handed circularly polarized light, and the optical axis 22 rotates clockwise along the arrow x direction. , the right-handed circularly polarized light is tilted in the direction of the axis A and reflected.
  • the shorter the period ⁇ the larger the diffraction angle of the reflected light with respect to the specular reflection of the incident light. That is, the shorter the period ⁇ , the more the reflected light can be reflected with a greater inclination with respect to the specular reflection of the incident light.
  • the shorter the period ⁇ the larger the angle formed by the reflected light with respect to the normal direction.
  • the longer the wavelength of the reflected light the more the reflected light is reflected with a greater inclination with respect to the specular reflection of the incident light.
  • the longer the wavelength of the light the larger the angle formed by the reflected light with respect to the normal direction.
  • the first liquid crystal diffraction element 106 has a cholesteric liquid crystal layer that selectively reflects red light, a cholesteric liquid crystal layer that selectively reflects green light, and a cholesteric liquid crystal layer that selectively reflects blue light.
  • one period ⁇ of the cholesteric liquid crystal layer selectively reflecting red light is made the longest, and one period ⁇ of the cholesteric liquid crystal layer selectively reflecting blue light is set to the longest. is the shortest.
  • a cholesteric liquid crystal layer having a liquid crystal alignment pattern has wavelength-selective reflectivity and reflects light of a selected wavelength while diffracting it.
  • the optical axis 22 of the cholesteric liquid crystal layer 14a rotates counterclockwise from the center of the axis A direction toward the right side in the drawing and toward the left side in the drawing.
  • the right-handed circularly polarized light incident on the cholesteric liquid crystal layer 14a is diffracted and reflected rightward on the left side of the drawing in the direction of the axis A, and diffracted and reflected leftward on the right side of the drawing.
  • one period ⁇ of the cholesteric liquid crystal layer 14a is gradually shortened in the direction of the axis A and in the opposite direction. Therefore, in the cholesteric liquid crystal layer 14a, the diffraction angle of light due to reflection gradually increases from the center in the direction of the axis A toward the outside. Therefore, the right-handed circularly polarized light of the red light incident on the cholesteric liquid crystal layer 14a (liquid crystal diffraction element) is reflected so as to be condensed toward the direction of the arrow x, that is, the center of one direction in which the optical axis 22 rotates.
  • the reflective liquid crystal diffraction element having the cholesteric liquid crystal layer 14a as the reflector of the light deflection element, the incident light (light beam) is deflected and condensed toward the center in the direction of the arrow x. It can be reflected and emitted.
  • the optic axis 22 of the liquid crystal compound 20 in the liquid crystal alignment pattern of the cholesteric liquid crystal layer shown in FIG. 5 rotates continuously only along the axis A direction.
  • the present invention is not limited to this, and various configurations are available as long as the optic axis 22 of the liquid crystal compound 20 rotates continuously along at least one direction in the cholesteric liquid crystal layer. .
  • a preferred example is a liquid crystal orientation pattern in which the direction of the optical axis 22 derived from the liquid crystal compound 20 changes while continuously rotating in one direction, as conceptually shown in the plan view of FIG. 9 described above. , radially from the inside (center) to the outside. That is, the liquid crystal alignment pattern of the cholesteric liquid crystal layer 14a shown in FIG. pattern. As will be described later, as in FIG. 5, the optically anisotropic layer 14b of the second liquid crystal diffraction element 110 can also be used for the liquid crystal alignment pattern shown in FIG.
  • FIG. 9 also shows only the liquid crystal compound 20 on the surface of the alignment film, as in FIG. 5.
  • 20 has a helical structure in which it is spirally turned and stacked.
  • the orientation of the optic axis of the liquid crystal compound 20 is oriented in a number of directions outward from the center of the cholesteric liquid crystal layer 14a, for example, the direction indicated by the above-described axis A1 and the axis A2 .
  • the directions of rotation of the optic axis of the liquid crystal compound 20 in all the directions indicated by the axis A1 , the direction indicated by the axis A2 , the direction indicated by the axis A3 , and the direction indicated by the axis A4 are: counterclockwise. That is, when the axis A 1 and the axis A 4 are regarded as one straight line, the rotation direction of the optical axis 22 of the liquid crystal compound 20 is reversed at the center of the cholesteric liquid crystal layer 14a on this straight line. As an example, it is assumed that the straight line formed by the axes A1 and A4 is directed to the right in the drawing (direction of the axis A1 ).
  • the optic axis of the liquid crystal compound 20 first rotates clockwise from the outer direction of the cholesteric liquid crystal layer 14a toward the center, reverses the direction of rotation at the center of the cholesteric liquid crystal layer 14a, and then rotates clockwise. It rotates counterclockwise outward from the center of the cholesteric liquid crystal layer 14a.
  • one period ⁇ of the liquid crystal alignment pattern gradually becomes shorter from the inside (center) toward the outside. That is, one period ⁇ of the liquid crystal alignment pattern gradually becomes shorter in the direction of the arrow.
  • the optic axis 22 of the liquid crystal compound 20 rotates counterclockwise in the direction of each arrow. Tilt in the opposite direction and reflect.
  • the direction of reflection of circularly polarized light is reversed by reversing the direction of rotation of the optical axis 22 in the direction of the arrow.
  • the optical axis 22 of the liquid crystal compound 20 by rotating the optical axis 22 of the liquid crystal compound 20 in the direction of each arrow clockwise, right-handed circularly polarized light is tilted in the direction of the arrow and reflected.
  • the direction of reflection of circularly polarized light is reversed by reversing the direction of rotation of the circularly polarized light.
  • the cholesteric liquid crystal layer reflects left-handed circularly polarized light as follows: Tilt in the direction of the arrow to reflect.
  • the cholesteric liquid crystal layer 14a having a concentric liquid crystal alignment pattern as shown in FIG. And depending on the direction of the reflected circularly polarized light, the incident light can be reflected as divergent or convergent light. That is, by making the liquid crystal alignment pattern of the cholesteric liquid crystal layer concentric, the reflective liquid crystal diffraction element selectively reflects circularly polarized light and rotates the optical axis 22 of the liquid crystal compound 20 in one direction. Accordingly, it functions as a concave mirror or a convex mirror.
  • one cycle ⁇ in which the optic axis rotates 180° in the liquid crystal alignment pattern is set in the direction of each arrow, that is, one direction in which the optic axis rotates continuously from the center of the cholesteric liquid crystal layer. progressively shorten in the outward direction of the As described above, in a cholesteric liquid crystal layer having a liquid crystal orientation pattern in which the optic axis rotates in one direction, the diffraction angle of reflected light, that is, the reflection angle of reflected light with respect to specular reflection, is one period ⁇ in the liquid crystal orientation pattern. The shorter the , the larger. Therefore, by gradually shortening one period ⁇ in the liquid crystal alignment pattern from the center of the cholesteric liquid crystal layer toward the outer direction in which the optical axis rotates continuously, the light can be more focused and the concave mirror can improve performance as
  • incident light light beam
  • the reflective liquid crystal diffraction element having the layer 14a incident light (light beam) can be condensed in the entire circumferential direction, and the light can be reflected and emitted.
  • the optical axis 22 liquid crystal compound 20
  • a reflective first liquid crystal diffraction element 106 having a cholesteric liquid crystal layer 14a having a concentric liquid crystal orientation pattern is used as the first diffraction element of the vehicle-mounted lighting device of the present invention to project desired projection light outside the vehicle. It becomes possible to
  • the alignment film 13 has an optically anisotropic layer 14b, which is a cured layer of a liquid crystal composition containing a liquid crystal compound 20, on the surface thereof.
  • the optical axis 22 (slow axis) of the liquid crystal compound 20 is a liquid crystal pattern arranged along at least one direction in the plane of the optically anisotropic layer, and the liquid crystal compound 20 has a liquid crystal alignment pattern in which the orientation of the optic axis 22 of is changed in rotation in one direction.
  • the retardation R is preferably 0.4 ⁇ to 0.6 ⁇ , more preferably 0.45 ⁇ to 0.55 ⁇ , particularly preferably 0.5 ⁇ .
  • ⁇ n is the birefringence of the optically anisotropic layer 14b
  • d1 is the thickness.
  • the retardation R with respect to light of 940 nm may be in the range of 338 to 602 nm, preferably 470 nm.
  • FIG. 5 is a schematic plan view showing the liquid crystal alignment pattern of the optically anisotropic layer 14b, that is, the view of FIG. 4 viewed from above.
  • the liquid crystal compound 20 is fixed in a liquid crystal alignment pattern in which the optical axis 22 is continuously rotated in one direction.
  • the optical axis 22 rotates continuously in the direction of the axis A (the direction along the axis A) in FIG. 5, which coincides with the direction of the arrow x. That is, the liquid crystal compound 20 is oriented such that the angle between the in-plane component of the long axis (axis of extraordinary light: director) of the liquid crystal compound 20 defined as the optical axis 22 and the axis A rotates. .
  • the directions of the optic axes 22 of the liquid crystal compounds 20 are aligned in the direction perpendicular to the direction of the axis A, that is, in the direction of the arrow y. ing.
  • the optically anisotropic layer 14b functions as a general ⁇ /2 plate as described above for each region where the y-direction optical axis 22 of the liquid crystal compound 20 is aligned.
  • the angle formed by the optical axis 22 of the liquid crystal compound 20 arranged along the axis A and the axis A varies depending on the position in the direction of the axis A.
  • the pattern is oriented and fixed such that the angle between the optical axis 22 and the axis A along the axis A gradually changes from ⁇ to ⁇ +180° or ⁇ 180°.
  • the optical axis 22 of the liquid crystal compound 20 is parallel to the surface of the optically anisotropic layer 14b, and the direction of the optical axis 22 is constant.
  • Local regions that is, regions in which the liquid crystal compounds 20 are arranged in the direction of the arrow y are arranged in the direction x perpendicular to the direction of the arrow y, and between a plurality of local regions arranged in the direction of the arrow x , the orientation of the optical axis 22 is oriented such that it rotates continuously in one direction (the direction along the axis A) is referred to as a horizontal rotational orientation.
  • the angular change of the optical axis 22 toward the direction of the axis A may be a rotating object that rotates at non-uniform angular intervals instead of constant angular intervals.
  • the average value of the direction of the optical axis 22 of the unit area changes linearly at a constant rate, it means that the direction changes gradually.
  • the change in the inclination of the optical axis between unit areas adjacent to each other in the direction of the axis A and having different inclinations of the optical axis 22 is preferably 45° or less. It is preferable that the change in inclination between adjacent unit areas is smaller.
  • the optic axis 22 (liquid crystal compound 20) rotates 180° in the direction of the axis A, that is, the optic axis 22 and the axis A
  • a distance in which the formed angle changes from ⁇ to ⁇ +180° (returning to the original), that is, a period in which the optical axis 22 rotates by 180° is defined as one period ⁇ (rotational period ⁇ ).
  • This one period ⁇ is preferably 0.5 to 5 ⁇ m.
  • the shorter the period ⁇ and the longer the wavelength of the incident light the larger the diffraction angle by the optically anisotropic layer 14b, that is, the second liquid crystal diffraction element 110.
  • one period ⁇ may be determined according to the wavelength of light incident on the second liquid crystal diffraction element 110 and the desired output angle.
  • the second liquid crystal diffraction element 110 provides a phase difference of ⁇ /2 with respect to incident light due to the configuration of the optically anisotropic layer 14b described above, and is incident at an incident angle of 0°, that is, normal incidence (normal direction ) is emitted at an exit angle ⁇ 2 . That is, as shown in FIG. 6, when light L 1 of right-handed circularly polarized light P R is incident on the optically anisotropic layer 14b from the normal direction, left-handed circularly polarized light P L is polarized in the direction forming an angle ⁇ 2 with the normal direction. of light L 2 is emitted.
  • the right-handed circularly polarized light P R light L 1 incident on the optically anisotropic layer 14b is also referred to as "incident light L 1 ".
  • the left-handed circularly polarized light P L emitted from the optically anisotropic layer L 2 is also referred to as “outgoing light L 2 ”.
  • the second liquid crystal diffraction element 110 diffracts right-handed circularly polarized light and left-handed circularly polarized light in different directions, the diffraction direction of the emitted light L 2 from the second liquid crystal diffraction element 110 is different from that incident on the second liquid crystal diffraction element 110.
  • the state of circularly polarized light is controlled and incident. That is, as shown in the figure, when the incident light is linearly polarized light, the ⁇ /4 plate 109 is inserted to convert the light into either left or right circularly polarized light before the light is incident. It can only be
  • FIG. 6 is a diagram schematically showing the principle that the incident light L 1 vertically incident on the optically anisotropic layer 14b is emitted at a predetermined emission angle ⁇ 2 .
  • the action of the optically anisotropic layer 14b will be described below with reference to FIG.
  • the incident light L 1 which is right-handed circularly polarized light P R , is given a phase difference of ⁇ /2 by passing through the optically anisotropic layer 14 b and converted into left-handed circularly polarized light P L .
  • the absolute phase of the incident light L1 changes depending on the optic axis 22 of the liquid crystal compound 20 in each in-plane unit region (local region).
  • the direction of the optic axis 22 of the liquid crystal compound 20 is changed by rotating toward the direction of the axis A (which coincides with the direction of the arrow x in this example).
  • the amount of change in absolute phase varies depending on the direction of the optical axis 22 of the liquid crystal compound 20 on the x-coordinate (position in the x-direction) of the plane (xy plane) of the optically anisotropic layer 14b on which the light is incident.
  • the dashed line in FIG. 6 it is schematically shown how the amount of change in the absolute phase differs depending on the x-coordinate. As shown in FIG.
  • an equiphase plane 24 of absolute phase having an angle with respect to the plane of the optically anisotropic layer is formed.
  • the incident light L1 incident from the normal direction is given a bending force in the direction perpendicular to the equiphase plane 24, and the traveling direction of the incident light L1 is changed. That is, the incident light L 1 which is right-handed circularly polarized light PR becomes left-handed circularly polarized light P L after passing through the optically anisotropic layer 14b, and travels in a direction forming a predetermined angle ⁇ 2 with the normal direction. It is emitted from the optically anisotropic layer 14b as incident light L2 .
  • the incident light L 1 incident along the normal direction perpendicular to the surface of the second liquid crystal diffraction element 110 is projected in a direction different from the normal direction. It is emitted as outgoing light L2 .
  • the inclination of the output angle can be changed.
  • the conversion of the incident light L 1 to the output light L 2 based on the above principle is as follows. It can be explained as transmission diffraction.
  • the optically anisotropic layer 14b functions as a transmission diffraction grating for the incident light L1 . Transmission diffracted as L2 .
  • the following formula (1) which is a general light diffraction formula, is satisfied.
  • n1 is the refractive index of medium 1 on the incident surface side of the diffraction grating
  • ⁇ 1 the incident angle
  • n2 is the refractive index of medium 2 on the output surface side of the diffraction grating
  • ⁇ 2 is the diffraction angle (output angle).
  • is the wavelength
  • p is the rotation period
  • m is the order of diffraction.
  • the diffraction grating is the optically anisotropic layer 14b.
  • FIG. 7 is a diagram schematically showing the diffraction phenomenon represented by Equation (2).
  • An optically anisotropic layer 14b is arranged as a diffraction grating between the medium n1 and the medium n2 .
  • Light L 1 incident on the optically anisotropic layer 14b in the normal direction from the side of the medium 1 having a refractive index n 1 is diffracted by the diffraction action of the optically anisotropic layer 14b to form a medium 2 having a refractive index n 2 . emitted to the side.
  • the output light L2 emitted at the output angle ⁇ 2 can be rephrased as the transmitted diffraction light L2 at the diffraction angle ⁇ 2 .
  • the optically anisotropic layer 14b in which the liquid crystal compound 20 is horizontally rotated and fixed functions as a transmissive liquid crystal diffraction grating.
  • the wavelength ⁇ of the light that causes the diffraction action by the second liquid crystal diffraction element 110 may range from ultraviolet to visible light, infrared, or even electromagnetic wave level.
  • the larger the wavelength of the incident light the larger the diffraction angle, and the smaller the wavelength of the incident light, the smaller the diffraction angle.
  • the liquid crystal compound 20 a rod-like liquid crystal compound and a discotic liquid crystal compound can be used.
  • the wavelength ⁇ is 380 nm
  • the discotic liquid crystal compound can provide higher diffraction efficiency than the rod-like liquid crystal compound in the range of 0.5 ⁇ p ⁇ 1 for one period ⁇ ( ⁇ m).
  • the wavelength ⁇ is 1100 nm
  • the discotic liquid crystal compound can obtain higher diffraction efficiency than the rod-like liquid crystal compound in the range of 2 ⁇ p ⁇ 5 for one period ⁇ ( ⁇ m).
  • the traveling directions of the first transmitted diffraction light L 42 and the second transmitted diffraction light L 43 are substantially symmetrical with respect to the normal line.
  • the rotation period may be designed so as to obtain the desired diffraction angle ⁇ 2 so as to satisfy the above formula (1) taking into consideration the incident angle ⁇ 1 .
  • the in-vehicle lighting device of the present invention refracts (diffracts) the polarized light by the second liquid crystal diffraction element 110 (optically anisotropic layer 14b). This allows the light to be deflected by a deflection angle much larger than the maximum deflection angle of the MEMS light deflection element (deflecting mirror 104b) in the case.
  • the refraction (diffraction angle) of light by the optically anisotropic layer 14b increases as one period of 180° rotation of the optical axis 22 of the liquid crystal compound 20, that is, one period ⁇ is shorter.
  • the direction of polarization (direction of rotation) of incident circularly polarized light is the same, the direction of refraction of light by the optically anisotropic layer 14b is reversed depending on the direction of rotation of the optical axis 22 of the liquid crystal compound 20 . That is, when the incident light L 1 is right-handed circularly polarized light P R , the rotation direction of the optical axis 22 is the direction of the axis A (arrow x direction), the outgoing light L 2 is refracted in the direction of axis A, for example.
  • the incident light L 1 is right-handed circularly polarized light P R and the direction of rotation of the optical axis 22 is counterclockwise toward the direction of the axis A as viewed from the exit surface side
  • the emitted light L 2 is refracted in a direction opposite to the direction of the opposite axis A (see emitted light L 43 in FIG. 8).
  • the optically anisotropic layer 14b has one period ⁇ of the liquid crystal orientation pattern in the direction of the axis A, which is formed by the MEMS light deflection element (deflection mirror 104b). gradually shorten from the center of the deflection (deflection azimuth) by . That is, the amount of light refracted by the optically anisotropic layer 14b increases toward the outside in the deflection direction.
  • the vehicle-mounted lighting device of the present invention shown in FIG. At the center of deflection by the deflection element, the reversal occurs.
  • the direction of rotation of the optical axis 22 toward the direction of axis A is counterclockwise from the upstream side in the direction of axis A to the center of the deflection direction, and the direction of rotation of the optical axis 22 is counterclockwise.
  • the direction of rotation of the optical axis 22 is reversed, and the direction of rotation of the optical axis 22 toward the direction of the axis A is clockwise from the center of deflection toward the downstream in the direction of the axis A.
  • the optically anisotropic layer 14b of the second liquid crystal diffraction element 110 has such a configuration, so that the light is directed from the center in the direction of the axis A to both sides (upstream side and toward the downstream side), and the diffraction angle of the light is gradually increased from the center toward both sides in the direction of the axis A so that it is far larger than the maximum deflection angle of the MEMS optical deflection element. It allows the deflection of light with a large deflection angle.
  • the direction of rotation of the optical axis 22 is usually reversed in the direction of the axis A (direction of arrow x) in the optically anisotropic layer 14b, that is, the center of one direction in which the optical axis 22 rotates. That is, in the vehicle-mounted lighting device, the center of deflection of the MEMS light deflection element and the center of the optically anisotropic layer 14b in the direction of the axis A are usually aligned.
  • one period ⁇ may be continuously shortened from the deflection center toward the outside, or may be shortened stepwise.
  • the optically anisotropic layer 14b is formed of, for example, a liquid crystal composition containing a liquid crystal compound.
  • a liquid crystal composition containing a liquid crystal compound for forming the optically anisotropic layer 14b contains other components such as a leveling agent, an alignment control agent, a polymerization initiator and an alignment aid, in addition to the liquid crystal compound.
  • An optically anisotropic layer in which a predetermined liquid crystal alignment pattern is fixed, comprising a cured layer of a liquid crystal composition formed by forming an alignment film on a support and coating and curing a liquid crystal composition on the alignment film. can be obtained.
  • the optically anisotropic layer 14b is a cured layer of a liquid crystal composition containing a rod-like liquid crystal compound or a discotic liquid crystal compound, and the optical axis of the rod-like liquid crystal compound or the discotic liquid crystal compound is oriented as described above. It has a liquid crystal alignment pattern.
  • An optically anisotropic layer comprising a cured layer of the liquid crystal composition can be obtained by forming an alignment film on the support 12 and coating and curing the liquid crystal composition on the alignment film. It is the optically anisotropic layer 14b that functions as a so-called ⁇ /2 plate. include.
  • the liquid crystal composition for forming the optically anisotropic layer contains a rod-like liquid crystal compound or a discotic liquid crystal compound, and other components such as a leveling agent, an alignment control agent, a polymerization initiator and an alignment aid. may contain.
  • the optically anisotropic layer preferably has a wide band with respect to the wavelength of the incident light, and is preferably composed of a liquid crystal material having a reverse dispersion of birefringence. Furthermore, it is also preferable to make the optically anisotropic layer substantially broadband with respect to the wavelength of incident light by imparting a twist component to the liquid crystal composition or by laminating different retardation layers.
  • Japanese Unexamined Patent Application Publication No. 2014-089476 discloses a method of realizing a broadband patterned ⁇ /2 plate by laminating two layers of liquid crystal having different twist directions in an optically anisotropic layer. , can be preferably used in the present invention.
  • Rod-shaped liquid crystal compound include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular-weight liquid crystalline molecules as described above, but also high-molecular-weight liquid crystalline molecules can be used.
  • the rod-shaped liquid crystal compound it is more preferable to fix the alignment of the rod-shaped liquid crystal compound by polymerization.
  • the polymerizable rod-shaped liquid crystal compound Makromol. Chem. , 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. 95/24455, 97/00600, 98/23580, 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081 No. 2001-64627, etc.
  • the rod-like liquid crystal compound for example, those described in JP-A-11-513019 and JP-A-2007-279688 can also be preferably used.
  • the discotic liquid crystal compound for example, those described in JP-A-2007-108732 and JP-A-2010-244038 can be preferably used.
  • the discotic liquid crystal compound 20 rises in the thickness direction in the optically anisotropic layer, and the optical axis 22 derived from the liquid crystal compound is aligned with the disc surface. is defined as the axis perpendicular to , the so-called fast axis.
  • these rod-like liquid crystal compounds and discotic liquid crystal compounds can also be used in the cholesteric liquid crystal layer 14a of the first liquid crystal diffraction element 106 described above.
  • the optically anisotropic layer 14b can be formed by coating the alignment film 13 with a liquid crystal composition in multiple layers.
  • Multi-layer coating means that the liquid crystal composition is applied on the alignment film, heated, cooled, and then UV-cured to prepare the first liquid crystal fixing layer, and the second and subsequent layers are used to fix the liquid crystal. It refers to repeating the process of repeatedly applying a coating to the curable layer, heating in the same manner, and performing UV curing after cooling.
  • the concentric liquid crystal orientation pattern shown in FIG. 9 which is exemplified by the cholesteric liquid crystal layer described above, can also be used.
  • the liquid crystal alignment pattern in the optically anisotropic layer 14b shown in FIG. 9 is different from the liquid crystal alignment pattern in the optically anisotropic layer 14b described above.
  • the direction of the optical axis 22 gradually rotates along multiple directions from the center to the outside, for example, along the axes A 1 , A 2 , A 3 . It has a varying liquid crystal alignment pattern.
  • the liquid crystal alignment pattern of the optically anisotropic layer 14b shown in FIG. 9 is a liquid crystal alignment pattern in which the optical axis 22 rotates radially.
  • the liquid crystal alignment pattern of the optically anisotropic layer 14b shown in FIG. 9 is a concentric circular pattern in which one direction in which the direction of the optical axis changes while continuously rotating is formed concentrically from the inside to the outside. is. Due to the optically anisotropic layer 14b having the liquid crystal alignment pattern shown in FIG. 9, the absolute phase of the incident light is changed by different amounts between the local regions where the orientation of the optical axis 22 is different.
  • incident light can be transmitted as divergent light or condensed light. That is, the liquid crystal alignment pattern in the optically anisotropic layer 14b can realize a function as a concave lens or a convex lens.
  • a second liquid crystal diffraction element 110 acting as a concave lens is used.
  • the deflection angle can be most efficiently widened with respect to the maximum deflection angle of the MEMS optical deflection element.
  • the liquid crystal compound 20 of the optically anisotropic layer 14b constituting the second liquid crystal diffraction element 110 faces one direction in the thickness direction, but the present invention is not limited to this.
  • the optically anisotropic layers constituting the second liquid crystal diffraction element 110 are the first optically anisotropic layer 215 and the second optically anisotropic layer of the liquid crystal diffraction element 220 shown in FIG. Like 216, it may have the liquid crystal compound 20 twisted along the helical axis extending along the thickness direction. In the following description, the twisted orientation along the helical axis extending along the thickness direction is also simply referred to as "twisted orientation".
  • the first optically anisotropic layer 215 and the second optically anisotropic layer 216 in which the liquid crystal compound 20 is twisted are obtained by observing the cross section of the liquid crystal diffraction element 220 with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • bright and dark lines originating from the twisted alignment of the liquid crystal compound 20 are perpendicular to the normal to the interface between the first optically anisotropic layer 215 and the second optically anisotropic layer 216. It is a tilted optically anisotropic layer.
  • the pattern of bright and dark lines of the first optically anisotropic layer 215 and the second optically anisotropic layer 216 has a shorter period in the direction in which the optical axis 22 rotates.
  • the first optically anisotropic layer 215 and the second optically anisotropic layer 216 have different twist directions in the twisted orientation of the liquid crystal compound 20 . That is, in the first optically anisotropic layer 215, the liquid crystal compound 20 is twisted clockwise toward the traveling direction of light. On the other hand, in the second optically anisotropic layer 216, the liquid crystal compound 20 is twisted counterclockwise in the light traveling direction. Therefore, the first optically anisotropic layer 215 and the second optically anisotropic layer 216 have different directions of inclination of bright and dark lines derived from the twisted orientation in cross-sectional SEM images.
  • first optically anisotropic layer 215 for example, when incident light is right-handed circularly polarized light, diffraction efficiency is improved for light traveling toward the left side (outside) in the figure indicated by the solid line. Great effect is obtained. However, when the incident light is right-handed circularly polarized light, the first optically anisotropic layer 215 improves the diffraction efficiency of the light traveling toward the right side (center side) in the drawing indicated by the dashed line. effect is small. On the other hand, in the second optically anisotropic layer 216, when the incident light is right-handed circularly polarized light, the diffraction efficiency is improved for the light traveling toward the left side (outside) in the figure indicated by the solid line. effect is small.
  • the second optically anisotropic layer 216 has a large effect of improving the diffraction efficiency for the light traveling toward the right side (center side) in the drawing indicated by the dashed line. This effect is reversed when the incident light is left circularly polarized.
  • the first optically anisotropic layer 215 acts strongly on this light (right-handed circularly polarized light), that is, in the area on the left side of the drawing, improving the diffraction efficiency and increasing the amount of emitted light.
  • the area shown in FIG. 12 in the area on the right side of the center, only the light that travels toward the right side in the drawing indicated by the dashed line is incident.
  • the second optically anisotropic layer 216 acts strongly on this light (right-handed circularly polarized light) to improve diffraction efficiency and increase the amount of emitted light.
  • the angle of incidence of incident light on the optically anisotropic layer is small in the region at the center of the polarized light, both the first optically anisotropic layer 215 and the second optically anisotropic layer 216 contribute to improving the diffraction efficiency. contribute.
  • liquid crystal diffraction element 220 having the first optically anisotropic layer 215 and the second optically anisotropic layer 216 in which the twist directions of the twist alignment of the liquid crystal compound 20 are different from each other, in the entire range of light deflection directions, An effect of improving the diffraction efficiency can be obtained, and a large amount of light can be emitted over the entire deflection angle range.
  • the twist angle of the liquid crystal compound is not limited.
  • the twist angle of the liquid crystal compound may be appropriately set according to the deflection angle of the optical deflection element, the desired diffraction efficiency, and the like.
  • the twist angle of the liquid crystal compound 20 is preferably 10 to 200°, more preferably 20 to 190°, even more preferably 40 to 170°.
  • the twist angle (twist angle in the thickness direction) of the twisted liquid crystal compound 20 means that the twisted liquid crystal compound 20 is twisted along the helical axis extending along the thickness direction in the optically anisotropic layer. This is the twist angle from the lower surface to the upper surface.
  • the liquid crystal diffraction element having the first optically anisotropic layer 215 and the second optically anisotropic layer 216 in which the liquid crystal compound 20 is helically twisted has the following characteristics, like the liquid crystal diffraction element 224 shown in FIG.
  • the third optically anisotropic layer 219 in which the liquid crystal compound is not twisted orientated is a non-inclined optically anisotropic layer in which the bright and dark lines extend along the normal direction.
  • the third optically anisotropic layer 219 By having such a third optically anisotropic layer 219 between the first optically anisotropic layer 215 and the second optically anisotropic layer 216, diffraction by the third optically anisotropic layer 219 is synergistic. , the light can be deflected over a wider deflection angle.
  • the in-vehicle lighting device of the present invention shown in FIG. 2 has drawing elements for projecting images such as characters and patterns.
  • the drawing element is a MEMS optical deflection element having the drawing mirror 104a and the driving device 107a. It is a drawing element by optical scanning.
  • the drawing element is not limited to the drawing element by optical scanning using such an optical scanning element, and various known elements can be used.
  • An example is DLP (Digital Light Processing) using a DMD (Digital (Micro) mirror Device).
  • a drawing element by optical scanning a drawing element using a galvanometer mirror or a polygon mirror as a light deflection element, and a drawing element using a combination of a galvanometer mirror and a polygon mirror as a light deflection element are also used. It is possible.
  • drawing elements that display a red image, a green image, and a blue image are used, and the images are synthesized by a known method to produce a color image. should be projected.
  • the image formed by the drawing element is rendered into a real image by the intermediate screen 108 .
  • the intermediate screen 108 is not limited, and various known intermediate screens used in projectors and the like, such as diffusion plates and microlens arrays, can be used.
  • the linearly polarized laser light emitted by the laser light source 101 and condensed by the lens 103 is converted into circularly polarized light by the ⁇ /4 plate 109.
  • the vehicle-mounted lighting device shown in FIG. 3 thereby enables the second liquid crystal diffraction element 110 to suitably diffract the laser light.
  • the ⁇ /4 plate 109 is a known ⁇ /4 plate (1/4 wavelength plate, 1/4 retardation plate) that converts linearly polarized light into circularly polarized light.
  • the ⁇ /4 plate 109 known ones can be used without limitation. Therefore, the ⁇ /4 plate 109 may be derived from polymer or liquid crystal. As described above, the ⁇ /4 plate 109 may not be provided when the light emitted from the laser light source 101 is circularly polarized light.
  • the circularly polarized laser light converted by the ⁇ /4 plate 109 is deflected by the MEMS optical deflection element having the deflecting mirror 104b and the driving device 107b to obtain the above-mentioned circularly polarized light. is incident on the second liquid crystal diffraction element 110 that diffracts .
  • the deflection mirror 104b of the MEMS optical deflection element preferably does not depolarize. Specifically, it is a metal mirror or the like that exhibits a mirror surface. In the case of a metal mirror, the direction of rotation (sense) of the circularly polarized light is reversed when the circularly polarized light is reflected. It is preferable that the circularly polarized light with the opposite direction of rotation is incident on the MEMS light polarizing element.
  • the polarization state of light changes due to the difference in reflectance and phase between P-polarized light (P-wave) and S-polarized light (S-wave). Change.
  • the polarization state may be adjusted in advance so that the polarized light after reflection by the mirror becomes the desired circularly polarized light.
  • a method of making the light elliptically polarized is exemplified.
  • a retardation plate for phase adjustment may be arranged so that the light becomes desired circularly polarized light after being reflected by the mirror of the MEMS light deflection element 132 .
  • a circular polarization mirror such as a circular polarization mirror having a cholesteric liquid crystal layer, may be used as the deflection mirror 104b of the MEMS optical deflection element.
  • the circularly polarized light is kept in the rotating direction during reflection. , are preferably incident on the MEMS light polarizing element.
  • the light circularly polarized by the ⁇ /4 plate 109 is deflected by the MEMS optical deflection element.
  • the direction of light deflection by the MEMS optical deflection element 132 is made to coincide with the direction of the axis A (the direction of the arrow x), as in the case of the optical deflection element 100 described above.
  • the driving device 107b may be a known device that corresponds to the configuration of the MEMS optical deflection element 132 and the like.
  • the MEMS optical deflection element is not limited, and the MEMS optical deflection element described in JP-A-2012-208352 and the MEMS optical deflection element described in JP-A-2014-134642. , and known MEMS optical deflection elements such as the MEMS optical deflection element described in Japanese Patent Application Laid-Open No. 2015-22064, which deflect light (deflect and scan) by swinging a mirror using a piezoelectric actuator or the like.
  • Devices (MEMS (optical) scanners), MEMS optical deflectors, MEMS mirrors and DMDs are all available.
  • the light deflection element is not limited to the MEMS light deflection element, and various known light deflection elements such as a galvanometer mirror, a polygon mirror, and a resonant scanner can be used. is. Among them, the MEMS optical deflection element is preferably used as the optical deflection element because it has a small mechanical movable portion.
  • the laser light that is deflected toward the first exit port enters the wavelength conversion member 105 to produce a white light.
  • the light is converted into light, reflected in a predetermined direction by the first liquid crystal diffraction element 106 (first diffraction element), condensed and collimated, and projected outside the vehicle.
  • the laser light deflected toward the second exit port enters the wavelength conversion member 105, is converted into white light, is condensed by the lens 111, is incident on the optical waveguide 112, is propagated, is emitted, and enters the concave mirror. After being reflected and condensed by 113, it is condensed and collimated by projection lens 114 and projected outside the vehicle.
  • the optical waveguide 112 is not limited, and various known optical waveguides such as optical fibers can be used.
  • concave mirror In the vehicle-mounted lighting device of the present invention, the concave mirror 113 is also not limited, and various known concave mirrors can be used. The concave mirror may be a spherical mirror, a parabolic mirror, or a free-form mirror.
  • projection lens In the in-vehicle illumination device of the present invention, the projection lens 114 is not limited, and various known projection lenses used in automobiles, such as projection lenses used for automobile headlights, can be used. be.
  • the diffraction element is preferably a liquid crystal in which the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along at least one direction in the plane.
  • the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 having an optically anisotropic layer (cholesteric liquid crystal layer) with an orientation pattern are used, the present invention is not limited to this. That is, the optical deflection element of the present invention can be any known diffraction element as long as the periodic structure pitch changes gradually so that the diffraction angle increases outward from the center of deflection by the optical deflection element. , all available.
  • a method using a photonic crystal without using a liquid crystal material can also be used based on the same principle as the liquid crystal diffraction element described above.
  • a transparent substrate formed of an inorganic material and a concave-convex pattern forming portion formed of a plurality of ridges formed of Si or the like are fixed.
  • Structural birefringence is generated by drawing a plurality of lines at intervals, and by changing the azimuth angle within the plane, a diffraction effect similar to that of the liquid crystal orientation pattern described above can be obtained.
  • a holographic diffraction element is exemplified in which a pattern shape is exposed on a photosensitive material or the like by holography, and light is diffracted according to the difference in the refractive index of the exposed portion.
  • the hologram diffraction element has a periodic pattern that gradually changes from the center of deflection by the light deflection element toward both ends so that the diffraction angle increases outward from the center of deflection of the light deflection element. It is sufficient that it has a refractive index distribution.
  • the hologram diffraction element is not limited as long as it satisfies the above-mentioned limitations. ) are all available.
  • a surface relief diffraction element that diffracts light by fine unevenness formed on the surface can also be used.
  • the grating period (relief pattern) of the unevenness is increased from the center of deflection by the light deflection element toward both ends so that the diffraction angle increases from the center of deflection of the light deflection element toward both ends. It should be changed gradually toward The surface relief diffraction element is also not limited as long as it satisfies the above-mentioned limitations. , all available.
  • the ⁇ /4 plate 109 is unnecessary.
  • the vehicle-mounted lighting device of the present invention has a simple structure, can be driven simply, and is suitable for miniaturization and weight reduction, and utilizes a diffraction element. can be done.
  • Example 1 ⁇ Fabrication of Optical Deflection Element Including Liquid Crystal Diffractive Element> A liquid crystal optical phase modulation element described in JP-A-2003-295153 was used as the deflection element. That is, a nematic liquid crystal layer is provided between a transparent substrate having a plurality of individual ITO electrodes made of a transparent conductor arranged in parallel stripes and a transparent substrate having a common ITO electrode made of a transparent conductor, and each individual electrode is provided with a nematic liquid crystal layer. By applying a predetermined voltage, the nematic liquid crystal layer was configured to cause a modulation of the refractive index.
  • the blue laser light incident from the front is bent in a direction perpendicular to the direction of the parallel stripes.
  • the deflection angle was about ⁇ 3°.
  • the blue laser emits linearly polarized light with a wavelength of 450 nm, and the azimuth of the polarization axis is the extraordinary azimuth of the liquid crystal.
  • a method of manufacturing a liquid crystal diffraction element is shown below.
  • the alkali-saponified surface of the support was continuously coated with the following undercoat layer-forming coating solution using a #8 wire bar.
  • the support with the coating film formed thereon was dried with hot air at 60° C. for 60 seconds and then with hot air at 100° C. for 120 seconds to form an undercoat layer.
  • Coating liquid for forming undercoat layer ⁇ The following modified polyvinyl alcohol 2.40 parts by mass Isopropyl alcohol 1.60 parts by mass Methanol 36.00 parts by mass Water 60.00 parts by mass ⁇
  • Photo-alignment material A 1.00 parts by mass Water 16.00 parts by mass Butoxy ethanol 42.00 parts by mass Propylene glycol monomethyl ether 42.00 parts by mass ⁇ ⁇
  • the alignment film was exposed using the exposure apparatus shown in FIG. 11 to form an alignment film P-1 having an alignment pattern.
  • a laser that emits laser light with a wavelength (405 nm) was used.
  • the amount of exposure by interference light was set to 100 mJ/cm 2 .
  • composition A-1 was prepared as a liquid crystal composition for forming an optically anisotropic layer.
  • Composition A-1 Liquid crystal compound L-1 100.00 parts by mass polymerization initiator (manufactured by BASF, Irgacure (registered trademark) 907) 3.00 parts by mass Photosensitizer (manufactured by Nippon Kayaku Co., Ltd., KAYACURE DETX-S) 1.00 parts by mass Leveling agent T-1 0.08 parts by mass Methyl ethyl ketone 313.00 parts by mass ⁇ ⁇
  • mass polymerization initiator manufactured by BASF, Irgacure (registered trademark) 907
  • Photosensitizer manufactured by Nippon Kayaku Co., Ltd., KAYACURE DETX-S
  • T-1 0.08 parts by mass Methyl ethyl ketone 313.00 parts by mass ⁇ ⁇
  • the optically anisotropic layer was formed by preparing composition A-1 and coating it in multiple layers on alignment film P-1.
  • Multi-layer coating means that the first layer composition A-1 is first applied on the alignment film, heated, cooled, and then UV-cured to prepare a liquid crystal fixing layer, and the second and subsequent layers are liquid crystal fixed. It refers to repeating the process of coating in multiple layers, heating and cooling in the same way, and then UV curing.
  • the composition A-1 was applied onto the alignment film P-1, and the coating film was heated to 70°C on a hot plate and then cooled to 25°C. Thereafter, the orientation of the liquid crystal compound was fixed by irradiating the coating film with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 100 mJ/cm 2 using a high-pressure mercury lamp in a nitrogen atmosphere. At this time, the film thickness of the first liquid crystal layer was 0.2 ⁇ m.
  • the second and subsequent layers were overcoated on this liquid crystal layer, heated under the same conditions as above, cooled, and then UV-cured to prepare a liquid crystal fixing layer. In this manner, repeated coating is repeated until the total thickness reaches a desired thickness to form an optically anisotropic layer.
  • a device was produced.
  • the optically anisotropic layer finally has a liquid crystal ⁇ n450 ⁇ thickness (Re(450)) of 470 nm, and has a concentric periodic liquid crystal alignment pattern as shown in FIG.
  • the rotation period of the optic axis of the liquid crystal compound in the optically anisotropic layer is gradually shortened from the center toward the outside, and the rotation direction of the optic axis at the center was confirmed by a polarizing microscope.
  • the rotation period (one period) in which the optical axis of the liquid crystal compound rotates by 180° has a very large rotation period at the center (the reciprocal of the rotation period is 0).
  • the rotation period at a distance of 2.5 mm from the center is 5.1 ⁇ m
  • the rotation period at a distance of 5.0 mm from the center is 2.5 ⁇ m
  • the rotation period gradually decreases outward from the center It was a liquid crystal alignment pattern.
  • a ⁇ /4 plate (circularly polarizing plate) was prepared in order to convert linearly polarized light after passing through the liquid crystal optical phase modulation element into circularly polarized light and enter the liquid crystal diffraction element.
  • a support having an undercoat layer formed thereon was prepared in the same manner as described above.
  • Coating liquid for forming alignment film P-10 Photo-alignment material Polymer A2 4.35 parts by mass Low-molecular compound B2 0.80 parts by mass Crosslinking agent C1 2.20 parts by mass Compound D1 0.48 parts by mass Compound D2 1.15 parts by mass Butyl acetate 100.00 parts by mass ⁇
  • This epoxy-containing polyorganosiloxane had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g/mol.
  • acrylic group-containing carboxylic acid manufactured by Toagosei Co., Ltd., Aronix M-5300, acrylic acid ⁇ -carboxypolycaprolactone (degree of polymerization n ⁇ 2)
  • 0.5 parts by mass 20 parts by mass of butyl acetate, 1.5 parts by mass of the cinnamic acid derivative obtained by the method of Synthesis Example 1 of JP-A-2015-26050, and 0 of tetrabutylammonium bromide .3 parts by mass were charged and stirred at 90° C.
  • Low molecular weight compound B2 A low-molecular-weight compound B2 represented by the following formula (Nisshin Orio Co., Ltd., NOMUCORT TAB) was used.
  • Crosslinking agent C1 A cross-linking agent C1 represented by the following formula (Denacol EX411 manufactured by Nagase ChemteX Corporation) was used.
  • Compound D1 A compound D1 represented by the following formula (manufactured by Kawaken Fine Chemicals Co., Ltd., aluminum chelate A (W)) was used.
  • the alignment film P-10 thus obtained was irradiated with polarized ultraviolet rays (20 mJ/cm 2 , using an ultra-high pressure mercury lamp) to expose the alignment film P-10.
  • the optically anisotropic layer was formed by applying the composition A-1 described above onto the alignment film P-10.
  • the applied coating film is heated to 110°C on a hot plate, then cooled to 60°C, and then irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 500 mJ/cm 2 using a high-pressure mercury lamp in a nitrogen atmosphere.
  • the orientation of the liquid crystal compound was fixed to produce an optically anisotropic layer.
  • the optically anisotropic layer was transferred from the support to a quartz substrate having a thickness of 10 mm with an adhesive, and this was used as a ⁇ /4 plate.
  • ⁇ n450 ⁇ d (Re(450)) of the obtained ⁇ /4 plate was 470 nm.
  • a liquid crystal optical phase modulation element, a ⁇ /4 plate, and a liquid crystal diffraction element were laminated in this order from the front, and bonded with an adhesive to produce an optical deflection element as shown in FIG.
  • a driving device was connected to the liquid crystal optical phase modulation element.
  • the polarization direction of the emitted light from the liquid crystal optical phase modulation element and the in-plane slow axis of the ⁇ /4 plate were crossed at 45° so that the light was converted into circularly polarized light.
  • the center of the deflection direction of the liquid crystal optical phase modulation element was aligned with the center of the liquid crystal diffraction element, and they were bonded together so that the effect of amplifying the deflection angle of light was maximized.
  • a blue laser was prepared as a light source. This blue laser emits linearly polarized light with a wavelength of 450 nm, and the azimuth of the polarization axis is the extraordinary azimuth of the liquid crystal. The blue laser was arranged so that the emitted linearly polarized light was P-polarized with respect to the emission surface of the liquid crystal diffraction element.
  • Example 2 [Fabrication of diffraction element] (Support and saponification treatment of the support)
  • a commercially available triacetyl cellulose film Z-TAC manufactured by Fuji Film Co., Ltd.
  • the support was passed through a dielectric heating roll at a temperature of 60°C to raise the surface temperature of the support to 40°C.
  • an alkaline solution shown below was coated using a bar coater at a coating amount of 14 mL (liter)/m 2 , the support was heated to 110° C., and a steam type far infrared heater (manufactured by Noritake Co., Ltd.) for 10 seconds.
  • the alkali-saponified surface of the support was continuously coated with the following undercoat layer-forming coating solution using a #8 wire bar.
  • the support with the coating film formed thereon was dried with hot air at 60° C. for 60 seconds and then with hot air at 100° C. for 120 seconds to form an undercoat layer.
  • Coating liquid for forming undercoat layer ⁇ The following modified polyvinyl alcohol 2.40 parts by mass Isopropyl alcohol 1.60 parts by mass Methanol 36.00 parts by mass Water 60.00 parts by mass ⁇
  • Alignment film forming coating solution Materials for optical alignment shown below 1.00 parts by mass Water 16.00 parts by mass Butoxyethanol 42.00 parts by mass Propylene glycol monomethyl ether 42.00 parts by mass ⁇ ⁇
  • the alignment film was exposed using the exposure apparatus shown in FIG. 10 to form the alignment film P-1 having the alignment pattern shown in FIG.
  • a laser that emits laser light with a wavelength (325 nm) was used.
  • the amount of exposure by interference light was set to 100 mJ/cm 2 .
  • One period of the alignment pattern formed by the interference of the two laser beams (the length of the 180° rotation of the optical axis (one period ⁇ )) can be changed by changing the crossing angle (crossing angle ⁇ ) of the two lights. controlled by Specifically, the exposure of the alignment film is performed by adjusting the crossing angle of the two laser beams and masking the unnecessary area for exposure, as described above.
  • ° Rotation was carried out so that one period of rotation gradually became shorter from the center of the support toward both ends in one direction (direction of axis A) in which the optical axis rotates.
  • one direction in which the optical axis rotates will also be referred to as the "axis A direction" in accordance with the previous description.
  • One cycle of the orientation pattern was set so that the center of the support in the direction of the axis A was about 10 ⁇ m, and both ends of the support in the direction of the axis A were about 1 ⁇ m.
  • composition A-1 (Formation of B reflective cholesteric liquid crystal layer) Composition A-1 below was prepared as a liquid crystal composition for forming a cholesteric liquid crystal layer.
  • This composition A-1 is a liquid crystal composition that forms a cholesteric liquid crystal layer (cholesteric liquid crystal phase) that has a selective reflection central wavelength of 450 nm and reflects right-handed circularly polarized light.
  • the B reflective cholesteric liquid crystal layer was formed by coating the composition A-1 on the exposed alignment film P-1 in multiple layers.
  • Multi-layer coating means that the first layer composition A-1 is first applied on the alignment film, heated, cooled, and then UV-cured to prepare a liquid crystal fixing layer, and the second and subsequent layers are liquid crystal fixed. It refers to repeating the process of coating in multiple layers, heating and cooling in the same way, and then UV curing.
  • the following composition A-1 was applied on the alignment film P-1, the coating film was heated on a hot plate to 95 ° C., then cooled to 25 ° C., and then under a nitrogen atmosphere.
  • the alignment of the liquid crystal compound was fixed by irradiating the coating film with ultraviolet light having a wavelength of 365 nm at a dose of 100 mJ/cm 2 using a high-pressure mercury lamp. At this time, the film thickness of the first liquid crystal layer was 0.2 ⁇ m.
  • the second and subsequent layers were overcoated on this liquid crystal layer, heated under the same conditions as above, cooled, and then UV-cured to prepare a liquid crystal fixing layer.
  • repeated coating was repeated until the total thickness reached a desired film thickness to form a B reflective cholesteric liquid crystal layer, thereby producing a B reflective layer.
  • the cross section of the coating layer was confirmed by SEM, the cholesteric liquid crystal phase of the B reflective layer was 8 pitches. It was confirmed with a polarizing microscope that the B reflective cholesteric liquid crystal layer had a periodically oriented surface as shown in FIG.
  • one cycle of 180° rotation of the optical axis derived from the liquid crystal compound was 0.9 ⁇ m at both ends in the direction of the axis A of the support and 10 ⁇ m at the central portion. .
  • composition A-2 for forming a cholesteric liquid crystal layer was prepared in the same manner as composition A-1, except that the amount of chiral agent Ch-1 added was changed to 5.68 parts by mass.
  • This composition A-2 is a liquid crystal composition that forms a cholesteric liquid crystal layer that has a selective reflection central wavelength of 530 nm and reflects right-handed circularly polarized light.
  • a G reflective cholesteric liquid crystal layer was formed in the same manner as the B reflective cholesteric liquid crystal layer, except that the composition A-2 was applied in multiple layers on the alignment film P-2, to produce a G reflective layer.
  • the G-reflection cholesteric liquid crystal layer had a periodically oriented surface as shown in FIG.
  • one cycle in which the optical axis derived from the liquid crystal compound rotates by 180° was 1.1 ⁇ m at the end of the support in the direction of the axis A and 10 ⁇ m at the central portion. .
  • composition A-3 for forming a cholesteric liquid crystal layer was prepared in the same manner as composition A-1, except that the amount of chiral agent Ch-1 added was changed to 4.69 parts by mass.
  • This composition A-3 is a liquid crystal composition that forms a cholesteric liquid crystal layer that has a selective reflection central wavelength of 635 nm and reflects right-handed circularly polarized light.
  • An R reflective cholesteric liquid crystal layer was formed in the same manner as the B reflective cholesteric liquid crystal layer, except that the composition A-3 was applied in multiple layers on the alignment film P-3, thereby producing an R reflective layer.
  • the prepared B reflective layer, G reflective layer and R reflective layer are laminated in the order of the R reflective layer, G reflective layer and B reflective layer with an adhesive (SK Dyne 2057 manufactured by Soken Kagaku Co., Ltd.) to form the first liquid crystal.
  • a diffraction element was produced.
  • the next layer was laminated after peeling off the support and the alignment film.
  • the cholesteric liquid crystal layer has polarization properties in reflection, and diffracts and reflects circularly polarized light.
  • a ⁇ /4 plate (manufactured by Teijin Limited, trade name: Pure Ace WR-S, polycarbonate film, front retardation: 126 nm) is attached to a laminate of cholesteric liquid crystal layers.
  • the light incident on the laminate of the cholesteric liquid crystal layers is made to be right-handed circularly polarized light.
  • two similar ⁇ /4 plates were bonded to the half region of the laminate of the cholesteric liquid crystal layers in the direction of the axis A in order to convert the incident light into left-handed circularly polarized light. That is, the two ⁇ /4 plates act as ⁇ /2 plates.
  • a blue laser was prepared as a light source.
  • the blue laser was arranged so that the emitted linearly polarized light was P-polarized light with respect to the reflecting surface of the first liquid crystal diffraction element.
  • the blue laser emits linearly polarized light with a wavelength of 450 nm, and the azimuth of the polarization axis is the extraordinary azimuth of the liquid crystal.
  • a wavelength conversion member using phosphor Quantum dot phosphor containing InP/ZnS
  • This phosphor is a phosphor that converts blue light into red and green light. Therefore, the light transmitted through the wavelength conversion member becomes white light.
  • an in-vehicle lighting device as shown in FIG. 1 was manufactured. Only one blue laser light source was used so that the laser light was directly incident on the mirror.
  • the first liquid crystal diffraction element was arranged so that the ⁇ /2 plate side was the incident surface, and the laminate of the ⁇ /2 plate, the ⁇ /4 plate and the cholesteric liquid crystal layer was arranged in order from the light incident side.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention addresses the problem of providing: an onboard lighting device that uses excitation light from a solid light source such as a semiconductor light-emitting element to excite a phosphor region and can efficiently guide the excitation light and fluorescence from the phosphor region to an optical system for use; an automobile that comprises the onboard lighting device; and a diffraction element. According to the present invention, an onboard lighting device that distributes light into the space outside an automobile comprises a light source, a member that diffuses light emitted by the light source, and a diffraction element at which the pitch of a periodic structure gradually changes from the center toward the outside.

Description

車載用照明装置、自動車および回折素子Automotive lighting equipment, automobiles and diffraction elements
 本発明は、小型化および軽量化に適した回折素子を利用する車載用照明装置、この車載用照明装置を搭載する自動車、および、この車載用照明装置に用いられる回折素子に関する。 The present invention relates to an in-vehicle lighting device using a diffraction element suitable for miniaturization and weight reduction, an automobile equipped with this in-vehicle lighting device, and a diffraction element used in this in-vehicle lighting device.
 LED(Light Emitting Diode)および半導体レーザー等の半導体発光素子を励起源として蛍光体を励起して光源とする光源装置および照明装置が実用化されている。例えば、特許文献1には、レーザー光を用いて蛍光体を励起し高輝度の光源とする光源装置および照明装置が提案されている。 Light source devices and lighting devices that use semiconductor light-emitting elements such as LEDs (Light Emitting Diodes) and semiconductor lasers as excitation sources to excite phosphors and use them as light sources have been put to practical use. For example, Patent Literature 1 proposes a light source device and a lighting device that use laser light to excite a phosphor to provide a high-intensity light source.
特開2005-191483号公報JP-A-2005-191483
 しかしながら、従来の方式では、半導体発光素子で蛍光体を励起する光源装置および照明装置において、蛍光体が板状であるため光が拡散し、効率的に光学系へ導入して利用することができないという問題があった。
 さらに、近年では車外に出射する光で道路上や壁に文字や記号を投影する試みもされているが、照明装置内で実像を形成するための拡散板が必要であり、この方式でも上記同様に効率的な光学系が求められている。
 また、車外に照射する光はロービーム、ハイビーム、ターンランプ、パーキングライトなどの複数の出射口を持つことが多く、さらにはアダプティブヘッドライトの様な機能を持つ車載用照明装置では、道路のカーブに合わせてランプの出射方向を駆動する必要があり、照明装置内部構造の簡易化や駆動部品の軽量化が求められている。
However, in the conventional method, in the light source device and the lighting device that excite the phosphor with the semiconductor light emitting element, the plate-like phosphor diffuses the light and cannot be efficiently introduced into the optical system for use. There was a problem.
Furthermore, in recent years, attempts have been made to project characters and symbols onto roads and walls using the light emitted outside the vehicle. Therefore, an efficient optical system is required.
In addition, the light emitted outside the vehicle often has multiple outlets for low beams, high beams, turn lamps, parking lights, etc. In addition, in-vehicle lighting systems with functions such as adaptive headlights are difficult to adapt to road curves. In addition, it is necessary to drive the direction in which the lamp is emitted, and there is a demand for simplification of the internal structure of the lighting device and reduction in the weight of driving parts.
 本発明は、小型化および軽量化に適した回折素子を利用する車載用照明装置を提供することを目的としている。 An object of the present invention is to provide an in-vehicle lighting device that utilizes a diffraction element that is suitable for miniaturization and weight reduction.
 本発明者は上記課題に鑑み鋭意検討した結果、蛍光体もしくは拡散板で広がる拡散光を効率的に導入するために、回折素子を利用することで小型化および軽量化できることを見出した。また、車外への複数の出射口を持つ場合には、回折素子を含む駆動装置を利用することで、照明装置の小型化できることを見出し、本発明に至った。 As a result of intensive studies in view of the above problems, the present inventor found that it is possible to reduce the size and weight by using a diffraction element in order to efficiently introduce the diffused light spread by the phosphor or the diffuser plate. Further, the present inventors have found that, in the case of having a plurality of outlets to the outside of the vehicle, it is possible to reduce the size of the illumination device by using a driving device including a diffraction element, and have completed the present invention.
 すなわち、本発明の課題は以下の手段により解決された。
 [1] 車載用照明装置であって、光源と、光源が出射した光を拡散する拡散部材と、拡散部材が拡散した光を回折する、周期構造ピッチが中心から外側に向かって、漸次、変化する、第1回折素子を備えた、自動車の外部空間に光を配光する車載用照明装置。
 [2] 第1回折素子が、液晶化合物を含む組成物を用いて形成される液晶回折素子であって、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する光学異方性層を備える、[1]に記載の車載用照明装置。
 [3] 第1回折素子に隣接する、酸素遮断層を有する、[1]または[2]に記載の車載用照明装置。
 [4] 自動車の外部空間に光を配光する出射口および光導波路と、
 光源が出射した光を、第1回折素子側または光導波路側に偏向する光偏向素子と、
 光偏向素子の光出射側に配置される、周期構造ピッチが中心から外側に向かって、漸次、変化する第2回折素子とを有する、[1]~[3]のいずれかに記載の車載用照明装置。
 [5] 第2回折素子が、液晶化合物を含む組成物を用いて形成される液晶回折素子であって、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する光学異方性層を備える、[4]に記載の車載用照明装置。
 [6] 第2回折素子に隣接する、酸素遮断層を有する、[4]または[5]に記載の車載用照明装置。
 [7] 光偏向素子が、MEMS光偏向素子である、[4]~[6]のいずれかに記載の車載用照明装置。
 [8] λ/4板を有する、[1]~[7]のいずれかに記載の車載用照明装置。
 [9] [1]~[8]のいずれかに記載の車載用照明装置を搭載した自動車。
 [10] [1]~[8]のいずれかに記載の車載用照明装置に使用される回折素子。
That is, the problems of the present invention have been solved by the following means.
[1] An in-vehicle lighting device, comprising a light source, a diffusion member that diffuses the light emitted from the light source, and the diffusion member that diffracts the diffused light, and the pitch of the periodic structure gradually changes outward from the center. 1. An on-vehicle lighting device for distributing light to an exterior space of a motor vehicle, comprising a first diffractive element.
[2] The first diffraction element is a liquid crystal diffraction element formed using a composition containing a liquid crystal compound, wherein the direction of the optic axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction. The vehicle-mounted lighting device according to [1], comprising an optically anisotropic layer having a liquid crystal alignment pattern that changes as it moves.
[3] The vehicle lighting device according to [1] or [2], which has an oxygen blocking layer adjacent to the first diffraction element.
[4] an exit port and an optical waveguide for distributing light to the exterior space of the automobile;
an optical deflection element that deflects the light emitted by the light source toward the first diffraction element or the optical waveguide;
The on-vehicle use according to any one of [1] to [3], further comprising a second diffraction element arranged on the light exit side of the light deflection element and having a periodic structure pitch that gradually changes outward from the center. lighting device.
[5] The second diffraction element is a liquid crystal diffraction element formed using a composition containing a liquid crystal compound, wherein the direction of the optic axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction. The vehicle-mounted lighting device according to [4], comprising an optically anisotropic layer having a liquid crystal alignment pattern that changes as it moves.
[6] The vehicle lighting device according to [4] or [5], which has an oxygen blocking layer adjacent to the second diffraction element.
[7] The vehicle-mounted lighting device according to any one of [4] to [6], wherein the light deflection element is a MEMS light deflection element.
[8] The vehicle-mounted lighting device according to any one of [1] to [7], which has a λ/4 plate.
[9] An automobile equipped with the in-vehicle lighting device according to any one of [1] to [8].
[10] A diffraction element used in the vehicle-mounted lighting device according to any one of [1] to [8].
 本発明によれば、小型化および軽量化に適した回折素子を利用する車載用照明装置を提供できる。 According to the present invention, it is possible to provide an in-vehicle lighting device that uses a diffraction element that is suitable for miniaturization and weight reduction.
図1は、本発明の車載用照明装置の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the vehicle-mounted lighting device of the present invention. 図2は、本発明の車載用照明装置の別の一例を概略的に示す模式図である。FIG. 2 is a schematic diagram schematically showing another example of the vehicle-mounted lighting device of the present invention. 図3は、本発明の車載用照明装置の別の一例を概略的に示す模式図である。FIG. 3 is a schematic diagram schematically showing another example of the vehicle-mounted lighting device of the present invention. 図4は、液晶回折素子の概念図である。FIG. 4 is a conceptual diagram of a liquid crystal diffraction element. 図5は、光学異方性層の概略平面図である。FIG. 5 is a schematic plan view of an optically anisotropic layer. 図6は、光学異方性層の作用を説明するための概念図である。FIG. 6 is a conceptual diagram for explaining the action of the optically anisotropic layer. 図7は、光学異方性層の作用を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining the action of the optically anisotropic layer. 図8は、光学異方性層の作用を説明するための概念図である。FIG. 8 is a conceptual diagram for explaining the action of the optically anisotropic layer. 図9は、光学異方性層の別の例の概略平面図である。FIG. 9 is a schematic plan view of another example of an optically anisotropic layer. 図10は、配向膜を露光する露光装置の概念図である。FIG. 10 is a conceptual diagram of an exposure apparatus that exposes an alignment film. 図11は、配向膜を露光する露光装置の別の例の概念図である。FIG. 11 is a conceptual diagram of another example of an exposure apparatus that exposes an alignment film. 図12は、光学異方性層の別の例の概念図である。FIG. 12 is a conceptual diagram of another example of an optically anisotropic layer. 図13は、光学異方性層の別の例の概念図である。FIG. 13 is a conceptual diagram of another example of an optically anisotropic layer. 図14は、光学異方性層の作用を説明するための概念図である。FIG. 14 is a conceptual diagram for explaining the action of the optically anisotropic layer.
 以下、本発明の車載用照明装置について図面を参照して説明する。
 なお、各図面においては、視認しやすくするため、構成要素の縮尺は実際のものとは適宜、異ならせてある。
Hereinafter, a vehicle-mounted lighting device of the present invention will be described with reference to the drawings.
In addition, in each drawing, the scale of the constituent elements is appropriately changed from the actual scale in order to facilitate visual recognition.
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、角度について「直交」および「平行」とは、厳密な角度±10°の範囲を意味するものとする。
In this specification, a numerical range represented by "to" means a range including the numerical values before and after "to" as lower and upper limits.
In addition, "perpendicular" and "parallel" with respect to angles mean a strict angle range of ±10°.
 本明細書において、Re(λ)は、波長λにおける面内のリターデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本明細書において、Re(λ)は、AxoScan(Axometrics社製)において、波長λで測定した値である。AxoScanにて平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
   遅相軸方向(°)
   Re(λ)=R0(λ)
が算出される。
 なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。
In this specification, Re(λ) represents the in-plane retardation at wavelength λ. Unless otherwise specified, the wavelength λ is 550 nm.
In the present specification, Re(λ) is a value measured at wavelength λ with AxoScan (manufactured by Axometrics). By entering the average refractive index ((nx+ny+nz)/3) and film thickness (d (μm)) in AxoScan,
Slow axis direction (°)
Re(λ)=R0(λ)
is calculated.
Note that R0(λ), which is displayed as a numerical value calculated by AxoScan, means Re(λ).
(車載用照明装置)
 本発明の実施の形態にかかる車載用照明装置の構成を、図1~図3の概念図を用いて説明する。
(In-vehicle lighting device)
A configuration of an in-vehicle lighting device according to an embodiment of the present invention will be described with reference to conceptual diagrams of FIGS. 1 to 3. FIG.
 図1に示す車載用照明装置は、3つのレーザー光源101と、レーザー光を集光するためのミラー102およびレンズ103と、集光したレーザー光を反射するミラー104と、レーザー光を白色光に変換する波長変換部材105と、拡散した光を集光・コリメート化(平行光化)し、車外へ投射するための第1液晶回折素子106とで構成される。 The vehicle-mounted lighting device shown in FIG. It is composed of a wavelength conversion member 105 for conversion and a first liquid crystal diffraction element 106 for condensing and collimating (parallelizing) the diffused light and projecting it out of the vehicle.
 図1に示す車載用照明装置は、3つのレーザー光源101を有する。
 図示例において、図中上方に位置するレーザー光源101が出射したレーザー光および図中下方に位置するレーザー光源101が出射したレーザー光は、ミラー102によってレンズ103の光軸に向けて反射され、図中中央に位置するレーザー光源101が出射したレーザー光はレンズ103の光軸を進行して直接、レンズ103に入射する。
 レンズ103に入射した3本のレーザー光は、レンズ103によって集光され、ミラー104によって所定の光路に反射され、波長変換部材105に入射する。
The vehicle-mounted lighting device shown in FIG. 1 has three laser light sources 101 .
In the illustrated example, the laser light emitted from the laser light source 101 positioned at the upper side of the figure and the laser light emitted from the laser light source 101 positioned at the lower side of the figure are reflected by the mirror 102 toward the optical axis of the lens 103. A laser beam emitted from a laser light source 101 located in the center travels along the optical axis of the lens 103 and directly enters the lens 103 .
The three laser beams incident on the lens 103 are condensed by the lens 103 , reflected along a predetermined optical path by the mirror 104 , and incident on the wavelength conversion member 105 .
 波長変換部材105は、本発明における拡散部材であって、レーザー光源101が出射したレーザー光を変換して、白色光にするものである。
 一例として、レーザー光源101は青色光を出射する。また、波長変換部材105は、入射した青色光を、赤色光および緑色光に変換する蛍光体を用いるものである。この場合には、波長変換部材105の蛍光体によって青色光から変換された赤色光および緑色光と、蛍光体によって変換されずに透過した青色光とによって、白色光が波長変換部材105から出射される。
The wavelength conversion member 105 is a diffusion member in the present invention, and converts the laser light emitted from the laser light source 101 into white light.
As an example, the laser light source 101 emits blue light. Also, the wavelength conversion member 105 uses a phosphor that converts incident blue light into red light and green light. In this case, white light is emitted from wavelength conversion member 105 by red light and green light converted from blue light by the phosphor of wavelength conversion member 105 and blue light transmitted without being converted by the phosphor. be.
 波長変換部材105を用いる本例においては、レーザー光源101は、波長変換部材105に応じて、波長変換部材105によって白色光を生成できる波長の光を出射するものであればよい。この点に関しては、後述する図3に示す例も同様である。
 従って、レーザー光源101が出射するレーザー光は、波長変換部材105に応じて、白色光を生成できるものであればよく、可視光でも、近赤外線でも、遠赤外線でも、遠赤外線以上の長波長の電磁波であってもよい。
In this example using the wavelength conversion member 105 , the laser light source 101 may emit light having a wavelength that allows the wavelength conversion member 105 to generate white light according to the wavelength conversion member 105 . Regarding this point, the example shown in FIG. 3, which will be described later, is the same.
Therefore, the laser light emitted by the laser light source 101 may be any one that can generate white light according to the wavelength conversion member 105, and may be visible light, near infrared rays, far infrared rays, or longer wavelengths than far infrared rays. It may be an electromagnetic wave.
 蛍光体を用いる波長変換部材105に入射して変換された白色光は、蛍光体によって拡散された拡散光となる。
 波長変換部材105から出射された白色光は、第1液晶回折素子106によって、所定の光路に向けて反射されると共に、集光され、例えば自動車の前照灯(ヘッドライト)として投射、すなわち、自動車の外部空間に配光される。
The white light incident on and converted by the wavelength converting member 105 using phosphor becomes diffused light diffused by the phosphor.
The white light emitted from the wavelength conversion member 105 is reflected toward a predetermined optical path by the first liquid crystal diffraction element 106, is condensed, and is projected as, for example, a headlight of an automobile. Light is distributed to the exterior space of the automobile.
 本発明において、第1回折素子は、回折素子の周期構造のピッチが中心から外側に向かって、漸次、変化する、反射型の回折素子である。
 第1液晶回折素子106は、液晶化合物を含む組成物を用いて形成される液晶回折素子であって、液晶化合物に由来する光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する光学異方性層を備える。
 後述するが、第1液晶回折素子106は、この光学異方性層における液晶配向パターンにおいて、光学軸が一方向に沿って180°する長さが、回折素子における周期構造の1周期(1ピッチ)となる。
In the present invention, the first diffraction element is a reflective diffraction element in which the pitch of the periodic structure of the diffraction element gradually changes from the center toward the outside.
The first liquid crystal diffraction element 106 is a liquid crystal diffraction element formed using a composition containing a liquid crystal compound, and the orientation of the optic axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction. It comprises an optically anisotropic layer having a liquid crystal alignment pattern that changes as it moves.
As will be described later, in the liquid crystal alignment pattern of the optically anisotropic layer, the first liquid crystal diffraction element 106 has a length of 180° along one direction of the optical axis, which is one period (one pitch) of the periodic structure of the diffraction element. ).
 回折素子による光の回折角度は、回折素子に入射する光の波長、および、周期構造の1周期(周期構造ピッチ)によって決まる。具体的には、1周期が短いほど、また、光の波長が長いほど、回折角度を大きくなる。例えば、回折素子の法線方向から光が入射した場合には、1周期が短いほど、法線方向に対する反射光の角度が大きくなる。
 なお、法線方向とは、シート状物(板状物、フィルム、層)などの各種の部材の表面と直交する方向である。
 このため、第1液晶回折素子106の1周期を、液晶化合物由来の回転軸が回転する方向の中心は大きく、外側に向かって、漸次、小さくなる様に構成すると第1液晶回折素子106に入射した光は、反射されて、集光される。
 第1液晶回折素子106に入射する光の波長は白色光すなわち可視光である。そのため、1周期は0.2~10μmの範囲であれば、十分に集光する効果が得られる。可視光の波長の範囲は、一例として、380~780nmである。
The diffraction angle of light by the diffraction element is determined by the wavelength of light incident on the diffraction element and one period of the periodic structure (periodic structure pitch). Specifically, the shorter one period and the longer the wavelength of light, the larger the diffraction angle. For example, when light enters from the normal direction of the diffraction element, the shorter the period, the larger the angle of the reflected light with respect to the normal direction.
The normal direction is a direction orthogonal to the surfaces of various members such as sheet-like objects (plate-like objects, films, layers).
Therefore, if one cycle of the first liquid crystal diffraction element 106 is configured so that the center of the direction in which the rotation axis derived from the liquid crystal compound rotates is large and gradually decreases toward the outside, the light incident on the first liquid crystal diffraction element 106 The emitted light is reflected and collected.
The wavelength of light incident on the first liquid crystal diffraction element 106 is white light, that is, visible light. Therefore, if one period is in the range of 0.2 to 10 μm, a sufficient effect of condensing light can be obtained. The wavelength range of visible light is, for example, 380 to 780 nm.
 波長変換部材105を通過した拡散光を、所定の方向に反射して、かつ、投射光となるように集光する光学系としては、凹面鏡と投射レンズとの組み合わせにより、拡散光を所望の方向に反射して、集光・コリメート化する方法が考えられる。
 しかしながら、目的とする投射光となるように、光を反射し、かつ、集光するように、凹面鏡の自由曲面を高精度に作製するのは困難である。また、このような凹面鏡および投射レンズを用いる場合には、光学系も大きくなる。
 これに対し、本発明の車載用照明装置では、凹面鏡と投射レンズとを有する光学系に変えて、回折素子の1周期が周期構造の中心から外側に向かって、漸次、変化する、反射型の回折素子である第1液晶回折素子106(第1回折素子)によって、波長変換部材105(拡散部材)が拡散した白色光を反射して、集光・コリメートかできる。第1液晶回折素子106は、例えば、コレステリック液晶層をもちいるものであり、平板で拡散光を回折反射して、集光することが可能なため、小さな光学系を組むことができる。
 その結果、本発明によれば、小型化および軽量化した車載用照明装置を実現できる。
 第1液晶回折素子106に関しては、後に詳述する。
As an optical system for reflecting the diffused light that has passed through the wavelength conversion member 105 in a predetermined direction and condensing it into projected light, a combination of a concave mirror and a projection lens is used to direct the diffused light in a desired direction. A method of concentrating and collimating the light by reflecting the light is conceivable.
However, it is difficult to produce the free curved surface of the concave mirror with high precision so as to reflect and condense the light so as to obtain the desired projected light. Moreover, when using such a concave mirror and a projection lens, the optical system also becomes large.
On the other hand, in the vehicle-mounted lighting device of the present invention, instead of the optical system having the concave mirror and the projection lens, one period of the diffraction element gradually changes from the center of the periodic structure toward the outside. The white light diffused by the wavelength conversion member 105 (diffusion member) can be reflected by the first liquid crystal diffraction element 106 (first diffraction element), which is a diffraction element, and can be focused and collimated. The first liquid crystal diffraction element 106 uses, for example, a cholesteric liquid crystal layer, and can diffract and reflect diffused light with a flat plate to condense light, so that a small optical system can be assembled.
As a result, according to the present invention, it is possible to realize a compact and lightweight in-vehicle lighting device.
The first liquid crystal diffraction element 106 will be detailed later.
 図2に、本発明の車載用照明装置の別の例を示す。図2に示す車載用照明装置は、車外の道路や壁に文字や画像を投射(投映)するシステムである。
 なお、図2に示す車載用照明装置において、図1に示す車載用照明雄値と同じ符号は、基本的に同じ部材を示す。この点に関しては、後述する図3も同様である。
 図2に示す車載用照明装置は、図1に示す車載用照明装置において、ミラー104および波長変換部材105に変えて、描画ミラー104aと駆動装置107aとからなる描画素子、および、中間スクリーン108を有する。本例においては、中間スクリーン108が、本発明における拡散部材となる。
FIG. 2 shows another example of the vehicle-mounted lighting device of the present invention. The in-vehicle lighting device shown in FIG. 2 is a system for projecting (projecting) characters and images on roads and walls outside the vehicle.
In the vehicle-mounted lighting device shown in FIG. 2, the same reference numerals as those in the vehicle-mounted lighting device shown in FIG. 1 basically indicate the same members. This also applies to FIG. 3, which will be described later.
The in-vehicle lighting device shown in FIG. 2 is similar to the in-vehicle lighting device shown in FIG. have. In this example, the intermediate screen 108 is the diffusing member in the present invention.
 図1に示す車載用照明装置と同様、図2に示す車載用照明装置でも、レーザー光源101が出射した3本のレーザー光は、レンズ103によって集光されて描画素子の描画ミラー104aに入射する。
 なお、本例においては、レーザー光源101が出射するレーザー光を白色光に変換する必要はない。そのため、レーザー光源101が出射するレーザー光は、赤色光、青色光および緑色光などの単色光でも、白色光でもよい。従って、本例では、後述するLEDなどの光源も好適に利用可能である。
1, also in the vehicle-mounted lighting apparatus shown in FIG. 2, the three laser beams emitted by the laser light source 101 are condensed by the lens 103 and enter the drawing mirror 104a of the drawing element. .
In this example, it is not necessary to convert the laser light emitted by the laser light source 101 into white light. Therefore, the laser light emitted by the laser light source 101 may be monochromatic light such as red light, blue light and green light, or white light. Therefore, in this example, a light source such as an LED, which will be described later, can also be suitably used.
 描画素子は、一例として、MEMS光偏向素子を利用するものであって、駆動装置107aによって描画ミラー104aを二次元的に揺動することにより、入射したレーザー光を直交するx方向とy方向とに走査する。
 一例として、描画素子は、駆動装置107aによって、描画ミラー104aをx方向に揺動してレーザー光の走査を行うことを、y方向に角度を変更しつつ行う。描画素子は、これによりx方向に長尺な走査線を、y方向に配列して形成する。
 図2に示す車載用照明装置は、このレーザー光の走査に同期して、描画する画像に応じてレーザー光源101を変調、すなわち、レーザー光源101をon/offすることで、描画を行う。従って、図2に示す例では、レーザー光源101(その駆動手段)も、描画素子の一部を構成すると言える。
As an example of the drawing element, a MEMS optical deflection element is used. By two-dimensionally swinging the drawing mirror 104a by the driving device 107a, the incident laser beam is deflected in the orthogonal x and y directions. Scan to
As an example, the drawing element swings the drawing mirror 104a in the x-direction by the driving device 107a to scan the laser light while changing the angle in the y-direction. The drawing elements thereby form scanning lines elongated in the x direction and arranged in the y direction.
The in-vehicle illumination device shown in FIG. 2 modulates the laser light source 101 in accordance with the image to be drawn in synchronization with the scanning of the laser beam, that is, turns on/off the laser light source 101 to draw. Therefore, in the example shown in FIG. 2, it can be said that the laser light source 101 (its driving means) also constitutes a part of the drawing element.
 描画ミラー104aによって走査されたレーザー光は、中間スクリーン108に入射し、中間スクリーン108を走査して走査線を形成する。
 レーザー光が中間スクリーン108に入射して走査することで、中間スクリーン108によってレーザー光が拡散されて、中間スクリーン108上に文字および絵柄などの画像が実像化される。
 中間スクリーン108で実像化された画像は、図1の車載用照明装置と同様に、第1液晶回折素子106に入射して、反射、集光・コリメート化されて、車外の道路および壁等に画像として投射される。
 本例においても、平板で拡散光を回折反射して、集光できる第1液晶回折素子106を用いることにより、小型化および軽量化した車載用照明装置を実現できる。
The laser light scanned by the drawing mirror 104a enters the intermediate screen 108 and scans the intermediate screen 108 to form scanning lines.
As the laser light enters and scans the intermediate screen 108 , the laser light is diffused by the intermediate screen 108 and images such as characters and patterns are realized on the intermediate screen 108 .
The image formed into a real image by the intermediate screen 108 enters the first liquid crystal diffraction element 106, is reflected, condensed and collimated, and is projected onto the road, wall, etc. projected as an image.
In this example as well, by using the first liquid crystal diffraction element 106 that can diffract and reflect diffused light with a flat plate and converge the light, it is possible to realize a compact and lightweight in-vehicle lighting device.
 図3に本発明の車載用照明装置の別の例を示す。図3に示す車載用照明装置は、ハイビームの出射口とロービームの出射口など、外部に照明を投射する出射口(投射口)を、複数、有する例である。
 図3に示す車載用照明装置においては、図1に示す車載用照明装置の構成部材に加え、λ/4板109と、偏向ミラー104bおよび駆動装置107bを有するMEMS光偏向素子と、第2回折素子である第2液晶回折素子110と、レンズ111、光導波路112,凹面鏡113および投射レンズ114からなる第2出射口と、を有する。なお、この車載用照明装置は、ミラー104を有さない。
 本例において、第1液晶回折素子106(第1回折素子)が第1出射口を構成するものであり、第1出射口の第1液晶回折素子106、および、第2出射口のレンズ111に対応して、2つの波長変換部材105を有する。
FIG. 3 shows another example of the vehicle-mounted lighting device of the present invention. The in-vehicle lighting device shown in FIG. 3 is an example having a plurality of output ports (projection ports) for projecting illumination to the outside, such as a high beam output port and a low beam output port.
In addition to the constituent members of the vehicle-mounted lighting device shown in FIG. 3, the vehicle-mounted lighting device shown in FIG. It has a second liquid crystal diffraction element 110 which is an element, and a second exit port composed of a lens 111 , an optical waveguide 112 , a concave mirror 113 and a projection lens 114 . Note that this in-vehicle lighting device does not have the mirror 104 .
In this example, the first liquid crystal diffraction element 106 (first diffraction element) constitutes the first exit, and the first liquid crystal diffraction element 106 of the first exit and the lens 111 of the second exit Correspondingly, it has two wavelength conversion members 105 .
 図1に示す車載用照明装置と同様、図3に示す車載用照明装置でも、レーザー光源101が出射した3本のレーザー光は、レンズ103によって集光されてλ/4板109に入射する。
 図3に示す車載用照明装置において、レーザー光源101は、直線偏光のレーザー光を出射する。λ/4板109は、この直線偏光のレーザー光を、所定の旋回方向の円偏光に変換する。
 後述するが、第2液晶回折素子110は、入射した円偏光の旋回方向に応じて、透過光を拡散する方向または集光する方向に屈折(回折)する。λ/4板109は、入射した直線偏光のレーザー光を、第2液晶回折素子110が拡散する方向の円偏光に変換する。
 従って、レーザー光源101が円偏光のレーザー光を出射する場合には、λ/4板109は不要である。
In the vehicle-mounted lighting apparatus shown in FIG. 3 as well as the vehicle-mounted lighting apparatus shown in FIG.
In the in-vehicle lighting device shown in FIG. 3, a laser light source 101 emits linearly polarized laser light. The λ/4 plate 109 converts the linearly polarized laser light into circularly polarized light in a predetermined rotating direction.
As will be described later, the second liquid crystal diffraction element 110 refracts (diffracts) the transmitted light in a direction of diffusing or condensing, depending on the direction of rotation of the incident circularly polarized light. The λ/4 plate 109 converts the incident linearly polarized laser light into circularly polarized light in the direction in which the second liquid crystal diffraction element 110 diffuses.
Therefore, when the laser light source 101 emits circularly polarized laser light, the λ/4 plate 109 is unnecessary.
 また、上述した第1液晶回折素子106も、反射型の回折素子としてコレステリック液晶層を用いる場合には、所定の旋回方向の円偏光を選択的に回折して反射する。
 従って、同様の理由で、上述した図1に示す車載用照明装置においても、例えばレンズ103とミラー104との間に、λ/4板109を有してもよい。あるいは、第1液晶回折素子106が、コレステリック液晶層よりも光入射側にλ/4板を有してもよい。
Also, when a cholesteric liquid crystal layer is used as a reflective diffraction element, the above-described first liquid crystal diffraction element 106 selectively diffracts and reflects circularly polarized light in a predetermined turning direction.
Therefore, for the same reason, the vehicle-mounted lighting device shown in FIG. Alternatively, the first liquid crystal diffraction element 106 may have a λ/4 plate on the light incident side of the cholesteric liquid crystal layer.
 λ/4板109によって円偏光に変換されたレーザー光は、MEMS光偏向素子の偏向ミラー104bに入射する。なお、このMEMS偏向素子は、描画を行うものではないので、レーザー光の走査方向は、一方向でもよい。
 MEMS光偏向素子は、偏向ミラー104bおよび駆動装置107bを有する。MEMS光偏向素子は、駆動装置107bによって偏向ミラー104bを揺動することにより、入射した円偏光のレーザー光を偏向して、レーザー光を第1液晶回折素子106側(第1出射口側)と、レンズ111側(第2出射口側)とに振り分ける。
The laser light converted into circularly polarized light by the λ/4 plate 109 is incident on the deflection mirror 104b of the MEMS optical deflection element. Since this MEMS deflection element does not perform drawing, the scanning direction of the laser light may be one direction.
The MEMS optical deflection element has a deflection mirror 104b and a driver 107b. The MEMS optical deflection element deflects the incident circularly polarized laser light by swinging the deflection mirror 104b by the driving device 107b, and directs the laser light to the first liquid crystal diffraction element 106 side (first exit side) and the , and the lens 111 side (second exit side).
 MEMS光偏向素子によって振り分けられた円偏光のレーザー光は、第2液晶回折素子110に入射する。
 前述のように、第2液晶回折素子110は、入射した円偏光の旋回方向に応じて、透過光を拡散する方向または集光する方向に屈折するもので、レーザー光は、λ/4板109によって、第2液晶回折素子110が拡散する方向の円偏光に変換されている。
 従って、第2液晶回折素子110に入射したレーザー光は、MEMS光偏向素子による偏向角を、より広げられて状態となって、第2液晶回折素子110から出射する。
 第2液晶回折素子110に関しては、後に詳述する。
The circularly polarized laser light distributed by the MEMS optical deflection element enters the second liquid crystal diffraction element 110 .
As described above, the second liquid crystal diffraction element 110 refracts the transmitted light in the direction of diffusing or condensing according to the direction of rotation of the incident circularly polarized light. , the light is converted into circularly polarized light in the direction in which the second liquid crystal diffraction element 110 diffuses.
Therefore, the laser light incident on the second liquid crystal diffraction element 110 is emitted from the second liquid crystal diffraction element 110 after the deflection angle of the MEMS optical deflection element is widened.
The second liquid crystal diffraction element 110 will be detailed later.
 第1出射口側に偏向され、第2液晶回折素子110で回折されたレーザー光は、図1に示される例と同様、第1出射口側の波長変換部材105によって白色光に変換され、第1液晶回折素子106によって反射、集光・コリメート化されて、例えば自動車の前照灯として車外に投射される。 The laser light deflected to the first exit side and diffracted by the second liquid crystal diffraction element 110 is converted into white light by the wavelength conversion member 105 on the first exit side as in the example shown in FIG. 1 The light is reflected, condensed and collimated by the liquid crystal diffraction element 106 and projected outside the vehicle as a headlight of the vehicle, for example.
 他方、第2出射口側に偏向され、第2液晶回折素子110で回折されたレーザー光は、第2出射口側の波長変換部材105によって白色光に変換され、レンズ111によって集光されて、光導波路112の入射口に入射する。
 光導波路112に入射されたレーザー光は、光導波路112内を伝播されて、光導波路112の出射口から出射され、凹面鏡113に入射する。
 凹面鏡113に入射したレーザー光は、凹面鏡113によって反射されて集光され、次いで、投射レンズ114によって集光・コリメート化されて、同様に、例えば自動車の前照灯として車外に投射される。
On the other hand, the laser light deflected to the second exit side and diffracted by the second liquid crystal diffraction element 110 is converted into white light by the wavelength conversion member 105 on the second exit side, condensed by the lens 111, and It enters the entrance of the optical waveguide 112 .
The laser light that has entered the optical waveguide 112 propagates through the optical waveguide 112 , is emitted from the exit port of the optical waveguide 112 , and enters the concave mirror 113 .
The laser light incident on the concave mirror 113 is reflected and condensed by the concave mirror 113, then condensed and collimated by the projection lens 114, and similarly projected outside the vehicle as a headlight of an automobile.
 図3に示す車載用照明装置においても、平板で拡散光を回折反射して、集光できる第1液晶回折素子106を用いることにより、小型化および軽量化した車載用照明装置を実現できる。
 なお、本例においては、第2出射口側も、凹面鏡113および投射レンズ114に変えて、第1液晶回折素子106を用いてもよい。これにより、より好適に車載用照明装置の小型化および軽量化を図れる。
In the in-vehicle lighting device shown in FIG. 3 as well, a compact and lightweight in-vehicle lighting device can be realized by using the first liquid crystal diffraction element 106 that can diffract and reflect diffused light and condense light with a flat plate.
In this example, instead of the concave mirror 113 and the projection lens 114, the first liquid crystal diffraction element 106 may also be used on the second exit side. This makes it possible to more preferably reduce the size and weight of the vehicle-mounted lighting device.
 図3に示す車載用照明装置においては、MEMS光偏向素子による第1出射口側への偏向と第2出射口側への偏向とを、使用する出射口に応じて切り替えることで、例えば、ロービームとハイビームとの切り替えのように、投射光を切り替えてもよい。この際における切り替えは、センサーを設けて対向車の有無を検出して、検出結果に応じてMEMS光偏向素子によって自動的に行うようにしてもよい。
 あるいは、MEMS光偏向素子による第1出射口側への偏向と第2出射口側への偏向とを、高速で連続的に行って、ロービームとハイビームとの同時点灯のように、2種の投射光の投射を同時に行うようにしてもよい。この態様においても、上述のように、センサーによる対向車の有無を検出結果に応じて、同時点灯とロービームとの切り替えを、MEMS光偏向素子によって自動的に行うようにしてもよい。
In the in-vehicle lighting device shown in FIG. 3, by switching the deflection toward the first exit port side and the deflection toward the second exit port side by the MEMS optical deflection element according to the exit port to be used, for example, a low beam You may switch a projected light like switching with a high beam. The switching at this time may be automatically performed by a MEMS optical deflection element according to the detection result by providing a sensor to detect the presence or absence of an oncoming vehicle.
Alternatively, the deflection to the first exit port side and the deflection to the second exit port side by the MEMS optical deflection element are continuously performed at high speed, and two types of projection are performed, such as simultaneous lighting of the low beam and the high beam. You may make it project light simultaneously. Also in this aspect, as described above, switching between simultaneous lighting and low beam may be automatically performed by the MEMS optical deflection element according to the detection result of the presence or absence of an oncoming vehicle by the sensor.
 図3に示す車載用照明装置において、偏向ミラー104bおよび駆動装置107bを有するMEMS光偏向素子において、偏向ミラー104bの揺動角度が十分である場合には、第2液晶回折素子110は不要である。
 しかしながら、離間する複数の出射口に光を導くためには、MEMS光偏向素子と第1液晶回折素子106および/または光導波路112との距離を大きくする必要があるため、照明装置が大きくなる。また、偏向ミラー104bの揺動角度を大きくするためには、MEMS光偏向素子も大型化する必要がある。
 これに対して、図3に示す車載用照明装置においては、λ/4板109と第2液晶回折素子110とを有することにより、第2液晶回折素子110を通過した後のレーザー光の偏向角を大きくできる。その結果、MEMS光偏向素子と第1液晶回折素子106および/または光導波路112との距離を小さくすることができ、照明装置を小型にすることが可能となる。
In the vehicle-mounted lighting device shown in FIG. 3, the second liquid crystal diffraction element 110 is not required if the deflection mirror 104b has a sufficient swing angle in the MEMS optical deflection element having the deflection mirror 104b and the driving device 107b. .
However, in order to guide the light to a plurality of spaced-apart exit ports, the distance between the MEMS optical deflection element and the first liquid crystal diffraction element 106 and/or the optical waveguide 112 must be increased, resulting in a large illuminating device. Also, in order to increase the swing angle of the deflection mirror 104b, it is necessary to increase the size of the MEMS optical deflection element.
On the other hand, in the vehicle-mounted lighting device shown in FIG. 3, the deflection angle of the laser light after passing through the second liquid crystal diffraction element 110 is can be increased. As a result, the distance between the MEMS optical deflection element and the first liquid crystal diffraction element 106 and/or the optical waveguide 112 can be reduced, making it possible to reduce the size of the illumination device.
 図3では、波長変換部材105で拡散した光を光導波路に集光するため、光導波路の前段にレンズ111を配置しているが、回折素子を用いて集光しても良い。
 光導波路112を通過した後に光は拡散するため、凹面鏡113と投射レンズ114を用いて集光・コリメート化し、車外へ投射する。この拡散光を集光・コリメートする手段は、第1液晶回折素子106であっても良く、その場合は光学系をより小型にすることが可能となる。
In FIG. 3, the lens 111 is arranged in front of the optical waveguide in order to collect the light diffused by the wavelength conversion member 105 into the optical waveguide, but a diffraction element may be used to collect the light.
Since the light diffuses after passing through the optical waveguide 112, it is condensed and collimated using a concave mirror 113 and a projection lens 114 and projected outside the vehicle. The means for condensing and collimating this diffused light may be the first liquid crystal diffraction element 106, in which case the optical system can be made more compact.
 さらに、図3に示す車載用照明装置では、駆動装置を設け、投射光の投射方向を状況に応じて調節してもよい。
 このような投射方向の調節は、例えば、ステアリングホイールによる操舵方向および舵角に応じて、ロービームの投射方向を自動車の進行方向に向けることが考えられる。
 ここで、図3に示す本発明の車載照明装置では、例えば、第1出射口側がロービームであった場合には、平板状の第1液晶回折素子106の角度を変更するのみで、このような投射方向の変更を行うことができる。そのため、本発明の車載用照明装置によれば、小型かつ簡易で、しかも軽量な駆動装置で、投射光の投射方向の変更を行うことができる。
 なお、第1液晶回折素子106の角度の変更は、公知の板状物の角度変更偏光手段を用いて行えばよい。
 この点に関しては、図1および図2に示す本発明の車載用照明装置も、同様である。
Furthermore, in the vehicle-mounted lighting device shown in FIG. 3, a driving device may be provided to adjust the projection direction of the projection light according to the situation.
Such adjustment of the projection direction is conceivable, for example, by directing the projection direction of the low beam to the traveling direction of the automobile according to the steering direction and steering angle by the steering wheel.
Here, in the in-vehicle lighting device of the present invention shown in FIG. 3, for example, when the first emission port side is a low beam, only by changing the angle of the plate-like first liquid crystal diffraction element 106, such You can change the projection direction. Therefore, according to the in-vehicle lighting device of the present invention, it is possible to change the projection direction of projection light with a small, simple, and lightweight driving device.
The angle of the first liquid crystal diffraction element 106 may be changed by using a known plate-like angle changing polarizing means.
In this regard, the vehicle-mounted lighting device of the present invention shown in FIGS. 1 and 2 is similar.
 本発明の自動車は、このような本発明の車載用照明装置を搭載した自動車(車両)である。
 また、本発明の回折素子は、このような本発明の車載用照明装置に使用される回折素子である。
The automobile of the present invention is an automobile (vehicle) equipped with such an in-vehicle lighting device of the present invention.
Also, the diffraction element of the present invention is a diffraction element used in such a vehicle-mounted lighting device of the present invention.
 以下、上述した車載用照明装置を構成する各部材について説明する。
(光源)
 図1~図3に示される車載用照明装置において、光源はレーザー光源101である。
 レーザー光源101には、制限はなく、半導体レーザー(LD(Laser Diode))等の公知のレーザー光源が、各種、利用可能である。
Each member constituting the vehicle-mounted lighting device described above will be described below.
(light source)
In the vehicle-mounted lighting device shown in FIGS. 1 to 3, the light source is a laser light source 101. FIG.
The laser light source 101 is not limited, and various known laser light sources such as a semiconductor laser (LD (Laser Diode)) can be used.
 なお、発明の車載用照明装置において、光源はレーザー光源101に制限はされず、LED、ハロゲンランプ、キセノンランプ、発光ダイオード、および、有機発光ダイオード(OLED(Organic Light Emitting Diode)を含む)等の公知の光源が、各種利用可能である。上述のように、これらの光源は、図2に示す画像を投射する車載用照明装置に好適に利用可能である。
 なお、光源としては、LED等の光源に比べ、照射距離を長くできる、より明るい照明が可能である、エネルギー効率が高い、小型化が容易である等の点で、図示例のレーザー光源は、好適に利用される。
In addition, in the vehicle-mounted lighting device of the invention, the light source is not limited to the laser light source 101, and may be an LED, a halogen lamp, a xenon lamp, a light-emitting diode, an organic light-emitting diode (OLED (Organic Light Emitting Diode) is included), or the like. A variety of known light sources are available. As described above, these light sources can be suitably used in an in-vehicle lighting device that projects the image shown in FIG.
As for the light source, compared to a light source such as an LED, the laser light source in the illustrated example can have a longer irradiation distance, can provide brighter illumination, has high energy efficiency, and can be easily miniaturized. It is preferably used.
(ミラー)
 ミラー102は、光を反射して光路を変更するための、公知のミラーである。
 なお、本発明の車載用照明装置において、光路変更手段は、ミラーに制限はされず、各種の光学装置で用いられている、公知の各種の光路変更部材が利用可能である。
(mirror)
Mirror 102 is a known mirror for reflecting light to change the optical path.
In addition, in the vehicle-mounted lighting device of the present invention, the optical path changing means is not limited to mirrors, and various known optical path changing members used in various optical devices can be used.
(レンズ)
 レンズ103およびレンズ111は、公知の集光レンズである。本発明において、集光素子は、レンズに制限はされず、光(光ビーム)を集光可能な公知の光学素子が、全て、利用可能である。
(lens)
Lens 103 and lens 111 are known condenser lenses. In the present invention, the condensing element is not limited to lenses, and all known optical elements capable of condensing light (light beams) can be used.
(波長変換部材)
 上述のように、波長変換部材105は、レーザー光の白色光に変換するもので、一例として、蛍光体を用いて入射光を変換するものが好適に利用される。ここで、蛍光体は入射光および波長変換した光を拡散して出射する。すなわち、図1および図3に示す例では、波長変換部材105は、本発明における拡散部材である。
 波長変換部材105(蛍光体)は、一例として、上述のように、入射した青色のレーザー光を赤色光および緑色光に変換して、変換されなかった青色光(青色レーザー光)と、変換した赤色光および緑色光とで、白色光を生成する。
(Wavelength conversion member)
As described above, the wavelength conversion member 105 converts laser light into white light, and for example, one that converts incident light using a phosphor is preferably used. Here, the phosphor diffuses and emits incident light and wavelength-converted light. That is, in the examples shown in FIGS. 1 and 3, the wavelength converting member 105 is the diffusing member of the present invention.
As an example, the wavelength conversion member 105 (phosphor) converts incident blue laser light into red light and green light as described above, unconverted blue light (blue laser light), and converted blue light (blue laser light). Together with red and green light, white light is produced.
 波長変換部材105に用いられる蛍光体には、制限はなく、入射光に応じて白色光を生成できるものであれば、公知の各種のものが利用可能である。
 一例として、CdSe/ZnS、InP/ZnS、ペロブスカイト材料CsPbX3(X=Cl、Br、I)、および、これらの組み合わせなどの量子ドット蛍光体等が例示される。
The phosphor used for the wavelength conversion member 105 is not limited, and various known phosphors can be used as long as they can generate white light according to incident light.
Examples include quantum dot phosphors such as CdSe/ZnS, InP/ZnS, perovskite materials CsPbX 3 (X=Cl, Br, I), and combinations thereof.
(回折素子)
 [液晶回折素子]
 図4(A)に、第1液晶回折素子106を、図4(B)に、第2液晶回折素子110を、それぞれ、概念的に示す。図4(A)および図4(B)は、共に、第1液晶回折素子106および第2液晶回折素子110の側面図である。
 液晶回折素子は、液晶化合物を含む組成物を用いて形成される。
 第1液晶回折素子106および第2液晶回折素子110は、共にシート状である。
 第1液晶回折素子106は、支持体12と、配向膜13と、光学異方性層としてのコレステリック液晶層14aと、を有する。第1液晶回折素子106は、コレステリック液晶層14aを用いる反射型の液晶回折素子であって、上述のように、入射光を、集光かつコリメートしつつ、所定の方向に反射して投射する。
 他方、第2液晶回折素子110は、支持体12と、配向膜13と、光学異方性層14bと、を有する。第2液晶回折素子110は、光学異方性層14bを用いる透過型の液晶回折素子で、上述のように、MEMS光偏向素子(偏向ミラー104b)が偏向した光を屈折(回折)して透過することにより、偏向角を広げるものである。
 なお、図4(A)および図4(B)においては、第1液晶回折素子106および第2液晶回折素子110のシート面方向をx-y方向、厚さ方向をz方向として定義している。図4(A)および図4(B)においては、図中横方向が液晶化合物由来の光学軸が一方向に向かって回転する方向、すなわち後述する軸A方向(軸Aに沿った方向)であり、この方向をx方向とする。従って、y方向は、図4(A)および図4(B)の紙面と直交する方向になる。
(diffraction element)
[Liquid crystal diffraction element]
FIG. 4A conceptually shows the first liquid crystal diffraction element 106, and FIG. 4B conceptually shows the second liquid crystal diffraction element 110. As shown in FIG. 4A and 4B are both side views of the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110. FIG.
A liquid crystal diffraction element is formed using a composition containing a liquid crystal compound.
Both the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are sheet-shaped.
The first liquid crystal diffraction element 106 has a support 12, an alignment film 13, and a cholesteric liquid crystal layer 14a as an optically anisotropic layer. The first liquid crystal diffraction element 106 is a reflective liquid crystal diffraction element using the cholesteric liquid crystal layer 14a, and as described above, collects and collimates incident light, and reflects and projects it in a predetermined direction.
On the other hand, the second liquid crystal diffraction element 110 has a support 12, an alignment film 13, and an optically anisotropic layer 14b. The second liquid crystal diffraction element 110 is a transmissive liquid crystal diffraction element using the optically anisotropic layer 14b. By doing so, the deflection angle is widened.
4A and 4B, the sheet surface direction of the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 is defined as the xy direction, and the thickness direction is defined as the z direction. . 4(A) and 4(B), the horizontal direction in the drawing is the direction in which the optic axis derived from the liquid crystal compound rotates in one direction, that is, the direction of axis A (direction along axis A), which will be described later. and this direction is the x-direction. Therefore, the y-direction is a direction orthogonal to the planes of FIGS. 4(A) and 4(B).
 本発明の車載用照明装置において、第1液晶回折素子106および第2液晶回折素子110は、平板状である。しかしながら、第1液晶回折素子106および第2液晶回折素子110は、平板状に制限はされず、湾曲していてもよい。 In the vehicle-mounted lighting device of the present invention, the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are flat. However, the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are not limited to flat plates, and may be curved.
<酸素遮断層>
 本発明の車載用照明装置においては、第1液晶回折素子106(第1回折素子)および/または第2液晶回折素子110(第2回折素子)に隣接して、酸素遮断層を有してもよい。
 酸素遮断層とは、酸素遮断機能のある酸素遮断膜である。本明細書において、酸素遮断機能とは、酸素を全く通さない状態に限らず、目的の性能に応じて若干酸素を通す状態も含む。
 レーザー光源が液晶回折素子にレーザー光を連続照射した際には、液晶回折素子は高温になるため、液晶化合物の分解が促進され、経時で劣化することがある。このため、酸素遮断層(ガスバリア層)を、第1液晶回折素子106のコレステリック液晶層14aおよび/または第2液晶回折素子110の光学異方性層14bに隣接して設けることにより、液晶回折素子の高温耐性を向上することができる。
 第1液晶回折素子106において、酸素遮断層は、コレステリック液晶層14aに隣接して設ければよいが、必要に応じて、第1液晶回折素子106の両面を挟持するように設けてもよい。また、第2液晶回折素子110において、酸素遮断層は、光学異方性層14bに隣接して設ければよいが、必要に応じて、第2液晶回折素子110の両面を挟持するように設けてもよい。
<Oxygen blocking layer>
The vehicle-mounted lighting device of the present invention may have an oxygen blocking layer adjacent to the first liquid crystal diffraction element 106 (first diffraction element) and/or the second liquid crystal diffraction element 110 (second diffraction element). good.
The oxygen blocking layer is an oxygen blocking film having an oxygen blocking function. In the present specification, the oxygen blocking function is not limited to a state in which oxygen is not permeated at all, but also includes a state in which oxygen is slightly permeable depending on the intended performance.
When the laser light source continuously irradiates the liquid crystal diffraction element with a laser beam, the liquid crystal diffraction element reaches a high temperature, which promotes the decomposition of the liquid crystal compound and may deteriorate over time. Therefore, by providing an oxygen blocking layer (gas barrier layer) adjacent to the cholesteric liquid crystal layer 14a of the first liquid crystal diffraction element 106 and/or the optically anisotropic layer 14b of the second liquid crystal diffraction element 110, the liquid crystal diffraction element high temperature resistance can be improved.
In the first liquid crystal diffraction element 106, the oxygen blocking layer may be provided adjacent to the cholesteric liquid crystal layer 14a, but may be provided so as to sandwich both surfaces of the first liquid crystal diffraction element 106, if necessary. In the second liquid crystal diffraction element 110, the oxygen blocking layer may be provided adjacent to the optically anisotropic layer 14b, but if necessary, it may be provided so as to sandwich both surfaces of the second liquid crystal diffraction element 110. may
 酸素遮断層には制限はなく、様々な製品および部材等において酸素遮断層(ガスバリア層)として利用されているものが、各種、利用可能である。
 酸素遮断層の具体例としては、ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンビニルアルコール、ポリビニルエーテル、ポリビニルピロリドン、ポリアクリルアミド、ポリアクリル酸、セルロースエーテル、ポリアミド、ポリイミド、スチレン/マレイン酸共重合体、ゼラチン、塩化ビニリデン、および、セルロースナノファイバー、などの有機化合物を含む層が挙げられる。中でも、ポリアクリル酸、ポリビニルアルコール、および、変性ポリビニルアルコール等が好ましい。
There are no restrictions on the oxygen-blocking layer, and various types of oxygen-blocking layers (gas barrier layers) used in various products and members can be used.
Specific examples of the oxygen blocking layer include polyvinyl alcohol, modified polyvinyl alcohol, polyethylene vinyl alcohol, polyvinyl ether, polyvinylpyrrolidone, polyacrylamide, polyacrylic acid, cellulose ether, polyamide, polyimide, styrene/maleic acid copolymer, gelatin, Layers containing organic compounds such as vinylidene chloride and cellulose nanofibers are included. Among them, polyacrylic acid, polyvinyl alcohol, modified polyvinyl alcohol, and the like are preferable.
 酸素遮断層は、耐光性をより向上できる点から、上記有機化合物と共に、耐光性改良剤をさらに含有していてもよい。
 酸素遮断層が耐光性改良剤を含有する場合、耐光性改良剤の含有量は、酸素を遮断するバリア層の全質量に対して、0.1~5.0質量%が好ましく、0.3~3.0質量%がより好ましい。
The oxygen-blocking layer may further contain a light resistance improver together with the organic compound from the viewpoint of further improving light resistance.
When the oxygen-blocking layer contains a light resistance improver, the content of the light resistance improver is preferably 0.1 to 5.0% by mass, preferably 0.3%, based on the total weight of the oxygen-blocking barrier layer. ~3.0% by mass is more preferred.
 酸素遮断層の厚さは、0.1~10μmが好ましく、0.5~5.5μmがより好ましい。
 酸素遮断層の波長550nmにおける屈折率は、1.40~1.60が好ましく、1.45~1.55がより好ましい。
 ここで、保護層の波長550nmにおける屈折率は、上述の光吸収異方性膜の平均屈折率と同様の方法で測定できる。
The thickness of the oxygen barrier layer is preferably 0.1-10 μm, more preferably 0.5-5.5 μm.
The refractive index of the oxygen blocking layer at a wavelength of 550 nm is preferably 1.40 to 1.60, more preferably 1.45 to 1.55.
Here, the refractive index of the protective layer at a wavelength of 550 nm can be measured by the same method as for the average refractive index of the light absorption anisotropic film.
 第1液晶回折素子106および第2液晶回折素子110において、支持体12および配向膜13は、例えば配向膜における配向パターン等が異なる以外は、基本的に、同様のものである。
 <支持体>
 支持体12は、配向膜および光学異方性層を支持できるものであれば、各種のシート状物(フィルム、板状物)が利用可能である。
 支持体12としては、透明支持体が好ましく、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、セルローストリアセテート等のセルロース系樹脂フィルム、および、シクロオレフィンポリマー系フィルム等を挙げることができる。シクロオレフィンポリマー系フィルムとしては、例えば、JSR社製の商品名「アートン」、および、日本ゼオン社製の商品名「ゼオノア」等が例示される。なお、第1液晶回折素子106の支持体は、必ずしも透明である必要はない。
 支持体12は、可撓性のフィルムであってもよく、または、例えばガラス基板等の非可撓性の基板であってもよい。
In the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110, the support 12 and the alignment film 13 are basically the same except for the alignment pattern of the alignment film, for example.
<Support>
Various sheet-like materials (films, plate-like materials) can be used as the support 12 as long as they can support the alignment film and the optically anisotropic layer.
The support 12 is preferably a transparent support, and examples thereof include polyacrylic resin films such as polymethyl methacrylate, cellulose resin films such as cellulose triacetate, and cycloolefin polymer films. Examples of the cycloolefin polymer film include JSR's trade name "ARTON" and Nippon Zeon's trade name "Zeonor". Note that the support of the first liquid crystal diffraction element 106 does not necessarily have to be transparent.
The support 12 may be a flexible film or a non-flexible substrate such as a glass substrate.
 <配向膜>
 第1液晶回折素子106および第2液晶回折素子110において、支持体12の表面には配向膜13が形成される。配向膜13は、コレステリック液晶層14aおよび光学異方性層14bを形成する際に、液晶化合物20を、所定の液晶配向パターンに配向するための配向膜である。
<Alignment film>
In the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 , the orientation film 13 is formed on the surface of the support 12 . The alignment film 13 is an alignment film for aligning the liquid crystal compound 20 in a predetermined liquid crystal alignment pattern when forming the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b.
 後述するが、第1液晶回折素子106および第2液晶回折素子110において、コレステリック液晶層14aおよび光学異方性層14bは、液晶化合物20に由来する光学軸22(図9参照)の向きが、面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する。
 なお、図4(A)および図4(B)においては、液晶化合物20として棒状液晶化合物を例示している。従って、図示例においては、光学軸22の向きは、液晶化合物20の長手方向と一致する。
 従って、第1液晶回折素子106および第2液晶回折素子110の配向膜13は、コレステリック液晶層14aおよび光学異方性層14bが、この液晶配向パターンを形成できるように、形成される。
As will be described later, in the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110, the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b have an optical axis 22 (see FIG. 9) derived from the liquid crystal compound 20. It has a liquid crystal orientation pattern that changes while continuously rotating along at least one in-plane direction.
4A and 4B exemplify a rod-like liquid crystal compound as the liquid crystal compound 20. As shown in FIG. Therefore, in the illustrated example, the orientation of the optical axis 22 coincides with the longitudinal direction of the liquid crystal compound 20 .
Therefore, the alignment films 13 of the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are formed so that the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b can form this liquid crystal alignment pattern.
 第1液晶回折素子106のコレステリック液晶層14a、および、第2液晶回折素子110の光学異方性層14bにおいて、液晶配向パターンにおける、光学軸22の向きが連続的に回転しながら変化する一方向に、光学軸22の向きが180°回転する長さを1周期Λ(回転周期Λ(回転周期ピッチ))とする。なお、光学軸22の向きが連続的に回転しながら変化する一方向とは、後述する軸Aに沿う方向である。
 本発明の車載用照明装置において、第1液晶回折素子106のコレステリック液晶層14a、および、第2液晶回折素子110の光学異方性層14bは、光学軸22の向きが連続的に回転しながら変化する一方向の中心から外側に向かって、1周期Λが、漸次、短くなる。また、一方向に向かう液晶化合物20の光学軸22の回転方向は、軸A方向(矢印x方向)に向かって、軸A方向の中心で逆転する。前述のように、光学軸22の向きが連続的に回転しながら変化する一方向とは、後述する軸Aに沿う方向である。
 従って、第1液晶回折素子106および第2液晶回折素子110の配向膜13は、コレステリック液晶層14aおよび光学異方性層14bが、この液晶配向パターンを形成できるように、形成される。
In the cholesteric liquid crystal layer 14a of the first liquid crystal diffraction element 106 and the optically anisotropic layer 14b of the second liquid crystal diffraction element 110, the direction of the optical axis 22 in the liquid crystal alignment pattern changes while rotating continuously. In addition, the length by which the direction of the optical axis 22 is rotated by 180° is defined as one period Λ (rotational period Λ (rotational period pitch)). The one direction in which the direction of the optical axis 22 changes while rotating continuously is the direction along the axis A, which will be described later.
In the in-vehicle lighting device of the present invention, the cholesteric liquid crystal layer 14a of the first liquid crystal diffraction element 106 and the optically anisotropic layer 14b of the second liquid crystal diffraction element 110 are continuously rotated while the direction of the optical axis 22 rotates continuously. One period Λ is gradually shortened outward from the center of the changing one direction. Further, the rotation direction of the optical axis 22 of the liquid crystal compound 20 in one direction is reversed at the center of the axis A direction toward the axis A direction (arrow x direction). As described above, one direction in which the direction of the optical axis 22 changes while rotating continuously is the direction along the axis A, which will be described later.
Therefore, the alignment films 13 of the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 are formed so that the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b can form this liquid crystal alignment pattern.
 配向膜13は、公知の各種のものが利用可能である。
 配向膜13としては、例えば、ポリマーなどの有機化合物からなるラビング処理膜、無機化合物の斜方蒸着膜、マイクログルーブを有する膜、ならびに、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリル酸メチルなどの有機化合物のラングミュア・ブロジェット法によるLB(Langmuir-Blodgett:ラングミュア・ブロジェット)膜を累積させた膜、等があげられる。
 配向膜13としては、ポリマー層の表面をラビング処理して形成されたものが例示される。ラビング処理は、ポリマー層の表面を紙や布で一定方向に数回こすることにより実施される。配向膜に使用するポリマーの種類は、ポリイミド、ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー、特開2005-97377号公報、特開2005-99228号公報、および、特開2005-128503号公報等に記載の直交配向膜等を好ましく使用することができる。
 なお、本発明で言う直交配向膜とは、本発明の重合性棒状液晶化合物の分子の長軸を、直交配向膜のラビング方向と実質的に直交するように配向させる配向膜を意味する。配向膜の厚さは配向機能を提供できれば厚い必要はなく、0.01~5μmであることが好ましく、0.05~2μmであることがさらに好ましい。
Various known materials can be used for the alignment film 13 .
Examples of the alignment film 13 include a rubbing treatment film made of an organic compound such as a polymer, an oblique vapor deposition film of an inorganic compound, a film having microgrooves, ω-tricosanoic acid, dioctadecylmethylammonium chloride, and methyl stearate. A film obtained by accumulating LB (Langmuir-Blodgett) films of an organic compound by the Langmuir-Blodgett method.
As the alignment film 13, one formed by rubbing the surface of a polymer layer is exemplified. The rubbing treatment is performed by rubbing the surface of the polymer layer with paper or cloth several times in one direction. The types of polymers used for the alignment film include polyimide, polyvinyl alcohol, polymers having a polymerizable group described in JP-A-9-152509, JP-A-2005-97377, JP-A-2005-99228, and , and the orthogonal alignment films described in JP-A-2005-128503 and the like can be preferably used.
The term “orthogonal alignment film” as used in the present invention means an alignment film in which the major axes of the molecules of the polymerizable rod-like liquid crystal compound of the present invention are oriented substantially perpendicular to the rubbing direction of the orthogonal alignment film. The thickness of the alignment film does not need to be large as long as it can provide the alignment function, and is preferably 0.01 to 5 μm, more preferably 0.05 to 2 μm.
 配向膜13としては、光配向性の素材に偏光または非偏光を照射して配向膜とした、いわゆる光配向膜も利用可能である。すなわち、支持体12上に、光配光材料を塗布して光配向膜を作製してもよい。
 偏光の照射は、光配向膜に対して、垂直方向または斜め方向から行うことができ、非偏光の照射は、光配向膜に対して、斜め方向から行うことができる。
As the alignment film 13, a so-called photo-alignment film obtained by irradiating a photo-alignment material with polarized or non-polarized light to form an alignment film can also be used. That is, a light-distribution material may be applied on the support 12 to form a light-alignment film.
Irradiation with polarized light can be performed in a direction perpendicular to or oblique to the photo-alignment film, and irradiation with non-polarized light can be performed in a direction oblique to the photo-alignment film.
 本発明に利用可能な光配向膜に用いられる光配向材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号および特許第4151746号に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報および特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号公報および特許第4205198号公報に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報および特許第4162850号公報に記載の光架橋性ポリイミド、ポリアミドまたはエステル、ならびに、特開平9-118717号公報、特表平10-506420号公報、特表2003-505561号公報、国際公開第2010/150748号、特開2013-177561号公報および特開2014-12823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物およびクマリン化合物等が好ましい例として挙げられる。特に好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド、エステル、シンナメート化合物、および、カルコン化合物である。
 本発明においては、光配向膜を用いるのが好ましい。
Examples of the photo-alignment material used in the photo-alignment film that can be used in the present invention include, for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, and JP-A-2007-94071. Publications, JP 2007-121721, JP 2007-140465, JP 2007-156439, JP 2007-133184, JP 2009-109831, JP 3883848 and JP 4151746 Azo compounds described in No., aromatic ester compounds described in JP-A-2002-229039, maleimide having a photo-orientation unit described in JP-A-2002-265541 and JP-A-2002-317013 and / or Alkenyl-substituted nadimide compounds, photocrosslinkable silane derivatives described in Japanese Patent Nos. 4205195 and 4205198, Japanese Patent Publication No. 2003-520878, Japanese Patent Publication No. 2004-529220 and light described in Japanese Patent No. 4162850 Crosslinkable polyimide, polyamide or ester, and JP-A-9-118717, JP-A-10-506420, JP-A-2003-505561, WO 2010/150748, JP-A-2013-177561 and photodimerizable compounds described in JP-A-2014-12823, particularly cinnamate compounds, chalcone compounds and coumarin compounds. Particularly preferred are azo compounds, photocrosslinkable polyimides, polyamides, esters, cinnamate compounds and chalcone compounds.
In the present invention, it is preferable to use a photo-alignment film.
 光配向材料を支持体12上に塗布して乾燥させた後、配向膜を露光して配向パターンを形成する、配向膜の露光装置の模式図を図10に示す。
 この露光装置50は、図5に概念的に示す、液晶化合物20に由来する光学軸22が、一方向に向かって回転しながら連続的に変化する配向パターン(液晶配向パターン)を形成する露光装置である。
 露光装置50は、レーザー52を備えた光源54と、レーザー52からのレーザー光70を2つに分離するビームスプリッター56と、分離された2つの光線72A、72Bの光路上にそれぞれ配置されたミラー58Aおよび58Bならびにλ/4板60Aおよび60Bを備える。
 図示は省略するが、光源64は例えば偏光板を備え、直線偏光P0を出射する。λ/4板60Aおよび60Bは互いに直交する光学軸を備えており、λ/4板60Aは、直線偏光P0を右円偏光PRに、λ/4板60Bは直線偏光P0を左円偏光PLに変換する。
FIG. 10 shows a schematic diagram of an alignment film exposure apparatus that applies a photo-alignment material onto a support 12 and dries it, and then exposes the alignment film to form an alignment pattern.
This exposure apparatus 50 forms an orientation pattern (liquid crystal orientation pattern) in which the optical axis 22 derived from the liquid crystal compound 20 continuously changes while rotating in one direction, as conceptually shown in FIG. is.
The exposure device 50 includes a light source 54 having a laser 52, a beam splitter 56 for splitting the laser light 70 from the laser 52 into two, and mirrors arranged on the optical paths of the two split light beams 72A and 72B. 58A and 58B and λ/4 plates 60A and 60B.
Although not shown, the light source 64 has, for example, a polarizing plate and emits linearly polarized light P0. The λ/ 4 plates 60A and 60B have optical axes perpendicular to each other. Convert to polarization P L .
 配向パターンを形成される前の配向膜13を備えた支持体12が露光部に配置され、2つの光線72A、72Bを配向膜13上で交差させて干渉させ、その干渉光を配向膜13に照射して露光する。
 この際の干渉により、配向膜13に照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。これによって、配向状態が周期的に変化する配向パターンが得られる。
 露光装置50において、2つの光線72Aおよび72Bの交差角βを変化させることにより、配向パターンの周期を変化させることができる。すなわち、露光装置50においては、交差角βを調節することにより、液晶化合物20に由来する光学軸22が一方向に沿って連続的に回転する配向パターンにおいて、光学軸22が回転する1方向における、光学軸22が180°回転する1周期の長さ(回転周期Λ)を調節できる。
 このように配向状態が周期的に変化した配向パターンを有する配向膜13上に、後述するコレステリック液晶層14aまたは光学異方性層14bを形成することにより、この周期に応じた液晶配向パターンを備えたコレステリック液晶層14aまたは光学異方性層14bを形成することができる。
The support 12 having the alignment film 13 before the alignment pattern is formed is placed in the exposure area, and the two light beams 72A and 72B are crossed and interfered on the alignment film 13, and the interference light is directed to the alignment film 13. Illuminate and expose.
Due to the interference at this time, the polarization state of the light with which the alignment film 13 is irradiated periodically changes in the form of interference fringes. As a result, an alignment pattern in which the alignment state changes periodically is obtained.
By changing the crossing angle β of the two light beams 72A and 72B in the exposure device 50, the period of the alignment pattern can be changed. That is, in the exposure device 50, by adjusting the crossing angle β, in the orientation pattern in which the optical axis 22 derived from the liquid crystal compound 20 rotates continuously along one direction, , the length of one cycle in which the optical axis 22 is rotated by 180° (rotational cycle Λ) can be adjusted.
By forming a cholesteric liquid crystal layer 14a or an optically anisotropic layer 14b, which will be described later, on the alignment film 13 having such an alignment pattern in which the alignment state changes periodically, a liquid crystal alignment pattern corresponding to this cycle is provided. Alternatively, a cholesteric liquid crystal layer 14a or an optically anisotropic layer 14b can be formed.
 また、λ/4板60Aおよびλ/4板60Bの光学軸を各々90°回転することにより、光学軸22の回転方向を逆にすることができる。従って、配向膜13の半面にマスキングを行って露光を行い、次いで、露光済みの領域にマスキングを行って、λ/4板60Aおよびλ/4板60Bの光学軸を各々90°回転して露光を行うことで、液晶化合物20の光学軸22が回転する一方向において、中心で光学軸22の回転方向を逆転できる。
 さらに、光線72Aおよび72Bの交差角βを調節し、不要な領域をマスキングして露光を行うことを、適宜、繰り返すことにより、光学軸22が180°回転する1周期の長さ(1周期Λ)を、光学軸22が回転する一方向の中心から外方向に向かって、漸次、短くできる。
Further, by rotating the optical axes of the λ/4 plate 60A and the λ/4 plate 60B by 90°, the rotation direction of the optical axis 22 can be reversed. Therefore, one half of the alignment film 13 is masked and exposed, then the exposed area is masked, and the optical axes of the λ/4 plates 60A and 60B are rotated by 90° for exposure. can reverse the rotation direction of the optical axis 22 at the center in one direction in which the optical axis 22 of the liquid crystal compound 20 rotates.
Furthermore, by adjusting the crossing angle β of the light beams 72A and 72B and masking the unnecessary regions for exposure, the length of one cycle (one cycle Λ ) can be gradually shortened outward from the center in one direction in which the optical axis 22 rotates.
 また、配向膜13の露光には、図11に概念的に示す露光装置80も、好適に利用される。図11に示す露光装置80は、図9に概念的に示すような、同心円状の配向パターン(液晶配向パターン)を形成する場合に用いられる露光装置である。
 露光装置80は、レーザー82を備えた光源84と、レーザー82からのレーザー光MをS偏光MSとP偏光MPとに分割する偏光ビームスプリッター86と、P偏光MPの光路に配置されたミラー90AおよびS偏光MSの光路に配置されたミラー90Bと、S偏光MSの光路に配置されたレンズ92(凸レンズ)と、偏光ビームスプリッター94と、λ/4板96と、を有する。
For the exposure of the alignment film 13, an exposure device 80 conceptually shown in FIG. 11 is also preferably used. An exposure device 80 shown in FIG. 11 is an exposure device used for forming a concentric alignment pattern (liquid crystal alignment pattern) as conceptually shown in FIG.
The exposure device 80 includes a light source 84 having a laser 82, a polarizing beam splitter 86 that splits the laser beam M from the laser 82 into S-polarized light MS and P-polarized light MP, and a mirror 90A arranged in the optical path of the P-polarized light MP. and a mirror 90B arranged in the optical path of the S-polarized MS, a lens 92 (convex lens) arranged in the optical path of the S-polarized MS, a polarizing beam splitter 94, and a λ/4 plate 96.
 偏光ビームスプリッター86で分割されたP偏光MPは、ミラー90Aによって反射されて、偏光ビームスプリッター94に入射する。他方、偏光ビームスプリッター86で分割されたS偏光MSは、ミラー90Bによって反射され、レンズ92によって集光されて偏光ビームスプリッター94に入射する。
 P偏光MPおよびS偏光MSは、偏光ビームスプリッター94で合波されて、λ/4板96によって偏光方向に応じた右円偏光および左円偏光となって、支持体12の上の配向膜13に入射する。
 ここで、右円偏光と左円偏光との干渉により、配向膜13に照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。同心円の内側から外側に向かうにしたがい、左円偏光と右円偏光の交差角が変化するため、内側から外側に向かってピッチが変化する露光パターンが得られる。これにより、配向膜13において、配向状態が周期的に変化する同心円状の配向パターンが得られる。
The P-polarized light MP split by the polarizing beam splitter 86 is reflected by the mirror 90A and enters the polarizing beam splitter 94 . On the other hand, the S-polarized light MS split by the polarizing beam splitter 86 is reflected by the mirror 90B, condensed by the lens 92, and enters the polarizing beam splitter 94. FIG.
The P-polarized MP and S-polarized light MS are combined by a polarizing beam splitter 94 into right-handed circularly polarized light and left-handed circularly polarized light according to the polarization direction by a λ/4 plate 96, and are applied to the alignment film 13 on the support 12. incident on.
Here, due to the interference between the right-handed circularly polarized light and the left-handed circularly polarized light, the polarization state of the light with which the alignment film 13 is irradiated changes periodically in the form of interference fringes. Since the crossing angle of the left-handed circularly polarized light and the right-handed circularly polarized light changes from the inside to the outside of the concentric circle, an exposure pattern is obtained in which the pitch changes from the inside to the outside. As a result, a concentric alignment pattern in which the alignment state changes periodically is obtained in the alignment film 13 .
 この露光装置80において、液晶化合物20の光学軸22が一方向に沿って連続的に180°回転する1周期の長さ(1周期Λ)は、レンズ92の屈折力、レンズ92の焦点距離、および、レンズ92と配向膜13との距離等を変化させることで、制御できる。なお、レンズ92の屈折力とは、すなわち、レンズ92のFナンバーである。
 また、レンズ92の屈折力を調節することによって、光学軸22が連続的に回転する一方向において、光学軸22が180°回転する1周期の長さを変更できる。具体的には、平行光と干渉させる、レンズ92を透過した光の集光の程度によって、光学軸22が180°回転する1周期の長さ変えることができる。より具体的には、レンズ92の屈折力を弱くすると、平行光に近づくため、光学軸22が180°回転する1周期の長さは、内側から外側に向かって緩やかに短くなり、Fナンバーは大きくなる。逆に、レンズ92の屈折力を強めると、光学軸22が180°回転する1周期の長さは、内側から外側に向かって急に短くなり、Fナンバーは小さくなる。
In this exposure apparatus 80, the length of one cycle (one cycle Λ) in which the optical axis 22 of the liquid crystal compound 20 rotates continuously by 180° along one direction is the refractive power of the lens 92, the focal length of the lens 92, Also, it can be controlled by changing the distance between the lens 92 and the alignment film 13 or the like. Note that the refractive power of the lens 92 is the F number of the lens 92 .
Also, by adjusting the refractive power of the lens 92, the length of one cycle in which the optical axis 22 rotates 180° can be changed in one direction in which the optical axis 22 rotates continuously. Specifically, it is possible to change the length of one cycle in which the optical axis 22 rotates by 180° depending on the degree of convergence of the light transmitted through the lens 92 that interferes with the parallel light. More specifically, when the refractive power of the lens 92 is weakened, the light becomes closer to parallel light. growing. Conversely, when the refractive power of the lens 92 is strengthened, the length of one cycle in which the optical axis 22 rotates by 180° becomes suddenly shorter from the inside to the outside, and the F-number becomes smaller.
 このように、光学軸22が連続的に回転する1方向において、光学軸22が180°回転する1周期Λを変更する構成は、矢印x方向の一方向のみに液晶化合物20の光学軸22が連続的に回転して変化する構成でも、利用可能である。
 例えば、光学軸22が180°回転する1周期を、矢印x方向に向かって、漸次、短くすることにより、集光するように光を透過する光学素子を得ることができる。また、液晶配向パターンにおいて、光学軸22が180°回転する方向を逆にすることにより、矢印x方向にのみ拡散するように光を透過する光学素子を得ることができる。なお、入射する円偏光の旋回方向を逆にすることでも、矢印のx方向にのみ拡散するように光を透過する光学素子を得ることができる。
 さらに、例えば透過光に光量分布を設けたい場合など、光学素子の用途によって、矢印x方向に向かって、光学軸22が180°回転する1周期を、漸次、変更するのではなく、矢印x方向において、部分的に光学軸22が180°回転する1周期が異なる領域を有する構成も利用可能である。例えば、部分的に光学軸22が180°回転する1周期を変更する方法として、集光したレーザー光の偏光方向を任意に変えながら、光配向膜をスキャン露光してパターニングする方法等を利用することができる。
In this way, in one direction in which the optical axis 22 rotates continuously, one period Λ in which the optical axis 22 rotates by 180° is changed. A continuously rotating variable configuration is also available.
For example, by gradually shortening one cycle in which the optical axis 22 rotates 180° in the direction of the arrow x, an optical element that transmits light so as to converge can be obtained. Further, by reversing the direction in which the optical axis 22 is rotated by 180° in the liquid crystal orientation pattern, an optical element that transmits light so as to diffuse only in the arrow x direction can be obtained. By reversing the rotating direction of the incident circularly polarized light, it is possible to obtain an optical element that transmits light so that the light is diffused only in the x direction indicated by the arrow.
Furthermore, depending on the application of the optical element, for example, when it is desired to provide a light amount distribution in the transmitted light, instead of gradually changing one period in which the optical axis 22 rotates 180° in the direction of the arrow x, , it is also possible to use a configuration in which the optical axis 22 is partially rotated by 180° and has regions with different one periods. For example, as a method of partially changing one cycle in which the optical axis 22 rotates 180°, a method of patterning the photo-alignment film by scanning exposure while arbitrarily changing the polarization direction of the focused laser beam is used. be able to.
 なお、第1液晶回折素子106および第2液晶回折素子110において、配向膜13は、好ましい態様として設けられるものであり、必須の構成要件ではない。
 例えば、支持体12をラビング処理する方法、支持体12をレーザー光等で加工する方法等によって、支持体12に配向パターンを形成することにより、コレステリック液晶層14aおよび光学異方性層14bが、液晶化合物20に由来する光学軸22の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する構成とすることも、可能である。
 また、第1液晶回折素子106および第2液晶回折素子110は、支持体12を剥離した配向膜と光学異方性層とからなる構成であってもよく、支持体12および配向膜13を剥離した光学異方性層のみからなる構成であってもよく、あるいは、支持体12および配向膜13を剥離した光学異方性層を、他の支持体に貼着した構成でもよい。
 すなわち、本発明の車載用照明装置を構成する第1液晶回折素子106および第2液晶回折素子110は、光学異方性層(コレステリック液晶層)を含むものであれば、各種の層構成が利用可能である。
In addition, in the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110, the alignment film 13 is provided as a preferred embodiment, and is not an essential component.
For example, by forming an alignment pattern on the support 12 by a method of rubbing the support 12, a method of processing the support 12 with a laser beam, or the like, the cholesteric liquid crystal layer 14a and the optically anisotropic layer 14b are A configuration having a liquid crystal orientation pattern in which the orientation of the optical axis 22 derived from the liquid crystal compound 20 changes while continuously rotating along at least one in-plane direction is also possible.
Further, the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 may be composed of an alignment film and an optically anisotropic layer from which the support 12 is peeled off. Alternatively, the optically anisotropic layer from which the support 12 and the alignment film 13 are peeled off may be adhered to another support.
That is, the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 that constitute the vehicle-mounted lighting device of the present invention may have various layer structures as long as they include an optically anisotropic layer (cholesteric liquid crystal layer). It is possible.
 <コレステリック液晶層>
 上述のように、第1液晶回折素子106においては、配向膜13の表面には、光学異方性層としてのコレステリック液晶層14aが設けられる。
 コレステリック液晶層14aは、コレステリック液晶相を固定してなる層である。言い換えれば、コレステリック液晶層は、液晶化合物をコレステリック配向状態で固定した層である。
 本発明の車載用照明装置において、第1液晶回折素子106を構成するコレステリック液晶層は、液晶化合物20に由来する光学軸22の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有するコレステリック液晶層である。なお、図4(A)においては、液晶化合物20は棒状液晶化合物であるので、光学軸22は液晶化合物20の長手方向と一致するのは、上述のとおりである。
<Cholesteric liquid crystal layer>
As described above, in the first liquid crystal diffraction element 106, the surface of the alignment film 13 is provided with the cholesteric liquid crystal layer 14a as an optically anisotropic layer.
The cholesteric liquid crystal layer 14a is a layer having a fixed cholesteric liquid crystal phase. In other words, the cholesteric liquid crystal layer is a layer in which liquid crystal compounds are fixed in a cholesteric alignment state.
In the in-vehicle lighting device of the present invention, the cholesteric liquid crystal layer that constitutes the first liquid crystal diffraction element 106 has an optical axis 22 derived from the liquid crystal compound 20 that continuously rotates along at least one in-plane direction. A cholesteric liquid crystal layer with varying liquid crystal alignment patterns. In FIG. 4A, since the liquid crystal compound 20 is a rod-like liquid crystal compound, the optical axis 22 coincides with the longitudinal direction of the liquid crystal compound 20 as described above.
 コレステリック液晶層14aは、図4(A)に概念的に示すように、通常のコレステリック液晶相を固定してなるコレステリック液晶層と同様に、液晶化合物20が螺旋状に旋回して積み重ねられた螺旋構造を有し、液晶化合物20が螺旋状に1回転(360°回転)して積み重ねられた構成を螺旋1ピッチとして、螺旋状に旋回する液晶化合物20が、複数ピッチ、積層された構造を有する。 As conceptually shown in FIG. 4A, the cholesteric liquid crystal layer 14a is a helical liquid crystal layer in which liquid crystal compounds 20 are helically rotated and stacked in the same manner as a cholesteric liquid crystal layer in which a normal cholesteric liquid crystal phase is fixed. A structure in which the liquid crystal compound 20 is stacked with one spiral rotation (360° rotation) is defined as one spiral pitch, and the spirally rotating liquid crystal compound 20 has a structure in which multiple pitches are stacked. .
 周知のように、コレステリック液晶相を固定してなるコレステリック液晶層は、波長選択反射性を有する。後に詳述するが、コレステリック液晶層の選択的な反射波長域は、上述した螺旋1ピッチの厚さ方向の長さに依存する。螺旋1ピッチの厚さ方向の長さは、すなわち、図4(A)に示すピッチPである。
 また、コレステリック液晶層は、液晶化合物20の螺旋状の旋回方向に応じて、右円偏光または左円偏光を、選択的に反射する。
 コレステリック液晶層は、選択的な反射波長域の、選択的に反射する旋回方向の円偏光以外の光は、透過する。
As is well known, a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed has wavelength-selective reflectivity. As will be described in detail later, the selective reflection wavelength range of the cholesteric liquid crystal layer depends on the length in the thickness direction of the helical 1-pitch described above. The length of one spiral pitch in the thickness direction is the pitch P shown in FIG. 4(A).
In addition, the cholesteric liquid crystal layer selectively reflects right-handed circularly polarized light or left-handed circularly polarized light according to the spiral turning direction of the liquid crystal compound 20 .
The cholesteric liquid crystal layer transmits light other than the circularly polarized light in the selective reflection wavelength range, which is selectively reflected in the rotating direction.
 従って、コレステリック液晶層14aに波長選択性を持たせ、所定の波長の光のみを回折する構成とする場合には、コレステリック液晶層の螺旋ピッチPを調節して、コレステリック液晶層の選択的な反射波長域を適宜設定すればよい。
 ここで、上述のように、第1液晶回折素子106は、波長変換部材105によって変換された白色光を反射するものである。従って、第1液晶回折素子106は、赤色光を選択的に反射するコレステリック液晶層、緑色光を選択的に反射するコレステリック液晶層、および、青色光を選択的に反射するコレステリック液晶層の、3層のコレステリック液晶層を有するのが好ましい。
 加えて、上述のように、コレステリック液晶層は、右円偏光または左円偏光を選択的に反射する。これに対応して、第1液晶回折素子106は、各色毎に、右円偏光を選択的に反射するコレステリック液晶層と、左円偏光を選択的に反射するコレステリック液晶層とを有してもよい。
Therefore, when the cholesteric liquid crystal layer 14a is made to have wavelength selectivity and is configured to diffract only light of a predetermined wavelength, the helical pitch P of the cholesteric liquid crystal layer is adjusted to selectively reflect the cholesteric liquid crystal layer. The wavelength range may be appropriately set.
Here, as described above, the first liquid crystal diffraction element 106 reflects the white light converted by the wavelength conversion member 105 . Therefore, the first liquid crystal diffraction element 106 has three layers: a cholesteric liquid crystal layer that selectively reflects red light, a cholesteric liquid crystal layer that selectively reflects green light, and a cholesteric liquid crystal layer that selectively reflects blue light. It is preferred to have a layer of cholesteric liquid crystal layers.
Additionally, as described above, the cholesteric liquid crystal layer selectively reflects either right-handed circularly polarized light or left-handed circularly polarized light. Correspondingly, the first liquid crystal diffraction element 106 may have a cholesteric liquid crystal layer that selectively reflects right-handed circularly polarized light and a cholesteric liquid crystal layer that selectively reflects left-handed circularly polarized light for each color. good.
 <<コレステリック液晶相>>
 コレステリック液晶相は、特定の波長において選択反射性を示すことが知られている。
 一般的なコレステリック液晶相において、選択反射の中心波長λ(選択反射中心波長λ)は、コレステリック液晶相における螺旋のピッチPに依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋ピッチを調節することによって、選択反射中心波長を調節することができる。
 コレステリック液晶相の選択反射中心波長は、ピッチPが長いほど、長波長になる。
 なお、螺旋のピッチPとは、上述したように、コレステリック液晶相の螺旋構造1ピッチ分(螺旋の周期)である。螺旋のピッチPとは、言い換えれば、螺旋の巻き数1回分であり、すなわち、コレステリック液晶相を構成する液晶化合物のダイレクターが360°回転する螺旋軸方向の長さである。液晶化合物のダイレクターは、例えば、棒状液晶化合物であれば長軸方向である。
<<Cholesteric liquid crystal phase>>
Cholesteric liquid crystal phases are known to exhibit selective reflectivity at specific wavelengths.
In a general cholesteric liquid crystal phase, the selective reflection central wavelength λ (selective reflection central wavelength λ) depends on the helical pitch P in the cholesteric liquid crystal phase, and the average refractive index n of the cholesteric liquid crystal phase and λ = n × P Follow relationship. Therefore, by adjusting this helical pitch, the selective reflection central wavelength can be adjusted.
The central wavelength of selective reflection of the cholesteric liquid crystal phase becomes longer as the pitch P becomes longer.
As described above, the pitch P of the spiral is one pitch of the spiral structure of the cholesteric liquid crystal phase (the period of the spiral). The pitch P of the helix is, in other words, the number of turns of the helix, that is, the length in the direction of the helix axis at which the director of the liquid crystal compound constituting the cholesteric liquid crystal phase rotates 360°. The director of the liquid crystal compound is, for example, the long axis direction in the case of a rod-like liquid crystal compound.
 コレステリック液晶相の螺旋ピッチは、コレステリック液晶層を形成する際に、液晶化合物と共に用いるキラル剤の種類、および、キラル剤の添加濃度に依存する。従って、これらを調節することによって、所望の螺旋ピッチを得ることができる。
 なお、ピッチの調節については富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および、「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載される方法を用いることができる。
The helical pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the liquid crystal compound and the addition concentration of the chiral agent when forming the cholesteric liquid crystal layer. Therefore, a desired helical pitch can be obtained by adjusting these.
As for the adjustment of the pitch, refer to Fuji Film Research Report No. 50 (2005) p. 60-63 for a detailed description. As for the method for measuring the sense and pitch of the helix, the method described in "Introduction to Liquid Crystal Chemistry Experiments" edited by the Japan Liquid Crystal Society, published by Sigma Publishing, 2007, page 46, and "Liquid Crystal Handbook" Liquid Crystal Handbook Editing Committee, Maruzen, page 196 is used. be able to.
 コレステリック液晶相は、特定の波長において左右いずれかの円偏光に対して選択反射性を示す。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相の螺旋の捩れ方向(センス)による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶層の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 なお、コレステリック液晶相の旋回の方向は、コレステリック液晶層を形成する液晶化合物の種類および/または添加されるキラル剤の種類によって調節できる。
A cholesteric liquid crystal phase exhibits selective reflectivity for either left or right circularly polarized light at a specific wavelength. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction (sense) of the cholesteric liquid crystal phase. The selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right-handed circularly polarized light when the helical twist direction of the cholesteric liquid crystal layer is rightward, and reflects left-handed circularly polarized light when the helical twist direction is leftward.
The direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer and/or the type of chiral agent added.
 また、選択反射を示す選択反射波長域(円偏光反射波長域)の半値幅Δλ(nm)は、コレステリック液晶相のΔnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射波長域(選択的な反射波長域)の幅の制御は、Δnを調節して行うことができる。Δnは、コレステリック液晶層を形成する液晶化合物の種類およびその混合比率、ならびに、配向固定時の温度により調節できる。
 反射波長域の半値幅は、例えば波長変換部材105が出射する白色光の分光分布応じて調節され、例えば10~500nmであればよく、好ましくは20~300nmであり、より好ましくは30~150nmである。
Further, the half width Δλ (nm) of the selective reflection wavelength region (circularly polarized light reflection wavelength region) indicating selective reflection depends on Δn of the cholesteric liquid crystal phase and the spiral pitch P, and follows the relationship Δλ=Δn×P. Therefore, the width of the selective reflection wavelength band (selective reflection wavelength band) can be controlled by adjusting Δn. Δn can be adjusted by the type and mixing ratio of the liquid crystal compounds forming the cholesteric liquid crystal layer, and the temperature during orientation fixation.
The half width of the reflected wavelength range is adjusted, for example, according to the spectral distribution of the white light emitted by the wavelength conversion member 105, and may be, for example, 10 to 500 nm, preferably 20 to 300 nm, more preferably 30 to 150 nm. be.
 <<コレステリック液晶層の形成方法>>
 コレステリック液晶層は、コレステリック液晶相を層状に固定して形成できる。
 コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、外場または外力によって配向形態に変化を生じさせることない状態に変化した構造が好ましい。
 なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、コレステリック液晶層において、液晶化合物20は液晶性を示さなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、液晶性を失っていてもよい。
<<Method for Forming Cholesteric Liquid Crystal Layer>>
The cholesteric liquid crystal layer can be formed by fixing a cholesteric liquid crystal phase in layers.
The structure in which the cholesteric liquid crystal phase is fixed may be any structure as long as the alignment of the liquid crystal compound in the cholesteric liquid crystal phase is maintained. Preferably, the structure is polymerized and cured by UV irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the structure is changed to a state in which the orientation is not changed by an external field or external force.
In the structure in which the cholesteric liquid crystal phase is fixed, it is sufficient if the optical properties of the cholesteric liquid crystal phase are maintained, and the liquid crystal compound 20 does not have to exhibit liquid crystallinity in the cholesteric liquid crystal layer. For example, the polymerizable liquid crystal compound may be polymerized by a curing reaction and lose liquid crystallinity.
 コレステリック液晶相を固定してなるコレステリック液晶層の形成に用いる材料としては、棒状あるいは円盤状の液晶化合物を含む液晶組成物が挙げられる。液晶化合物は重合性液晶化合物であるのが好ましい。
 液晶化合物としては、後述する光学異方性層14bで例示する各種の棒状液晶化合物および円盤状液晶化合物が利用可能である。
 また、コレステリック液晶層の形成に用いる液晶組成物は、さらに界面活性剤およびキラル剤を含んでいてもよい。
Materials used for forming a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed include a liquid crystal composition containing a rod-like or disk-like liquid crystal compound. The liquid crystal compound is preferably a polymerizable liquid crystal compound.
As the liquid crystal compound, various rod-like liquid crystal compounds and discotic liquid crystal compounds exemplified in the later-described optically anisotropic layer 14b can be used.
Moreover, the liquid crystal composition used for forming the cholesteric liquid crystal layer may further contain a surfactant and a chiral agent.
--界面活性剤--
 コレステリック液晶層を形成する際に用いる液晶組成物は、界面活性剤を含有してもよい。界面活性剤は、安定的に、または迅速に、コレステリック液晶相の配向に寄与する配向制御剤として機能できる化合物が好ましい。界面活性剤としては、例えば、シリコ-ン系界面活性剤およびフッ素系界面活性剤が挙げられ、フッ素系界面活性剤が好ましく例示される。
--Surfactant--
The liquid crystal composition used for forming the cholesteric liquid crystal layer may contain a surfactant. The surfactant is preferably a compound that can stably or quickly function as an alignment control agent that contributes to the alignment of the cholesteric liquid crystal phase. Examples of surfactants include silicone-based surfactants and fluorine-based surfactants, with fluorine-based surfactants being preferred examples.
 界面活性剤の具体例としては、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物、特開2012-203237号公報の段落[0031]~[0034]に記載の化合物、特開2005-99248号公報の段落[0092]および[0093]中に例示されている化合物、特開2002-129162号公報の段落[0076]~[0078]および段落[0082]~[0085]中に例示されている化合物、ならびに、特開2007-272185号公報の段落[0018]~[0043]等に記載のフッ素(メタ)アクリレート系ポリマー、などが挙げられる。
 なお、界面活性剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 フッ素系界面活性剤として、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物が好ましい。
Specific examples of the surfactant include compounds described in paragraphs [0082] to [0090] of JP-A-2014-119605, and compounds described in paragraphs [0031] to [0034] of JP-A-2012-203237. , compounds exemplified in paragraphs [0092] and [0093] of JP-A-2005-99248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A-2002-129162 compounds exemplified therein, and fluorine (meth)acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185.
In addition, surfactant may be used individually by 1 type, and may use 2 or more types together.
As the fluorosurfactant, compounds described in paragraphs [0082] to [0090] of JP-A-2014-119605 are preferable.
 液晶組成物中における、界面活性剤の添加量は、液晶化合物の全質量に対して0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.02~1質量%がさらに好ましい。 The amount of the surfactant added in the liquid crystal composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and 0.02 to 1% by mass with respect to the total mass of the liquid crystal compound. is more preferred.
--キラル剤(光学活性化合物)--
 キラル剤(カイラル剤)はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super Twisted Nematic)用キラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、および、イソマンニド誘導体等を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファン、および、これらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
 また、キラル剤は、液晶化合物であってもよい。
--Chiral agent (optically active compound)--
A chiral agent (chiral agent) has a function of inducing a helical structure of a cholesteric liquid crystal phase. The chiral agent may be selected depending on the purpose, since the helical twist direction or helical pitch induced by the compound differs.
The chiral agent is not particularly limited, and known compounds (for example, liquid crystal device handbook, Chapter 3, Section 4-3, chiral agent for TN (twisted nematic), STN (Super Twisted Nematic), page 199, Japan Society for the Promotion of Science 142nd Committee, 1989), isosorbide, isomannide derivatives and the like can be used.
Chiral agents generally contain an asymmetric carbon atom, but axially chiral compounds or planar chiral compounds that do not contain an asymmetric carbon atom can also be used as chiral agents. Examples of axially or planarly chiral compounds include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, a repeating unit derived from the polymerizable liquid crystal compound and a repeating unit derived from the chiral agent are formed by the polymerization reaction of the polymerizable chiral agent and the polymerizable liquid crystal compound. A polymer having repeating units can be formed. In this aspect, the polymerizable group possessed by the polymerizable chiral agent is preferably the same type of group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. More preferred.
Also, the chiral agent may be a liquid crystal compound.
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、または、シンナモイル基が好ましい。具体的な化合物として、特開2002-080478号公報、特開2002-080851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、および、特開2003-313292号公報等に記載の化合物を用いることができる。 When the chiral agent has a photoisomerizable group, it is preferable because it is possible to form a desired reflection wavelength pattern corresponding to the emission wavelength by photomask irradiation with actinic rays or the like after coating and orientation. The photoisomerizable group is preferably an isomerization site of a compound exhibiting photochromic properties, an azo group, an azoxy group, or a cinnamoyl group. Specific compounds include JP-A-2002-080478, JP-A-2002-080851, JP-A-2002-179668, JP-A-2002-179669, JP-A-2002-179670, JP-A-2002- 179681, JP-A-2002-179682, JP-A-2002-338575, JP-A-2002-338668, JP-A-2003-313189, and compounds described in JP-A-2003-313292, etc. can be used.
 液晶組成物における、キラル剤の含有量は、液晶化合物の含有モル量に対して0.01~200モル%が好ましく、1~30モル%がより好ましい。 The content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, relative to the content molar amount of the liquid crystal compound.
--重合開始剤--
 液晶組成物が重合性化合物を含む場合は、重合開始剤を含有しているのが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。
 光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、米国特許第2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、米国特許第2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、ならびに、オキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 液晶組成物中の光重合開始剤の含有量は、液晶化合物の含有量に対して0.1~20質量%が好ましく、0.5~12質量%がより好ましい。
--Polymerization initiator--
When the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator used is preferably a photopolymerization initiator capable of initiating the polymerization reaction by ultraviolet irradiation.
Examples of photoinitiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), α-hydrocarbons substituted aromatic acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), triarylimidazole dimers and p-aminophenyl ketone Combinations (described in US Pat. No. 3,549,367), acridine and phenazine compounds (described in JP-A-60-105667, US Pat. No. 4,239,850), and oxadiazole compounds (described in US Pat. No. 4,212,970) described) and the like.
The content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass, based on the content of the liquid crystal compound.
--架橋剤--
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、および、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレートおよびペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレートおよびエチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]および4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネートおよびビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ならびに、ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、液晶組成物の固形分質量に対して、3~20質量%が好ましく、5~15質量%がより好ましい。架橋剤の含有量が上記範囲内であれば、架橋密度向上の効果が得られやすく、コレステリック液晶相の安定性がより向上する。
--crosslinking agent--
The liquid crystal composition may optionally contain a cross-linking agent in order to improve film strength and durability after curing. As the cross-linking agent, one that is cured by ultraviolet rays, heat, humidity, and the like can be preferably used.
The cross-linking agent is not particularly limited and can be appropriately selected depending on the intended purpose. For example, polyfunctional acrylate compounds such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate; and epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] and 4,4-bis(ethyleneiminocarbonylamino)diphenylmethane; hexa isocyanate compounds such as methylene diisocyanate and biuret-type isocyanate; polyoxazoline compounds having oxazoline groups in side chains; and alkoxysilane compounds such as vinyltrimethoxysilane and N-(2-aminoethyl)3-aminopropyltrimethoxysilane. is mentioned. In addition, a known catalyst can be used depending on the reactivity of the cross-linking agent, and productivity can be improved in addition to improving film strength and durability. These may be used individually by 1 type, and may use 2 or more types together.
The content of the cross-linking agent is preferably 3 to 20% by mass, more preferably 5 to 15% by mass, based on the solid mass of the liquid crystal composition. When the content of the cross-linking agent is within the above range, the effect of improving the cross-linking density is likely to be obtained, and the stability of the cholesteric liquid crystal phase is further improved.
--その他の添加剤--
 液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、および、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。
--Other Additives--
If necessary, the liquid crystal composition may further contain polymerization inhibitors, antioxidants, ultraviolet absorbers, light stabilizers, colorants, metal oxide fine particles, etc., within a range that does not reduce the optical performance. can be added at
 液晶組成物は、コレステリック液晶層を形成する際には、液体として用いられるのが好ましい。
 液晶組成物は溶媒を含んでいてもよい。溶媒には、制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましい。
 有機溶媒には、制限はなく、目的に応じて適宜選択することができ、例えば、ケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、および、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が好ましい。
The liquid crystal composition is preferably used as a liquid when forming the cholesteric liquid crystal layer.
The liquid crystal composition may contain a solvent. The solvent is not limited and can be appropriately selected depending on the purpose, but organic solvents are preferred.
The organic solvent is not limited and can be appropriately selected depending on the purpose. Examples include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters and ethers. etc. These may be used individually by 1 type, and may use 2 or more types together. Among these, ketones are preferable in consideration of the load on the environment.
 コレステリック液晶層を形成する際には、コレステリック液晶層の形成面に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶層とするのが好ましい。
 すなわち、配向膜13上にコレステリック液晶層を形成する場合には、配向膜13に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶相を固定してなるコレステリック液晶層を形成するのが好ましい。
 液晶組成物の塗布は、インクジェットおよびスクロール印刷等の印刷法、ならびに、スピンコート、バーコートおよびスプレー塗布等のシート状物に液体を一様に塗布できる公知の方法が全て利用可能である。
When forming the cholesteric liquid crystal layer, a liquid crystal composition is applied to the surface on which the cholesteric liquid crystal layer is to be formed, the liquid crystal compound is aligned in a cholesteric liquid crystal phase state, and then the liquid crystal compound is cured to form a cholesteric liquid crystal layer. is preferred.
That is, when a cholesteric liquid crystal layer is formed on the alignment film 13, a liquid crystal composition is applied to the alignment film 13 to align the liquid crystal compound in a cholesteric liquid crystal phase, and then the liquid crystal compound is cured to form a cholesteric liquid crystal phase. It is preferable to form a cholesteric liquid crystal layer in which the liquid crystal phase is fixed.
The liquid crystal composition can be applied by printing methods such as inkjet and scroll printing, and known methods such as spin coating, bar coating and spray coating, which can uniformly apply the liquid to the sheet.
 塗布された液晶組成物は、必要に応じて乾燥および/または加熱され、その後、硬化され、コレステリック液晶層を形成する。この乾燥および/または加熱の工程で、液晶組成物中の液晶化合物がコレステリック液晶相に配向すればよい。加熱を行う場合、加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。 The applied liquid crystal composition is dried and/or heated as necessary, and then cured to form a cholesteric liquid crystal layer. In this drying and/or heating step, the liquid crystal compound in the liquid crystal composition may be oriented in the cholesteric liquid crystal phase. When heating is performed, the heating temperature is preferably 200° C. or lower, more preferably 130° C. or lower.
 配向させた液晶化合物は、必要に応じて、さらに重合される。重合は、熱重合、および、光照射による光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いるのが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2が好ましく、50~1500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射する紫外線の波長は250~430nmが好ましい。
 コレステリック液晶層の厚さには、制限はなく、コレステリック液晶層の用途、コレステリック液晶層に要求される光の反射率、および、コレステリック液晶層の形成材料等に応じて、必要な光の反射率が得られる厚さを、適宜、設定すればよい。
The aligned liquid crystal compound is further polymerized as necessary. Polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation. The irradiation energy is preferably 20 mJ/cm 2 to 50 J/cm 2 , more preferably 50 to 1500 mJ/cm 2 . In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions or under a nitrogen atmosphere. The wavelength of the ultraviolet rays to be irradiated is preferably 250 to 430 nm.
The thickness of the cholesteric liquid crystal layer is not limited, and the required light reflectance is determined according to the application of the cholesteric liquid crystal layer, the light reflectance required for the cholesteric liquid crystal layer, and the material used to form the cholesteric liquid crystal layer. The thickness at which is obtained can be set as appropriate.
 <<コレステリック液晶層の液晶配向パターン>>
 前述のように、コレステリック液晶層は、コレステリック液晶相を形成する液晶化合物20に由来する光学軸22の向きが、コレステリック液晶層の面内において、一方向に連続的に回転しながら変化する液晶配向パターンを有する。
 なお、液晶化合物20に由来する光学軸22とは、液晶化合物20において屈折率が最も高くなる軸、いわゆる遅相軸である。前述のように、液晶化合物20が棒状液晶化合物である場合には、光学軸22は、棒形状の長手方向(長軸方向)に沿っている。以下の説明では、液晶化合物20に由来する光学軸22を、『液晶化合物20の光学軸22』または『光学軸22』ともいう。
<<Liquid crystal alignment pattern of cholesteric liquid crystal layer>>
As described above, the cholesteric liquid crystal layer has a liquid crystal orientation in which the direction of the optical axis 22 derived from the liquid crystal compound 20 forming the cholesteric liquid crystal phase changes while continuously rotating in one direction within the plane of the cholesteric liquid crystal layer. have a pattern.
The optical axis 22 derived from the liquid crystal compound 20 is an axis with the highest refractive index in the liquid crystal compound 20, a so-called slow axis. As described above, when the liquid crystal compound 20 is a rod-like liquid crystal compound, the optical axis 22 extends along the longitudinal direction (major axis direction) of the rod shape. In the following description, the optic axis 22 derived from the liquid crystal compound 20 is also referred to as "the optic axis 22 of the liquid crystal compound 20" or "the optic axis 22".
 図5に、コレステリック液晶層14aの液晶配向パターンの一例を概念的に示す。この図は、コレステリック液晶層14aの平面図である。
 なお、平面図とは、図4(A)においてコレステリック液晶層(光学異方性層)を上方から見た図であり、すなわち、コレステリック液晶層14aを厚さ方向から見た図である。コレステリック液晶層14aの厚さ方向は、各層(膜)の積層方向と一致する。
 また、図5では、コレステリック液晶層14aの構成を明確に示すために、液晶化合物20は配向膜13の表面の液晶化合物20のみを示している。しかしながら、実際には、図4(A)に示すように、液晶化合物20が、螺旋状に旋回して配向されて、数ピッチ、積層された構成を有する。
 後述するが、この液晶配向パターンは、第2液晶回折素子110の光学異方性層14bでも、好適に利用可能である。
FIG. 5 conceptually shows an example of the liquid crystal alignment pattern of the cholesteric liquid crystal layer 14a. This figure is a plan view of the cholesteric liquid crystal layer 14a.
The plan view is a view of the cholesteric liquid crystal layer (optically anisotropic layer) in FIG. 4(A) viewed from above, that is, a view of the cholesteric liquid crystal layer 14a viewed from the thickness direction. The thickness direction of the cholesteric liquid crystal layer 14a coincides with the stacking direction of each layer (film).
5 shows only the liquid crystal compound 20 on the surface of the alignment film 13 in order to clearly show the structure of the cholesteric liquid crystal layer 14a. However, in reality, as shown in FIG. 4A, the liquid crystal compound 20 is spirally oriented and laminated with several pitches.
As will be described later, this liquid crystal alignment pattern can also be suitably used in the optically anisotropic layer 14b of the second liquid crystal diffraction element 110. FIG.
 図5に示すように、配向膜13の表面において、コレステリック液晶層14aを構成する液晶化合物20は、下層の配向膜13に形成された配向パターンに応じて、コレステリック液晶層の面内において、軸Aで示す所定の一方向に沿って、光学軸22の向きが連続的に回転しながら変化する液晶配向パターンを有する。
 図示例のコレステリック液晶層14aを構成する液晶化合物20は、光学軸22の向きが連続的に回転する一方向(軸A方向)、および、この一方向と直交する方向に、二次元的に配列された状態になっている。
 以下の説明では、コレステリック液晶層の面内において、液晶化合物20の光学軸22の向きが、連続的に回転しながら変化する一方向と直交する方向をy方向とする。従って、図4(A)および後述する図4(B)では、y方向は、紙面に直交する方向となる。
As shown in FIG. 5, on the surface of the alignment film 13, the liquid crystal compounds 20 forming the cholesteric liquid crystal layer 14a are aligned in the plane of the cholesteric liquid crystal layer according to the alignment pattern formed on the alignment film 13 below. It has a liquid crystal alignment pattern in which the direction of the optical axis 22 changes while rotating continuously along a predetermined direction indicated by A.
The liquid crystal compound 20 constituting the cholesteric liquid crystal layer 14a of the illustrated example is arranged two-dimensionally in one direction (axis A direction) in which the direction of the optical axis 22 rotates continuously and in a direction orthogonal to this one direction. is in a state of
In the following description, the y direction is the direction orthogonal to one direction in which the orientation of the optic axis 22 of the liquid crystal compound 20 changes while continuously rotating in the plane of the cholesteric liquid crystal layer. Therefore, in FIG. 4(A) and FIG. 4(B) described later, the y direction is a direction perpendicular to the plane of the paper.
 また、液晶化合物20の光学軸の回転方向は、軸A方向におけるコレステリック液晶層14a(第1液晶回折素子)の中心で、逆転する。
 例えば、液晶化合物20の光学軸22は、図中左側端部から図中右方向すなわち軸Aに向かって時計回りに回転し、軸A方向の中央で回転方向を逆転して、軸A方向の中心から図中右方向に向かって、反時計回りに回転する。すなわち、本例では、液晶化合物20の光学軸22は、軸A方向の中心から図中左方向、および、軸A方向の中心から図中右方向に向かって、反時計回りに回転する。
Further, the rotation direction of the optical axis of the liquid crystal compound 20 is reversed at the center of the cholesteric liquid crystal layer 14a (first liquid crystal diffraction element) in the direction of the axis A.
For example, the optic axis 22 of the liquid crystal compound 20 rotates clockwise from the left end of the drawing toward the right side of the drawing, that is, toward the axis A, reverses the rotation direction at the center of the axis A direction, and rotates in the direction of the axis A. It rotates counterclockwise from the center toward the right in the figure. That is, in this example, the optic axis 22 of the liquid crystal compound 20 rotates counterclockwise from the center of the axis A direction to the left in the figure and from the center of the axis A direction to the right in the figure.
 液晶化合物20の光学軸22の向きが軸A方向(矢印x方向、所定の一方向)に連続的に回転しながら変化しているとは、具体的には、軸A方向に沿って配列されている液晶化合物20の光学軸22と、軸Aとが成す角度が、軸A方向の位置によって異なっており、軸A方向に沿って、光学軸22と軸Aとが成す角度がθからθ+180°、あるいは、θ-180°まで、順次、変化していることを意味する。
 なお、軸A方向に互いに隣接する液晶化合物20の光学軸22の角度の差は、45°以下であるのが好ましく、15°以下であるのがより好ましく、より小さい角度であるのがさらに好ましい。
That the direction of the optic axis 22 of the liquid crystal compound 20 changes while continuously rotating in the direction of the axis A (the direction of the arrow x, a predetermined direction) specifically means that the liquid crystal compound 20 is arranged along the direction of the axis A. The angle formed between the optical axis 22 of the liquid crystal compound 20 and the axis A differs depending on the position along the axis A direction. °, or up to θ-180°.
The angle difference between the optical axes 22 of the liquid crystal compounds 20 adjacent to each other in the direction of the axis A is preferably 45° or less, more preferably 15° or less, and even more preferably a smaller angle. .
 一方、コレステリック液晶層14aを形成する液晶化合物20は、軸A方向(矢印x方向)と直交するy方向、すなわち、光学軸22が連続的に回転する一方向と直交するy方向では、光学軸22の向きが等しい。
 言い換えれば、コレステリック液晶層14aを形成する液晶化合物20は、y方向では、液晶化合物20の光学軸22と軸A方向とが成す角度が等しい。
On the other hand, the liquid crystal compound 20 forming the cholesteric liquid crystal layer 14a has an optical axis 22 directions are equal.
In other words, the liquid crystal compound 20 forming the cholesteric liquid crystal layer 14a has an equal angle between the optic axis 22 of the liquid crystal compound 20 and the axis A direction in the y direction.
 上述のように、コレステリック液晶層14aにおいては、このような液晶化合物20の液晶配向パターンにおいて、面内で光学軸22が連続的に回転して変化する軸A方向において、液晶化合物20の光学軸22が180°回転する長さ(距離)を、液晶配向パターンにおける1周期Λ(1周期の長さΛ)とする。
 すなわち、軸A方向に対する角度が等しい2つの液晶化合物20の、軸A方向の中心間の距離を、1周期Λとする。具体的には、図4(A)および図5に示すように、軸A方向と光学軸22の方向とが一致する2つの液晶化合物20の、軸A方向の中心間の距離を、1周期Λとする。第1液晶回折素子106においては、この1周期Λが、回折素子における周期構造のピッチとなる。
 コレステリック液晶層14aの液晶配向パターンは、この1周期Λを、軸A方向(および軸A方向と逆方向)、すなわち光学軸22の向きが連続的に回転して変化する一方向に繰り返す。
As described above, in the cholesteric liquid crystal layer 14a, in the liquid crystal alignment pattern of the liquid crystal compound 20, the optical axis of the liquid crystal compound 20 is aligned in the direction of the axis A along which the optical axis 22 continuously rotates and changes in the plane. The length (distance) by which 22 is rotated by 180° is defined as one period Λ (length of one period Λ) in the liquid crystal alignment pattern.
That is, the distance between the centers in the direction of the axis A of two liquid crystal compounds 20 having the same angle with respect to the direction of the axis A is defined as one period Λ. Specifically, as shown in FIGS. 4A and 5, the distance between the centers of the two liquid crystal compounds 20 in the direction of the axis A and the direction of the optical axis 22 is equal to one cycle. Let Λ In the first liquid crystal diffraction element 106, this one period Λ is the pitch of the periodic structure in the diffraction element.
The liquid crystal orientation pattern of the cholesteric liquid crystal layer 14a repeats this one period Λ in the direction of the axis A (and the direction opposite to the direction of the axis A), that is, in one direction in which the direction of the optical axis 22 rotates continuously and changes.
 また、コレステリック液晶層14aは、光学軸22が回転する一方向において、1周期Λが、軸A方向の中心から、軸A方向の両外方向に向かって、漸次、短くなる。
 すなわち、コレステリック液晶層14aは、軸A方向の中心から、図中左方向および図中右方向に向かって、1周期Λが、漸次、短くなる。
 なお。1周期Λは、中心から外側に向かって、連続的に短くなっても、段階的に短くなってもよい。さらに、1周期Λの変化(減少)は、線形でも、非線形でも、線形の領域と非線形の領域とを有してもよい。
In addition, in the cholesteric liquid crystal layer 14a, one period Λ of the cholesteric liquid crystal layer 14a in one direction of rotation of the optical axis 22 is gradually shortened from the center of the axis A direction toward both outer directions of the axis A direction.
That is, one period Λ of the cholesteric liquid crystal layer 14a gradually shortens from the center in the direction of the axis A toward the left and right in the drawing.
note that. One period Λ may be shortened continuously or stepwise from the center toward the outside. Furthermore, the change (decrease) of one period Λ may be linear, non-linear, or have linear and non-linear regions.
 コレステリック液晶相を固定してなるコレステリック液晶層は、通常、入射した光(円偏光)を鏡面反射する。
 これに対して、コレステリック液晶層14aは、入射した光を、鏡面反射に対して軸A方向とは逆方向に傾けて反射する。コレステリック液晶層14aは、面内において、軸A方向(所定の一方向)に沿って光学軸22が反時計方向に連続的に回転しながら変化する、液晶配向パターンを有するものである。
 以下、図14を参照して説明する。
A cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed normally mirror-reflects incident light (circularly polarized light).
On the other hand, the cholesteric liquid crystal layer 14a reflects the incident light by tilting it in the direction opposite to the direction of the axis A with respect to the specular reflection. The cholesteric liquid crystal layer 14a has a liquid crystal alignment pattern that changes while the optic axis 22 continuously rotates counterclockwise along the direction of the axis A (predetermined one direction) in the plane.
Description will be made below with reference to FIG.
 一例として、コレステリック液晶層14aは、赤色光の右円偏光RRを選択的に反射するコレステリック液晶層であるとする。従って、コレステリック液晶層14aに光が入射すると、コレステリック液晶層14aは、赤色光の右円偏光RRのみを反射し、それ以外の光を透過する。 As an example, assume that the cholesteric liquid crystal layer 14a is a cholesteric liquid crystal layer that selectively reflects right-handed circularly polarized red light R R . Therefore, when light is incident on the cholesteric liquid crystal layer 14a, the cholesteric liquid crystal layer 14a reflects only the right circularly polarized red light RR and transmits the other light.
 コレステリック液晶層14aに入射した赤色光の右円偏光RRは、コレステリック液晶層によって反射される際に、各液晶化合物20の光学軸22の向きに応じて絶対位相が変化する。
 ここで、コレステリック液晶層14aでは、液晶化合物20の光学軸22が軸A方向(一方向)に沿って回転しながら変化している。そのため、光学軸22の向きによって、入射した赤色光の右円偏光RRの絶対位相の変化量が異なる。
 さらに、コレステリック液晶層14aに形成された液晶配向パターンは、軸A方向に周期的なパターンである。そのため、コレステリック液晶層14aに入射した赤色光の右円偏光RRには、図14に概念的に示すように、それぞれの光学軸22の向きに対応した軸A方向に周期的な絶対位相Qが与えられる。
 また、液晶化合物20の光学軸22の軸A方向(矢印x方向)に対する向きは、軸A方向と直交するy方向の液晶化合物20の配列では、均一である。
 これによりコレステリック液晶層14aでは、赤色光の右円偏光RRに対して、XY面に対して軸A方向に傾いた等位相面Eが形成される。
 そのため、赤色光の右円偏光RRは、等位相面Eの法線方向に反射され、反射された赤色光の右円偏光RRは、XY面(コレステリック液晶層の主面)に対して軸A方向とは逆に傾いた方向に反射される。
The right circularly polarized red light R R incident on the cholesteric liquid crystal layer 14 a changes its absolute phase according to the orientation of the optical axis 22 of each liquid crystal compound 20 when reflected by the cholesteric liquid crystal layer.
Here, in the cholesteric liquid crystal layer 14a, the optical axis 22 of the liquid crystal compound 20 changes while rotating along the axis A direction (one direction). Therefore, the amount of change in the absolute phase of the right circularly polarized light RR of the incident red light differs depending on the direction of the optical axis 22 .
Furthermore, the liquid crystal alignment pattern formed in the cholesteric liquid crystal layer 14a is a periodic pattern in the axis A direction. Therefore, as conceptually shown in FIG. 14, the right-handed circularly polarized red light R R incident on the cholesteric liquid crystal layer 14 a has a periodic absolute phase Q in the direction of the axis A corresponding to the direction of each optical axis 22 . is given.
The orientation of the optical axis 22 of the liquid crystal compound 20 with respect to the direction of the axis A (the direction of the arrow x) is uniform in the alignment of the liquid crystal compound 20 in the y direction orthogonal to the direction of the axis A.
As a result, in the cholesteric liquid crystal layer 14a, an equiphase plane E inclined in the direction of the axis A with respect to the XY plane is formed with respect to the right-handed circularly polarized red light R R .
Therefore, the right-handed circularly polarized red light R R is reflected in the normal direction of the equiphase plane E, and the reflected right-handed circularly polarized light R R is directed to the XY plane (principal plane of the cholesteric liquid crystal layer). The light is reflected in a direction inclined opposite to the direction of the axis A.
 従って、光学軸22が反時計回りに回転する一方向である軸A方向を、適宜、設定することで、赤色光の右円偏光RRの反射方向を調節できる。
 すなわち、軸A方向を逆方向にすれば、赤色光の右円偏光RRの反射方向も図13とは逆方向になる。
Therefore, by appropriately setting the direction of the axis A, which is one direction in which the optical axis 22 rotates counterclockwise, the reflection direction of the right-handed circularly polarized light RR of red light can be adjusted.
That is, if the direction of the axis A is reversed, the direction of reflection of the right-handed circularly polarized light R R of red light is also reversed from that in FIG.
 また、軸A方向(矢印x方向)に向かう液晶化合物20の光学軸22の回転方向を逆にすることで、赤色光の右円偏光RRの反射方向を逆にできる。
 すなわち、図4(A)および図14においては、軸A方向に向かう光学軸22の回転方向は時計回りで、赤色光の右円偏光RRは軸A方向に傾けて反射される。ここで、軸A方向に向かう光学軸22の回転方向を反時計回りとすることで、赤色光の右円偏光RRは軸A方向とは逆に傾けて反射される。
 上述のように、コレステリック液晶層14aは、軸A方向の中心から、図中左側に向かう方向、および、図中右側に向かう方向に向かって、光学軸22が反時計回りに回転する。言い換えると、軸A方向の全域では、図中右側端部から中心に向かって、光学軸22は時計回りに回転し、中心で回転方向が逆転して、中心から図中左側端部に向かって、光学軸22は、反時計回りに回転する。
 従って、コレステリック液晶層14aに入射した右円偏光は、軸A方向の図中左側では、右方向に回折して反射され、同図中右側では、左方向に回折して反射される。
In addition, by reversing the rotation direction of the optical axis 22 of the liquid crystal compound 20 toward the direction of the axis A (the direction of the arrow x), the reflection direction of the right-handed circularly polarized light R R of red light can be reversed.
That is, in FIGS. 4A and 14, the rotation direction of the optical axis 22 in the direction of the axis A is clockwise, and the right circularly polarized light RR of the red light is tilted in the direction of the axis A and reflected. Here, by setting the rotation direction of the optical axis 22 in the direction of the axis A to be counterclockwise, the right-handed circularly polarized light RR of the red light is tilted in the opposite direction to the direction of the axis A and reflected.
As described above, the optical axis 22 of the cholesteric liquid crystal layer 14a rotates counterclockwise from the center of the axis A toward the left side in the drawing and the right side in the drawing. In other words, over the entire area along the axis A, the optical axis 22 rotates clockwise from the right end of the drawing toward the center, the direction of rotation is reversed at the center, and the direction of rotation is reversed from the center toward the left end of the drawing. , the optical axis 22 rotates counterclockwise.
Therefore, the right-handed circularly polarized light incident on the cholesteric liquid crystal layer 14a is diffracted and reflected rightward on the left side of the drawing in the direction of the axis A, and is diffracted and reflected leftward on the right side of the drawing.
 さらに、同じ液晶配向パターンを有するコレステリック液晶層では、液晶化合物20の螺旋の旋回方向すなわち反射する円偏光の旋回方向によって、反射方向が逆になる。
 図14に示すコレステリック液晶層14aは、螺旋の旋回方向が右捩れで、右円偏光を選択的に反射するものであり、矢印x方向に沿って光学軸22が時計回りに回転する液晶配向パターンを有することにより、右円偏光を軸A方向に傾けて反射する。
 従って、螺旋の旋回方向が左捩れで、左円偏光を選択的に反射するものであり、軸A方向に沿って光学軸22が反時計回りに回転する液晶配向パターンを有するコレステリック液晶層は、左円偏光を軸A方向に傾けて反射する。
Furthermore, in the cholesteric liquid crystal layer having the same liquid crystal alignment pattern, the reflection direction is reversed depending on the spiraling direction of the liquid crystal compound 20, that is, the rotating direction of the reflected circularly polarized light.
The cholesteric liquid crystal layer 14a shown in FIG. 14 is a liquid crystal orientation pattern in which the helical turning direction is right-handed and selectively reflects right-handed circularly polarized light, and the optical axis 22 rotates clockwise along the arrow x direction. , the right-handed circularly polarized light is tilted in the direction of the axis A and reflected.
Therefore, a cholesteric liquid crystal layer having a liquid crystal orientation pattern in which the direction of spiral rotation is left-handed, selectively reflects left-handed circularly polarized light, and the optical axis 22 rotates counterclockwise along the direction of the axis A, The left circularly polarized light is tilted in the direction of the axis A and reflected.
 液晶配向パターンを有するコレステリック液晶層では、1周期Λが短いほど、上述した入射光の正反射に対する反射光の回折角度が大きくなる。すなわち、1周期Λが短いほど、入射光の正反射に対して、反射光を大きく傾けて反射できる。
 例えば、コレステリック液晶層の法線方向から光が入射した場合には、1周期Λが短いほど、法線方向に対して反射光が成す角度が大きくなる。
 上述のように、コレステリック液晶層14aは、中心から図中右側に向かう軸A方向、および、中心から図中左側に向かう軸A方向と逆方向に向かって、1周期Λが、漸次短くなる。従って、コレステリック液晶層14aは、軸A方向および逆方向に向かって、反射による光の回折角度が大きくなる。
In the cholesteric liquid crystal layer having the liquid crystal alignment pattern, the shorter the period Λ, the larger the diffraction angle of the reflected light with respect to the specular reflection of the incident light. That is, the shorter the period Λ, the more the reflected light can be reflected with a greater inclination with respect to the specular reflection of the incident light.
For example, when light is incident from the normal direction of the cholesteric liquid crystal layer, the shorter the period Λ, the larger the angle formed by the reflected light with respect to the normal direction.
As described above, in the cholesteric liquid crystal layer 14a, one period .LAMBDA. Therefore, in the cholesteric liquid crystal layer 14a, the diffraction angle of light due to reflection increases in the direction of the axis A and in the opposite direction.
 また、上述のように、液晶配向パターンを有するコレステリック液晶層では、反射する光の波長が長いほど、入射光の正反射に対して、反射光を大きく傾けて反射する。例えば、コレステリック液晶層の法線方向から光が入射した場合には、長波長の光ほど、法線方向に対して反射光が成す角度が大きくなる。
 以上の点を考慮すると、上述のように、第1液晶回折素子106が選択反射中心波長が異なる複数層のコレステリック液晶層を有する場合には、各コレステリック液晶層は、選択的に反射する光の波長の順列と、1周期Λの順列とが、一致しているのが好ましい。
 例えば、上述のように、第1液晶回折素子106が赤色光を選択的に反射するコレステリック液晶層、緑色光を選択的に反射するコレステリック液晶層、および、青色光を選択的に反射するコレステリック液晶層の、3層のコレステリック液晶層を有する場合には、赤色光を選択的に反射するコレステリック液晶層の1周期Λを最も長くし、青色光を選択的に反射するコレステリック液晶層の1周期Λを最も短くするのが好ましい。
In addition, as described above, in the cholesteric liquid crystal layer having the liquid crystal alignment pattern, the longer the wavelength of the reflected light, the more the reflected light is reflected with a greater inclination with respect to the specular reflection of the incident light. For example, when light is incident from the normal direction of the cholesteric liquid crystal layer, the longer the wavelength of the light, the larger the angle formed by the reflected light with respect to the normal direction.
Considering the above points, as described above, when the first liquid crystal diffraction element 106 has a plurality of cholesteric liquid crystal layers with different selective reflection center wavelengths, each cholesteric liquid crystal layer has a wavelength of light to be selectively reflected. It is preferable that the permutation of wavelengths and the permutation of one period Λ match.
For example, as described above, the first liquid crystal diffraction element 106 has a cholesteric liquid crystal layer that selectively reflects red light, a cholesteric liquid crystal layer that selectively reflects green light, and a cholesteric liquid crystal layer that selectively reflects blue light. In the case of having three layers of cholesteric liquid crystal layers, one period Λ of the cholesteric liquid crystal layer selectively reflecting red light is made the longest, and one period Λ of the cholesteric liquid crystal layer selectively reflecting blue light is set to the longest. is the shortest.
 上述のとおり、液晶配向パターンを有するコレステリック液晶層は、波長選択反射性を有し、選択波長の光を回折しつつ反射する。
 ここで、コレステリック液晶層14aは、軸A方向の中心から、図中右側に向かう軸A方向、および、図中左側に向かって、光学軸22が反時計回りに回転する。これにより、コレステリック液晶層14aに入射した右円偏光は、軸A方向の図中左側では、右方向に回折して反射され、同図中右側では、左方向に回折して反射される。
 また、コレステリック液晶層14aは、軸A方向および逆方向に向かって、1周期Λが、漸次、短くなる。従って、コレステリック液晶層14aは、軸A方向の中心から外側に向かって、反射による光の回折角度が、漸次、大きくなる。
 そのため、コレステリック液晶層14a(液晶回折素子)に入射した赤色光の右円偏光は、矢印x方向すなわち光学軸22が回転する一方向の中心に向かって集光するように、反射される。
As described above, a cholesteric liquid crystal layer having a liquid crystal alignment pattern has wavelength-selective reflectivity and reflects light of a selected wavelength while diffracting it.
Here, the optical axis 22 of the cholesteric liquid crystal layer 14a rotates counterclockwise from the center of the axis A direction toward the right side in the drawing and toward the left side in the drawing. As a result, the right-handed circularly polarized light incident on the cholesteric liquid crystal layer 14a is diffracted and reflected rightward on the left side of the drawing in the direction of the axis A, and diffracted and reflected leftward on the right side of the drawing.
In addition, one period Λ of the cholesteric liquid crystal layer 14a is gradually shortened in the direction of the axis A and in the opposite direction. Therefore, in the cholesteric liquid crystal layer 14a, the diffraction angle of light due to reflection gradually increases from the center in the direction of the axis A toward the outside.
Therefore, the right-handed circularly polarized light of the red light incident on the cholesteric liquid crystal layer 14a (liquid crystal diffraction element) is reflected so as to be condensed toward the direction of the arrow x, that is, the center of one direction in which the optical axis 22 rotates.
 従って、このコレステリック液晶層14aを有する反射型の液晶回折素子を、光偏向素子の反射板に用いることにより、入射した光(光ビーム)を偏向しつつ、矢印x方向の中心に向かって集光するように反射して、出射できる。 Therefore, by using the reflective liquid crystal diffraction element having the cholesteric liquid crystal layer 14a as the reflector of the light deflection element, the incident light (light beam) is deflected and condensed toward the center in the direction of the arrow x. It can be reflected and emitted.
 図5に示すコレステリック液晶層の液晶配向パターンにおける液晶化合物20の光学軸22は、軸A方向のみに沿って、連続して回転している。
 しかしながら、本発明は、これに制限はされず、コレステリック液晶層において、液晶化合物20の光学軸22が少なくとも一方向に沿って連続して回転するものであれば、各種の構成が利用可能である。
The optic axis 22 of the liquid crystal compound 20 in the liquid crystal alignment pattern of the cholesteric liquid crystal layer shown in FIG. 5 rotates continuously only along the axis A direction.
However, the present invention is not limited to this, and various configurations are available as long as the optic axis 22 of the liquid crystal compound 20 rotates continuously along at least one direction in the cholesteric liquid crystal layer. .
 好ましい一例として、上述した図9の平面図に概念的に示すような、液晶化合物20に由来する光学軸22の向きが、一方向に向かって連続的に回転しながら変化している液晶配向パターンを、内側(中心)から外側に向かう放射状に有する液晶配向パターンを有するコレステリック液晶層14aが例示される。
 すなわち、図9に示すコレステリック液晶層14aの液晶配向パターンは、液晶化合物20に由来する光学軸22の向きが連続的に回転しながら変化する一方向を内側から外側に向かう同心円状に有する、同心円状のパターンである。
 後述するが、図5と同様、図9、すなわち、この液晶配向パターンは、第2液晶回折素子110の光学異方性層14bも利用可能である。
A preferred example is a liquid crystal orientation pattern in which the direction of the optical axis 22 derived from the liquid crystal compound 20 changes while continuously rotating in one direction, as conceptually shown in the plan view of FIG. 9 described above. , radially from the inside (center) to the outside.
That is, the liquid crystal alignment pattern of the cholesteric liquid crystal layer 14a shown in FIG. pattern.
As will be described later, as in FIG. 5, the optically anisotropic layer 14b of the second liquid crystal diffraction element 110 can also be used for the liquid crystal alignment pattern shown in FIG.
 なお、図9においても、図5と同様、配向膜の表面の液晶化合物20のみを示すが、図4(A)に示す例と同様に、この配向膜の表面の液晶化合物20から、液晶化合物20が螺旋状に旋回して積み重ねられた螺旋構造を有するのは、前述のとおりである。 9 also shows only the liquid crystal compound 20 on the surface of the alignment film, as in FIG. 5. However, as in the example shown in FIG. As described above, 20 has a helical structure in which it is spirally turned and stacked.
 図9に示すコレステリック液晶層14aでは、液晶化合物20の光学軸の向きは、コレステリック液晶層14aの中心から外側に向かう多数の方向、例えば、上述の軸A1で示す方向、軸A2で示す方向、軸A3で示す方向、軸A4で示す方向…に沿って、連続的に回転しながら変化している。
 従って、コレステリック液晶層14aにおいて、液晶化合物20の光学軸の回転方向は、全ての方向(一方向)で同じ方向である。図示例では、軸A1で示す方向、軸A2で示す方向、軸A3で示す方向、および、軸A4で示す方向の全ての方向で、液晶化合物20の光学軸の回転方向は、反時計回りである。
 すなわち、軸A1と軸A4とを1本の直線と見なすと、この直線上では、コレステリック液晶層14aの中心で、液晶化合物20の光学軸22の回転方向が逆転する。一例として、軸A1と軸A4とが成す直線が、図中右方向(軸A1方向)に向かうとする。この場合には、液晶化合物20の光学軸は、最初は、コレステリック液晶層14aの外方向から中心に向かって時計回りに回転し、コレステリック液晶層14aの中心で回転方向が逆転し、その後は、コレステリック液晶層14aの中心から外方向に向かって反時計回りに回転する。
 また、各矢印の方向において、液晶配向パターンの1周期Λは、内側(中心)から外側に向かって、漸次、短くなる。すなわち、液晶配向パターンの1周期Λは、矢印の方向に向かって、漸次、短くなる。
In the cholesteric liquid crystal layer 14a shown in FIG. 9, the orientation of the optic axis of the liquid crystal compound 20 is oriented in a number of directions outward from the center of the cholesteric liquid crystal layer 14a, for example, the direction indicated by the above-described axis A1 and the axis A2 . The direction, the direction indicated by the axis A3 , the direction indicated by the axis A4 .
Therefore, in the cholesteric liquid crystal layer 14a, the rotation direction of the optical axis of the liquid crystal compound 20 is the same in all directions (one direction). In the illustrated example, the directions of rotation of the optic axis of the liquid crystal compound 20 in all the directions indicated by the axis A1 , the direction indicated by the axis A2 , the direction indicated by the axis A3 , and the direction indicated by the axis A4 are: counterclockwise.
That is, when the axis A 1 and the axis A 4 are regarded as one straight line, the rotation direction of the optical axis 22 of the liquid crystal compound 20 is reversed at the center of the cholesteric liquid crystal layer 14a on this straight line. As an example, it is assumed that the straight line formed by the axes A1 and A4 is directed to the right in the drawing (direction of the axis A1 ). In this case, the optic axis of the liquid crystal compound 20 first rotates clockwise from the outer direction of the cholesteric liquid crystal layer 14a toward the center, reverses the direction of rotation at the center of the cholesteric liquid crystal layer 14a, and then rotates clockwise. It rotates counterclockwise outward from the center of the cholesteric liquid crystal layer 14a.
In the direction of each arrow, one period Λ of the liquid crystal alignment pattern gradually becomes shorter from the inside (center) toward the outside. That is, one period Λ of the liquid crystal alignment pattern gradually becomes shorter in the direction of the arrow.
 図示例のコレステリック液晶層14aは、各矢印の方向に向かって、液晶化合物20の光学軸22が反時計回りに回転するものであり、一例として、(赤色の)右円偏光を、矢印の方向とは逆の方向に傾けて反射する。
 円偏光の反射方向は、矢印の方向に向かう光学軸22の回転方向を逆転することにより、逆転する。例えば、図示例であれば、各矢印の方向に向う液晶化合物20の光学軸22の回転方向を時計回りにすることで、右円偏光を、矢印の方向に傾けて反射する。
 さらに、円偏光の反射方向は、円偏光の旋回方向を逆転することにより、逆転する。例えば、図示例であれば、コレステリック配向される液晶化合物の螺旋状の回転方向を逆転して、左円偏光を選択的に反射するコレステリック液晶層とすると、コレステリック液晶層は、左円偏光を、矢印の方向に傾けて反射する。
In the illustrated cholesteric liquid crystal layer 14a, the optic axis 22 of the liquid crystal compound 20 rotates counterclockwise in the direction of each arrow. Tilt in the opposite direction and reflect.
The direction of reflection of circularly polarized light is reversed by reversing the direction of rotation of the optical axis 22 in the direction of the arrow. For example, in the illustrated example, by rotating the optical axis 22 of the liquid crystal compound 20 in the direction of each arrow clockwise, right-handed circularly polarized light is tilted in the direction of the arrow and reflected.
Furthermore, the direction of reflection of circularly polarized light is reversed by reversing the direction of rotation of the circularly polarized light. For example, in the illustrated example, if the helical rotation direction of the cholesterically aligned liquid crystal compound is reversed to form a cholesteric liquid crystal layer that selectively reflects left-handed circularly polarized light, the cholesteric liquid crystal layer reflects left-handed circularly polarized light as follows: Tilt in the direction of the arrow to reflect.
 従って、図9に示すような同心円状の液晶配向パターン、すなわち、放射状に光学軸が連続的に回転して変化する液晶配向パターンを有するコレステリック液晶層14aは、液晶化合物20の光学軸の回転方向および反射する円偏光の方向に応じて、入射光を、発散光または集束光として反射できる。
 すなわち、コレステリック液晶層の液晶配向パターンを同心円状とすることにより、反射型の液晶回折素子は、選択的に反射する円偏光、および、一方向に向かう液晶化合物20の光学軸22の回転方向に応じて、凹面鏡また凸面鏡としての機能を発現する。
Therefore, the cholesteric liquid crystal layer 14a having a concentric liquid crystal alignment pattern as shown in FIG. And depending on the direction of the reflected circularly polarized light, the incident light can be reflected as divergent or convergent light.
That is, by making the liquid crystal alignment pattern of the cholesteric liquid crystal layer concentric, the reflective liquid crystal diffraction element selectively reflects circularly polarized light and rotates the optical axis 22 of the liquid crystal compound 20 in one direction. Accordingly, it functions as a concave mirror or a convex mirror.
 さらに、図示例においては、好ましい態様として、液晶配向パターンにおいて光学軸が180°回転する1周期Λを、各矢印の方向、すなわち、コレステリック液晶層の中心から光学軸が連続的に回転する1方向の外方向に向かって、漸次、短くする。
 上述のように、光学軸が1方向に向かって回転する液晶配向パターンを有するコレステリック液晶層では、反射する光の回折角度、すなわち鏡面反射に対する反射光の反射角度は、液晶配向パターンにおける1周期Λが短いほど、大きくなる。従って、液晶配向パターンにおける1周期Λを、コレステリック液晶層の中心から、光学軸が連続的に回転する1方向の外方向に向かって、漸次、短くすることにより、光を、より集束でき、凹面鏡としての性能を、向上できる。
Furthermore, in the illustrated example, as a preferred embodiment, one cycle Λ in which the optic axis rotates 180° in the liquid crystal alignment pattern is set in the direction of each arrow, that is, one direction in which the optic axis rotates continuously from the center of the cholesteric liquid crystal layer. progressively shorten in the outward direction of the
As described above, in a cholesteric liquid crystal layer having a liquid crystal orientation pattern in which the optic axis rotates in one direction, the diffraction angle of reflected light, that is, the reflection angle of reflected light with respect to specular reflection, is one period Λ in the liquid crystal orientation pattern. The shorter the , the larger. Therefore, by gradually shortening one period Λ in the liquid crystal alignment pattern from the center of the cholesteric liquid crystal layer toward the outer direction in which the optical axis rotates continuously, the light can be more focused and the concave mirror can improve performance as
 すなわち、波長変換部材105で変換され、かつ、拡散された白色光を所定の方向に反射し、かつ、集光・コリメートする第1液晶回折素子106に、同心円状の液晶配向パターンを有するコレステリック液晶層14aを有する反射型の液晶回折素子を用いることにより、周方向全域で入射光(光ビーム)を集光して、光を反射して出射できる。
 また、光学軸22(液晶化合物20)が回転する一方向に向かう1周期の長さを、中心から外方向に向かって、適宜、設定することにより、投射光の集光およびコリメートの状態を所望の状態に調節できる。
 本発明の車載用照明装置の第1回折素子として、同心円状の液晶配向パターンを有するコレステリック液晶層14aを有する反射型の第1液晶回折素子106を用いることにより、車外に所望する投射光を投射することが可能になる。
That is, the cholesteric liquid crystal having a concentric liquid crystal orientation pattern in the first liquid crystal diffraction element 106 that reflects the white light converted and diffused by the wavelength conversion member 105 in a predetermined direction and condenses and collimates the light. By using the reflective liquid crystal diffraction element having the layer 14a, incident light (light beam) can be condensed in the entire circumferential direction, and the light can be reflected and emitted.
In addition, by appropriately setting the length of one cycle in one direction in which the optical axis 22 (liquid crystal compound 20) rotates outward from the center, the state of convergence and collimation of the projected light can be obtained as desired. state can be adjusted.
A reflective first liquid crystal diffraction element 106 having a cholesteric liquid crystal layer 14a having a concentric liquid crystal orientation pattern is used as the first diffraction element of the vehicle-mounted lighting device of the present invention to project desired projection light outside the vehicle. it becomes possible to
 <光学異方性層>
 図4(B)に示すように、第2液晶回折素子110において、配向膜13の表面には、液晶化合物20を含む液晶組成物の硬化層である光学異方性層14bを有する。
 光学異方性層14bにおいては、液晶化合物20の光学軸22(遅相軸)が、光学異方性層の面内の少なくとも一方向に沿って配列された液晶パターンであって、液晶化合物20の光学軸22の向きが、一方向に向かって回転変化した液晶配向パターンを有する。
<Optically anisotropic layer>
As shown in FIG. 4B, in the second liquid crystal diffraction element 110, the alignment film 13 has an optically anisotropic layer 14b, which is a cured layer of a liquid crystal composition containing a liquid crystal compound 20, on the surface thereof.
In the optically anisotropic layer 14b, the optical axis 22 (slow axis) of the liquid crystal compound 20 is a liquid crystal pattern arranged along at least one direction in the plane of the optically anisotropic layer, and the liquid crystal compound 20 has a liquid crystal alignment pattern in which the orientation of the optic axis 22 of is changed in rotation in one direction.
 第2液晶回折素子110は、波長λの光に対する光学異方性層14bの厚さ方向(図中z方向)のリターデーションR(=Δn・d1)が、0.36λ~0.64λである。リターデーションRは0.4λ~0.6λが好ましく、0.45λ~0.55λがより好ましく、0.5λであることが特に好ましい。Δnは光学異方性層14bの複屈折率、d1は厚さである。例えば、940nmの光を入射光として想定する場合には、940nmの光に対するリターデーションRが338~602nmの範囲であればよく、470nmであることが特に好ましい。
 このようなリターデーションRを有するので、光学異方性層14bは、一般的なλ/2板としての機能、すなわち、入射光の直交する直線偏光成分の間に180°(=π=λ/2)の位相差を与える機能を発現する。
The second liquid crystal diffraction element 110 has a retardation R (=Δn·d1) of 0.36λ to 0.64λ in the thickness direction (z direction in the drawing) of the optically anisotropic layer 14b with respect to light of wavelength λ. . The retardation R is preferably 0.4λ to 0.6λ, more preferably 0.45λ to 0.55λ, particularly preferably 0.5λ. Δn is the birefringence of the optically anisotropic layer 14b, and d1 is the thickness. For example, when light of 940 nm is assumed as incident light, the retardation R with respect to light of 940 nm may be in the range of 338 to 602 nm, preferably 470 nm.
Since the optically anisotropic layer 14b has such a retardation R, the optically anisotropic layer 14b functions as a general λ/2 plate, i.e., 180° (=π=λ/ 2) It expresses the function of giving a phase difference.
 第2液晶回折素子110は、透過型の回折格子として機能する。回折格子として機能する原理について、図5および図6を参照して説明する。
 なお、上述のように、図5は、光学異方性層14bの液晶配向パターンを示すための概略平面図であり、すなわち、図4を、図中上方からみた図である。
The second liquid crystal diffraction element 110 functions as a transmissive diffraction grating. The principle of functioning as a diffraction grating will be described with reference to FIGS. 5 and 6. FIG.
As described above, FIG. 5 is a schematic plan view showing the liquid crystal alignment pattern of the optically anisotropic layer 14b, that is, the view of FIG. 4 viewed from above.
 図4および図5に示すように、光学異方性層14bにおいては、液晶化合物20が、一方向に連続的に光学軸22が回転変化した液晶配向パターンで固定化されている。図示例では、矢印x方向に一致する、図5中の軸A方向(軸Aに沿った方向)に、光学軸22が連続的に回転変化している。すなわち、光学軸22として定義される液晶化合物20の長軸(異常光の軸:ダイレクタ)の面内成分と、軸Aとが成す角度が、回転変化するように液晶化合物20が配向されている。
 なお、図5に示すように、光学異方性層14bにおいて、液晶化合物20の光学軸22の方向は、軸A方向と直交する方向すなわち矢印y方向に配列される液晶化合物20では、一致している。光学異方性層14bは、このy方向の液晶化合物20の光学軸22の方向が一致する領域毎に、上述のような一般的なλ/2板としての機能を発現する。
As shown in FIGS. 4 and 5, in the optically anisotropic layer 14b, the liquid crystal compound 20 is fixed in a liquid crystal alignment pattern in which the optical axis 22 is continuously rotated in one direction. In the illustrated example, the optical axis 22 rotates continuously in the direction of the axis A (the direction along the axis A) in FIG. 5, which coincides with the direction of the arrow x. That is, the liquid crystal compound 20 is oriented such that the angle between the in-plane component of the long axis (axis of extraordinary light: director) of the liquid crystal compound 20 defined as the optical axis 22 and the axis A rotates. .
As shown in FIG. 5, in the optically anisotropic layer 14b, the directions of the optic axes 22 of the liquid crystal compounds 20 are aligned in the direction perpendicular to the direction of the axis A, that is, in the direction of the arrow y. ing. The optically anisotropic layer 14b functions as a general λ/2 plate as described above for each region where the y-direction optical axis 22 of the liquid crystal compound 20 is aligned.
 光学軸22の向きが回転変化した液晶配向パターンとは、軸Aに沿って配列されている液晶化合物20の光学軸22と軸Aとのなす角度が、軸A方向の位置によって異なっており、軸Aに沿って光学軸22と軸Aとのなす角度がφからφ+180°あるいはφ-180°まで徐々に変化するように配向され固定化されたパターンである。
 以下において、図6に示すような、光学異方性層14bにおいて、液晶化合物20の光学軸22が光学異方性層14bの面に平行であり、さらに、光学軸22の向きが一定である局所領域(単位領域)すなわち液晶化合物20が矢印y方向に配列される領域が、矢印y方向と直交するx方向に配列されており、かつ、矢印x方向に配列される複数の局所領域間において、光学軸22の向きが一方向(軸Aに沿う方向)に向かって連続的に回転変化するように配向されている液晶配向パターンを、水平回転配向と称する。
In the liquid crystal alignment pattern in which the direction of the optical axis 22 is changed by rotation, the angle formed by the optical axis 22 of the liquid crystal compound 20 arranged along the axis A and the axis A varies depending on the position in the direction of the axis A. The pattern is oriented and fixed such that the angle between the optical axis 22 and the axis A along the axis A gradually changes from φ to φ+180° or φ−180°.
In the optically anisotropic layer 14b shown in FIG. 6 below, the optical axis 22 of the liquid crystal compound 20 is parallel to the surface of the optically anisotropic layer 14b, and the direction of the optical axis 22 is constant. Local regions (unit regions), that is, regions in which the liquid crystal compounds 20 are arranged in the direction of the arrow y are arranged in the direction x perpendicular to the direction of the arrow y, and between a plurality of local regions arranged in the direction of the arrow x , the orientation of the optical axis 22 is oriented such that it rotates continuously in one direction (the direction along the axis A) is referred to as a horizontal rotational orientation.
 なお、連続的に回転変化するとは、図5および図6に示す通り、30°刻みなどの一定の角度の領域が隣接して0°から180°(=0°)まで回転するものであってもよい。または、軸A方向に向かう光学軸22の角度変化は、一定の角度間隔ではなく、不均一な角度間隔で回転する物であってもよい。本発明においては、単位領域の光学軸22の向きの平均値が一定の割合で線形に変化していれば徐々に変化していることになる。ただし、軸A方向に隣接する、光学軸22が異なる傾きを有する単位領域同士における光学軸の傾きの変化は、45°以下とするのが好ましい。隣接する単位領域の傾きの変化は、より小さい方が好ましい。 It should be noted that, as shown in FIGS. 5 and 6, the continuous change in rotation means that areas with a constant angle such as 30° increments rotate from 0° to 180° (=0°) adjacent to each other. good too. Alternatively, the angular change of the optical axis 22 toward the direction of the axis A may be a rotating object that rotates at non-uniform angular intervals instead of constant angular intervals. In the present invention, if the average value of the direction of the optical axis 22 of the unit area changes linearly at a constant rate, it means that the direction changes gradually. However, the change in the inclination of the optical axis between unit areas adjacent to each other in the direction of the axis A and having different inclinations of the optical axis 22 is preferably 45° or less. It is preferable that the change in inclination between adjacent unit areas is smaller.
 先と同様、光学異方性層14bにおいて、軸A方向に向かって光学軸22(液晶化合物20)が180°回転する長さ、すなわち、軸A方向に向かって光学軸22と軸Aとがなす角度がφからφ+180°(元に戻る)まで変化する距離、すなわち、光学軸22が180°回転する周期を1周期Λ(回転周期Λ)とする。この1周期Λは、0.5~5μmであるのが好ましい。
 上述のように、1周期Λが短いほど、また、入射する光の波長が長いほど、光学異方性層14bすなわち第2液晶回折素子110による回折角が大きくなる。すなわち、法線方向から光が入射した場合には、1周期Λが短いほど、また、入射光の波長が長いほど、法線方向に対する透過光の角度が大きくなる。
 従って、1周期Λは、第2液晶回折素子110への入射光の波長および所望の出射角に応じて定めればよい。
As before, in the optically anisotropic layer 14b, the optic axis 22 (liquid crystal compound 20) rotates 180° in the direction of the axis A, that is, the optic axis 22 and the axis A A distance in which the formed angle changes from φ to φ+180° (returning to the original), that is, a period in which the optical axis 22 rotates by 180° is defined as one period Λ (rotational period Λ). This one period Λ is preferably 0.5 to 5 μm.
As described above, the shorter the period Λ and the longer the wavelength of the incident light, the larger the diffraction angle by the optically anisotropic layer 14b, that is, the second liquid crystal diffraction element 110. FIG. That is, when light is incident from the normal direction, the shorter the period Λ and the longer the wavelength of the incident light, the greater the angle of the transmitted light with respect to the normal direction.
Therefore, one period Λ may be determined according to the wavelength of light incident on the second liquid crystal diffraction element 110 and the desired output angle.
 第2液晶回折素子110は、上述した光学異方性層14bの構成により、入射光に対してλ/2の位相差を与えると共に、入射角0°で入射した、すなわち垂直入射(法線方向から入射)した入射光を出射角θ2で出射させる。
 すなわち、図6に示すように、光学異方性層14bに法線方向から右円偏光PRの光L1を入射させると、法線方向と角度θ2をなす方向に左円偏光PLの光L2が出射される。以下の説明では、光学異方性層14bに入射する右円偏光PRの光L1を『入射光L1』ともいう。さらに、以下の説明では、光学異方性層から出射する左円偏光PLの光L2を『出射光L2』ともいう。
 第2液晶回折素子110は、所定の波長の光を入射させる場合、光学異方性層14bにおける1周期Λが小さいほど、回折角すなわち出射光L2の出射角が大きくなる。出射光L2の出射角とは、光学異方性層14bの法線方向と出射光L2とが成す角度である。
The second liquid crystal diffraction element 110 provides a phase difference of λ/2 with respect to incident light due to the configuration of the optically anisotropic layer 14b described above, and is incident at an incident angle of 0°, that is, normal incidence (normal direction ) is emitted at an exit angle θ 2 .
That is, as shown in FIG. 6, when light L 1 of right-handed circularly polarized light P R is incident on the optically anisotropic layer 14b from the normal direction, left-handed circularly polarized light P L is polarized in the direction forming an angle θ 2 with the normal direction. of light L 2 is emitted. In the following description, the right-handed circularly polarized light P R light L 1 incident on the optically anisotropic layer 14b is also referred to as "incident light L 1 ". Furthermore, in the following description, the left-handed circularly polarized light P L emitted from the optically anisotropic layer L 2 is also referred to as “outgoing light L 2 ”.
When light of a predetermined wavelength is incident on the second liquid crystal diffraction element 110, the smaller the one period Λ in the optically anisotropic layer 14b, the larger the diffraction angle, that is, the output angle of the output light L2 . The output angle of the output light L2 is the angle formed by the normal direction of the optically anisotropic layer 14b and the output light L2 .
 なお、第2液晶回折素子110は右円偏光と左円偏光とは回折する方位が異なるので、第2液晶回折素子110からの出射光L2の回折方向は、第2液晶回折素子110に入射する光の円偏光の状態を制御して入射する。すなわち、図示例のように、入射光が直線偏光の場合は、λ/4板109を挿入して、左右どちらかの円偏光に変換してから入射することで、光の回折の方位をどちらかのみにすることができる。 In addition, since the second liquid crystal diffraction element 110 diffracts right-handed circularly polarized light and left-handed circularly polarized light in different directions, the diffraction direction of the emitted light L 2 from the second liquid crystal diffraction element 110 is different from that incident on the second liquid crystal diffraction element 110. The state of circularly polarized light is controlled and incident. That is, as shown in the figure, when the incident light is linearly polarized light, the λ/4 plate 109 is inserted to convert the light into either left or right circularly polarized light before the light is incident. It can only be
 図6は、光学異方性層14bに垂直入射した入射光L1が、所定の出射角θ2で出射される原理を模式的に示す図である。以下、図6を参照して、光学異方性層14bの作用について説明する。 FIG. 6 is a diagram schematically showing the principle that the incident light L 1 vertically incident on the optically anisotropic layer 14b is emitted at a predetermined emission angle θ 2 . The action of the optically anisotropic layer 14b will be described below with reference to FIG.
 まず、入射光L1として、波長λの右円偏光PRを用いた場合について説明する。
 右円偏光PRである入射光L1は、光学異方性層14bを通過することにより、λ/2の位相差が与えられて左円偏光PLに変換される。
 また、光学異方性層14bにおいて、入射光L1は、面内の個々の単位領域(局所領域)における液晶化合物20の光学軸22により、絶対位相が変化する。ここで、光学異方性層14bにおいては、液晶化合物20の光学軸22の向きが、軸A方向(本例では矢印x方向と一致)に向かって回転して変化しているため、入射光が入射する光学異方性層14bの面(x-y面)のx座標(x方向の位置)における液晶化合物20の光学軸22の向きに応じて絶対位相の変化量が異なる。図6中の破線で示す領域には、その絶対位相の変化量がx座標によって異なる様子を模式的に示している。
 図6に示すように、光学異方性層14bを通過する際の絶対位相のずれにより、光学異方性層の面に対して角度を有する絶対位相の等位相面24が形成される。これによって、法線方向から入射した入射光Lに対して、等位相面24に垂直な方向に屈曲力が与えられ、入射光L1の進行方向が変化する。すなわち、右円偏光PRである入射光L1は、光学異方性層14bを通過した後には左円偏光PLとなり、かつ、法線方向と所定の角度θ2をなす方向に進行する出射光L2として光学異方性層14bから出射される。
First, the case of using right-handed circularly polarized light P R of wavelength λ as the incident light L 1 will be described.
The incident light L 1 , which is right-handed circularly polarized light P R , is given a phase difference of λ/2 by passing through the optically anisotropic layer 14 b and converted into left-handed circularly polarized light P L .
In addition, in the optically anisotropic layer 14b, the absolute phase of the incident light L1 changes depending on the optic axis 22 of the liquid crystal compound 20 in each in-plane unit region (local region). Here, in the optically anisotropic layer 14b, the direction of the optic axis 22 of the liquid crystal compound 20 is changed by rotating toward the direction of the axis A (which coincides with the direction of the arrow x in this example). The amount of change in absolute phase varies depending on the direction of the optical axis 22 of the liquid crystal compound 20 on the x-coordinate (position in the x-direction) of the plane (xy plane) of the optically anisotropic layer 14b on which the light is incident. In the area indicated by the dashed line in FIG. 6, it is schematically shown how the amount of change in the absolute phase differs depending on the x-coordinate.
As shown in FIG. 6, due to the absolute phase shift when passing through the optically anisotropic layer 14b, an equiphase plane 24 of absolute phase having an angle with respect to the plane of the optically anisotropic layer is formed. As a result, the incident light L1 incident from the normal direction is given a bending force in the direction perpendicular to the equiphase plane 24, and the traveling direction of the incident light L1 is changed. That is, the incident light L 1 which is right-handed circularly polarized light PR becomes left-handed circularly polarized light P L after passing through the optically anisotropic layer 14b, and travels in a direction forming a predetermined angle θ 2 with the normal direction. It is emitted from the optically anisotropic layer 14b as incident light L2 .
 以上のようにして、第2液晶回折素子110においては、第2液晶回折素子110の面に対して垂直に法線方向に沿って入射した入射光L1は、法線方向とは異なる方向に出射光L2として出射される。 As described above, in the second liquid crystal diffraction element 110, the incident light L 1 incident along the normal direction perpendicular to the surface of the second liquid crystal diffraction element 110 is projected in a direction different from the normal direction. It is emitted as outgoing light L2 .
 光学異方性層14b中の液晶配向パターンにおける光学軸の向きの1周期Λを変化させることにより、出射角の傾きを変化させることができる。1周期Λを小さくするほど入射光に大きな屈曲力を与えることができるので、傾きを大きくすることができる。 By changing one period Λ of the direction of the optical axis in the liquid crystal alignment pattern in the optically anisotropic layer 14b, the inclination of the output angle can be changed. The smaller the period Λ, the greater the bending force that can be applied to the incident light, and the greater the inclination.
 このように、光学異方性層14bにおける液晶配向パターンによって、絶対位相の変化量を変化させて入射光の波面を変化させることができる。 Thus, it is possible to change the wavefront of incident light by changing the amount of change in the absolute phase by the liquid crystal alignment pattern in the optically anisotropic layer 14b.
 第2液晶回折素子110が、一方向のみに一様な1周期Λの液晶配向パターンを有している場合、上記のような原理に基づく入射光L1の出射光L2への変換は、透過回折として説明できる。
 入射光L1に対し光学異方性層14bは透過回折格子として機能し、光学異方性層14bに垂直入射した入射光L1は、所定の回折角θ2の出射光(透過回折光)L2として透過回折される。この場合、一般的な光の回折の式である下記式(1)を満たす。
 n2sinθ2-n1sinθ1=mλ/p    式(1)
 ここで、n1は回折格子の入射面側の媒質1の屈折率、θ1は入射角、n2は回折格子の出射面側の媒質2の屈折率、θ2は回折角(出射角)、λは波長、pは回転周期、mは回折の次数である。本例においては、回折格子とは光学異方性層14bである。
 ここでは、m=1で最大の回折効率が得られるように設定する。また、ここで、入射角θ1=0°であるので、式(1)は、
 n2sinθ2=λ/p    式(2)
となる。
When the second liquid crystal diffraction element 110 has a uniform liquid crystal orientation pattern of one period Λ in only one direction, the conversion of the incident light L 1 to the output light L 2 based on the above principle is as follows. It can be explained as transmission diffraction.
The optically anisotropic layer 14b functions as a transmission diffraction grating for the incident light L1 . Transmission diffracted as L2 . In this case, the following formula (1), which is a general light diffraction formula, is satisfied.
n 2 sin θ 2 −n 1 sin θ 1 =mλ/p Equation (1)
where n1 is the refractive index of medium 1 on the incident surface side of the diffraction grating, θ1 is the incident angle, n2 is the refractive index of medium 2 on the output surface side of the diffraction grating, and θ2 is the diffraction angle (output angle). , λ is the wavelength, p is the rotation period, and m is the order of diffraction. In this example, the diffraction grating is the optically anisotropic layer 14b.
Here, m=1 is set so that the maximum diffraction efficiency is obtained. Also, here, since the incident angle θ 1 =0°, equation (1) is
n 2 sin θ 2 =λ/p Formula (2)
becomes.
 図7は、式(2)で示される回折現象を模式的に示す図である。
 媒質n1と媒質n2との間に回折格子としての光学異方性層14bが配置されている。
 屈折率n1である媒質1側から光学異方性層14bに法線方向から入射した光L1は、光学異方性層14bによる回折作用により回折されて、屈折率n2である媒質2側に出射される。このとき出射角θ2で出射される出射光L2は、回折角θ2の透過回折光L2と言い換えることができる。
FIG. 7 is a diagram schematically showing the diffraction phenomenon represented by Equation (2).
An optically anisotropic layer 14b is arranged as a diffraction grating between the medium n1 and the medium n2 .
Light L 1 incident on the optically anisotropic layer 14b in the normal direction from the side of the medium 1 having a refractive index n 1 is diffracted by the diffraction action of the optically anisotropic layer 14b to form a medium 2 having a refractive index n 2 . emitted to the side. At this time, the output light L2 emitted at the output angle θ2 can be rephrased as the transmitted diffraction light L2 at the diffraction angle θ2 .
 このように、液晶化合物20が水平回転配向して固定化された光学異方性層14bが透過型の液晶回折格子として機能する。 In this way, the optically anisotropic layer 14b in which the liquid crystal compound 20 is horizontally rotated and fixed functions as a transmissive liquid crystal diffraction grating.
 第2液晶回折素子110(光学異方性層14b)により回折作用を生じさせる光の波長λは、紫外から可視光、赤外、さらには、電磁波レベルであってもよい。
 同一の1周期Λに対し、入射光の波長が大きいほど回折角が大きく、入射光の波長が小さいほど回折角が小さくなる。
 後述するが、液晶化合物20としては、棒状液晶化合物および円盤状液晶化合物が利用可能である。波長λが380nmである場合、1周期Λ(μm)が0.5<p<1の範囲では、棒状液晶化合物と比べて円盤状液晶化合物は高い回折効率を得ることができる。また、波長λが1100nmである場合、1周期Λ(μm)が2<p<5の範囲では、棒状液晶化合物と比べて円盤状液晶化合物は高い回折効率を得ることができる。
The wavelength λ of the light that causes the diffraction action by the second liquid crystal diffraction element 110 (optically anisotropic layer 14b) may range from ultraviolet to visible light, infrared, or even electromagnetic wave level.
For the same period Λ, the larger the wavelength of the incident light, the larger the diffraction angle, and the smaller the wavelength of the incident light, the smaller the diffraction angle.
As will be described later, as the liquid crystal compound 20, a rod-like liquid crystal compound and a discotic liquid crystal compound can be used. When the wavelength λ is 380 nm, the discotic liquid crystal compound can provide higher diffraction efficiency than the rod-like liquid crystal compound in the range of 0.5<p<1 for one period Λ (μm). Further, when the wavelength λ is 1100 nm, the discotic liquid crystal compound can obtain higher diffraction efficiency than the rod-like liquid crystal compound in the range of 2<p<5 for one period Λ (μm).
 図7に示すように、第2液晶回折素子110の表面の法線に沿って右円偏光PRの入射光L1を入射させると、法線方向と角度θ2をなす方向に左円偏光PLの出射光L2が出射される。
 一方、第2液晶回折素子110に左円偏光を入射光として入射させた場合には、入射光は光学異方性層14bにおいて右円偏光に変換されると共に図7とは逆向きの屈曲力を受けて進行方向が変化される。
As shown in FIG. 7, when incident light L 1 of right-handed circularly polarized light P R is incident along the normal to the surface of the second liquid crystal diffraction element 110, left- handed circularly polarized An emitted light L 2 of P L is emitted.
On the other hand, when left-handed circularly polarized light is incident on the second liquid crystal diffraction element 110, the incident light is converted into right-handed circularly polarized light by the optically anisotropic layer 14b, and the bending force in the direction opposite to that in FIG. is received and the direction of travel is changed.
 なお、図8に示すように、第2液晶回折素子110(光学異方性層14b)に対して、ランダム偏光(無偏光)の入射光L41を入射させた場合、入射光L41のうち、右円偏光PRの成分は、上述したように、光学異方性層14bにおいて左円偏光PLに変換され、液晶配向パターンによって屈曲力を受けて進行方向が変化し、光学異方性層を透過して第1の透過回折光L42として出射される。
 これに対して、入射光L41のうちの左円偏光PLの成分は、光学異方性層14bで右円偏光PRに変換されると共に、右円偏光から左円偏光に変換された光とは逆向きの屈曲力を受けて、進行方向が変化した状態で光学異方性層14bを透過して、第2液晶回折素子110の反対の面から第2の透過回折光L43として出射される。なお、第1の透過回折光L42と第2の透過回折光L43の進行方向は法線に対して略線対称の関係となる。
As shown in FIG. 8, when randomly polarized (non-polarized) incident light L 41 is incident on the second liquid crystal diffraction element 110 (optically anisotropic layer 14b), out of the incident light L 41 , right-handed circularly polarized light P R is converted into left-handed circularly polarized light P L in the optically anisotropic layer 14b as described above. It is transmitted through the layer and emitted as the first transmitted diffraction light L42 .
On the other hand, the left-handed circularly polarized light P L component of the incident light L 41 is converted into right-handed circularly polarized light P R by the optically anisotropic layer 14b, and converted from right-handed circularly polarized light to left-handed circularly polarized light. It receives a bending force in the opposite direction to the light, passes through the optically anisotropic layer 14b with its traveling direction changed, and passes through the opposite surface of the second liquid crystal diffraction element 110 as the second transmitted diffraction light L43 . emitted. The traveling directions of the first transmitted diffraction light L 42 and the second transmitted diffraction light L 43 are substantially symmetrical with respect to the normal line.
 上記説明では入射光を光学異方性層に対して垂直に入射する例を示したが、入射光が斜めになった場合も同様に透過回折の効果が得られる。
 斜め入射の場合には、入射角θ1を考慮に入れて上記式(1)を満たすように、所望の回折角θ2を得られるように回転周期の設計をすればよい。
In the above description, an example in which the incident light is perpendicularly incident on the optically anisotropic layer is shown, but the effect of transmission diffraction can also be obtained when the incident light is oblique.
In the case of oblique incidence, the rotation period may be designed so as to obtain the desired diffraction angle θ 2 so as to satisfy the above formula (1) taking into consideration the incident angle θ 1 .
 上述したように、本発明の車載用照明装置は、偏向した光を、第2液晶回折素子110(光学異方性層14b)によって屈折(回折)することで、第2液晶回折素子110が無い場合のMEMS光偏向素子(偏向ミラー104b)の最大偏向角よりも遥かに大きい偏向角による光の偏向を可能にしている。 As described above, the in-vehicle lighting device of the present invention refracts (diffracts) the polarized light by the second liquid crystal diffraction element 110 (optically anisotropic layer 14b). This allows the light to be deflected by a deflection angle much larger than the maximum deflection angle of the MEMS light deflection element (deflecting mirror 104b) in the case.
 光学異方性層14bによる光の屈折(回折角)は、液晶化合物20の光学軸22が180°回転する1周期すなわち1周期Λが短いほど、大きくなる。 The refraction (diffraction angle) of light by the optically anisotropic layer 14b increases as one period of 180° rotation of the optical axis 22 of the liquid crystal compound 20, that is, one period Λ is shorter.
 さらに、入射する円偏光の偏向方向(旋回方向)が同じ場合には、光学異方性層14bによる光の屈折方向は、液晶化合物20の光学軸22の回転方向によって、逆になる。
 すなわち、入射光L1が右円偏光PRである場合に、出射面側から見て、光学軸22の回転方向が、図4(B)~図6に示すように軸A方向(矢印x方向)に向かって時計回りである場合には、出射光L2は、例えば、軸A方向に屈折される。
 これに対して、入射光L1が右円偏光PRである場合に、出射面側から見て、光学軸22の回転方向が、軸A方向に向かって反時計回りである場合には、出射光L2は、逆の軸A方向とは逆方向に屈折される(図8の出射光L43参照)。
Furthermore, when the direction of polarization (direction of rotation) of incident circularly polarized light is the same, the direction of refraction of light by the optically anisotropic layer 14b is reversed depending on the direction of rotation of the optical axis 22 of the liquid crystal compound 20 .
That is, when the incident light L 1 is right-handed circularly polarized light P R , the rotation direction of the optical axis 22 is the direction of the axis A (arrow x direction), the outgoing light L 2 is refracted in the direction of axis A, for example.
On the other hand, when the incident light L 1 is right-handed circularly polarized light P R and the direction of rotation of the optical axis 22 is counterclockwise toward the direction of the axis A as viewed from the exit surface side, The emitted light L 2 is refracted in a direction opposite to the direction of the opposite axis A (see emitted light L 43 in FIG. 8).
 これに応じて、図3に示す本発明の車載用照明装置においては、光学異方性層14bは、軸A方向に向かう液晶配向パターンの1周期Λを、MEMS光偏向素子(偏向ミラー104b)による偏向(偏向方位)の中心から外側に向かって、漸次、短くする。すなわち、光学異方性層14bによる光の屈折量は、偏向方向の外側に向かうにしたがって、大きくなる。
 加えて、図3に示す本発明の車載用照明装置において、第2液晶回折素子110の光学異方性層14bは、軸A方向に向かう液晶化合物20の光学軸22の回転方向を、MEMS光偏向素子による偏向の中心において、逆転する。例えば、図示例であれば、軸A方向に向かって、軸A方向の上流側から、偏向方向の中心までは、軸A方向に向かう光学軸22の回転方向を反時計回りとし、偏向の中心で光学軸22の回転方向を逆転して、偏向の中心から軸A方向の下流に向かっては、軸A方向に向かう光学軸22の回転方向を時計回りとする。
 図3に示す本発明の車載用照明装置において、第2液晶回折素子110の光学異方性層14bが、このような構成を有することにより、光を軸A方向の中央から両側(上流側および下流側)に向かって屈折(回折)させ、かつ、光の回折角を光を軸A方向の中央から両側に向かって、漸次、大きくして、MEMS光偏向素子の最大偏向角よりも遥かに大きい偏向角による光の偏向を可能にしている。
 なお、光学軸22の回転方向を逆転するのは、通常、光学異方性層14bにおける、軸A方向(矢印x方向)すなわち光学軸22が回転する一方向の中心である。すなわち、車載用照明装置においては、通常、MEMS光偏向素子における偏向の中心と、光学異方性層14bにおける軸A方向の中心とを、一致させる。
Accordingly, in the in-vehicle lighting device of the present invention shown in FIG. 3, the optically anisotropic layer 14b has one period Λ of the liquid crystal orientation pattern in the direction of the axis A, which is formed by the MEMS light deflection element (deflection mirror 104b). gradually shorten from the center of the deflection (deflection azimuth) by . That is, the amount of light refracted by the optically anisotropic layer 14b increases toward the outside in the deflection direction.
In addition, in the vehicle-mounted lighting device of the present invention shown in FIG. At the center of deflection by the deflection element, the reversal occurs. For example, in the illustrated example, the direction of rotation of the optical axis 22 toward the direction of axis A is counterclockwise from the upstream side in the direction of axis A to the center of the deflection direction, and the direction of rotation of the optical axis 22 is counterclockwise. , the direction of rotation of the optical axis 22 is reversed, and the direction of rotation of the optical axis 22 toward the direction of the axis A is clockwise from the center of deflection toward the downstream in the direction of the axis A.
In the vehicle-mounted lighting device of the present invention shown in FIG. 3, the optically anisotropic layer 14b of the second liquid crystal diffraction element 110 has such a configuration, so that the light is directed from the center in the direction of the axis A to both sides (upstream side and toward the downstream side), and the diffraction angle of the light is gradually increased from the center toward both sides in the direction of the axis A so that it is far larger than the maximum deflection angle of the MEMS optical deflection element. It allows the deflection of light with a large deflection angle.
The direction of rotation of the optical axis 22 is usually reversed in the direction of the axis A (direction of arrow x) in the optically anisotropic layer 14b, that is, the center of one direction in which the optical axis 22 rotates. That is, in the vehicle-mounted lighting device, the center of deflection of the MEMS light deflection element and the center of the optically anisotropic layer 14b in the direction of the axis A are usually aligned.
 なお、本発明において、1周期Λは、偏向の中心から外側に向かって、連続的に短くなってもよく、または、段階的に短くなってもよい。 In addition, in the present invention, one period Λ may be continuously shortened from the deflection center toward the outside, or may be shortened stepwise.
 <光学異方性層の形成>
 光学異方性層14bは、一例として、液晶化合物を含む液晶組成物によって形成する。
 光学異方性層14bを形成するための、液晶化合物を含む液晶組成物は、液晶化合物の他に、レベリング剤、配向制御剤、重合開始剤および配向助剤などのその他の成分を含有していてもよい。支持体上に配向膜を形成し、その配向膜上に液晶組成物を塗布、硬化することにより、液晶組成物の硬化層からなる、所定の液晶配向パターンが固定化された光学異方性層を得ることができる。
 次に、本発明の液晶組成物の各構成成分について詳述する。
<Formation of optically anisotropic layer>
The optically anisotropic layer 14b is formed of, for example, a liquid crystal composition containing a liquid crystal compound.
A liquid crystal composition containing a liquid crystal compound for forming the optically anisotropic layer 14b contains other components such as a leveling agent, an alignment control agent, a polymerization initiator and an alignment aid, in addition to the liquid crystal compound. may An optically anisotropic layer in which a predetermined liquid crystal alignment pattern is fixed, comprising a cured layer of a liquid crystal composition formed by forming an alignment film on a support and coating and curing a liquid crystal composition on the alignment film. can be obtained.
Next, each constituent component of the liquid crystal composition of the present invention will be described in detail.
 光学異方性層14bは、棒状液晶化合物または円盤状液晶化合物を含む液晶組成物の硬化層からなり、棒状液晶化合物の光学軸または円盤状液晶化合物の光学軸が、上記のように配向された液晶配向パターンを有している。
 支持体12上に配向膜を形成し、配向膜上に液晶組成物を塗布、硬化することにより、液晶組成物の硬化層からなる光学異方性層を得ることができる。なお、いわゆるλ/2板として機能するのは光学異方性層14bであるが、本発明は、支持体12および配向膜を一体的に備えた積層体がλ/2板として機能する態様を含む。
 また、光学異方性層を形成するための液晶組成物は、棒状液晶化合物または円盤状液晶化合物を含有し、さらに、レベリング剤、配向制御剤、重合開始剤および配向助剤などのその他の成分を含有していてもよい。
The optically anisotropic layer 14b is a cured layer of a liquid crystal composition containing a rod-like liquid crystal compound or a discotic liquid crystal compound, and the optical axis of the rod-like liquid crystal compound or the discotic liquid crystal compound is oriented as described above. It has a liquid crystal alignment pattern.
An optically anisotropic layer comprising a cured layer of the liquid crystal composition can be obtained by forming an alignment film on the support 12 and coating and curing the liquid crystal composition on the alignment film. It is the optically anisotropic layer 14b that functions as a so-called λ/2 plate. include.
Further, the liquid crystal composition for forming the optically anisotropic layer contains a rod-like liquid crystal compound or a discotic liquid crystal compound, and other components such as a leveling agent, an alignment control agent, a polymerization initiator and an alignment aid. may contain.
 また、光学異方性層は、入射光の波長に対して広帯域であるのが望ましく、複屈折率が逆分散となる液晶材料を用いて構成されているのが好ましい。
 さらに、液晶組成物に捩れ成分を付与することにより、また、異なる位相差層を積層することにより、入射光の波長に対して光学異方性層を実質的に広帯域にすることも好ましい。例えば、光学異方性層において、捩れ方向が異なる2層の液晶を積層することによって広帯域のパターン化されたλ/2板を実現する方法が特開2014-089476号公報等に示されており、本発明において好ましく使用することができる。
Moreover, the optically anisotropic layer preferably has a wide band with respect to the wavelength of the incident light, and is preferably composed of a liquid crystal material having a reverse dispersion of birefringence.
Furthermore, it is also preferable to make the optically anisotropic layer substantially broadband with respect to the wavelength of incident light by imparting a twist component to the liquid crystal composition or by laminating different retardation layers. For example, Japanese Unexamined Patent Application Publication No. 2014-089476 discloses a method of realizing a broadband patterned λ/2 plate by laminating two layers of liquid crystal having different twist directions in an optically anisotropic layer. , can be preferably used in the present invention.
―棒状液晶化合物―
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、および、アルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性分子だけでは なく、高分子液晶性分子も用いることができる。
- Rod-shaped liquid crystal compound -
Rod-shaped liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular-weight liquid crystalline molecules as described above, but also high-molecular-weight liquid crystalline molecules can be used.
 棒状液晶化合物を重合によって配向を固定することがより好ましく、重合性棒状液晶化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開第95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および、特願2001-64627号公報などに記載の化合物を用いることができる。さらに棒状液晶化合物としては、例えば、特表平11-513019号公報および特開2007-279688号公報に記載のものも好ましく用いることができる。 It is more preferable to fix the alignment of the rod-shaped liquid crystal compound by polymerization. As the polymerizable rod-shaped liquid crystal compound, Makromol. Chem. , 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. 95/24455, 97/00600, 98/23580, 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081 No. 2001-64627, etc. can be used. Furthermore, as the rod-like liquid crystal compound, for example, those described in JP-A-11-513019 and JP-A-2007-279688 can also be preferably used.
―円盤状液晶化合物―
 円盤状液晶化合物としては、例えば、特開2007-108732号公報および特開2010-244038号公報に記載のものを好ましく用いることができる。
 なお、光学異方性層に円盤状液晶化合物を用いた場合には、光学異方性層において、液晶化合物20は厚さ方向に立ち上がっており、液晶化合物に由来する光学軸22は、円盤面に垂直な軸、いわゆる進相軸として定義される。
 これらの棒状液晶化合物および円盤状液晶化合物は、上述した第1液晶回折素子106のコレステリック液晶層14aでも利用可能であるのは、前述のとおりである。
- Discotic Liquid Crystal Compounds -
As the discotic liquid crystal compound, for example, those described in JP-A-2007-108732 and JP-A-2010-244038 can be preferably used.
When the discotic liquid crystal compound is used for the optically anisotropic layer, the liquid crystal compound 20 rises in the thickness direction in the optically anisotropic layer, and the optical axis 22 derived from the liquid crystal compound is aligned with the disc surface. is defined as the axis perpendicular to , the so-called fast axis.
As described above, these rod-like liquid crystal compounds and discotic liquid crystal compounds can also be used in the cholesteric liquid crystal layer 14a of the first liquid crystal diffraction element 106 described above.
 光学異方性層14bは、配向膜13上に液晶組成物を多層塗布することにより形成することができる。
 多層塗布とは、配向膜の上に液晶組成物を塗布し、加熱し、さらに冷却した後に紫外線硬化を行って1層目の液晶固定化層を作製した後、2層目以降はその液晶固定化層に重ね塗りして塗布を行い、同様に加熱し、冷却後に紫外線硬化を行うことを繰り返すことをいう。光学異方性層14bを上記のように多層塗布して形成することにより、光学異方性層14bの総厚が厚くなった場合でも、配向膜13の配向方向を、光学異方性層14bの下面から上面にわたって反映させることができる。
The optically anisotropic layer 14b can be formed by coating the alignment film 13 with a liquid crystal composition in multiple layers.
Multi-layer coating means that the liquid crystal composition is applied on the alignment film, heated, cooled, and then UV-cured to prepare the first liquid crystal fixing layer, and the second and subsequent layers are used to fix the liquid crystal. It refers to repeating the process of repeatedly applying a coating to the curable layer, heating in the same manner, and performing UV curing after cooling. By forming the optically anisotropic layer 14b by applying multiple layers as described above, even when the total thickness of the optically anisotropic layer 14b is increased, the orientation direction of the orientation film 13 can be adjusted to the direction of the optically anisotropic layer 14b. can be reflected from the bottom surface to the top surface.
 第2液晶回折素子110における光学異方性層14bとしては、上述したコレステリック液晶層で例示した、図9に示す同心円状の液晶配向パターンも利用可能である。
 図9に示す光学異方性層14bにおける液晶配向パターンは、上述した光学異方性層14bにおける液晶配向パターンと異なる。上述のように、図9の光学異方性層14bは、光学軸22の向きが中心側から外側の多方向、例えば、軸A1、A2、A3…に沿って徐々に回転して変化している液晶配向パターンを有している。
 すなわち、上述のように、図9に示す光学異方性層14bの液晶配向パターンは、放射状に光学軸22が回転する液晶配向パターンである。言い換えれば、図9に示す光学異方性層14bの液晶配向パターンは、光学軸の向きが連続的に回転しながら変化する一方向を、内側から外側に向かう同心円状に有する、同心円状のパターンである。
 図9に示す液晶配向パターンを有する光学異方性層14bによって、入射光は光学軸22の向きが異なる局所領域間では、異なる変化量で絶対位相が変化する。図9に示すような放射状に光学軸が回転変化する液晶配向パターンを有する場合、入射した光を、発散光または集光光として透過させることができる。すなわち、光学異方性層14b中の液晶配向パターンによって凹レンズまたは凸レンズとしての機能を実現できる。
As the optically anisotropic layer 14b in the second liquid crystal diffraction element 110, the concentric liquid crystal orientation pattern shown in FIG. 9, which is exemplified by the cholesteric liquid crystal layer described above, can also be used.
The liquid crystal alignment pattern in the optically anisotropic layer 14b shown in FIG. 9 is different from the liquid crystal alignment pattern in the optically anisotropic layer 14b described above. As described above, in the optically anisotropic layer 14b of FIG. 9, the direction of the optical axis 22 gradually rotates along multiple directions from the center to the outside, for example, along the axes A 1 , A 2 , A 3 . It has a varying liquid crystal alignment pattern.
That is, as described above, the liquid crystal alignment pattern of the optically anisotropic layer 14b shown in FIG. 9 is a liquid crystal alignment pattern in which the optical axis 22 rotates radially. In other words, the liquid crystal alignment pattern of the optically anisotropic layer 14b shown in FIG. 9 is a concentric circular pattern in which one direction in which the direction of the optical axis changes while continuously rotating is formed concentrically from the inside to the outside. is.
Due to the optically anisotropic layer 14b having the liquid crystal alignment pattern shown in FIG. 9, the absolute phase of the incident light is changed by different amounts between the local regions where the orientation of the optical axis 22 is different. In the case of having a liquid crystal orientation pattern in which the optical axis changes radially in rotation as shown in FIG. 9, incident light can be transmitted as divergent light or condensed light. That is, the liquid crystal alignment pattern in the optically anisotropic layer 14b can realize a function as a concave lens or a convex lens.
 図3に示す本発明の車載用照明装置において、第2液晶回折素子110の光学異方性層14bとして、図9に示す同心円状の液晶配向パターンを有する光学異方性層を用いる場合には、凹レンズとして作用する第2液晶回折素子110を用いる。このときに、凹レンズの中心をレーザー光の中心すなわちレンズ103の光軸に合わせると、MEMS光偏向素子による最大偏向角に対して、偏向角を最も効率的に光を広げることができる。
 なお、第2液晶回折素子110の分割領域の大きさは小さいほど滑らかに変化するので好ましいが、照射するレーザー光のビーム径によっては実用上問題ない程度に有限の値であってもよい。たとえば、10~数百μm程度であってもよい。
In the in-vehicle lighting device of the present invention shown in FIG. 3, when an optically anisotropic layer having a concentric liquid crystal orientation pattern shown in FIG. 9 is used as the optically anisotropic layer 14b of the second liquid crystal diffraction element 110, , a second liquid crystal diffraction element 110 acting as a concave lens is used. At this time, by aligning the center of the concave lens with the center of the laser beam, that is, the optical axis of the lens 103, the deflection angle can be most efficiently widened with respect to the maximum deflection angle of the MEMS optical deflection element.
The smaller the size of the divided regions of the second liquid crystal diffraction element 110, the smoother the change. For example, it may be about 10 to several hundred μm.
 以上の例では、第2液晶回折素子110を構成する光学異方性層14bの液晶化合物20は、厚さ方向には一方向を向いているが、本発明は、これに制限はされない。
 本発明の車載用照明装置において、第2液晶回折素子110を構成する光学異方性層は、図12に示す液晶回折素子220の第1光学異方性層215および第2光学異方性層216のように、厚さ方向に沿って伸びる螺旋軸に沿って捩れ配向した液晶化合物20を有するものであってもよい。以下の説明では、厚さ方向に沿って伸びる螺旋軸に沿った捩れ配向を、単に『捩れ配向』ともいう。
 液晶化合物20が捩じれ配向している第1光学異方性層215および第2光学異方性層216は、液晶回折素子220の断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)で観察した断面SEM像において、液晶化合物20の捩れ配向に由来する明暗線が、図12に示すように、第1光学異方性層215と第2光学異方性層216との界面の法線に対して傾いた、傾斜光学異方性層である。
 なお、上述のように、液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する1周期(1周期Λ)が、光学軸22が回転する方向に向かって、漸次、短くなる場合には、第1光学異方性層215および第2光学異方性層216の法線に対する明暗線の傾斜角度は、光学軸22が回転する方向に向かって、漸次、小さくなる。すなわち、この場合には、光学異方性層の主面に対して、明暗線の傾斜角度は、立ち上がっていく。さらに、この場合には、第1光学異方性層215および第2光学異方性層216の明暗線のパターンは、光学軸22が回転する方向に向かって、周期が短くなる。
 このように、捩れ配向した液晶化合物20を有する光学異方性層によれば、高角度回折であっても、光の回折効率を向上できる。その結果、図4(A)に示す、液晶化合物が捩じれ配向されない光学異方性層に比して、光学異方性層における光量低下を抑制して、出射光の光量を向上できる。
In the above example, the liquid crystal compound 20 of the optically anisotropic layer 14b constituting the second liquid crystal diffraction element 110 faces one direction in the thickness direction, but the present invention is not limited to this.
In the vehicle-mounted lighting device of the present invention, the optically anisotropic layers constituting the second liquid crystal diffraction element 110 are the first optically anisotropic layer 215 and the second optically anisotropic layer of the liquid crystal diffraction element 220 shown in FIG. Like 216, it may have the liquid crystal compound 20 twisted along the helical axis extending along the thickness direction. In the following description, the twisted orientation along the helical axis extending along the thickness direction is also simply referred to as "twisted orientation".
The first optically anisotropic layer 215 and the second optically anisotropic layer 216 in which the liquid crystal compound 20 is twisted are obtained by observing the cross section of the liquid crystal diffraction element 220 with a scanning electron microscope (SEM). In the SEM image, as shown in FIG. 12, bright and dark lines originating from the twisted alignment of the liquid crystal compound 20 are perpendicular to the normal to the interface between the first optically anisotropic layer 215 and the second optically anisotropic layer 216. It is a tilted optically anisotropic layer.
As described above, in the liquid crystal alignment pattern, if one cycle (one cycle Λ) in which the optic axis of the liquid crystal compound rotates by 180° gradually becomes shorter in the direction in which the optic axis 22 rotates, The inclination angles of the bright and dark lines with respect to the normals of the first optically anisotropic layer 215 and the second optically anisotropic layer 216 gradually decrease in the direction in which the optical axis 22 rotates. That is, in this case, the angle of inclination of the bright and dark lines rises with respect to the main surface of the optically anisotropic layer. Furthermore, in this case, the pattern of bright and dark lines of the first optically anisotropic layer 215 and the second optically anisotropic layer 216 has a shorter period in the direction in which the optical axis 22 rotates.
Thus, according to the optically anisotropic layer having the twisted liquid crystal compound 20, the diffraction efficiency of light can be improved even in high-angle diffraction. As a result, compared with the optically anisotropic layer in which the liquid crystal compound is not twisted and aligned as shown in FIG.
 液晶回折素子220において、第1光学異方性層215と第2光学異方性層216とでは、液晶化合物20の捩れ配向における捩れ方向が異なる。すなわち、第1光学異方性層215においては、光の進行方向に向かって、時計回りに、液晶化合物20が捩れ配向されている。他方、第2光学異方性層216では、光の進行方向に向かって、反時計回りに、液晶化合物20が捩れ配向されている。
 そのため、第1光学異方性層215と第2光学異方性層216とでは、断面SEM像における、捩れ配向に由来する明暗線の傾きの方向が、異なっている。
In the liquid crystal diffraction element 220 , the first optically anisotropic layer 215 and the second optically anisotropic layer 216 have different twist directions in the twisted orientation of the liquid crystal compound 20 . That is, in the first optically anisotropic layer 215, the liquid crystal compound 20 is twisted clockwise toward the traveling direction of light. On the other hand, in the second optically anisotropic layer 216, the liquid crystal compound 20 is twisted counterclockwise in the light traveling direction.
Therefore, the first optically anisotropic layer 215 and the second optically anisotropic layer 216 have different directions of inclination of bright and dark lines derived from the twisted orientation in cross-sectional SEM images.
 このような第1光学異方性層215では、例えば入射光が右円偏光である場合には、実線で示す図中左側(外側)に向かって進行する光に対しては、回折効率の向上効果が大きく得られる。しかしながら、第1光学異方性層215は、例えば入射光が右円偏光である場合には、破線で示す図中右側(中心側)に向かって進行する光に対しては、回折効率の向上効果は小さい。
 これに対して、第2光学異方性層216では、入射光が右円偏光である場合には、逆に、実線で示す図中左側(外側)に向かって進行する光に対する回折効率の向上効果は小さい。しかしながら、第2光学異方性層216は、入射光が右円偏光である場合には、破線で示す図中右側(中心側)に向かって進行する光に対する回折効率の向上効果は大きい。
 この作用効果は、入射光が左円偏光である場合には、逆になる。
In such a first optically anisotropic layer 215, for example, when incident light is right-handed circularly polarized light, diffraction efficiency is improved for light traveling toward the left side (outside) in the figure indicated by the solid line. Great effect is obtained. However, when the incident light is right-handed circularly polarized light, the first optically anisotropic layer 215 improves the diffraction efficiency of the light traveling toward the right side (center side) in the drawing indicated by the dashed line. effect is small.
On the other hand, in the second optically anisotropic layer 216, when the incident light is right-handed circularly polarized light, the diffraction efficiency is improved for the light traveling toward the left side (outside) in the figure indicated by the solid line. effect is small. However, when the incident light is right-handed circularly polarized light, the second optically anisotropic layer 216 has a large effect of improving the diffraction efficiency for the light traveling toward the right side (center side) in the drawing indicated by the dashed line.
This effect is reversed when the incident light is left circularly polarized.
 液晶回折素子220では、偏向の中心が図中右側となる図12に示す領域には、実線で示す図中左側(外側)に向かって進行する光しか入射しない。従って、この光(右円偏光)、すなわち、中心よりも図中左側の領域では、第1光学異方性層215が強く作用して、回折効率を向上して、出射光の光量を高くできる。
 他方、図12に示す領域に対して、中心よりも右側の領域では、破線で示す図中右側に向かって進行する光しか入射しない。従って、この光(右円偏光)に対しては、第2光学異方性層216が強く作用して、回折効率を向上して、出射光の光量を高くできる。
 また、偏光の中心の領域では、光学異方性層に対する入射光の入射角度が小さいので、第1光学異方性層215および第2光学異方性層216が、共に、回折効率の向上に寄与する。
 その結果、液晶化合物20の捩れ配向における捩れ方向が互いに異なる第1光学異方性層215および第2光学異方性層216を有する液晶回折素子220によれば、光の偏向方向の全域で、回折効率の向上効果を得られ、偏向角の全域において、高い光量の光を出射できる。
In the liquid crystal diffraction element 220, only the light traveling toward the left side (outside) in the figure indicated by the solid line is incident on the area shown in FIG. 12 where the center of deflection is on the right side in the figure. Therefore, the first optically anisotropic layer 215 acts strongly on this light (right-handed circularly polarized light), that is, in the area on the left side of the drawing, improving the diffraction efficiency and increasing the amount of emitted light. .
On the other hand, with respect to the area shown in FIG. 12, in the area on the right side of the center, only the light that travels toward the right side in the drawing indicated by the dashed line is incident. Therefore, the second optically anisotropic layer 216 acts strongly on this light (right-handed circularly polarized light) to improve diffraction efficiency and increase the amount of emitted light.
In addition, since the angle of incidence of incident light on the optically anisotropic layer is small in the region at the center of the polarized light, both the first optically anisotropic layer 215 and the second optically anisotropic layer 216 contribute to improving the diffraction efficiency. contribute.
As a result, according to the liquid crystal diffraction element 220 having the first optically anisotropic layer 215 and the second optically anisotropic layer 216 in which the twist directions of the twist alignment of the liquid crystal compound 20 are different from each other, in the entire range of light deflection directions, An effect of improving the diffraction efficiency can be obtained, and a large amount of light can be emitted over the entire deflection angle range.
 液晶化合物20が捩れ配向する光学異方性層において、液晶化合物の捩れ角には、制限はない。液晶化合物の捩れ角は、光偏向素子による偏向角、および、目的とする回折効率等に応じて、適宜、設定すればよい。
 液晶化合物20が捩れ配向する光学異方性層において、液晶化合物20の捩れ角は、10~200°が好ましく、20~190°がより好ましく、40~170°がさらに好ましい。
 なお、捩れ配向した液晶化合物20の捩れ角(厚さ方向の捩れ角)とは、光学異方性層における、厚さ方向に沿って伸びる螺旋軸に沿って捩れ配向された液晶化合物20の、下面から上面に到るまでの捩れ角度である。
In the optically anisotropic layer in which the liquid crystal compound 20 is twisted, the twist angle of the liquid crystal compound is not limited. The twist angle of the liquid crystal compound may be appropriately set according to the deflection angle of the optical deflection element, the desired diffraction efficiency, and the like.
In the optically anisotropic layer in which the liquid crystal compound 20 is twisted, the twist angle of the liquid crystal compound 20 is preferably 10 to 200°, more preferably 20 to 190°, even more preferably 40 to 170°.
The twist angle (twist angle in the thickness direction) of the twisted liquid crystal compound 20 means that the twisted liquid crystal compound 20 is twisted along the helical axis extending along the thickness direction in the optically anisotropic layer. This is the twist angle from the lower surface to the upper surface.
 このように、液晶化合物20が螺旋状に捩れ配向した第1光学異方性層215および第2光学異方性層216を有する液晶回折素子は、図13に示す液晶回折素子224のように、第1光学異方性層215と第2光学異方性層216との間に、液晶化合物20がねじれ配向しない第3光学異方性層219を有してもよい。
 液晶化合物が捩じれ配向していない第3光学異方性層219は、明暗線が法線方向に沿って延びる非傾斜光学異方性層である。
 第1光学異方性層215と第2光学異方性層216との間に、このような第3光学異方性層219を有することにより、第3光学異方性層219による回折が相乗されて、より広い偏向角で光を偏向できる。
In this way, the liquid crystal diffraction element having the first optically anisotropic layer 215 and the second optically anisotropic layer 216 in which the liquid crystal compound 20 is helically twisted has the following characteristics, like the liquid crystal diffraction element 224 shown in FIG. Between the first optically anisotropic layer 215 and the second optically anisotropic layer 216, there may be a third optically anisotropic layer 219 in which the liquid crystal compound 20 is not twisted.
The third optically anisotropic layer 219 in which the liquid crystal compound is not twisted orientated is a non-inclined optically anisotropic layer in which the bright and dark lines extend along the normal direction.
By having such a third optically anisotropic layer 219 between the first optically anisotropic layer 215 and the second optically anisotropic layer 216, diffraction by the third optically anisotropic layer 219 is synergistic. , the light can be deflected over a wider deflection angle.
(描画素子)
 上述のように、図2に示す本発明の車載用照明装置は、文字および絵柄等の画像を投射するための描画素子を有する。
 図2に示す車載用照明装置において、上述のように、描画素子は、描画ミラー104aおよび駆動装置107aを有するMEMS光偏向素子を用い、レーザー光源101が出射したレーザー光を直交するx-y方向に走査する、光走査による描画素子である。
 本発明の車載用照明装置において、描画素子は、このような光走査素子を用いた光走査による描画素子に制限はされず、公知の各種のものが利用可能である。一例として、DMD(Digital (Micro)mirror Device)を用いるDLP(Digital Light Processing)が例示される。
 また、光走査による描画素子としては、光偏向素子としてガルバノミラー(ガルバノメーターミラー)またはポリゴンミラーを用いる描画素子、および、光偏向素子としてガルバノミラーとポリゴンミラーとの組み合わせを用いる描画素子等も利用可能である。
 なお、本発明の車載用照明装置において、カラー画像を投射する場合には、例えば、赤色画像、緑色画像および青色画像を表示する描画素子を用い、公知の方法で画像を合成して、カラー画像を投射するようにすればよい。
(drawing element)
As described above, the in-vehicle lighting device of the present invention shown in FIG. 2 has drawing elements for projecting images such as characters and patterns.
In the in-vehicle lighting device shown in FIG. 2, as described above, the drawing element is a MEMS optical deflection element having the drawing mirror 104a and the driving device 107a. It is a drawing element by optical scanning.
In the in-vehicle illumination device of the present invention, the drawing element is not limited to the drawing element by optical scanning using such an optical scanning element, and various known elements can be used. An example is DLP (Digital Light Processing) using a DMD (Digital (Micro) mirror Device).
In addition, as a drawing element by optical scanning, a drawing element using a galvanometer mirror or a polygon mirror as a light deflection element, and a drawing element using a combination of a galvanometer mirror and a polygon mirror as a light deflection element are also used. It is possible.
In the case of projecting a color image in the in-vehicle lighting device of the present invention, for example, drawing elements that display a red image, a green image, and a blue image are used, and the images are synthesized by a known method to produce a color image. should be projected.
(中間スクリーン)
 上述のように、図2に示す車載用照明装置において、描画素子が形成した画像は、中間スクリーン108によって実像化される。
 中間スクリーン108には、制限はなく、拡散板およびマイクロレンズアレイなど、プロジェクター等に利用される公知の中間スクリーンが、各種、利用可能である。
(middle screen)
As described above, in the in-vehicle lighting device shown in FIG. 2, the image formed by the drawing element is rendered into a real image by the intermediate screen 108 .
The intermediate screen 108 is not limited, and various known intermediate screens used in projectors and the like, such as diffusion plates and microlens arrays, can be used.
(λ/4板)
 上述のように、図3に示す本発明の車載用照明装置では、レーザー光源101が出射して、レンズ103が集光した直線偏光のレーザー光を、λ/4板109によって円偏光に変換している。図3に示す車載用照明装置は、これにより、第2液晶回折素子110によって好適にレーザー光を回折することを可能にしている。
 λ/4板109は、直線偏光を円偏光にする、公知のλ/4板(1/4波長板、1/4位相差板)である。
 λ/4板109としては、公知のものを制限なく用いることができる。従って、λ/4板109は、ポリマー由来のものであってもよいし、液晶由来のものであってもよい。
 なお、レーザー光源101が出射する光が円偏光である場合には、λ/4板109を設けなくてもよいのは、上述のとおりである。
(λ/4 plate)
As described above, in the in-vehicle lighting device of the present invention shown in FIG. 3, the linearly polarized laser light emitted by the laser light source 101 and condensed by the lens 103 is converted into circularly polarized light by the λ/4 plate 109. ing. The vehicle-mounted lighting device shown in FIG. 3 thereby enables the second liquid crystal diffraction element 110 to suitably diffract the laser light.
The λ/4 plate 109 is a known λ/4 plate (1/4 wavelength plate, 1/4 retardation plate) that converts linearly polarized light into circularly polarized light.
As the λ/4 plate 109, known ones can be used without limitation. Therefore, the λ/4 plate 109 may be derived from polymer or liquid crystal.
As described above, the λ/4 plate 109 may not be provided when the light emitted from the laser light source 101 is circularly polarized light.
(光偏向素子)
 図3に示す本発明の車載用照明装置では、λ/4板109が変換した円偏光のレーザー光を、偏向ミラー104bおよび駆動装置107bを有するMEMS光偏向素子によって偏向して、上述した円偏光を回折する第2液晶回折素子110に入射している。
(Optical deflection element)
In the in-vehicle lighting device of the present invention shown in FIG. 3, the circularly polarized laser light converted by the λ/4 plate 109 is deflected by the MEMS optical deflection element having the deflecting mirror 104b and the driving device 107b to obtain the above-mentioned circularly polarized light. is incident on the second liquid crystal diffraction element 110 that diffracts .
 この光偏向素子において、MEMS光偏向素子の偏向ミラー104bは、偏光解消しないものであるのが好ましい。具体的には、鏡面を示す金属ミラー等である。金属ミラーの場合には、円偏光が反射するときに円偏光の旋回方向(センス)が反転するので、第2液晶回折素子110に入射するときに所望の円偏光の旋回方向になるように、旋回方向が逆の円偏光をMEMS光偏光素子に入射するのが好ましい。
 MEMS光偏向素子の偏向ミラー104bのミラー面に対する入射角度が大きい場合には、P偏光(P波)とS偏光(S波)とで反射率および位相が異なることが原因で光の偏光状態が変化する。
 これに対応して、ミラーによる反射後の偏光が所望の円偏光になるように、予め偏光状態を調節しても良い。偏光状態の調節としては、例えば、光を楕円偏光にしておく方法が例示される。また、MEMS光偏向素子132のミラーによる反射後に所望の円偏光になるように、位相調節用の位相差板を配置しても良い。
 さらに、MEMS光偏向素子の偏向ミラー104bには円偏光ミラー、例えばコレステリック液晶層を有する円偏光ミラーを用いてもよい。コレステリック液晶層を有する円偏光ミラーの場合には、反射時に円偏光の旋回方向が保たれるので、第2液晶回折素子110に入射するときに所望の旋回方向の円偏光になるように、予め、同じ旋回方向の円偏光をMEMS光偏光素子に入射するのが好ましい。
In this optical deflection element, the deflection mirror 104b of the MEMS optical deflection element preferably does not depolarize. Specifically, it is a metal mirror or the like that exhibits a mirror surface. In the case of a metal mirror, the direction of rotation (sense) of the circularly polarized light is reversed when the circularly polarized light is reflected. It is preferable that the circularly polarized light with the opposite direction of rotation is incident on the MEMS light polarizing element.
When the incident angle with respect to the mirror surface of the deflection mirror 104b of the MEMS optical deflection element is large, the polarization state of light changes due to the difference in reflectance and phase between P-polarized light (P-wave) and S-polarized light (S-wave). Change.
Correspondingly, the polarization state may be adjusted in advance so that the polarized light after reflection by the mirror becomes the desired circularly polarized light. As the adjustment of the polarization state, for example, a method of making the light elliptically polarized is exemplified. Further, a retardation plate for phase adjustment may be arranged so that the light becomes desired circularly polarized light after being reflected by the mirror of the MEMS light deflection element 132 .
Furthermore, a circular polarization mirror, such as a circular polarization mirror having a cholesteric liquid crystal layer, may be used as the deflection mirror 104b of the MEMS optical deflection element. In the case of a circularly polarizing mirror having a cholesteric liquid crystal layer, the circularly polarized light is kept in the rotating direction during reflection. , are preferably incident on the MEMS light polarizing element.
 λ/4板109によって円偏光に変換された光は、MEMS光偏向素子によって偏向される。なお、MEMS光偏向素子132による光の偏向方向は、上述した光偏向素子100と同様、軸A方向(矢印x方向)と一致させる。
 図3において、駆動装置107bは、MEMS光偏向素子132の構成等に応じた、公知のものを用いればよい。
The light circularly polarized by the λ/4 plate 109 is deflected by the MEMS optical deflection element. The direction of light deflection by the MEMS optical deflection element 132 is made to coincide with the direction of the axis A (the direction of the arrow x), as in the case of the optical deflection element 100 described above.
In FIG. 3, the driving device 107b may be a known device that corresponds to the configuration of the MEMS optical deflection element 132 and the like.
 本発明の車載用照明装置において、MEMS光偏向素子には制限はなく、特開2012-208352号公報に記載されるMEMS光偏向素子、特開2014-134642号公報に記載されるMEMS光偏向素子、および、特開2015-22064号公報に記載されるMEMS光偏向素子等、圧電アクチュエータ等を用いてミラー(鏡)を揺動させることにより光を偏向(偏向走査)する、公知のMEMS光偏向素子(MEMS(光)スキャナー)、MEMS光偏向器、MEMSミラー、および、DMD等が、全て、利用可能である。 In the vehicle-mounted lighting device of the present invention, the MEMS optical deflection element is not limited, and the MEMS optical deflection element described in JP-A-2012-208352 and the MEMS optical deflection element described in JP-A-2014-134642. , and known MEMS optical deflection elements such as the MEMS optical deflection element described in Japanese Patent Application Laid-Open No. 2015-22064, which deflect light (deflect and scan) by swinging a mirror using a piezoelectric actuator or the like. Devices (MEMS (optical) scanners), MEMS optical deflectors, MEMS mirrors and DMDs are all available.
 なお、本発明の車載用照明装置において、光偏向素子は、MEMS光偏向素子に制限はされず、ガルバノメーターミラー、ポリゴンミラー、および、レゾナントスキャナー等、公知の光偏向素子が、各種、利用可能である。
 中でも、機械的な可動部が小さく、かつ、機械的な可動部が少ないという点で、光偏向素子としては、MEMS光偏向素子が、好適に利用される。
In addition, in the vehicle-mounted lighting device of the present invention, the light deflection element is not limited to the MEMS light deflection element, and various known light deflection elements such as a galvanometer mirror, a polygon mirror, and a resonant scanner can be used. is.
Among them, the MEMS optical deflection element is preferably used as the optical deflection element because it has a small mechanical movable portion.
 上述のように、図3に示す車載用照明装置において、MEMS光偏向素子によって偏向されたレーザー光のうち、第1出射口側に偏向されたレーザー光は、波長変換部材105に入射して白色光に変換され、第1液晶回折素子106(第1回折素子)によって、所定の方向に反射、集光・コリメートされて、車外に投射される。
 他方、第2出射口側に偏向されたレーザー光は、波長変換部材105に入射して白色光に変換され、レンズ111によって集光されて、光導波路112に入射、伝播されて出射され、凹面鏡113によって反射、集光されたのち、投射レンズ114によって、集光・コリメートされて、車外に投射される。
As described above, in the in-vehicle lighting device shown in FIG. 3 , of the laser light deflected by the MEMS light deflection element, the laser light that is deflected toward the first exit port enters the wavelength conversion member 105 to produce a white light. The light is converted into light, reflected in a predetermined direction by the first liquid crystal diffraction element 106 (first diffraction element), condensed and collimated, and projected outside the vehicle.
On the other hand, the laser light deflected toward the second exit port enters the wavelength conversion member 105, is converted into white light, is condensed by the lens 111, is incident on the optical waveguide 112, is propagated, is emitted, and enters the concave mirror. After being reflected and condensed by 113, it is condensed and collimated by projection lens 114 and projected outside the vehicle.
(光導波路)
 本発明の車載用照明装置において、光導波路112には制限はなく、光ファイバー等の公知の光導波路が、各種、利用可能である。
(凹面鏡)
 本発明の車載用照明装置において、凹面鏡113にも制限はなく、公知の各種の凹面鏡が利用可能である。
 凹面鏡は、球面ミラーでも、放物面ミラーでも、自由曲面ミラーでもよい。
(投射レンズ)
 本発明の車載用照明装置において、投射レンズ114にも制限はなく、自動車の前照灯などに使用されている投射レンズなど、自動車に利用されている公知の投射レンズが、各種、利用可能である。
(Optical waveguide)
In the vehicle-mounted lighting device of the present invention, the optical waveguide 112 is not limited, and various known optical waveguides such as optical fibers can be used.
(concave mirror)
In the vehicle-mounted lighting device of the present invention, the concave mirror 113 is also not limited, and various known concave mirrors can be used.
The concave mirror may be a spherical mirror, a parabolic mirror, or a free-form mirror.
(projection lens)
In the in-vehicle illumination device of the present invention, the projection lens 114 is not limited, and various known projection lenses used in automobiles, such as projection lenses used for automobile headlights, can be used. be.
 以上、説明した本発明の車載用照明装置において、回折素子は、好ましい態様として、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを持つ光学異方性層(コレステリック液晶層)を有する、第1液晶回折素子106および第2液晶回折素子110を用いているが、本発明は、これに制限はされない。
 すなわち、本発明の光偏向素子は、光偏向素子による偏向の中心から外側に向かって、回折角が大きくなるように、周期構造ピッチが、漸次、変化する物であれば、公知の回折素子が、全て、利用可能である。
In the above-described in-vehicle lighting device of the present invention, the diffraction element is preferably a liquid crystal in which the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along at least one direction in the plane. Although the first liquid crystal diffraction element 106 and the second liquid crystal diffraction element 110 having an optically anisotropic layer (cholesteric liquid crystal layer) with an orientation pattern are used, the present invention is not limited to this.
That is, the optical deflection element of the present invention can be any known diffraction element as long as the periodic structure pitch changes gradually so that the diffraction angle increases outward from the center of deflection by the optical deflection element. , all available.
 好適な一例として、上述の液晶回折素子と同じ原理で、液晶材料を用いずにフォトニック結晶を用いた方法も用いることができる。
 例えば、特開2017-111277号公報に述べられている方法の様に、無機材料で形成される透明基板と、Si等で形成される複数の突条で形成される凹凸パターン形成部とを一定間隔ずつ空けて複数描くことで構造複屈折を生じさせ、面内で方位角を変化させることによって、上述した液晶配向パターンと同じような回折の効果を得る事ができる。
As a preferred example, a method using a photonic crystal without using a liquid crystal material can also be used based on the same principle as the liquid crystal diffraction element described above.
For example, as in the method described in Japanese Patent Application Laid-Open No. 2017-111277, a transparent substrate formed of an inorganic material and a concave-convex pattern forming portion formed of a plurality of ridges formed of Si or the like are fixed. Structural birefringence is generated by drawing a plurality of lines at intervals, and by changing the azimuth angle within the plane, a diffraction effect similar to that of the liquid crystal orientation pattern described above can be obtained.
 別の好適な回折素子として、ホログラフィによって感光性物質等にパターン形状を露光し、感光した部分の屈折率の違いに応じて光を回折させる、ホログラム回折素子が例示される。
 ホログラム回折素子は、例えば、光偏向素子の偏向の中心から外側に向かって、回折角が大きくなるように、光偏向素子による偏向の中心から両端部に向かって、漸次、変化する、周期的な屈折率分布を有すればよい。
 ホログラム回折素子は、上述の限定を満たすものであれば、制限はなく、例えば、特開2016-184124号公報に記載されるホログラムシート等、公知のホログラム回折素子(ホログラフィック回折素子(回折格子))が、全て、利用可能である。
As another suitable diffraction element, a holographic diffraction element is exemplified in which a pattern shape is exposed on a photosensitive material or the like by holography, and light is diffracted according to the difference in the refractive index of the exposed portion.
For example, the hologram diffraction element has a periodic pattern that gradually changes from the center of deflection by the light deflection element toward both ends so that the diffraction angle increases outward from the center of deflection of the light deflection element. It is sufficient that it has a refractive index distribution.
The hologram diffraction element is not limited as long as it satisfies the above-mentioned limitations. ) are all available.
 さらに別の好適な回折素子として、表面に形成した微細な凹凸によって光を回折させる、表面レリーフ回折素子も利用可能である。
 表面レリーフ回折素子は、例えば、光偏向素子の偏向の中心から両端部に向かって、回折角が大きくなるように、凹凸の格子周期(レリーフパターン)が、光偏向素子による偏向の中心から両端部に向かって、漸次、変化すればよい。
 表面レリーフ回折素子も、上述の限定を満たすものであれば、制限はなく、例えば、特開2015-93439号公報に記載される構造等、公知の表面レリーフ回折素子(表面レリーフ型回折格子)が、全て、利用可能である。
 なお、回折素子として、ホログラム回折素子および表面レリーフ回折素子を用いる場合には、回折素子に入射する光は、円偏光である必要はない。従って、この場合には、λ/4板109は、不要である。
As another suitable diffraction element, a surface relief diffraction element that diffracts light by fine unevenness formed on the surface can also be used.
In the surface relief diffraction element, for example, the grating period (relief pattern) of the unevenness is increased from the center of deflection by the light deflection element toward both ends so that the diffraction angle increases from the center of deflection of the light deflection element toward both ends. It should be changed gradually toward
The surface relief diffraction element is also not limited as long as it satisfies the above-mentioned limitations. , all available.
When a hologram diffraction element or a surface relief diffraction element is used as the diffraction element, the light incident on the diffraction element need not be circularly polarized light. Therefore, in this case, the λ/4 plate 109 is unnecessary.
 以上の説明から明らかなように、本発明の車載用照明装置は、単純な構造を持ち、駆動も単純に、小型化および軽量化に適した回折素子を利用する車載用照明装置を実現することができる。 As is clear from the above description, the vehicle-mounted lighting device of the present invention has a simple structure, can be driven simply, and is suitable for miniaturization and weight reduction, and utilizes a diffraction element. can be done.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described more specifically below with reference to examples. The materials, reagents, amounts used, amounts of substances, ratios, treatment details, treatment procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the specific examples shown below.
 [実施例1]
 <液晶回折素子を含む光偏向素子の作製>
 偏向素子として、特開2003-295153号公報に記載の液晶光位相変調素子を用いた。
 すなわち、平行ストライプ状に配した透明導電体からなる複数の個別のITO電極を有する透明基板と、透明導電体からなる共通ITO電極を有する透明基板の間にネマティック液晶層を備え、各個別電極に所定の電圧を印加することにより、ネマティック液晶層に屈折率の変調を生じさせるように構成した。
 これにより、正面から入射した青色レーザーの光が平行ストライプの帯の方位に対して垂直な方位に曲げられることを確認した。偏向角度は±3°程度であった。なお、青色レーザーは、波長450nmの直線偏光を出射するもので、偏光軸の方位は液晶の異常光方位とした。
 液晶回折素子の作製方法を、以下に示す。
[Example 1]
<Fabrication of Optical Deflection Element Including Liquid Crystal Diffractive Element>
A liquid crystal optical phase modulation element described in JP-A-2003-295153 was used as the deflection element.
That is, a nematic liquid crystal layer is provided between a transparent substrate having a plurality of individual ITO electrodes made of a transparent conductor arranged in parallel stripes and a transparent substrate having a common ITO electrode made of a transparent conductor, and each individual electrode is provided with a nematic liquid crystal layer. By applying a predetermined voltage, the nematic liquid crystal layer was configured to cause a modulation of the refractive index.
As a result, it was confirmed that the blue laser light incident from the front is bent in a direction perpendicular to the direction of the parallel stripes. The deflection angle was about ±3°. The blue laser emits linearly polarized light with a wavelength of 450 nm, and the azimuth of the polarization axis is the extraordinary azimuth of the liquid crystal.
A method of manufacturing a liquid crystal diffraction element is shown below.
 <液晶回折素子の作製>
(支持体、および、支持体の鹸化処理)
 支持体として、市販されているトリアセチルセルロースフィルム(富士フイルム社製、Z-TAC)を用意した。
 支持体を、温度60℃の誘電式加熱ロールを通過させて、支持体の表面温度を40℃に昇温した。
 その後、支持体の片面に、バーコーターを用いて下記に示すアルカリ溶液を塗布量14mL(リットル)/m2で塗布し、支持体を110℃に加熱し、さらに、スチーム式遠赤外ヒーター(ノリタケカンパニーリミテド社製)の下を、10秒間搬送した。
 続いて、同じくバーコーターを用いて、支持体のアルカリ溶液塗布面に、純水を3mL/m2塗布した。次いで、ファウンテンコーターによる水洗およびエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンを10秒間搬送して乾燥させ、支持体の表面をアルカリ鹸化処理した。
<Production of liquid crystal diffraction element>
(Support and saponification treatment of the support)
As a support, a commercially available triacetyl cellulose film (Z-TAC manufactured by Fuji Film Co., Ltd.) was prepared.
The support was passed through a dielectric heating roll at a temperature of 60°C to raise the surface temperature of the support to 40°C.
After that, on one side of the support, an alkaline solution shown below was coated using a bar coater at a coating amount of 14 mL (liter)/m 2 , the support was heated to 110° C., and a steam type far infrared heater ( (manufactured by Noritake Co., Ltd.) for 10 seconds.
Subsequently, using the same bar coater, 3 mL/m 2 of pure water was applied to the alkaline solution coated surface of the support. Then, after repeating water washing with a fountain coater and draining with an air knife three times, the support was dried by transporting it through a drying zone at 70° C. for 10 seconds to saponify the surface of the support with an alkali.
  アルカリ溶液
――――――――――――――――――――――――――――――――
 水酸化カリウム                 4.70質量部
 水                      15.80質量部
 イソプロパノール               63.70質量部
 界面活性剤
    SF-1:C1429O(CH2CH2O)2OH  1.0 質量部
 プロピレングリコール             14.8 質量部
――――――――――――――――――――――――――――――――
Alkaline solution ――――――――――――――――――――――――――――――
Potassium hydroxide 4.70 parts by mass Water 15.80 parts by mass Isopropanol 63.70 parts by mass Surfactant SF-1: C 14 H 29 O(CH 2 CH 2 O) 2 OH 1.0 parts by mass Propylene glycol 14. 8 parts by mass――――――――――――――――――――――――――――――――
(下塗り層の形成)
 支持体のアルカリけん化処理面に、下記の下塗り層形成用塗布液を#8のワイヤーバーで連続的に塗布した。塗膜が形成された支持体を60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、下塗り層を形成した。
(Formation of undercoat layer)
The alkali-saponified surface of the support was continuously coated with the following undercoat layer-forming coating solution using a #8 wire bar. The support with the coating film formed thereon was dried with hot air at 60° C. for 60 seconds and then with hot air at 100° C. for 120 seconds to form an undercoat layer.
  下塗り層形成用塗布液
――――――――――――――――――――――――――――――――
 下記変性ポリビニルアルコール          2.40質量部
 イソプロピルアルコール             1.60質量部
 メタノール                  36.00質量部
 水                      60.00質量部
――――――――――――――――――――――――――――――――
Coating liquid for forming undercoat layer ――――――――――――――――――――――――――――――――
The following modified polyvinyl alcohol 2.40 parts by mass Isopropyl alcohol 1.60 parts by mass Methanol 36.00 parts by mass Water 60.00 parts by mass ――――――――――
(配向膜の形成)
 下塗り層を形成した支持体上に、下記の配向膜形成用塗布液を#2のワイヤーバーで連続的に塗布した。この配向膜形成用塗布液の塗膜が形成された支持体を60℃のホットプレート上で60秒間乾燥し、配向膜を形成した。
(Formation of alignment film)
On the support having the undercoat layer formed thereon, the following coating solution for forming an alignment layer was continuously applied with a #2 wire bar. The support on which the coating film of the alignment film-forming coating liquid was formed was dried on a hot plate at 60° C. for 60 seconds to form an alignment film.
  配向膜形成用塗布液
――――――――――――――――――――――――――――――――
 光配向用素材A                 1.00質量部
 水                      16.00質量部
 ブトキシエタノール              42.00質量部
 プロピレングリコールモノメチルエーテル    42.00質量部
――――――――――――――――――――――――――――――――
Alignment film forming coating solution――――――――――――――――――――――――――――――――
Photo-alignment material A 1.00 parts by mass Water 16.00 parts by mass Butoxy ethanol 42.00 parts by mass Propylene glycol monomethyl ether 42.00 parts by mass ―――――――――――――――――― ――――――――――――――
  光配向用素材A
Photo-alignment material A
(配向膜の露光)
 図11に示す露光装置を用いて配向膜を露光して、配向パターンを有する配向膜P-1を形成した。
 露光装置において、レーザーとして波長(405nm)のレーザー光を出射するものを用いた。干渉光による露光量を100mJ/cm2とした。
 なお、レンズ(凸レンズ)の屈折力を調節して、その後の光学異方性層の形成時に、中心から外側に向かって、光学異方性層における液晶化合物の光学軸の回転の回転周期が、漸次、短くなるようにした。
(Exposure of alignment film)
The alignment film was exposed using the exposure apparatus shown in FIG. 11 to form an alignment film P-1 having an alignment pattern.
In the exposure apparatus, a laser that emits laser light with a wavelength (405 nm) was used. The amount of exposure by interference light was set to 100 mJ/cm 2 .
By adjusting the refractive power of the lens (convex lens), when the optically anisotropic layer is subsequently formed, the rotational period of the rotation of the optic axis of the liquid crystal compound in the optically anisotropic layer from the center toward the outside is Gradually shortened.
(光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物A-1を調製した。
  組成物A-1
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬社製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン             313.00質量部
――――――――――――――――――――――――――――――――
(Formation of optically anisotropic layer)
Composition A-1 below was prepared as a liquid crystal composition for forming an optically anisotropic layer.
Composition A-1
――――――――――――――――――――――――――――――――
Liquid crystal compound L-1 100.00 parts by mass polymerization initiator (manufactured by BASF, Irgacure (registered trademark) 907)
3.00 parts by mass Photosensitizer (manufactured by Nippon Kayaku Co., Ltd., KAYACURE DETX-S)
1.00 parts by mass Leveling agent T-1 0.08 parts by mass Methyl ethyl ketone 313.00 parts by mass―――――――――――――――――――――――――――――― ―――
  液晶化合物L-1
  レベリング剤T-1
Liquid crystal compound L-1
Leveling agent T-1
 光学異方性層は、組成物A-1を調製し、配向膜P-1上に多層塗布することにより形成した。多層塗布とは、先ず配向膜の上に1層目の組成物A-1を塗布、加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した後、2層目以降はその液晶固定化層に重ね塗りして塗布を行い、同様に加熱、冷却後に紫外線硬化を行うことを繰り返すことを指す。多層塗布により形成することにより、液晶層の総厚が厚くなった時でも配向膜の配向方向が液晶層の下面から上面にわたって反映される。 The optically anisotropic layer was formed by preparing composition A-1 and coating it in multiple layers on alignment film P-1. Multi-layer coating means that the first layer composition A-1 is first applied on the alignment film, heated, cooled, and then UV-cured to prepare a liquid crystal fixing layer, and the second and subsequent layers are liquid crystal fixed. It refers to repeating the process of coating in multiple layers, heating and cooling in the same way, and then UV curing. By forming by multilayer coating, even when the total thickness of the liquid crystal layer is increased, the alignment direction of the alignment film is reflected from the bottom surface to the top surface of the liquid crystal layer.
 先ず1層目は、配向膜P-1上に組成物A-1を塗布して、塗膜をホットプレート上で70℃に加熱し、その後、25℃に冷却した。その後、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を100mJ/cm2の照射量で塗膜に照射することにより、液晶化合物の配向を固定化した。この時の1層目の液晶層の膜厚は0.2μmであった。 First, for the first layer, the composition A-1 was applied onto the alignment film P-1, and the coating film was heated to 70°C on a hot plate and then cooled to 25°C. Thereafter, the orientation of the liquid crystal compound was fixed by irradiating the coating film with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 100 mJ/cm 2 using a high-pressure mercury lamp in a nitrogen atmosphere. At this time, the film thickness of the first liquid crystal layer was 0.2 μm.
 2層目以降は、この液晶層に重ね塗りして、上と同じ条件で加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した。このようにして、総厚が所望の膜厚になるまで重ね塗りを繰り返して、光学異方性層を形成することで、支持体、配向膜、および、光学異方性層を有する、液晶回折素子を作製した。
 光学異方性層は、最終的に液晶のΔn450×厚さ(Re(450))が470nmになり、かつ、図9に示すような同心円状の周期的な液晶配向パターンになっており、さらに、光学軸が回転する一方向において、中心から外側に向かって、光学異方性層における液晶化合物の光学軸の回転周期が、漸次、短くなっていること、および、中心で光学軸の回転方向が逆転していることを、偏光顕微鏡で確認した。
 なお、この光学異方性層の液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する回転周期(1周期)は、中心部の回転周期が非常に大きく(回転周期の逆数が0)、中心から2.5mmの距離での回転周期が5.1μm、中心から5.0mmの距離での回転周期が2.5μmであり、中心から外方向に向かって、回転周期が、漸次、短くなる液晶配向パターンであった。
The second and subsequent layers were overcoated on this liquid crystal layer, heated under the same conditions as above, cooled, and then UV-cured to prepare a liquid crystal fixing layer. In this manner, repeated coating is repeated until the total thickness reaches a desired thickness to form an optically anisotropic layer. A device was produced.
The optically anisotropic layer finally has a liquid crystal Δn450×thickness (Re(450)) of 470 nm, and has a concentric periodic liquid crystal alignment pattern as shown in FIG. , in one direction in which the optic axis rotates, the rotation period of the optic axis of the liquid crystal compound in the optically anisotropic layer is gradually shortened from the center toward the outside, and the rotation direction of the optic axis at the center was confirmed by a polarizing microscope.
In the liquid crystal alignment pattern of this optically anisotropic layer, the rotation period (one period) in which the optical axis of the liquid crystal compound rotates by 180° has a very large rotation period at the center (the reciprocal of the rotation period is 0). The rotation period at a distance of 2.5 mm from the center is 5.1 μm, the rotation period at a distance of 5.0 mm from the center is 2.5 μm, and the rotation period gradually decreases outward from the center. It was a liquid crystal alignment pattern.
<λ/4板の作製>
 液晶光位相変調素子を通過した後の直線偏光を、円偏光に変換して液晶回折素子に入射するために、λ/4板(円偏光板)を作製した。
 まず、上記と同様に下塗り層を形成した支持体を用意した。
<Fabrication of λ/4 plate>
A λ/4 plate (circularly polarizing plate) was prepared in order to convert linearly polarized light after passing through the liquid crystal optical phase modulation element into circularly polarized light and enter the liquid crystal diffraction element.
First, a support having an undercoat layer formed thereon was prepared in the same manner as described above.
(配向膜P-10の形成)
 下塗り層を形成した支持体上に、下記の配向膜P-10形成用塗布液を#2.4のワイヤーバーで連続的に塗布した。この配向膜P-10形成用塗布液の塗膜が形成された支持体を80℃のホットプレート上で5分間乾燥し、配向膜P-10を形成した。
(Formation of alignment film P-10)
The following coating liquid for forming alignment layer P-10 was continuously coated on the support with the undercoat layer formed thereon using a #2.4 wire bar. The support on which the coating film of the coating solution for forming alignment film P-10 was formed was dried on a hot plate at 80° C. for 5 minutes to form alignment film P-10.
  配向膜P-10形成用塗布液
――――――――――――――――――――――――――――――――
 光配向用素材 重合体A2            4.35質量部
 低分子化合物B2                0.80質量部
 架橋剤C1                   2.20質量部
 化合物D1                   0.48質量部
 化合物D2                   1.15質量部
 酢酸ブチル                 100.00質量部
――――――――――――――――――――――――――――――――
Coating liquid for forming alignment film P-10 ――――――――――――――――――――――――――――――――
Photo-alignment material Polymer A2 4.35 parts by mass Low-molecular compound B2 0.80 parts by mass Crosslinking agent C1 2.20 parts by mass Compound D1 0.48 parts by mass Compound D2 1.15 parts by mass Butyl acetate 100.00 parts by mass ――――――――――――――――――――――――――――――――
 <<重合体A2の合成>>
 撹拌機、温度計、滴下漏斗および還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100質量部、メチルイソブチルケトン500質量部、および、トリエチルアミン10質量部を仕込み、室温で混合した。次いで、脱イオン水100質量部を滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機相を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒および水を留去することにより、エポキシ含有ポリオルガノシロキサンを粘調な透明液体として得た。
 このエポキシ含有ポリオルガノシロキサンについて、1H-NMR(Nuclear Magnetic Resonance)分析を行ったところ、化学シフト(δ)=3.2ppm付近にオキシラニル基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。このエポキシ含有ポリオルガノシロキサンの重量平均分子量Mwは2,200、エポキシ当量は186g/モルであった。
 次に、100mLの三口フラスコに、上記で得たエポキシ含有ポリオルガノシロキサン10.1質量部、アクリル基含有カルボン酸(東亜合成社製、アロニックスM-5300、アクリル酸ω-カルボキシポリカプロラクトン(重合度n≒2))0.5質量部、酢酸ブチル20質量部、特開2015-26050号公報の合成例1の方法で得られた桂皮酸誘導体1.5質量部、および、テトラブチルアンモニウムブロミド0.3質量部を仕込み、90℃で12時間撹拌した。反応終了後、反応溶液と等量(質量)の酢酸ブチルで希釈し、3回水洗した。
 この溶液を濃縮し、酢酸ブチルで希釈する操作を2回繰り返し、最終的に、光配向性基を有するポリオルガノシロキサン(下記重合体A2)を含む溶液を得た。この重合体A2の重量平均分子量Mwは9,000であった。また、1H-NMR分析の結果、重合体A2中のシンナメート基を有する成分は23.7質量%であった。
<<Synthesis of Polymer A2>>
100 parts by weight of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 500 parts by weight of methyl isobutyl ketone, and 10 parts by weight of triethylamine were added to a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser. were charged and mixed at room temperature. Then, 100 parts by mass of deionized water was added dropwise from the dropping funnel over 30 minutes, and the mixture was reacted at 80° C. for 6 hours while being mixed under reflux. After completion of the reaction, the organic phase was taken out and washed with a 0.2% by mass aqueous ammonium nitrate solution until the water after washing became neutral, and then the solvent and water were distilled off under reduced pressure to remove the epoxy-containing polyorganosiloxane. Obtained as a viscous transparent liquid.
When this epoxy-containing polyorganosiloxane was subjected to 1H-NMR (Nuclear Magnetic Resonance) analysis, a peak based on the oxiranyl group was obtained at a chemical shift (δ) of around 3.2 ppm in accordance with the theoretical intensity. It was confirmed that no side reaction of the group occurred. This epoxy-containing polyorganosiloxane had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g/mol.
Next, in a 100 mL three-necked flask, 10.1 parts by mass of the epoxy-containing polyorganosiloxane obtained above, acrylic group-containing carboxylic acid (manufactured by Toagosei Co., Ltd., Aronix M-5300, acrylic acid ω-carboxypolycaprolactone (degree of polymerization n ≈ 2)) 0.5 parts by mass, 20 parts by mass of butyl acetate, 1.5 parts by mass of the cinnamic acid derivative obtained by the method of Synthesis Example 1 of JP-A-2015-26050, and 0 of tetrabutylammonium bromide .3 parts by mass were charged and stirred at 90° C. for 12 hours. After completion of the reaction, the reaction solution was diluted with the same amount (mass) of butyl acetate and washed with water three times.
The operation of concentrating this solution and diluting it with butyl acetate was repeated twice to finally obtain a solution containing a polyorganosiloxane having a photo-orientation group (polymer A2 below). The weight average molecular weight Mw of this polymer A2 was 9,000. As a result of 1H-NMR analysis, the content of components having cinnamate groups in polymer A2 was 23.7% by mass.
  重合体A2
Polymer A2
  低分子化合物B2
 下記式で表される低分子化合物B2(日清オリイオ社製、ノムコートTAB)を用いた。
Low molecular weight compound B2
A low-molecular-weight compound B2 represented by the following formula (Nisshin Orio Co., Ltd., NOMUCORT TAB) was used.
  架橋剤C1
 下記式で表わされる架橋剤C1(ナガセケムテックス社製、デナコールEX411)を用いた。
Crosslinking agent C1
A cross-linking agent C1 represented by the following formula (Denacol EX411 manufactured by Nagase ChemteX Corporation) was used.
  化合物D1
 下記式で表わされる化合物D1(川研ファインケミカル社製、アルミキレートA(W))を用いた。
Compound D1
A compound D1 represented by the following formula (manufactured by Kawaken Fine Chemicals Co., Ltd., aluminum chelate A (W)) was used.
  化合物D2
 下記式で表わされる化合物D2(東洋サイエンス社製、トリフェニルシラノール)を用いた。
Compound D2
A compound D2 (triphenylsilanol manufactured by Toyo Science Co., Ltd.) represented by the following formula was used.
(配向膜P-10の露光)
 得られた配向膜P-10に偏光紫外線を照射(20mJ/cm2、超高圧水銀ランプ使用)することで、配向膜P-10の露光を行った。
(Exposure of alignment film P-10)
The alignment film P-10 thus obtained was irradiated with polarized ultraviolet rays (20 mJ/cm 2 , using an ultra-high pressure mercury lamp) to expose the alignment film P-10.
[λ/4板の作製]
 光学異方性層は、上述した組成物A-1を配向膜P-10上に塗布することにより形成した。
 塗布した塗膜をホットプレート上で110℃に加熱し、その後、60℃に冷却した後、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を500mJ/cm2の照射量で塗膜に照射することにより、液晶化合物の配向を固定化して、光学異方性層を作製した。最後に、支持体から光学異方性層を10mm厚の石英基板に粘着材で転写し、これをλ/4板とした。得られたλ/4板のΔn450×d(Re(450))は470nmであった。
[Fabrication of λ/4 plate]
The optically anisotropic layer was formed by applying the composition A-1 described above onto the alignment film P-10.
The applied coating film is heated to 110°C on a hot plate, then cooled to 60°C, and then irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 500 mJ/cm 2 using a high-pressure mercury lamp in a nitrogen atmosphere. By doing so, the orientation of the liquid crystal compound was fixed to produce an optically anisotropic layer. Finally, the optically anisotropic layer was transferred from the support to a quartz substrate having a thickness of 10 mm with an adhesive, and this was used as a λ/4 plate. Δn450×d (Re(450)) of the obtained λ/4 plate was 470 nm.
<光偏向素子の組み立て>
 手前から、液晶光位相変調素子、λ/4板、および、液晶回折素子、の順番で積層し、粘着材で貼合して、図1に示すような光偏向素子を作製した。また、液晶光位相変調素子には、駆動装置を接続した。
 この際に、液晶光位相変調素子の出射光の偏光方位とλ/4板の面内遅相軸とを45°で交差させ、円偏光に変換されるようにした。また、液晶光位相変調素子の偏向方位の中心を、液晶回折素子の中心と合わせて、光の偏向角の増幅効果が最も大きくなるように貼合した。
 また、光源として、青色レーザーを用意した。この青色レーザーは、波長450nmの直線偏光を出射するもので、偏光軸の方位は液晶の異常光方位とした。青色レーザーは、出射する直線偏光が、液晶回折素子の出射面に対してP偏向となるように配置した。
<Assembly of optical deflection element>
A liquid crystal optical phase modulation element, a λ/4 plate, and a liquid crystal diffraction element were laminated in this order from the front, and bonded with an adhesive to produce an optical deflection element as shown in FIG. A driving device was connected to the liquid crystal optical phase modulation element.
At this time, the polarization direction of the emitted light from the liquid crystal optical phase modulation element and the in-plane slow axis of the λ/4 plate were crossed at 45° so that the light was converted into circularly polarized light. Moreover, the center of the deflection direction of the liquid crystal optical phase modulation element was aligned with the center of the liquid crystal diffraction element, and they were bonded together so that the effect of amplifying the deflection angle of light was maximized.
A blue laser was prepared as a light source. This blue laser emits linearly polarized light with a wavelength of 450 nm, and the azimuth of the polarization axis is the extraordinary azimuth of the liquid crystal. The blue laser was arranged so that the emitted linearly polarized light was P-polarized with respect to the emission surface of the liquid crystal diffraction element.
[評価]
 実施例1の光偏向素子について、青色レーザー光を光偏向素子の液晶光位相変調素子側の正面から入射し、液晶光位相変調素子を±3°角度変化させるよう個別電極に所定の電圧を印加させ、液晶回折素子からの出射光の角度を確認した。
 その結果、液晶光位相変調素子による偏向角(偏角量)が、液晶回折素子で大きく拡大され、±55°程度まで大きくなっていることが確認できた。
[evaluation]
For the optical deflection element of Example 1, a blue laser beam is incident from the front of the optical deflection element on the side of the liquid crystal optical phase modulation element, and a predetermined voltage is applied to the individual electrodes so as to change the angle of the liquid crystal optical phase modulation element by ±3°. and confirmed the angle of light emitted from the liquid crystal diffraction element.
As a result, it was confirmed that the deflection angle (amount of deflection angle) by the liquid crystal optical phase modulation element was greatly enlarged by the liquid crystal diffraction element and increased to about ±55°.
 また、青色レーザーと、光偏向素子の液晶光位相変調素子との間に集光レンズ(凸レンズ)を配置して、同様の評価を行った。その結果、光偏向素子によって偏向した光の直進性が向上したことを確認できた。 In addition, a similar evaluation was performed by arranging a condenser lens (convex lens) between the blue laser and the liquid crystal optical phase modulation element of the optical deflection element. As a result, it was confirmed that the straightness of the light deflected by the light deflection element was improved.
 [実施例2]
[回折素子の作製]
(支持体、および、支持体の鹸化処理)
 支持体として、市販されているトリアセチルセルロースフィルム(富士フイルム社製、Z-TAC)を用意した。支持体を、温度60℃の誘電式加熱ロールを通過させて、支持体の表面温度を40℃に昇温した。
 その後、支持体の片面に、バーコーターを用いて下記に示すアルカリ溶液を塗布量14mL(リットル)/m2で塗布し、支持体を110℃に加熱し、さらに、スチーム式遠赤外ヒーター(ノリタケカンパニーリミテド社製)の下を、10秒間搬送した。
 続いて、同じくバーコーターを用いて、支持体のアルカリ溶液塗布面に、純水を3mL/m2塗布した。次いで、ファウンテンコーターによる水洗およびエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンを10秒間搬送して乾燥させ、支持体の表面をアルカリ鹸化処理した。
[Example 2]
[Fabrication of diffraction element]
(Support and saponification treatment of the support)
As a support, a commercially available triacetyl cellulose film (Z-TAC manufactured by Fuji Film Co., Ltd.) was prepared. The support was passed through a dielectric heating roll at a temperature of 60°C to raise the surface temperature of the support to 40°C.
After that, on one side of the support, an alkaline solution shown below was coated using a bar coater at a coating amount of 14 mL (liter)/m 2 , the support was heated to 110° C., and a steam type far infrared heater ( (manufactured by Noritake Co., Ltd.) for 10 seconds.
Subsequently, using the same bar coater, 3 mL/m 2 of pure water was applied to the alkaline solution coated surface of the support. Then, after repeating water washing with a fountain coater and draining with an air knife three times, the support was dried by transporting it through a drying zone at 70° C. for 10 seconds to saponify the surface of the support with an alkali.
  アルカリ溶液
―――――――――――――――――――――――――――――――――
 水酸化カリウム                  4.70質量部
 水                       15.80質量部
 イソプロパノール                63.70質量部
 界面活性剤SF-1:C1429O(CH2CH2O)2OH
                           1.0質量部
 プロピレングリコール              14.8 質量部
―――――――――――――――――――――――――――――――――
Alkaline solution――――――――――――――――――――――――――――――――
Potassium hydroxide 4.70 parts by mass Water 15.80 parts by mass Isopropanol 63.70 parts by mass Surfactant SF-1: C 14 H 29 O(CH 2 CH 2 O) 2 OH
1.0 parts by mass Propylene glycol 14.8 parts by mass――――――――――――――――――――――――――――――――――
(下塗り層の形成)
 支持体のアルカリ鹸化処理面に、下記の下塗り層形成用塗布液を#8のワイヤーバーで連続的に塗布した。塗膜が形成された支持体を60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、下塗り層を形成した。
(Formation of undercoat layer)
The alkali-saponified surface of the support was continuously coated with the following undercoat layer-forming coating solution using a #8 wire bar. The support with the coating film formed thereon was dried with hot air at 60° C. for 60 seconds and then with hot air at 100° C. for 120 seconds to form an undercoat layer.
  下塗り層形成用塗布液
――――――――――――――――――――――――――――――――――
 下記変性ポリビニルアルコール            2.40質量部
 イソプロピルアルコール               1.60質量部
 メタノール                    36.00質量部
 水                        60.00質量部
――――――――――――――――――――――――――――――――――
Coating liquid for forming undercoat layer ――――――――――――――――――――――――――――――――――
The following modified polyvinyl alcohol 2.40 parts by mass Isopropyl alcohol 1.60 parts by mass Methanol 36.00 parts by mass Water 60.00 parts by mass ――――――――――――
(配向膜の形成)
 下塗り層を形成した支持体上に、下記の配向膜形成用塗布液を#2のワイヤーバーで連続的に塗布した。この配向膜形成用塗布液の塗膜が形成された支持体を60℃のホットプレート上で60秒間乾燥し、配向膜を形成した。
(Formation of alignment film)
On the support having the undercoat layer formed thereon, the following coating solution for forming an alignment layer was continuously applied with a #2 wire bar. The support on which the coating film of the alignment film-forming coating liquid was formed was dried on a hot plate at 60° C. for 60 seconds to form an alignment film.
  配向膜形成用塗布液
―――――――――――――――――――――――――――――――――
 下記光配向用素材                 1.00質量部
 水                       16.00質量部
 ブトキシエタノール               42.00質量部
 プロピレングリコールモノメチルエーテル     42.00質量部
―――――――――――――――――――――――――――――――――
Alignment film forming coating solution――――――――――――――――――――――――――――――――――
Materials for optical alignment shown below 1.00 parts by mass Water 16.00 parts by mass Butoxyethanol 42.00 parts by mass Propylene glycol monomethyl ether 42.00 parts by mass ―――――――――――――――――― ―――――――――――――――
-光配向用素材-
-Materials for optical alignment-
(配向膜の露光)
 図10に示す露光装置を用いて配向膜を露光して、図5に示す配向パターンを有する配向膜P-1を形成した。
 露光装置において、レーザーとして波長(325nm)のレーザー光を出射するものを用いた。干渉光による露光量を100mJ/cm2とした。なお、2つのレーザー光の干渉により形成される配向パターンの1周期(光学軸が180°回転する長さ(1周期Λ))は、2つの光の交差角(交差角β)を変化させることによって制御した。
 具体的には、配向膜の露光は、上述のように、2つのレーザー光の交差角を調節し、かつ、不要な領域をマスキングして露光を行うことを、繰り返すことにより、光学軸が180°回転する1周期が、光学軸が回転する1方向(軸A方向)における支持体の中央から両端部に向かって、漸次、短くなるようにして、行った。以下の説明では、先の説明に準じて、光学軸が回転する1方向を『軸A方向』ともいう。
 配向パターンの1周期は、支持体の軸A方向の中央が10μm程度、支持体の軸A方向の両端部が1μm程度となるようにした。
(Exposure of alignment film)
The alignment film was exposed using the exposure apparatus shown in FIG. 10 to form the alignment film P-1 having the alignment pattern shown in FIG.
In the exposure apparatus, a laser that emits laser light with a wavelength (325 nm) was used. The amount of exposure by interference light was set to 100 mJ/cm 2 . One period of the alignment pattern formed by the interference of the two laser beams (the length of the 180° rotation of the optical axis (one period Λ)) can be changed by changing the crossing angle (crossing angle β) of the two lights. controlled by
Specifically, the exposure of the alignment film is performed by adjusting the crossing angle of the two laser beams and masking the unnecessary area for exposure, as described above. ° Rotation was carried out so that one period of rotation gradually became shorter from the center of the support toward both ends in one direction (direction of axis A) in which the optical axis rotates. In the following description, one direction in which the optical axis rotates will also be referred to as the "axis A direction" in accordance with the previous description.
One cycle of the orientation pattern was set so that the center of the support in the direction of the axis A was about 10 μm, and both ends of the support in the direction of the axis A were about 1 μm.
(B反射コレステリック液晶層の形成)
 コレステリック液晶層を形成する液晶組成物として、下記の組成物A-1を調製した。
この組成物A-1は、選択反射中心波長が450nmで、右円偏光を反射するコレステリック液晶層(コレステリック液晶相)を形成する、液晶組成物である。
  組成物A-1
―――――――――――――――――――――――――――――――――
 棒状液晶化合物L-1             100.00質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                          3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                          1.00質量部
 キラル剤Ch-1                 6.77質量部
 レベリング剤T-1                0.08質量部
 メチルエチルケトン              268.20質量部
―――――――――――――――――――――――――――――――――
(Formation of B reflective cholesteric liquid crystal layer)
Composition A-1 below was prepared as a liquid crystal composition for forming a cholesteric liquid crystal layer.
This composition A-1 is a liquid crystal composition that forms a cholesteric liquid crystal layer (cholesteric liquid crystal phase) that has a selective reflection central wavelength of 450 nm and reflects right-handed circularly polarized light.
Composition A-1
―――――――――――――――――――――――――――――――――
Rod-shaped liquid crystal compound L-1 100.00 parts by mass Polymerization initiator (manufactured by BASF, Irgacure (registered trademark) 907)
3.00 parts by mass Photosensitizer (manufactured by Nippon Kayaku, KAYACURE DETX-S)
1.00 parts by mass Chiral agent Ch-1 6.77 parts by mass Leveling agent T-1 0.08 parts by mass Methyl ethyl ketone 268.20 parts by mass―――――――――――――――――――― ――――――――――――――
  棒状液晶化合物L-1
  キラル剤Ch-1
  レベリング剤T-1
Rod-shaped liquid crystal compound L-1
Chiral agent Ch-1
Leveling agent T-1
 B反射コレステリック液晶層は、組成物A-1を露光済みの配向膜P-1上に多層塗布することにより形成した。
 多層塗布とは、先ず配向膜の上に1層目の組成物A-1を塗布、加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した後、2層目以降はその液晶固定化層に重ね塗りして塗布を行い、同様に加熱、冷却後に紫外線硬化を行うことを繰り返すことを指す。多層塗布により形成することにより、液晶層の総厚が厚くなった時でも配向膜の配向方向が液晶層の下面から上面にわたって反映される。
The B reflective cholesteric liquid crystal layer was formed by coating the composition A-1 on the exposed alignment film P-1 in multiple layers.
Multi-layer coating means that the first layer composition A-1 is first applied on the alignment film, heated, cooled, and then UV-cured to prepare a liquid crystal fixing layer, and the second and subsequent layers are liquid crystal fixed. It refers to repeating the process of coating in multiple layers, heating and cooling in the same way, and then UV curing. By forming by multilayer coating, even when the total thickness of the liquid crystal layer is increased, the alignment direction of the alignment film is reflected from the bottom surface to the top surface of the liquid crystal layer.
 1層目は、配向膜P-1上に下記の組成物A-1を塗布して、塗膜をホットプレート上で95℃に加熱し、その後、25℃に冷却した後、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を100mJ/cm2の照射量で塗膜に照射することにより、液晶化合物の配向を固定化した。この時の1層目の液晶層の膜厚は0.2μmであった。 For the first layer, the following composition A-1 was applied on the alignment film P-1, the coating film was heated on a hot plate to 95 ° C., then cooled to 25 ° C., and then under a nitrogen atmosphere. The alignment of the liquid crystal compound was fixed by irradiating the coating film with ultraviolet light having a wavelength of 365 nm at a dose of 100 mJ/cm 2 using a high-pressure mercury lamp. At this time, the film thickness of the first liquid crystal layer was 0.2 μm.
 2層目以降は、この液晶層に重ね塗りして、上と同じ条件で加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した。このようにして、総厚が所望の膜厚になるまで重ね塗りを繰り返し、B反射コレステリック液晶層を形成して、B反射層を作製した。塗布層の断面をSEMで確認したところ、B反射層のコレステリック液晶相は8ピッチであった。
 B反射コレステリック液晶層は、図5に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このB反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、支持体の軸A方向の両端部では0.9μm、中央部分では10μmであった。
The second and subsequent layers were overcoated on this liquid crystal layer, heated under the same conditions as above, cooled, and then UV-cured to prepare a liquid crystal fixing layer. In this manner, repeated coating was repeated until the total thickness reached a desired film thickness to form a B reflective cholesteric liquid crystal layer, thereby producing a B reflective layer. When the cross section of the coating layer was confirmed by SEM, the cholesteric liquid crystal phase of the B reflective layer was 8 pitches.
It was confirmed with a polarizing microscope that the B reflective cholesteric liquid crystal layer had a periodically oriented surface as shown in FIG. In the liquid crystal alignment pattern of the B-reflection cholesteric liquid crystal layer, one cycle of 180° rotation of the optical axis derived from the liquid crystal compound was 0.9 μm at both ends in the direction of the axis A of the support and 10 μm at the central portion. .
 <G反射層の作製>
 図10に示す露光装置によって配向膜を露光する際の2つのレーザー光の交差角を変更した以外は、配向膜P-1と同様にして、図5に示す配向パターンを有する配向膜P-2を形成した。
 また、キラル剤Ch-1の添加量を5.68質量部に変更した以外は、組成物A-1と同様にして、コレステリック液晶層を形成する組成物A-2を調製した。この組成物A-2は、選択反射中心波長が530nmで、右円偏光を反射するコレステリック液晶層を形成する、液晶組成物である。
 組成物A-2を配向膜P-2上に多層塗布した以外は、B反射コレステリック液晶層と同様にして、G反射コレステリック液晶層を形成して、G反射層を作製した。
 G反射コレステリック液晶層は、図5に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このG反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、支持体の軸A方向の端部では1.1μm、中央部分では10μmであった。
<Preparation of G reflective layer>
Alignment film P-2 having an alignment pattern shown in FIG. formed.
Composition A-2 for forming a cholesteric liquid crystal layer was prepared in the same manner as composition A-1, except that the amount of chiral agent Ch-1 added was changed to 5.68 parts by mass. This composition A-2 is a liquid crystal composition that forms a cholesteric liquid crystal layer that has a selective reflection central wavelength of 530 nm and reflects right-handed circularly polarized light.
A G reflective cholesteric liquid crystal layer was formed in the same manner as the B reflective cholesteric liquid crystal layer, except that the composition A-2 was applied in multiple layers on the alignment film P-2, to produce a G reflective layer.
It was confirmed with a polarizing microscope that the G-reflection cholesteric liquid crystal layer had a periodically oriented surface as shown in FIG. In the liquid crystal alignment pattern of this G-reflection cholesteric liquid crystal layer, one cycle in which the optical axis derived from the liquid crystal compound rotates by 180° was 1.1 μm at the end of the support in the direction of the axis A and 10 μm at the central portion. .
 <R反射層の作製>
 図10に示す露光装置によって配向膜を露光する際の2つのレーザー光の交差角を変更した以外は、配向膜P-1と同様にして、図5に示す配向パターンを有する配向膜P-3を形成した。
 また、キラル剤Ch-1の添加量を4.69質量部に変更した以外は、組成物A-1と同様にして、コレステリック液晶層を形成する組成物A-3を調製した。この組成物A-3は、選択反射中心波長が635nmで、右円偏光を反射するコレステリック液晶層を形成する、液晶組成物である。
 組成物A-3を配向膜P-3上に多層塗布した以外は、B反射コレステリック液晶層と同様にして、R反射コレステリック液晶層を形成して、R反射層を作製した。
 R反射コレステリック液晶層は、図3に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このR反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、支持体の軸A方向の端部では1.3μm、中央部分では10μmであった。
<Preparation of R reflective layer>
Alignment film P-3 having an alignment pattern shown in FIG. formed.
Composition A-3 for forming a cholesteric liquid crystal layer was prepared in the same manner as composition A-1, except that the amount of chiral agent Ch-1 added was changed to 4.69 parts by mass. This composition A-3 is a liquid crystal composition that forms a cholesteric liquid crystal layer that has a selective reflection central wavelength of 635 nm and reflects right-handed circularly polarized light.
An R reflective cholesteric liquid crystal layer was formed in the same manner as the B reflective cholesteric liquid crystal layer, except that the composition A-3 was applied in multiple layers on the alignment film P-3, thereby producing an R reflective layer.
It was confirmed with a polarizing microscope that the R-reflecting cholesteric liquid crystal layer had a periodically oriented surface as shown in FIG. In the liquid crystal alignment pattern of this R-reflecting cholesteric liquid crystal layer, one cycle in which the optical axis derived from the liquid crystal compound rotates by 180° was 1.3 μm at the end of the support in the direction of the axis A and 10 μm at the central portion. .
 <第1液晶回折素子の作製>
 作製したB反射層、G反射層およびR反射層を、R反射層、G反射層およびB反射層の順番で、接着剤(綜研化学社製、SKダイン2057)で貼り合わせて、第1液晶回折素子を作製した。なお、貼り合わせ時は支持体および配向膜を剥離してから、次の層を貼り合わせた。
 上述のように、コレステリック液晶層は反射に偏光特性があり、円偏光を回折して反射する。このため、第1液晶回折素子は、コレステリック液晶層の積層体にλ/4板(帝人社製、商品名:ピュアエースWR-S、ポリカーボネートフィルム、正面リタデーションが126nm)を貼合せ、このλ/4板側にレーザー光が入射するようにして配置することにより、コレステリック液晶層の積層体に入射する光が右円偏光になるようにした。さらに、コレステリック液晶層の積層体の軸A方向の半分の領域は、入射光を左円偏光とするために、さらに同様のλ/4板を2枚貼合した。すなわち、この2枚のλ/4板は、λ/2板として作用する。
<Fabrication of first liquid crystal diffraction element>
The prepared B reflective layer, G reflective layer and R reflective layer are laminated in the order of the R reflective layer, G reflective layer and B reflective layer with an adhesive (SK Dyne 2057 manufactured by Soken Kagaku Co., Ltd.) to form the first liquid crystal. A diffraction element was produced. At the time of lamination, the next layer was laminated after peeling off the support and the alignment film.
As described above, the cholesteric liquid crystal layer has polarization properties in reflection, and diffracts and reflects circularly polarized light. Therefore, in the first liquid crystal diffraction element, a λ/4 plate (manufactured by Teijin Limited, trade name: Pure Ace WR-S, polycarbonate film, front retardation: 126 nm) is attached to a laminate of cholesteric liquid crystal layers. By arranging so that the laser light is incident on the four plate side, the light incident on the laminate of the cholesteric liquid crystal layers is made to be right-handed circularly polarized light. In addition, two similar λ/4 plates were bonded to the half region of the laminate of the cholesteric liquid crystal layers in the direction of the axis A in order to convert the incident light into left-handed circularly polarized light. That is, the two λ/4 plates act as λ/2 plates.
<照明装置の組み立て>
 光源として、青色レーザーを用意した。青色レーザーは、出射する直線偏光が、第1液晶回折素子の反射面に対してP偏光となるように配置した。青色レーザーは、波長450nmの直線偏光を出射するもので、偏光軸の方位は液晶の異常光方位とした。
 また、蛍光体(InP/ZnSを含有する量子ドット蛍光体)を用いる波長変換部材を用意した。この蛍光体は、青色光を赤色光および緑色光に変換する蛍光体である。従って、波長変換部材を透過した光は白色光となる。
 この青色レーザー光源、一般的なミラー、波長変換部材、および、第1液晶回折素子を用いて、図1に示すような車載用照明装置を作製した。
 なお、青色レーザー光源は、1つのみ用いて、レーザー光が、直接、ミラーに入射するようにした。
 また、第1液晶回折素子は、λ/2板側を入射面として、光入射側から、λ/2板、λ/4板およびコレステリック液晶層の積層体の順番となるように配置した。
<Assembly of lighting device>
A blue laser was prepared as a light source. The blue laser was arranged so that the emitted linearly polarized light was P-polarized light with respect to the reflecting surface of the first liquid crystal diffraction element. The blue laser emits linearly polarized light with a wavelength of 450 nm, and the azimuth of the polarization axis is the extraordinary azimuth of the liquid crystal.
Also, a wavelength conversion member using phosphor (quantum dot phosphor containing InP/ZnS) was prepared. This phosphor is a phosphor that converts blue light into red and green light. Therefore, the light transmitted through the wavelength conversion member becomes white light.
Using this blue laser light source, a general mirror, a wavelength conversion member, and a first liquid crystal diffraction element, an in-vehicle lighting device as shown in FIG. 1 was manufactured.
Only one blue laser light source was used so that the laser light was directly incident on the mirror.
The first liquid crystal diffraction element was arranged so that the λ/2 plate side was the incident surface, and the laminate of the λ/2 plate, the λ/4 plate and the cholesteric liquid crystal layer was arranged in order from the light incident side.
 [評価]
 作製した本発明の車載用照明装置を用いて、10m前方の黒紙に光を照射し、光の色味と照射サイズを確認した。
 また、第1液晶回折素子に変えて、凹面鏡および投射レンズを用いた車載用照明装置も用意した。
 その結果、本発明の車載用照明装置は、凹面鏡および投射レンズを用いた車載用照明装置と同様に、色味は白色光であり投射サイズもほぼ同じであることを確認した。
 また、大きさ、および、重量は、本発明の車載用照明装置の方が小型で、かつ、軽量であった。
 以上の結果から、回折素子を用いて車載用照明装置を構成することにより、小型化および軽量化が実現でき、本発明の効果は明らかである。
[evaluation]
Using the manufactured in-vehicle lighting device of the present invention, a black paper 10 m ahead was irradiated with light, and the color and irradiation size of the light were confirmed.
In addition, an in-vehicle illumination device using a concave mirror and a projection lens instead of the first liquid crystal diffraction element was also prepared.
As a result, it was confirmed that the in-vehicle lighting device of the present invention emits white light and has substantially the same projection size as the in-vehicle lighting device using a concave mirror and a projection lens.
In terms of size and weight, the in-vehicle lighting device of the present invention was smaller and lighter.
From the above results, it is clear that the size and weight of the vehicle-mounted lighting device can be reduced by using the diffraction element, and the effect of the present invention is clear.
  101 レーザー光源
  102 ミラー
  103、111 レンズ
  104 ミラー
  105 波長変換部材
  106 第1液晶回折素子
  107 駆動装置(MEMS光偏向素子)
  108 中間スクリーン(拡散板)
  109 λ/4板
  110 第2液晶回折素子
  112 光導波路(光ファイバー)
  113 凹面鏡
  114 投射レンズ
  12 支持体
  13 配向膜
  14a コレステリック液晶層
  14b 光学異方性層
  20 液晶化合物
  22 光学軸
  24 等位相面
  50,80 露光装置
  52,82 レーザー
  54,84 光源
  56 ビームスプリッター
  58A,58B,90A,90B ミラー
  60A,60B,96 λ/4板
  70 レーザー光
  72A,72B 光線
  86,94 偏光ビームスプリッター
  92 レンズ
  220,224 液晶回折素子
  215 第1光学異方性層
  216 第2光学異方性層
  219 第3光学異方性層
  L1,L41 入射光
  L2,L42,L43 出射光
  PO 直線偏光
  PR 右円偏光
  PL 左円偏光
  M レーザー光
  MP P偏光
  MS S偏光
REFERENCE SIGNS LIST 101 laser light source 102 mirror 103, 111 lens 104 mirror 105 wavelength conversion member 106 first liquid crystal diffraction element 107 driving device (MEMS optical deflection element)
108 intermediate screen (diffusion plate)
109 λ/4 plate 110 Second liquid crystal diffraction element 112 Optical waveguide (optical fiber)
113 concave mirror 114 projection lens 12 support 13 alignment film 14a cholesteric liquid crystal layer 14b optically anisotropic layer 20 liquid crystal compound 22 optical axis 24 equal phase surface 50, 80 exposure device 52, 82 laser 54, 84 light source 56 beam splitter 58A, 58B , 90A, 90B Mirrors 60A, 60B, 96 λ/4 plate 70 Laser beams 72A, 72B Rays 86, 94 Polarizing beam splitter 92 Lenses 220, 224 Liquid crystal diffraction element 215 First optically anisotropic layer 216 Second optically anisotropic Layer 219 Third optically anisotropic layer L 1 , L 41 incident light L 2 , L 42 , L 43 outgoing light P O linearly polarized light P R right circularly polarized light P L left circularly polarized light M laser beam MP P polarized light MS S polarized light

Claims (10)

  1.  車載用照明装置であって、光源と、前記光源が出射した光を拡散する拡散部材と、前記拡散部材が拡散した光を回折する、周期構造ピッチが中心から外側に向かって、漸次、変化する、第1回折素子を備えた、自動車の外部空間に光を配光する車載用照明装置。 An in-vehicle lighting device, comprising a light source, a diffusion member for diffusing light emitted by the light source, and a periodic structure pitch for diffracting the diffused light by the diffusion member, the pitch of which gradually changes from the center toward the outside. , an automotive lighting device for distributing light to an exterior space of a motor vehicle, comprising a first diffractive element.
  2.  前記第1回折素子が、液晶化合物を含む組成物を用いて形成される液晶回折素子であって、前記液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する光学異方性層を備える、請求項1に記載の車載用照明装置。 The first diffraction element is a liquid crystal diffraction element formed using a composition containing a liquid crystal compound, wherein the direction of the optic axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction. 2. A vehicle lighting device according to claim 1, comprising an optically anisotropic layer having a liquid crystal alignment pattern that varies with the orientation of the liquid crystal.
  3.  前記第1回折素子に隣接する、酸素遮断層を有する、請求項1に記載の車載用照明装置。 The vehicle-mounted lighting device according to claim 1, comprising an oxygen blocking layer adjacent to the first diffraction element.
  4.  自動車の外部空間に光を配光する出射口および光導波路と、
     前記光源が出射した光を、前記第1回折素子側または前記光導波路側に偏向する光偏向素子と、
     前記光偏向素子の光出射側に配置される、周期構造ピッチが中心から外側に向かって、漸次、変化する第2回折素子とを有する、請求項1に記載の車載用照明装置。
    an exit and an optical waveguide for distributing light to the exterior space of the automobile;
    an optical deflection element that deflects the light emitted from the light source toward the first diffraction element or the optical waveguide;
    2. The vehicle-mounted lighting device according to claim 1, further comprising a second diffraction element arranged on the light exit side of said light deflection element and having a periodic structure pitch that gradually changes from the center toward the outside.
  5.  前記第2回折素子が、液晶化合物を含む組成物を用いて形成される液晶回折素子であって、前記液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する光学異方性層を備える、請求項4に記載の車載用照明装置。 The second diffraction element is a liquid crystal diffraction element formed using a composition containing a liquid crystal compound, wherein the orientation of the optic axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction. 5. An automotive lighting device according to claim 4, comprising an optically anisotropic layer having a liquid crystal orientation pattern that varies while being oriented.
  6.  前記第2回折素子に隣接する、酸素遮断層を有する、請求項4に記載の車載用照明装置。 5. The vehicle-mounted lighting device according to claim 4, further comprising an oxygen blocking layer adjacent to said second diffractive element.
  7.  前記光偏向素子が、MEMS光偏向素子である、請求項4に記載の車載用照明装置。 The vehicle-mounted lighting device according to claim 4, wherein the optical deflection element is a MEMS optical deflection element.
  8.  λ/4板を有する、請求項1に記載の車載用照明装置。 The in-vehicle lighting device according to claim 1, having a λ/4 plate.
  9.  請求項1~8のいずれか1項に記載の車載用照明装置を搭載した自動車。 A vehicle equipped with the in-vehicle lighting device according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の車載用照明装置に使用される回折素子。 A diffraction element used in the vehicle-mounted lighting device according to any one of claims 1 to 8.
PCT/JP2023/001370 2022-02-02 2023-01-18 Onboard lighting device, automobile, and diffraction element WO2023149211A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-014978 2022-02-02
JP2022014978 2022-02-02
JP2022-154630 2022-09-28
JP2022154630 2022-09-28

Publications (1)

Publication Number Publication Date
WO2023149211A1 true WO2023149211A1 (en) 2023-08-10

Family

ID=87552026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001370 WO2023149211A1 (en) 2022-02-02 2023-01-18 Onboard lighting device, automobile, and diffraction element

Country Status (1)

Country Link
WO (1) WO2023149211A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131709A1 (en) * 2019-12-27 2021-07-01 富士フイルム株式会社 Projectional image display system
JP2021107871A (en) * 2019-12-27 2021-07-29 富士フイルム株式会社 Projection type image display system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131709A1 (en) * 2019-12-27 2021-07-01 富士フイルム株式会社 Projectional image display system
JP2021107871A (en) * 2019-12-27 2021-07-29 富士フイルム株式会社 Projection type image display system

Similar Documents

Publication Publication Date Title
JP7015380B2 (en) Optical deflector and optical device
JP6980901B2 (en) Optical elements, light guide elements and image display devices
JP7030847B2 (en) Optical elements, light guide elements and image display devices
JP6975321B2 (en) Optical element and light guide element
JP7174041B2 (en) Light irradiation device and sensor
JP7153087B2 (en) Light guide element, image display device and sensing device
WO2020022513A1 (en) Method for producing optical element, and optical element
JP6975257B2 (en) Optical element and light guide element
JP6985501B2 (en) Optical elements, light guide elements and image display devices
WO2020022504A1 (en) Method for producing optical element, and optical element
JP7483111B2 (en) Optical element and image display device
JPWO2020022434A1 (en) Optics and sensors
WO2019131950A1 (en) Optical element and sensor
JP6931417B2 (en) Optical element
JP7297075B2 (en) Optical deflection device and optical device
JP7425912B2 (en) Light deflection devices and optical devices
WO2023149211A1 (en) Onboard lighting device, automobile, and diffraction element
WO2021157598A1 (en) Optical element and image display device
JP2022074858A (en) Image display system
CN117178212A (en) Liquid crystal diffraction element, image display device, and head-mounted display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749527

Country of ref document: EP

Kind code of ref document: A1