JP2003167088A - Boiling water nuclear power generating plant - Google Patents

Boiling water nuclear power generating plant

Info

Publication number
JP2003167088A
JP2003167088A JP2001369690A JP2001369690A JP2003167088A JP 2003167088 A JP2003167088 A JP 2003167088A JP 2001369690 A JP2001369690 A JP 2001369690A JP 2001369690 A JP2001369690 A JP 2001369690A JP 2003167088 A JP2003167088 A JP 2003167088A
Authority
JP
Japan
Prior art keywords
eccs
rpv
pressure
pump
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001369690A
Other languages
Japanese (ja)
Other versions
JP3984038B2 (en
Inventor
Kazuhiro Yoshikawa
吉川  和宏
Shiyouichirou Kinoshita
詳一郎 木下
Masayoshi Matsuura
正義 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001369690A priority Critical patent/JP3984038B2/en
Publication of JP2003167088A publication Critical patent/JP2003167088A/en
Application granted granted Critical
Publication of JP3984038B2 publication Critical patent/JP3984038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiling water nuclear power generating plant equipped with ECCS having minimum number of systems. <P>SOLUTION: The ECCS 81 is constructed by three divisions, that is, system A ECCS 82, system B ECCS 83 and system C ECCS 84. The driving power supply of dynamic devices such as a pump and motor-operated valve is supplied from system A power supply system 85, system B power supply system 86 and system C power supply system 87. The system A power supply system 85, the system B power supply system 86 and the system C power supply system 87 are mutually independent power supply systems. The system A ECCS 82 is provided with RHR one system which is low pressure system ECCS. The system B ECCS 83 is also provided with one train of RHR system which is low pressure system ECCS. These RHR systems are adapted to inject water into a reactor pressure vessel through a heat exchanger. The system C ECCS 84 is provided with one train of HPCF system which is high system ECCS. As described above, ECCS are only three trains in total. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉圧力容器
(RPV)の配管が破断してRPV内の炉心を冷却する
水量が通常運転中に想定される過渡変化の範囲を越えて
減少するような非常時には前記RPVに注水して前記炉
心を冷却する非常用炉心冷却システム(ECCS)が備
えられる沸騰水型原子力発電所に関し、特にECCSに
非常用注水以外の機能も持たせた沸騰水型原子力発電所
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention aims to reduce the amount of water that cools the core of the RPV by breaking the piping of the reactor pressure vessel (RPV) beyond the range of transient changes expected during normal operation. The present invention relates to a boiling water nuclear power plant equipped with an emergency core cooling system (ECCS) for injecting water into the RPV in an emergency to cool the core, and particularly to a boiling water nuclear power plant in which the ECCS has a function other than emergency water injection. It concerns power plants.

【0002】[0002]

【従来の技術】従来の沸騰水型原子力発電所が備えてい
るECCSの構成について説明する。
2. Description of the Related Art The structure of an ECCS provided in a conventional boiling water nuclear power plant will be described.

【0003】図1は従来の135万KWe級改良型沸騰
水型原子力発電所(以下ABWR)のECCSの構成を
示したものである。また図2は前記ECCS構成を模式
的に示したものである。
FIG. 1 shows the configuration of a conventional 1.35 million KWe class improved boiling water nuclear power plant (hereinafter referred to as ABWR) ECCS. Further, FIG. 2 schematically shows the ECCS structure.

【0004】図1に示す原子力発電所の概要を述べる。An outline of the nuclear power plant shown in FIG. 1 will be described.

【0005】炉心に燃料集合体が備わる原子炉圧力容器
(RPV)9は、原子炉格納容器(PCV)8に全体的
に包まれるように収納される。RPV9を収納するPC
V8の内部空間は、ドライウェル19と圧力抑制室(S
/C)20に分けられる。RPV内の冷却水を多量に喪
失する事故の際、冷却水が気水混合物となって放出され
る空間がドライウェル19である。ドライウェル19に
放出された前記気水混合物は、ベント管(図示せず)を
経てS/C20内の圧力抑制プール(S/P)11に導
かれて冷却凝縮され、PCV内の圧力上昇を抑制する。
A reactor pressure vessel (RPV) 9 having a fuel assembly in its core is housed so as to be entirely enclosed in a reactor containment vessel (PCV) 8. PC to store RPV9
The internal space of V8 is the dry well 19 and the pressure suppression chamber (S
/ C) 20. The dry well 19 is a space where the cooling water is discharged as a mixture of air and water in the event of a large loss of the cooling water in the RPV. The gas-water mixture discharged to the dry well 19 is introduced into a pressure suppression pool (S / P) 11 in the S / C 20 through a vent pipe (not shown), cooled and condensed, and the pressure in the PCV is increased. Suppress.

【0006】またドライウェル19の外に置かれる復水
貯蔵タンク(CST)10はドライウェル19内に置く
ことも可能である。
The condensate storage tank (CST) 10 placed outside the dry well 19 can also be placed inside the dry well 19.

【0007】前記S/P11は、配管42、残留熱除去
系(RHR系)ポンプ45、RHR系熱交換器46、配
管47を介してRPV9に連通している。またRPV9
は、配管44、配管42、RHR系ポンプ45、RHR
系熱交換器46、配管47を通して再びRPV9に戻る
流路を有する。これらは、電源系(A、B、C)の3区
分がそれぞれ備えられ、低圧のECCSを構成してい
る。
The S / P 11 communicates with the RPV 9 through a pipe 42, a residual heat removal system (RHR system) pump 45, an RHR system heat exchanger 46, and a pipe 47. Also RPV9
Is the pipe 44, the pipe 42, the RHR system pump 45, the RHR
It has a flow path that returns to the RPV 9 through the system heat exchanger 46 and the pipe 47. These are each provided with three sections of power supply system (A, B, C), and constitute low voltage ECCS.

【0008】タービン24で駆動される原子炉隔離時冷
却系(RCIC系)ポンプ30は、CST10あるいは
S/P11の水を、配管26、配管28、配管32を介
してRPV9に注入する。これは電源系Aに属する。H
PCF系ポンプ13は、CST10あるいはS/P11
の水を、配管26、配管15、配管14、配管18を介
してRPV9に注入する。HPCF系ポンプ13は、電
源系(B、C)の2区分がそれぞれ備えられる。高圧炉
心注水系(RCIC系)ポンプ30、HPCF系ポンプ
13は、高圧のECCSを構成する。
The reactor isolation cooling system (RCIC system) pump 30 driven by the turbine 24 injects water of CST 10 or S / P 11 into the RPV 9 through the pipes 26, 28 and 32. This belongs to the power supply system A. H
The PCF pump 13 is a CST 10 or S / P 11
Water is injected into the RPV 9 through the pipe 26, the pipe 15, the pipe 14, and the pipe 18. The HPCF system pump 13 is provided with two sections of a power supply system (B, C). The high pressure core water injection system (RCIC system) pump 30 and the HPCF system pump 13 constitute a high pressure ECCS.

【0009】上記ABWRのECCSは、単なる非常用
の注水設備としての機能だけでなく、常用のいくつかの
機能も兼ね備えた設備とすることで合理化を図ってお
り、以下の条件を満たすように設計されている。
The ABWR ECCS has been designed to satisfy the following conditions in order not only to function as an emergency water injection facility but also to have some regular functions. Has been done.

【0010】第一に、ポンプ等の動的機器の駆動電源は
独立した3区分の電源から供給されること、第二に、高
圧かつ低流量の運転点(RPVに接続する配管の中小破
断の時に必要な運転状態。この時にはRPV内が高圧の
まま水位が低下するため。)と低圧かつ大流量の運転点
(RPVに接続する配管の大破断の時に必要な運転状
態。この時にはRPV内が急速に減圧されると同時に、
急速にRPV内水位が低下するため。)の両方での注水
が可能であること、第三に、通常運転中に起こりうるR
PV内の過渡的な水位低下発生時に、高圧かつ低流量運
転点で運転してRPV内へ補給水を実施できること、第
四に、原子炉停止時に原子炉で発生する残留熱を除去で
きること、第五に、事故時にPCV内を冷却することが
できること、である。
First, the driving power source for the dynamic equipment such as a pump is supplied from three independent power sources, and secondly, a high pressure and low flow rate operating point (medium or small rupture of the pipe connected to the RPV). Sometimes necessary operating conditions. At this time, the water level drops while the RPV remains at high pressure.) And operating point at low pressure and large flow rate (operating condition required when the pipe connected to the RPV is severely broken. At the same time as the pressure is rapidly reduced,
Because the water level inside the RPV drops rapidly. ) Is possible, and thirdly, R that can occur during normal operation
When transient water level drop in PV occurs, it is possible to operate at high pressure and low flow rate operating point to implement make-up water into the RPV; fourth, it is possible to remove residual heat generated in the reactor when the reactor is shut down; Fifth, it is possible to cool the inside of the PCV in the event of an accident.

【0011】以上の要件を満たすための従来のECCS
について、図2に沿い説明する。
Conventional ECCS to meet the above requirements
Will be described with reference to FIG.

【0012】ECCS1はA系ECCS2とB系ECC
S3と、C系ECCS4の3区分で構成される。それぞ
れはA系の電源系5,B系の電源系6,C系の電源系7
から図1に示すポンプ13,30,45や電動弁などの
動的機器の駆動電力が供給される。前記A系電源系5,
B系電源系6,C系電源系7は、互いに独立した電源系
統である。
ECCS1 is A system ECCS2 and B system ECC
It is composed of three sections, S3 and C-system ECCS4. Power system for A system 5, power system for B system 6, power system for C system 7
Is supplied with driving power for dynamic equipment such as the pumps 13, 30, 45 and motor-operated valves shown in FIG. The A system power supply system 5,
The B system power supply system 6 and the C system power supply system 7 are independent power supply systems.

【0013】前記3区分は、それぞれ高圧系ECCSと
低圧系ECCSが1系統ずつの計2系統を備えている。
前記A系ECCS2は、高圧系ECCSとして原子炉隔
離時冷却系(RCIC系)1系統、低圧系ECCSとし
て残留熱除去系(RHR系)1系統を備えている。前記
B系ECCS3は、高圧系ECCSとして高圧炉心注水
系(HPCF系)1系統、低圧系ECCSとしてRHR
系1系統を備えている。前記C系ECCS4もまた、高
圧系ECCSとしてHPCF系1系統、低圧系ECCS
としてRHR系1系統を備えている。
Each of the three sections has a total of two systems, one for the high-voltage system ECCS and one for the low-voltage system ECCS.
The A-system ECCS 2 includes a high pressure system ECCS, a reactor isolation cooling system (RCIC system), and a low pressure system ECCS, a residual heat removal system (RHR system). The B-system ECCS 3 includes one high-pressure core injection system (HPCF system) as a high-pressure ECCS and RHR as a low-pressure ECCS.
It has one system. The C system ECCS4 is also a HPCF system 1 system as a high voltage system ECCS, a low voltage system ECCS.
Is equipped with one RHR system.

【0014】これら高圧系ECCSと低圧系ECCSの
ポンプ性能の関係を図3に示す。図3は横軸にポンプ流
量、縦軸にポンプ揚程を示している。RPVに接続する
配管の中小破断時に要求されるECCSポンプの運転点
が運転点71であり、大破断時に要求されるECCSポ
ンプの運転点が運転点72である。つまりECCSはこ
の2点を通る性能曲線を持つポンプにより構成されてい
れば良い。しかしながら、前記2点の運転点の両方を1
台でカバーできるような性能曲線を持つポンプは製作が
難しくコスト的に不利なため、従来の技術では高圧系E
CCSポンプ(性能曲線73を有するポンプ)と低圧系
ECCSポンプ(性能曲線74を有するポンプ)の2系
列を各区分に持たせる設計としている。区分は電源構成
と同じく3区分としなくてはいけないため、従来の技術
では沸騰水型原子力発電所では合計6系列のECCSを
備えていた。
FIG. 3 shows the relationship between the pump performance of the high pressure system ECCS and the low pressure system ECCS. FIG. 3 shows the pump flow rate on the horizontal axis and the pump head on the vertical axis. The operating point of the ECCS pump required when the pipe connected to the RPV is broken is small and small, and the operating point of the ECCS pump that is required when the pipe is large broken is the operating point 72. That is, the ECCS may be composed of a pump having a performance curve that passes through these two points. However, both of the two operating points are 1
A pump having a performance curve that can be covered with a table is difficult to manufacture and is disadvantageous in terms of cost.
It is designed to have two series of CCS pumps (pumps having performance curve 73) and low pressure ECCS pumps (pumps having performance curve 74) in each section. Since the division must be divided into 3 divisions like the power source configuration, the conventional technology had a total of 6 series of ECCS in the boiling water nuclear power plant.

【0015】[0015]

【発明が解決しようとする課題】従来の技術では、従来
の技術に示した4つの要件を満たすためにECCSとし
て計6つもの系統を沸騰水型原子力発電所に持たせてい
る。しかしながらECCSは通常運転中は基本的に使用
しない系統であるばかりでなく、高い安全グレードを要
求されるため機器コストが高い系統である。よって多系
統のECCSを1つのプラントに設置することは経済的
に不利な要因となる。
In the prior art, a boiling water nuclear power plant has a total of six systems as ECCS in order to satisfy the four requirements shown in the prior art. However, ECCS is not only a system that is basically not used during normal operation, but also a system that has a high equipment cost because it requires a high safety grade. Therefore, installing multiple systems of ECCS in one plant is an economically disadvantageous factor.

【0016】上記のような問題に鑑み、本発明は、EC
CSの系統数を出来る限り少ない簡単な構成にして原子
力発電プラントの経済性を向上させることを目的とす
る。
In view of the above problems, the present invention provides an EC
The object is to improve the economical efficiency of a nuclear power plant by making the number of CS systems as simple as possible.

【0017】[0017]

【課題を解決するための手段】本発明は、RPVに連通
され、かつ水等の流体を流通する配管が破断してRPV
内の炉心を冷却する水量が通常運転中に想定される過渡
変化の範囲を越えて減少するような非常時には、RPV
に注水して炉心を冷却する非常用炉心冷却システム(E
CCS)が備えられる沸騰水型原子力発電所において、
ECCSは、RPVに注水するポンプを夫々1台づつ備
える3つの系統を有し、かつ各ポンプの駆動電源はそれ
ぞれ独立した3区分の別電源系とし、3つの系統のう
ち、少なくとも2系統にはRPVに注水される冷却水を
冷やす熱交換器を備えたことを特徴とする。
DISCLOSURE OF THE INVENTION According to the present invention, a pipe which is in communication with an RPV and which circulates a fluid such as water is broken to break the RPV.
In an emergency, where the amount of water that cools the core in the reactor decreases beyond the range of transient changes expected during normal operation, the RPV
Emergency core cooling system (E
In a boiling water nuclear power plant equipped with CCS),
The ECCS has three systems each including one pump for pouring water into the RPV, and the drive power source of each pump is a separate power source system of three independent sections, and at least two of the three systems have at least two systems. A heat exchanger for cooling the cooling water poured into the RPV is provided.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て、本発明の実施例を示す図面を引用して説明する。本
発明の実施例は図4、図5、図12、図13で示してい
るが、要所で従来例と比べながら本発明を解説する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings showing examples of the present invention. Embodiments of the present invention are shown in FIGS. 4, 5, 12, and 13, and the present invention will be described in comparison with a conventional example in important points.

【0019】図4は本発明の実施例となる70万Kwe
級改良型沸騰水型原子力発電所(従来技術に示した改良
型沸騰水型原子力発電所の約半分の電気出力)のECC
Sの構成を示している。
FIG. 4 shows an embodiment of the present invention 700,000 Kwe
ECC of a class improved boiling water nuclear power plant (about half the electric output of the improved boiling water nuclear power plant shown in the prior art)
The structure of S is shown.

【0020】また、図5は本発明の実施例となるECC
Sの構成を模式的に示したものである。従来の技術同
様、ECCS81はA系ECCS82とB系ECCS8
3と、C系ECCS84の3区分で構成される。
FIG. 5 shows an ECC according to an embodiment of the present invention.
2 schematically shows the configuration of S. Like the conventional technology, ECCS81 is A system ECCS82 and B system ECCS8.
3 and C system ECCS 84.

【0021】それぞれはA系電源系85,B系電源系8
6,C系電源系87からポンプや電動弁などの動的機器
の駆動電源を供給する。前記A系電源系85,B系電源
系86,C系電源系87は、互いに独立した電源系統で
ある。前記A系ECCS82は、低圧系ECCSである
RHR系1系統を備えている。前記B系ECCS83も
また、低圧系ECCSであるRHR系1系統を備えてい
る。前記C系ECCS84は、高圧系ECCSであるH
PCF系1系統を備えている。よってECCSは全部で
3系統のみとなる。
Each of the A-system power supply system 85 and the B-system power supply system 8
6, C-system power supply system 87 supplies drive power for dynamic equipment such as pumps and motor-operated valves. The A system power supply system 85, the B system power supply system 86, and the C system power supply system 87 are independent power supply systems. The A-system ECCS 82 includes one RHR system, which is a low-voltage ECCS. The B-system ECCS 83 also includes one RHR system that is a low-voltage ECCS. The C-type ECCS 84 is a high-voltage ECCS H
It has one PCF system. Therefore, ECCS is only 3 systems in total.

【0022】ここで、本発明の理解を深めるために、図
6、図7、図8、図9、図10、図11に示す従来例に
触れる。
Here, in order to deepen the understanding of the present invention, the conventional examples shown in FIGS. 6, 7, 8, 9, 10 and 11 will be touched.

【0023】図6にHPCF系の系統構成を示す。復水
貯蔵タンク(CST)10あるいは圧力抑制プール(S
/P)11の水をそれぞれ配管12あるいは配管15を
通して(この切り替えは電動弁16と電動弁17の開閉
により行う)HPCF系ポンプ13へ導き、前記ポンプ
13で昇圧してから配管14及び配管18を通してRP
Vに注入する。
FIG. 6 shows the system configuration of the HPCF system. Condensate storage tank (CST) 10 or pressure suppression pool (S
/ P) 11 through the pipe 12 or the pipe 15 respectively (this switching is performed by opening and closing the motor-operated valve 16 and the motor-operated valve 17) to the HPCF system pump 13, and after boosting the pressure with the pump 13, the pipe 14 and the pipe 18 Through RP
Inject into V.

【0024】図7にRCIC系の系統構成を示す。RP
V9内で発生する蒸気を、主蒸気配管21から分岐する
配管22及び配管23を通して、RCIC系ポンプ30
と軸が直結しているタービン24へ導きこれを駆動す
る。前記タービン24の排気は、配管25を通して前記
S/P11へと排出する。前記RCIC系ポンプ30
は、前記HPCF系と同じくCST10あるいはS/P
11の水を、それぞれ配管26及び配管28を通して
(この切り替えは電動弁27と電動弁29の開閉により
行う)水源とし、この水を昇圧して配管31と配管32
を通して前記RPV9に注入する。高圧系ECCSであ
るHPCF系ポンプ13とRCIC系ポンプ30はプラ
ント通常運転圧力付近でもRPVに注水できるほどの高
楊程ポンプである。
FIG. 7 shows the system configuration of the RCIC system. RP
The steam generated in V9 is passed through a pipe 22 and a pipe 23 branching from the main steam pipe 21, and an RCIC pump 30
It is guided to the turbine 24 which is directly connected to the shaft and drives this. Exhaust gas from the turbine 24 is discharged to the S / P 11 through a pipe 25. The RCIC system pump 30
Is a CST10 or S / P similar to the HPCF system.
The water of 11 is used as a water source through the pipe 26 and the pipe 28 (this switching is performed by opening and closing the motor-operated valve 27 and the motor-operated valve 29), and the pressure of the water is increased to form the pipes 31 and 32.
To the RPV 9 through. The HPCF system pump 13 and the RCIC system pump 30, which are high pressure system ECCS, are high-degree pumps that can inject water into the RPV even near the normal operating pressure of the plant.

【0025】図8にRPV注水時のRHR系及びADS
の系統構成を示す。前記S/P11の水を配管42を通
してRHR系ポンプ45へ導き、前記RHR系ポンプ4
5で昇圧して配管47を通してRPV9へ注入する。前
記RHR系ポンプ45は低圧系ECCSでありRPV9
内圧力が大気圧付近の時に前記RPV9に注水すること
を想定した低楊程ポンプであるため、前記RPV9内の
圧力が高い状態では注水ができない。このような場合に
は、前記RHR系ポンプ45起動前にADS49により
前記RPV9内圧力を低下させる。ADSは、前記RP
V9内で発生した蒸気をタービン側へと導く主蒸気配管
21に設置された主蒸気逃がし安全弁49を、アキュム
レータにより強制的に開操作し、蒸気を配管48から配
管50を通してS/P11内へ排出するシステムであ
る。
FIG. 8 shows the RHR system and ADS during RPV water injection.
The system configuration of is shown. The water of the S / P 11 is guided to the RHR system pump 45 through the pipe 42, and the RHR system pump 4
The pressure is increased at 5 and injected into the RPV 9 through the pipe 47. The RHR system pump 45 is a low pressure system ECCS and is RPV 9
Since the pump is a low-degree pump which is assumed to inject water into the RPV 9 when the internal pressure is near atmospheric pressure, water cannot be injected when the pressure inside the RPV 9 is high. In such a case, the pressure inside the RPV 9 is lowered by the ADS 49 before the RHR system pump 45 is started. ADS is the RP
The main steam relief safety valve 49 installed in the main steam pipe 21 that guides the steam generated in V9 to the turbine side is forcibly opened by an accumulator, and the steam is discharged from the pipe 48 into the S / P 11 through the pipe 50. It is a system that does.

【0026】前記ADSの起動論理を図9に示す。「R
PV9内の水位が規定値よりも低下した」という条件6
5と「ドライウェル19内の圧力が規定値よりも高くな
った」という条件66の両方が満たされ、かつ「低圧系
ECCSが起動している」という条件68が成立した場
合に「ADS49起動」という操作67が実行される。
The activation logic of the ADS is shown in FIG. "R
Condition 6 "The water level in PV9 has dropped below the specified value."
5 and the condition 66 that "the pressure in the dry well 19 has become higher than the specified value" are satisfied, and the condition 68 that "the low pressure system ECCS is activated" is satisfied, "ADS49 activation" The operation 67 is executed.

【0027】図10にRHR系の停止時原子炉残留熱除
去運転モード時の系統構成を示す。図10は、図8から
電動弁41を閉操作、電動弁43を開操作した状態であ
る。RPV9内の水を配管44から配管42を通してR
HR系ポンプ45に導き、前記RHR系ポンプ45で昇
圧し、RHR系熱交換器46を通すことで冷却した上で
配管47を通して前記RPV9へ戻す。前記RHR系熱
交換器46には配管61を通して冷却水が供給されてお
り、配管62から排出している。
FIG. 10 shows the system configuration of the RHR system in the shutdown reactor residual heat removal operation mode. FIG. 10 shows a state in which the electric valve 41 is closed and the electric valve 43 is opened from FIG. The water in the RPV 9 is passed from the pipe 44 through the pipe 42 to the R
It is led to the HR system pump 45, the pressure is raised by the RHR system pump 45, the RHR system heat exchanger 46 is passed through to cool it, and the pipe 47 is returned to the RPV 9. Cooling water is supplied to the RHR heat exchanger 46 through a pipe 61 and is discharged through a pipe 62.

【0028】図11にRHR系の事故時格納容器冷却運
転モード時の系統構成を示す。図11は図8から電動弁
67と電動弁68を閉操作し、電動弁63と電動弁64
と電動弁65と電動弁66を開操作した状態である。S
/Pの水を配管42を通してRHR系ポンプ45に導
き、前記RHR系ポンプ45で昇圧した後配管69及び
配管70を通して、それぞれスパージャ101及びスパ
ージャ102から、ドライウェル105及びS/C20
へ放水する。
FIG. 11 shows the system configuration of the RHR system in the containment cooling operation mode during an accident. In FIG. 11, the motor-operated valve 67 and the motor-operated valve 68 are closed from FIG.
Is a state in which the electric valve 65 and the electric valve 66 are opened. S
/ P of water is led to the RHR system pump 45 through the pipe 42, the pressure of which is increased by the RHR system pump 45, and then through the pipe 69 and the pipe 70 from the sparger 101 and the sparger 102, respectively, to the dry well 105 and the S / C 20.
To water.

【0029】これら高圧系ECCSと低圧系ECCSの
ポンプ性能の関係を図12に示す。図12は横軸にポン
プ流量、縦軸にポンプ揚程を示している。RPVに接続
する配管の中小破断時に要求されるECCSポンプの運
転点が運転点91であり、大破断時に要求されるECC
Sポンプの運転点が運転点92である。プラント出力を
100MWe以下に低減することで低圧系ECCSの必
要流量を低減し、HPCF系ポンプの性能曲線93がこ
の2点を通るようにすることを可能とした。これによ
り、前記C系ECCSは低圧系ECCSが必要なくな
り、HPCF系1系統のみの構成とすることが可能とな
った。
FIG. 12 shows the relationship between the pump performances of the high pressure ECCS and the low pressure ECCS. FIG. 12 shows the pump flow rate on the horizontal axis and the pump head on the vertical axis. The operating point of the ECCS pump required for a small or medium rupture of the piping connected to the RPV is the operating point 91, and the ECC required for a large rupture.
The operating point of the S pump is the operating point 92. By reducing the plant output to 100 MWe or less, it is possible to reduce the required flow rate of the low pressure system ECCS and allow the performance curve 93 of the HPCF system pump to pass through these two points. As a result, the C-system ECCS does not require the low-voltage ECCS, and it is possible to configure only one HPCF system.

【0030】一方、前記A系ECCSとB系ECCSは
ADS起動条件を強化し、低圧系ECCSの起動圧力を
従来の技術よりも高く設定することで高圧系ECCSを
削除可能とし、低圧系ECCSであるRHR系のみの構
成とした。前記ADS起動条件の強化について図13に
示す。図13は図9と同様にADS起動論理を示した図
である。すなわち、本発明では「RPV9内の水位が規
定値よりも低下した」という条件65と「ドライウェル
19内の圧力が規定値よりも高くなった」という条件6
6のいずれか一方が満たされ、かつ「低圧系ECCSが
起動している」という条件68が成立した場合に「AD
S49起動」という操作67が実行されるようにした。
On the other hand, the A system ECCS and the B system ECCS strengthen the ADS starting condition, and the high pressure system ECCS can be deleted by setting the starting pressure of the low pressure system ECCS higher than that of the conventional technique. Only a certain RHR system was used. FIG. 13 shows the enhancement of the ADS start condition. FIG. 13 is a diagram showing the ADS activation logic similarly to FIG. That is, in the present invention, the condition 65 "the water level in the RPV 9 has dropped below the specified value" and the condition 6 "the pressure in the dry well 19 has risen above the specified value".
When either one of 6 is satisfied and the condition 68 that “low-voltage system ECCS is activated” is satisfied, “AD
The operation 67 "Start S49" is executed.

【0031】このようにADS49の起動条件が緩和さ
れるため、RPV9内圧力が高い状態でも前記ADSの
起動と前記RHR系(低圧系ECCS)による前記PR
V内への注水がより確実に行われるようになる。更に、
低圧系ECCSが起動する時のRPV内圧力の設定値を
引き上げた。
Since the starting condition of the ADS 49 is relaxed in this way, even when the internal pressure of the RPV 9 is high, the starting of the ADS and the PR by the RHR system (low pressure system ECCS) are performed.
Water injection into V can be performed more reliably. Furthermore,
The set value of the RPV internal pressure at the time of starting the low pressure system ECCS was increased.

【0032】なぜなら、RPV9内の水位低下を検知す
ると直ちにポンプを起動し、前記RPV9内への注水を
開始できるHPCF系と異なり、RHR系は前記RPV
内の水位低下を検知してからADS49が起動して前記
RPV9内の圧力がRHR系の運転可能圧力になるまで
下がってから起動して前記RPV9内へ注水を行うた
め、HPCF系に比べて注水開始までの時間が若干必要
だからである。そこでRHR系を起動するための前記R
PV内の圧力設定値を引き上げることにより、注水開始
までの時間差を縮め、HPCF系のような高圧系ECC
Sの設置の必要性を低減した。
This is because, unlike the HPCF system which can start the pump immediately after detecting the drop in the water level in the RPV 9 and start the water injection into the RPV 9, the RHR system is the RPV system.
Since the ADS 49 is activated after detecting the decrease in the water level inside the RPV 9 and the pressure inside the RPV 9 is lowered until it reaches the operable pressure of the RHR system, the APV is activated and water is injected into the RPV 9. This is because it takes some time to start. Therefore, the R for starting the RHR system
By increasing the pressure setting value in the PV, the time difference until the start of water injection is shortened, and high pressure system ECC such as HPCF system
The need to install S has been reduced.

【0033】以上のように、本発明ではECCSの3つ
の各区分に高圧系ECCSあるいは低圧系ECCSの1
系統のみずつ設置する構成のECCSを備えた沸騰水型
原子力発電所を提供する。
As described above, according to the present invention, one of the high-voltage ECCS or the low-voltage ECCS is assigned to each of the three ECCS sections.
Provide a boiling water nuclear power plant equipped with ECCS that is installed only in each system.

【0034】上述した本発明の主な特徴を挙げると、次
の通りである。
The main features of the present invention described above are as follows.

【0035】第一の特徴は、ECCSの構成を各電源区
分に1系統のみずつの計3系統とし、そのうち2つ以上
の系統でポンプから熱交換器を通してRPVへ注水でき
る構成とすることである。
The first feature is that the ECCS is configured to have a total of three systems, one system for each power source section, and two or more systems among them can inject water from the pump to the RPV through the heat exchanger. .

【0036】これにより、系統数を電源区分と同数まで
減少させたECCSで、かつ原子炉停止時に炉心で発生
する崩壊熱を除去する機能と、事故時に格納容器を冷却
する機能を備えたECCSを備えた沸騰水型原子力発電
所を提供できる。
As a result, an ECCS having the number of systems reduced to the same number as the number of power supply divisions, and an ECCS having a function of removing decay heat generated in the core at the time of reactor shutdown and a function of cooling the containment vessel at the time of accident It is possible to provide the equipped boiling water nuclear power plant.

【0037】第二の特徴は、ECCSの構成を高圧系E
CCSが1系統、低圧系ECCSが2系統の合計3系統
である構成とし、「前記RPV内水位が規定値よりも低
いこと」、あるいは「前記PCV内のドライウェルにお
ける圧力が規定値よりも高いこと」のいずれか一つが成
立し、かつ「低圧系ECCSが起動していること」が成
立したことを前記ADSの起動条件とすることである。
The second feature is that the structure of ECCS is high pressure system E.
The CCS has one system and the low-pressure system ECCS has two systems, that is, three systems in total, and "the water level in the RPV is lower than a specified value" or "the pressure in the dry well in the PCV is higher than the specified value". That is, one of the above conditions is satisfied, and that "the low-voltage system ECCS is activated" is satisfied as the activation condition of the ADS.

【0038】これにより、高圧系ECCSと低圧系EC
CSにより第一の手段を実現し、かつ通常運転中に前記
RPV内水位が過渡的に低下した時に前記RPV内へ補
給水を注水する機能を備えたECCS構成を提供でき
る。
As a result, the high-voltage ECCS and the low-voltage EC
It is possible to provide the ECCS configuration that realizes the first means by CS and has a function of injecting makeup water into the RPV when the water level in the RPV transiently drops during normal operation.

【0039】第三の特徴は、第一の特徴で述べたECC
S構成において、低圧系ECCSの起動圧力を、高圧系
ECCSの起動圧力の1/2より大きく、通常時運転圧
力約7MPa(gage)より小さくすることである。
The third characteristic is the ECC described in the first characteristic.
In the S configuration, the starting pressure of the low pressure system ECCS is set to be higher than half the starting pressure of the high pressure system ECCS and smaller than the normal operating pressure of about 7 MPa (gage).

【0040】これにより、第二の特徴による作用に加
え、RPVに接続する配管に破断が発生するなどの事故
時に、低圧系ECCSが高圧系ECCSなみに速やかに
前記RPV内への注水を開始することが可能なECCS
を有する沸騰水型原子力発電所を提供する。
Thus, in addition to the function of the second feature, in the event of an accident such as breakage of the pipe connected to the RPV, the low pressure ECCS starts water injection into the RPV as quickly as the high pressure ECCS. ECCS capable
To provide a boiling water nuclear power plant.

【0041】第四の特徴は、第一の特徴あるいは第二の
特徴で述べたECCS構成において、発電所電気出力を
100万KWe以下とすることである。
The fourth feature is that the electric power output of the power plant is set to 1,000,000 KWe or less in the ECCS configuration described in the first feature or the second feature.

【0042】これにより、第一の特徴あるいは第二の特
徴を実現する適当なプラント出力レベルの沸騰水型原子
力発電所を提供できる。
This makes it possible to provide a boiling water nuclear power plant having an appropriate plant output level that realizes the first or second characteristic.

【0043】[0043]

【発明の効果】本発明によれば、簡単な構成にして原子
力発電プラントの経済性を向上させることができる。
According to the present invention, the economical efficiency of a nuclear power plant can be improved with a simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来例に係るもので、RPVおよびECCSの
配管系統を全体的に示した概略図である。
FIG. 1 is a schematic diagram related to a conventional example and generally showing a piping system of RPV and ECCS.

【図2】従来例に係るもので、ECCSを電源系との関
連でまとめた概略図である。
FIG. 2 is a schematic diagram relating to a conventional example and summarizing ECCS in relation to a power supply system.

【図3】従来例に係るもので、ECCSポンプの性能曲
線図である。
FIG. 3 is a performance curve diagram of an ECCS pump according to a conventional example.

【図4】本発明の実施形態に係る実施例で、RPVおよ
びECCSの配管系統を全体的に示した概略図である。
FIG. 4 is a schematic view showing an entire RPV and ECCS piping system in an example according to an embodiment of the present invention.

【図5】本発明の実施形態に係る実施例で、ECCSを
電源系との関連でまとめた概略図である。
FIG. 5 is a schematic diagram in which ECCS is summarized in relation to a power supply system in an example according to the embodiment of the present invention.

【図6】従来例に係るもので、HPCF系の系統構成を
示す図である。
FIG. 6 is a diagram related to a conventional example and showing a system configuration of an HPCF system.

【図7】従来例に係るもので、RCIC系の系統構成を
示す図である。
FIG. 7 is a diagram related to a conventional example and showing a system configuration of an RCIC system.

【図8】従来例に係るもので、RHR系のRPV注水モ
ード時の系統構成を示す図である。
FIG. 8 is a diagram related to a conventional example and showing a system configuration in an RHR system RPV water injection mode.

【図9】従来例に係るもので、ADS系の起動原理を示
すブロック図である。
FIG. 9 is a block diagram showing a starting principle of an ADS system according to a conventional example.

【図10】従来例に係るもので、RHR系の停止時冷却
モード時の系統構成を示す図である。
FIG. 10 is a diagram related to a conventional example and showing a system configuration in a cooling mode during stop of an RHR system.

【図11】従来例に係るもので、RHR系の格納容器冷
却モード時の系統構成を示す図である。
FIG. 11 is a diagram relating to a conventional example and showing a system configuration in an RHR system containment vessel cooling mode.

【図12】本発明の実施形態に係る実施例で、ECCS
ポンプの性能曲線図である。
FIG. 12 shows an example of ECCS according to an embodiment of the present invention.
It is a performance curve figure of a pump.

【図13】本発明の実施形態に係る実施例で、ADS系
の起動原理を示すブロック図である。
FIG. 13 is a block diagram showing the starting principle of the ADS system in the example according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,81…ECCS、2,82…A系ECCS、3,8
3…B系ECCS、4,84…C系ECCS、8…原子
炉格納容器、9…原子炉圧力容器(RPV)、10…復
水貯蔵タンク、11…サプレッションプール(S/
P)、13…高圧炉心注水系(HPCF系)ポンプ、1
9…ドライウェル、20…圧力抑制室(S/C)、21
…主蒸気配管、24…原子炉隔離時冷却系(RCIC
系)タービン、30…RCIC系ポンプ、45…残留熱
除去系(RHR系)ポンプ、46…RHR系熱交換器、
49…自動減圧系(ADS)、73,93…高圧系EC
CSポンプ性能曲線、74,94…低圧系ECCSポン
プ性能曲線、101…ドライウェルスパージャ、102
…S/Cスパージャ。
1,81 ... ECCS, 2,82 ... A ECCS, 3,8
3 ... B system ECCS, 4, 84 ... C system ECCS, 8 ... Reactor containment vessel, 9 ... Reactor pressure vessel (RPV), 10 ... Condensate storage tank, 11 ... Suppression pool (S /
P), 13 ... High pressure core water injection system (HPCF system) pump, 1
9 ... Dry well, 20 ... Pressure suppression chamber (S / C), 21
… Main steam piping, 24… Cooling system for reactor isolation (RCIC
System) turbine, 30 ... RCIC system pump, 45 ... residual heat removal system (RHR system) pump, 46 ... RHR system heat exchanger,
49 ... Automatic decompression system (ADS), 73, 93 ... High pressure system EC
CS pump performance curve, 74, 94 ... Low pressure system ECCS pump performance curve, 101 ... Drywell sparger, 102
... S / C sparger.

フロントページの続き (72)発明者 松浦 正義 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内Continued front page    (72) Inventor Masayoshi Matsuura             3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Stock Association             Hitachi, Ltd. Nuclear Business Division

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炉心に燃料集合体が備わる原子炉圧力容器
(RPV)と、該RPVを全体的に包み、かつRPVか
ら放射性物質が放出されても、その放射性物質が外部に
漏れないように封ずる気密容器としての機能を有する原
子炉格納容器(PCV)と、復水貯蔵タンクと、圧力抑
制プールと、前記RPV、前記復水貯蔵タンク、および
前記圧力抑制プールを連通し、かつ水等の流体を流通す
る配管と、非常時に前記RPV内の圧力を下げるように
作動する自動減圧系(ADS)とを有し、前記配管が破
断して前記RPV内の炉心を冷却する水量が通常運転中
に想定される過渡変化の範囲を越えて減少するような非
常時には、前記RPVに注水して前記炉心を冷却する非
常用炉心冷却システム(ECCS)が備えられる沸騰水
型原子力発電所において、 前記ECCSは、前記RPVに注水するポンプを夫々1
台づつ備える3つの系統を有し、かつ各ポンプの駆動電
源はそれぞれ独立した3区分の別電源系とし、 前記3つの系統のうち、少なくとも2系統には前期RP
Vに注水される冷却水を冷やす熱交換器を備えたことを
特徴とする沸騰水型原子力発電所。
Claim: What is claimed is: 1. A reactor pressure vessel (RPV) having a fuel assembly in a core, and a RPV that entirely encloses the RPV and prevents the radioactive substance from leaking to the outside even if the radioactive substance is released from the RPV. A reactor containment vessel (PCV) having a function as an airtight container for sealing, a condensate storage tank, a pressure suppression pool, the RPV, the condensate storage tank, and the pressure suppression pool, and water, etc. Of the fluid, and an automatic depressurization system (ADS) that operates so as to reduce the pressure in the RPV in an emergency, and the pipe breaks to cool the core in the RPV so that the amount of water is normal. In a boiling water nuclear power plant equipped with an emergency core cooling system (ECCS) that cools the core by injecting water into the RPV in an emergency in which the transient change is expected to decrease beyond the range. Stomach, the ECCS is, husband the pump for water injection to the RPV 's 1
It has three systems with each one, and the driving power source of each pump is a separate power source system of three independent sections.
A boiling water nuclear power plant, which is equipped with a heat exchanger for cooling the cooling water poured into V.
【請求項2】請求項1に記載されているものにおいて、 前記ECCSは、1系統を高圧系とし、残り2系統を低
圧系とし、高圧系には高圧仕様のポンプを、低圧系には
低圧仕様のポンプを用いたことを特徴とする沸騰水型原
子力発電所。
2. The ECCS according to claim 1, wherein the ECCS has one system as a high pressure system and the other two systems as a low pressure system, a high pressure system having a high pressure pump and a low pressure system having a low pressure system. A boiling water nuclear power plant characterized by using a specified pump.
【請求項3】請求項2に記載されているものにおいて、 前記高圧系のECCSによるRPV内への注水は、RP
V内の圧力が通常運転中の圧力〔約7MPa(gag
e)〕にほぼ等しいときでも可能とし、 前記低圧系のECCSによるRPV内への注水は、RP
V内の圧力が通常運転中の1/2以下で可能とし、 前記ADSが作動する条件は、「前記RPV内水位が規
定値よりも低く」あるいは「前記RPVを格納する前記
PCV内(ドライウェル)の圧力が規定値よりも高
く」、しかも「前記低圧系ECCSが起動している」と
きに成立することを特徴とする沸騰水型原子力発電所。
3. The method according to claim 2, wherein the high pressure system ECCS injects water into the RPV.
The pressure in V is the pressure during normal operation [about 7 MPa (gag
e)] is almost the same, and the injection of water into the RPV by the ECCS of the low pressure system is performed by RP.
The pressure within V can be set to 1/2 or less of that during normal operation, and the condition for the ADS to operate is that "the water level in the RPV is lower than a specified value" or "in the PCV storing the RPV (dry well B) is higher than a specified value "and" the low-pressure system ECCS is activated ", the boiling water nuclear power plant.
【請求項4】請求項2に記載されているものにおいて、 前記低圧系ECCSが起動する圧力は、前記高圧系EC
CSが起動する圧力の1/2より大きく、通常運転時の
圧力より低い値であることを特徴とする沸騰水型原子力
発電所。
4. The high pressure system EC according to claim 2, wherein the pressure at which the low pressure system ECCS starts is the high pressure system EC.
A boiling water nuclear power plant, which has a value that is greater than half the pressure at which CS starts and lower than the pressure during normal operation.
【請求項5】請求項1から4の何れか一つに記載されて
いるものにおいて、 発電所発電出力が100万KWe以下であることを特徴
とする沸騰水型原子力発電所。
5. The boiling water nuclear power plant according to any one of claims 1 to 4, wherein the power output of the power plant is 1,000,000 KWe or less.
JP2001369690A 2001-12-04 2001-12-04 Boiling water nuclear power plant Expired - Lifetime JP3984038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369690A JP3984038B2 (en) 2001-12-04 2001-12-04 Boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369690A JP3984038B2 (en) 2001-12-04 2001-12-04 Boiling water nuclear power plant

Publications (2)

Publication Number Publication Date
JP2003167088A true JP2003167088A (en) 2003-06-13
JP3984038B2 JP3984038B2 (en) 2007-09-26

Family

ID=19179041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369690A Expired - Lifetime JP3984038B2 (en) 2001-12-04 2001-12-04 Boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JP3984038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019393A1 (en) * 2007-07-26 2009-01-28 Kabushiki Kaisha Toshiba Nuclear reactor with an emergency core cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019393A1 (en) * 2007-07-26 2009-01-28 Kabushiki Kaisha Toshiba Nuclear reactor with an emergency core cooling system

Also Published As

Publication number Publication date
JP3984038B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US8817941B2 (en) Pressurized water reactor plant
US8559583B1 (en) Passive cooling and depressurization system and pressurized water nuclear power plant
CN1197092C (en) BWR nuclear power generator
KR101234570B1 (en) Integrated type reactor capable of mitigating loss-of-coolant accident and its mitigation method
CN103578581A (en) Safety injection tank system pressurized with separated nitrogen gas tank
US20210151208A1 (en) Alternative circulation cooling method for emergency core cooling system, and nuclear power plant
JP2009031079A (en) Emergency core cooling system
KR101463441B1 (en) High concentration boron injection system and safety injection system having the same
CN111916233A (en) Small pressurized water reactor safety injection system combining passive and active functions
JPH0498198A (en) Core cooling facility for nuclear power plant
JP2003167088A (en) Boiling water nuclear power generating plant
EP0238079A2 (en) Emergency core cooling apparatus
JPS6375691A (en) Natural circulation type reactor
CN104952496A (en) Emergent water supply system of floating nuclear power station
CN113421660A (en) Novel automatic pressure relief system and method for nuclear power plant
CN104934079A (en) Long-term passive emergency water supply system for floating nuclear power plant
KR101456575B1 (en) In vessel boron injection system
JPH1090468A (en) Emergency core cooling system
JP2011185741A (en) Emergency core cooling system
JPH09243779A (en) Nuclear reactor
JP5844319B2 (en) Emergency core cooling backup equipment
CN216487332U (en) Novel automatic pressure relief system of nuclear power plant
CN206541631U (en) A kind of emergency feedwater supply system
JPH05215886A (en) Emergency reactor core cooling system
JPH0242393A (en) Reactor core cooling device for emergency for nuclear reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3984038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

EXPY Cancellation because of completion of term