JP2003166050A - Vacuum arc vapor-deposition method, and apparatus therefor - Google Patents

Vacuum arc vapor-deposition method, and apparatus therefor

Info

Publication number
JP2003166050A
JP2003166050A JP2001365606A JP2001365606A JP2003166050A JP 2003166050 A JP2003166050 A JP 2003166050A JP 2001365606 A JP2001365606 A JP 2001365606A JP 2001365606 A JP2001365606 A JP 2001365606A JP 2003166050 A JP2003166050 A JP 2003166050A
Authority
JP
Japan
Prior art keywords
magnet
duct
vapor deposition
vacuum arc
arc vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001365606A
Other languages
Japanese (ja)
Other versions
JP4003448B2 (en
Inventor
Yasuo Murakami
泰夫 村上
Takashi Mikami
隆司 三上
Kiyoshi Ogata
潔 緒方
Hiroshi Murakami
浩 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2001365606A priority Critical patent/JP4003448B2/en
Priority to US10/305,008 priority patent/US7033462B2/en
Priority to DE60212551T priority patent/DE60212551T2/en
Priority to EP02026683A priority patent/EP1316986B1/en
Priority to TW91134753A priority patent/TW575672B/en
Priority to KR1020020075172A priority patent/KR100569905B1/en
Priority to CNB02160651XA priority patent/CN1205353C/en
Publication of JP2003166050A publication Critical patent/JP2003166050A/en
Application granted granted Critical
Publication of JP4003448B2 publication Critical patent/JP4003448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To realize vacuum arc vapor-deposition having uniform film-forming characteristics by preventing the degradation of the film-forming characteristics caused by a divergent magnetic field around a termination magnet surrounding a duct. <P>SOLUTION: When evaporating a cathode material 19 by arc discharge from an evaporation source 11 located in one end of a curving or inflecting duct 9, forming a magnetic filter 22 by arranging magnets so as to surround duct 9, at each of several positions of the duct 9, generating a deflected magnetic field 17' in the duct 9 by the filter 22, transporting a plasma stream 23 including ions of a cathode material 19 from one end of the duct 9 to an emitting port 13 at the other and while removing coarse particles, drawing the ions of the plasma stream 23 from the emitting port 13 to a film forming chamber 1, flying them toward a substrate 6 in the film forming chamber 1, and depositing the cathode material 19 onto the substrate 6, this method is characterized by installing the termination magnet nearest to the emitting port 13 (an electromagnetic coil 21), so as to tilt against the discharging plane of the emitting port 13, to control the flying direction of ions. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部品、機械
部品、工具、金型等の基材の耐摩耗性を向上するため
に、基材表面に薄膜を蒸着して形成する真空アーク蒸発
方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum arc evaporation method for forming a thin film on the surface of a base material in order to improve the wear resistance of the base material such as automobile parts, machine parts, tools and molds. And its device.

【0002】[0002]

【従来の技術】一般に、真空アーク蒸着は、陰極と陽極
の間にアーク放電を生じさせ、陰極材料を蒸発させて基
材に蒸着するという簡便な薄膜形成方法であり、生産性
に優れるという特徴を持つ。
2. Description of the Related Art Generally, vacuum arc vapor deposition is a simple thin film forming method in which an arc discharge is generated between a cathode and an anode to evaporate a cathode material and deposit it on a substrate, and is characterized by high productivity. have.

【0003】しかし、陰極材料から(放電状態によって
は陰極からも)、直径が数μmにもなる大きな固まりの
粗大粒子(ドロップレット)が飛出し、このドロップレ
ットが基材に付着して成膜特性が劣下することが知られ
ている。
However, from the cathode material (and depending on the discharge state, from the cathode), large lumps of coarse particles (droplets) with a diameter of several μm are ejected, and these droplets adhere to the substrate to form a film. It is known that the characteristics deteriorate.

【0004】このドロップレットによる成膜特性の劣下
を防止するため、電磁コイル等の磁石によりつつ、陰極
と基材との間で磁場を発生し、この磁場によってドロッ
プレットを除去し、プラズマ流だけを磁場に沿って基材
方向に輸送する蒸着方法や、前記磁場でプラズマを集束
させて高密度化することによってドロップレットを溶解
する蒸着方法が提案されている。
In order to prevent the film-forming characteristics from being deteriorated by the droplets, a magnetic field is generated between the cathode and the base material while using a magnet such as an electromagnetic coil, and the magnetic field removes the droplets so that the plasma flow is reduced. There are proposed a vapor deposition method of transporting only the above toward the substrate along a magnetic field, and a vapor deposition method of melting the droplets by concentrating and densifying the plasma in the magnetic field.

【0005】前者のプラズマ流だけを基材方向に輸送す
る従来の真空アーク蒸着方法及び装置は、本出願人の既
出願に係る特開平2001−59165号公報(C23
C14/32)等に記載されている。
The former vacuum arc vapor deposition method and apparatus for transporting only the plasma flow toward the substrate is disclosed in Japanese Patent Application Laid-Open No. 2001-59165 (C23) filed by the present applicant.
C14 / 32) and the like.

【0006】この公報等に記載の従来の真空アーク蒸着
装置(アーク式イオンブレーディング装置)は、図9の
平面図に示すように形成される。
The conventional vacuum arc vapor deposition apparatus (arc type ion braiding apparatus) described in this publication is formed as shown in the plan view of FIG.

【0007】そして、成膜室1を形成する金属製の接地
された真空容器2は、図示省略した真空排気装置によっ
て右側の排気口3から排気され、左側のガス導入口4か
ら、アルゴンガス等の不活性ガスや反応性ガスが導入さ
れる。
The metal-made grounded vacuum container 2 forming the film forming chamber 1 is evacuated from an exhaust port 3 on the right side by a vacuum exhaust device (not shown), and an argon gas or the like is supplied from a gas inlet port 4 on the left side. Inert gas or reactive gas is introduced.

【0008】また、前記公報においては、成膜室1の円
筒形のホルダに基材を複数個取付けた構造が示されてい
るが、図9においては、説明を簡単にするため、成膜室
1のほぼ中央に平板状の1個のホルダ5が、その表面を
前方に向けて、かつ、回転自在に設けられ、このホルダ
5の表面側に基材6が着脱自在に保持される。
Further, in the above-mentioned publication, a structure in which a plurality of base materials are attached to the cylindrical holder of the film forming chamber 1 is shown, but in FIG. One flat plate-shaped holder 5 is rotatably provided substantially in the center of 1 with its surface facing forward, and the base material 6 is detachably held on the front surface side of this holder 5.

【0009】この基材はホルダ5を介してバイアス電源
7の陰極に接続され、基材6が真空容器2に対して代表
的には−50V〜−500Vに直流バイアスされる。
This substrate is connected to the cathode of a bias power source 7 through a holder 5, and the substrate 6 is DC biased with respect to the vacuum container 2 typically at -50V to -500V.

【0010】なお、図中の8はバイアス電源7の陰極を
絶縁する真空容器2の後面板2′の絶縁体である。
Reference numeral 8 in the drawing is an insulator of the rear plate 2'of the vacuum container 2 for insulating the cathode of the bias power source 7.

【0011】つぎに、真空容器2の前方にほぼ「ノ」の
字状に湾曲した断面矩形の金属製のダクト9が設けら
れ、このダクト9は、前側一端の接地された端板9′の
中央部に絶縁体10を介して蒸発源11が設けられ、こ
の蒸発源11に陽極接地の数10V程度のアーク電源1
2の陰極が接続され、ダクト9が陽極、蒸発源11が陰
極を形成する。
Next, in front of the vacuum container 2, a metal duct 9 having a rectangular cross section which is curved in a substantially "U" shape is provided. This duct 9 is connected to a grounded end plate 9'of one end on the front side. An evaporation source 11 is provided in the center through an insulator 10, and the evaporation source 11 has an anode power source of several tens of volts and an arc power supply 1
The two cathodes are connected, the duct 9 forms the anode and the evaporation source 11 forms the cathode.

【0012】なお、ダクト9を陽極に兼用する代わり
に、ダクト9と別個に陽極電極が設けられることもあ
る。
Incidentally, instead of using the duct 9 also as an anode, an anode electrode may be provided separately from the duct 9.

【0013】また、蒸発源11は、図示省略した水冷機
構、真空シール機構、トリガ機構等も備える。
The evaporation source 11 also includes a water cooling mechanism, a vacuum sealing mechanism, a trigger mechanism, etc., which are not shown.

【0014】さらに、ダクト9の他端が真空容器2の前
面板2″の中央部に取付けられ、ダクト9の他端の放出
口13が成膜室1に連通し、このとき、放出口13の左
右方向(水平方向)の放出面の中心がホルダ5、基材6
の中心に重なる。
Further, the other end of the duct 9 is attached to the central portion of the front plate 2 "of the vacuum container 2, and the discharge port 13 at the other end of the duct 9 communicates with the film forming chamber 1 at this time. The center of the discharge surface in the left-right direction (horizontal direction) of the holder 5 and the base material 6
Overlap the center of.

【0015】つぎに、ダクト9の両端間の複数個所それ
ぞれに、ダクト9を囲んだ磁石としての電磁コイル1
4′,14が設けられる。
Next, the electromagnetic coil 1 as a magnet that surrounds the duct 9 is provided at each of a plurality of positions between both ends of the duct 9.
4 ', 14 are provided.

【0016】このとき、従来は、放出口13に最も近い
終端磁石としての電磁コイル14′及び他の電磁コイル
14が全て同じ大きさ(寸法)に形成される。
At this time, conventionally, the electromagnetic coil 14 'as the terminal magnet closest to the emission port 13 and the other electromagnetic coil 14 are all formed to have the same size (dimension).

【0017】さらに、各電磁コイル14′,14は電流
源としてのコイル電源15の出力両端間に直列接続さ
れ、制御装置16のコイル電流の制御により、各電磁コ
イル14′,14の通電が制御され、この制御に基づく
各電磁コイル14′,14の通電により、図中の実線矢
印のループに示すダクト9に沿って湾曲した偏向磁場1
7が形成され、この磁場17が磁気フィルタ18を形成
する。
Further, the electromagnetic coils 14 ', 14 are connected in series between both ends of the output of the coil power source 15 as a current source, and the control of the coil current of the controller 16 controls the energization of the electromagnetic coils 14', 14. Due to the energization of the respective electromagnetic coils 14 ', 14 based on this control, the deflection magnetic field 1 curved along the duct 9 shown by the loop of the solid arrow in the figure.
7 is formed, and this magnetic field 17 forms a magnetic filter 18.

【0018】そして、陽極であるダクト9と陰極である
蒸発源11との間の真空アーク放電により、蒸発源11
のTi,Cr,Mo,Ta,W,Al,Cuのような単
体金属、TiAlのような合金等の導電体の陰極材料1
9が蒸発する。
Then, the evaporation source 11 is formed by vacuum arc discharge between the duct 9 which is the anode and the evaporation source 11 which is the cathode.
Cathode material 1 of a conductor such as a single metal such as Ti, Cr, Mo, Ta, W, Al or Cu, or an alloy such as TiAl
9 evaporates.

【0019】さらに、アーク放電によって生成された電
子及び陰極材料19のイオンを含んだ破線矢印のプラズ
マ流20が偏向磁場17に沿ってダクト9の一端から他
端の放出口13に輸送される。
Furthermore, a plasma stream 20 indicated by a dashed arrow containing electrons generated by the arc discharge and ions of the cathode material 19 is transported from one end of the duct 9 to the emission port 13 at the other end along the deflection magnetic field 17.

【0020】このとき、蒸発源11から飛出したドロッ
プレットは、電気的に中性であるか、又は、プラズマ中
で負に帯電したりするが、いずれにしても質量が非常に
大きいため、偏向磁場17に関係なく直進し、ダクト9
の内壁に衝突して除去される。
At this time, the droplets ejected from the evaporation source 11 are either electrically neutral or are negatively charged in the plasma, but in any case, the mass is very large. Regardless of the deflection magnetic field 17, go straight, and the duct 9
Is removed by colliding with the inner wall of the.

【0021】そして、放出口13に到達した陰極材料1
9のイオンは、バイアス電源7による基材6の大きな負
電位のバイアスに基づき、成膜室1に引出されて基材6
の表面に飛着し、基材6の表面に陰極材料19の蒸着膜
が成膜される。
Then, the cathode material 1 that has reached the emission port 13
The ions of 9 are extracted into the film forming chamber 1 on the basis of a large negative potential bias of the substrate 6 by the bias power source 7 and
On the surface of the base material 6, and a vapor deposition film of the cathode material 19 is formed on the surface of the base material 6.

【0022】なお、陰極材料19のイオンの引出しに連
動してガス導入口4から成膜室1内に反応性ガスを導入
すると、このガスが陰極材料19のイオンと反応し、基
材6の表面に、例えば炭化チタンや窒化チタン等の金属
化合物薄膜が蒸着される。
When a reactive gas is introduced into the film forming chamber 1 through the gas inlet 4 in association with the extraction of the ions of the cathode material 19, this gas reacts with the ions of the cathode material 19 and the A metal compound thin film such as titanium carbide or titanium nitride is deposited on the surface.

【0023】[0023]

【発明が解決しようとする課題】前記図9の従来装置の
真空アーク蒸着においては、終端磁石の電磁コイル1
4′が放出口13の放出面及び基材6に平行に設置され
る。
In the vacuum arc vapor deposition of the conventional apparatus shown in FIG. 9, the electromagnetic coil 1 of the terminal magnet is used.
4'is installed parallel to the discharge surface of the discharge port 13 and the substrate 6.

【0024】一方、一様な磁場中で電子が輸送される状
態を考えると、よく知られるように、電子はつぎの数1
の式のローレンツ力Fを受ける。
On the other hand, considering the state in which electrons are transported in a uniform magnetic field, as is well known, the electrons are
Receives the Lorentz force F of the formula.

【0025】[0025]

【数1】F=v×B(v:電子の速度ベクトル、B:磁
束密度のベクトル、×はベクトル積(外積)演算子)
## EQU1 ## F = v × B (v: velocity vector of electron, B: vector of magnetic flux density, × is vector product (outer product) operator)

【0026】そして、このローレンツ力Fにより、電子
が螺旋状に回転しながら偏向磁場17の磁力線に沿って
進む。
The Lorentz force F causes the electrons to spirally rotate while advancing along the lines of magnetic force of the deflection magnetic field 17.

【0027】そして、陰極材料19のイオンは、この電
子に引張られるようにダクト9内を進んで放出口13に
輸送される。
Then, the ions of the cathode material 19 travel in the duct 9 so as to be attracted by the electrons and are transported to the emission port 13.

【0028】ところで、終端磁石の電磁コイル14′の
付近では図10の(a),(b)の実線矢印の磁力線に
示すように発散磁場になり、放出口13に到達した電子
はこの発散磁場に沿って飛行する。
By the way, in the vicinity of the electromagnetic coil 14 'of the terminal magnet, a divergent magnetic field is generated as shown by the magnetic force lines of solid arrows in FIGS. 10 (a) and 10 (b), and the electrons arriving at the emission port 13 have this divergent magnetic field. Fly along.

【0029】なお、図10の(a),(b)は図9の4
個の電磁コイル14,14′のうちの1つおきの2個の
電磁コイル14,14′のみ通電した場合の磁力線を示
す平面図,右側面図である。
10 (a) and 10 (b) are shown in FIG.
FIG. 3 is a plan view and a right side view showing magnetic lines of force when only every other two electromagnetic coils 14, 14 ′ of the individual electromagnetic coils 14, 14 ′ are energized.

【0030】この磁力線に沿う電子の飛行軌跡は、電子
に引っ張られて移動する陰極材料19のイオンの飛行軌
跡に相当し、電子の飛行軌跡から陰極材料19のイオン
の軌跡を把握できる。
The flight trajectory of the electrons along the lines of magnetic force corresponds to the flight trajectory of the ions of the cathode material 19 which is pulled by the electrons and moves, and the trajectory of the ions of the cathode material 19 can be grasped from the flight trajectory of the electrons.

【0031】そして、図10の(a),(b)の磁力線
に基づく電子の飛行軌跡は、図11の(a),(b)の
平面図,右側面図の実線に示すようになる。
The flight trajectories of the electrons based on the magnetic lines of force in FIGS. 10A and 10B are shown by the solid lines in the plan view and the right side view of FIGS. 11A and 11B.

【0032】すなわち、前記の発散磁場により、電子の
基材到達位置が、湾曲の向きに応じて、基材6の中心か
ら左方向に大きく偏向し、上下方向(垂直方向)には大
きく発散する。
That is, the divergent magnetic field causes the electron arrival position of the substrate to be largely deflected leftward from the center of the substrate 6 according to the direction of the curve, and to be largely diverged in the vertical direction (vertical direction). .

【0033】また、発散磁場をBとすると、この磁場B
の勾配∇Bが発生し、電子のような荷電粒子は、つぎの
数2の式に示す速度VB で勾配∇Bが磁場Bに重なるよ
うに回転したときに右ねじが進む方向にドリフトし、こ
の∇Bドリフトによって電子の軌跡が一層ずれる。
If the divergent magnetic field is B, this magnetic field B
And a charged particle such as an electron drifts in the direction in which the right-hand screw advances when rotated so that the gradient ∇B overlaps the magnetic field B at the velocity V B shown in the following equation (2). , This ∇B drift further shifts the electron trajectory.

【0034】[0034]

【数2】VB=−μ・(∇B×B)/(q・B2),
(μ:透磁率、q:電荷、B:磁場ベクトル、∇B:磁
場Bの勾配ベクトル、×はベクトル外積の演算子、・は
ベクトル内積の演算子)
[Formula 2] VB = −μ · (∇B × B) / (q · B2),
(Μ: permeability, q: charge, B: magnetic field vector, ∇B: gradient vector of magnetic field B, × is an operator of vector outer product, · is an operator of vector inner product)

【0035】したがって、陰極材料19のイオンを、基
材6表面中心等の所望の位置を中心にして飛着させるこ
とができない。
Therefore, the ions of the cathode material 19 cannot be made to fly around a desired position such as the center of the surface of the substrate 6.

【0036】なお、ダクト9及び電磁コイル14,1
4′が断面矩形の場合、矩形の電磁コイル14,14′
の磁場特性に基づき、中心部よりも外寄りになる程、磁
場の勾配∇Bが強くなるため、斜め下方向のドリフト速
度が大きくなり、陰極材料19の飛着位置の上方向の発
散より、下方向の発散が大きくなる。
The duct 9 and the electromagnetic coils 14, 1
When 4'has a rectangular cross section, rectangular electromagnetic coils 14, 14 '
On the basis of the magnetic field characteristics of, the gradient ∇B of the magnetic field becomes stronger as it gets closer to the outside than the central part, so the drift velocity in the obliquely downward direction becomes large, and the upward divergence of the flying position of the cathode material 19 causes Greater downward divergence.

【0037】そして、陰極材料19のイオンの飛着中心
を、例えば基材6表面の中心部に制御することができな
いため、電磁コイル14,14′を通流するコイル電流
の向きを周期的に逆に切換えて陰極材料19のイオンの
飛着位置を周期的にずらすようにしても、基材6に陰極
材料19を、所望の位置へ薄膜を蒸着して成膜すること
ができず、均一な成膜特性を得るには十分とはいえない
問題点がある。
Since the center of ion deposition of the cathode material 19 cannot be controlled, for example, at the center of the surface of the base material 6, the direction of the coil current flowing through the electromagnetic coils 14, 14 'is periodically changed. Even if the ion implantation position of the cathode material 19 is periodically shifted by switching in the opposite direction, the cathode material 19 cannot be deposited on the base material 6 by depositing a thin film at a desired position, so that it is uniform. However, there is a problem that it cannot be said that sufficient film formation characteristics are obtained.

【0038】本発明は、終端磁石(電磁コイル14′)
の付近での発散磁場に基づく陰極材料19の蒸着位置の
左右方向のずれや上下方向の発散を防止し、基材6に均
一な蒸着薄膜を成膜し得るようにすることを課題とし、
さらには、陰極材料19のイオンの基材到達位置を自由
に制御して成膜特性の一層の向上等を図ることも課題と
する。
In the present invention, the terminal magnet (electromagnetic coil 14 ') is used.
It is an object of the present invention to prevent the horizontal displacement of the vapor deposition position of the cathode material 19 and the vertical divergence of the cathode material 19 due to the divergent magnetic field in the vicinity of, and to form a uniform vapor deposition thin film on the substrate 6.
Further, another object is to further control the film forming characteristics by freely controlling the ion arrival position of the cathode material 19 to the base material.

【0039】[0039]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の請求項1の真空アーク蒸着方法は、放出
口に最も近い終端磁石を、放出口の放出面に対し傾けて
設置し、終端磁石の発生磁場により、陰極材料のイオン
の飛着方向を制御する。
In order to solve the above-mentioned problems, in the vacuum arc vapor deposition method according to claim 1 of the present invention, the terminal magnet closest to the emission port is installed tilted with respect to the emission surface of the emission port. Then, the flying direction of the ions of the cathode material is controlled by the magnetic field generated by the terminal magnet.

【0040】したがって、終端磁石により生じる磁場
が、従来のように終端磁石を放出面に平行に設置する場
合と異なり、終端磁石を放出面に対して適当な角度傾け
て設置することにより、陰極材料のイオンが基材表面の
中心部に飛着するようになる。
Therefore, unlike the conventional case where the magnetic field generated by the terminating magnet is installed parallel to the emitting surface as in the conventional case, the terminating magnet is installed at an appropriate angle with respect to the emitting surface, so that the cathode material Ions will be scattered to the center of the substrate surface.

【0041】また、終端磁石の設置角度を種々に定める
ことにより、陰極材料のイオンが基材表面の所望位置に
飛着するようになり、所望の成膜特性で蒸着膜を成膜す
ることができる。
Further, by setting the installation angle of the terminal magnet variously, the ions of the cathode material can be made to fly to a desired position on the surface of the base material, and a vapor deposition film can be formed with desired film forming characteristics. it can.

【0042】つぎに、本発明の請求項2の真空アーク蒸
着方法の場合は、終端磁石の設置角度を可変自在にす
る。
Next, in the case of the vacuum arc vapor deposition method according to claim 2 of the present invention, the installation angle of the terminal magnet is made variable.

【0043】したがって、終端磁石の設置角度を成膜前
及び成膜中に自在に変えることができ、種々の成膜特性
の蒸着薄膜を自在に成膜することができる。
Therefore, the installation angle of the terminal magnet can be freely changed before and during film formation, and vapor-deposited thin films having various film formation characteristics can be formed freely.

【0044】つぎに、本発明の請求項3の真空アーク蒸
着方法の場合、終端磁石が他の磁石と異なる大きさにす
る。
Next, in the case of the vacuum arc vapor deposition method according to claim 3 of the present invention, the size of the terminal magnet is different from that of the other magnets.

【0045】したがって、終端磁石の発散磁場につき、
とくに、その上下方向の発散を、終端磁石の大きさを変
えることで、種々に制御することができ、例えば、終端
磁石を他の磁石より大きくすれば、放出口より基材側で
の磁場の上下方向の発散を良好に抑制し、陰極材料の蒸
着粒子(イオン)の上下方向の拡がりを防止することが
でき、請求項1,2の成膜特性より一層良好な特性で均
一な成膜が行える。
Therefore, regarding the divergent magnetic field of the terminal magnet,
In particular, the vertical divergence can be controlled in various ways by changing the size of the terminal magnet. For example, if the terminal magnet is made larger than the other magnets, the magnetic field on the substrate side from the emission port can be controlled. It is possible to satisfactorily suppress vertical divergence and prevent vertical spread of vapor deposition particles (ions) of the cathode material, and to form a uniform film with better characteristics than those of claim 1 or 2. You can do it.

【0046】そして、請求項1,2,3の真空アーク蒸
着方法において、各磁石は電磁コイルからなることが実
用的で好ましい。また、終端磁石の設置角度が自動制御
されることが好ましい。
In the vacuum arc vapor deposition method of claims 1, 2 and 3, it is practical and preferable that each magnet is composed of an electromagnetic coil. Further, it is preferable that the installation angle of the terminal magnet is automatically controlled.

【0047】さらに、各磁石が電磁コイルからなり、終
端磁石の設置角度の制御に連動して各磁石の電磁コイル
のコイル電流を制御することが、成膜特性上からは一層
好ましい。
Further, it is more preferable from the standpoint of film formation characteristics that each magnet is composed of an electromagnetic coil and the coil current of the electromagnetic coil of each magnet is controlled in association with the control of the installation angle of the terminal magnet.

【0048】つぎに、蒸発源を複数個にすれば、成膜能
力の向上が図れ、複数種類の陰極材料の同時成膜も行え
る。
Next, if a plurality of evaporation sources are used, the film forming ability can be improved and a plurality of kinds of cathode materials can be simultaneously formed.

【0049】また、各磁石を形成する電磁コイルのコイ
ル電流の向きを一定時間毎に切換えて逆にすれば、電子
のドリフト方向を逆転することによって陰極材料のイオ
ンの飛着位置を周期的にずらすことができ、大面積の基
材の均一蒸着等が可能になる。
Further, by switching the direction of the coil current of the electromagnetic coil forming each magnet at regular intervals and reversing it, the drifting direction of the electrons is reversed, so that the ion landing position of the cathode material is cyclically changed. It can be shifted, and uniform vapor deposition of a large area substrate can be performed.

【0050】つぎに、本発明の請求項9の真空アーク蒸
着装置は、放出口に最も近い終端磁石を、放出口の放出
面に対し傾けて設置したものである。
Next, in the vacuum arc vapor deposition apparatus according to claim 9 of the present invention, the terminal magnet closest to the emission port is installed so as to be inclined with respect to the emission surface of the emission port.

【0051】また、本発明の請求項10の真空アーク蒸
着装置は、終端磁石の設置角度を可変する手段を備えた
ものである。
Further, the vacuum arc vapor deposition apparatus according to a tenth aspect of the present invention is provided with means for varying the installation angle of the terminal magnet.

【0052】したがって、請求項1,2の蒸着方法に用
いられる真空アーク蒸着装置を提供することができる。
Therefore, it is possible to provide the vacuum arc vapor deposition apparatus used in the vapor deposition methods of the first and second aspects.

【0053】さらに、請求項11の真空アーク蒸着装置
は、終端磁石が他の磁石と異なる大きさにしたものであ
る。
Further, in the vacuum arc vapor deposition apparatus of the eleventh aspect, the terminal magnet has a size different from that of the other magnets.

【0054】したがって、請求項9,10の蒸着装置
に、上下方向の磁場発散抑制機能等を付加することがで
きる。
Therefore, a vertical magnetic field divergence suppressing function and the like can be added to the vapor deposition device according to the ninth and tenth aspects.

【0055】そして、請求項9,10,11の蒸着装置
において、各磁石が電磁コイルからなることが実用的で
あり、終端磁石の設置角度の自動制御手段を備えること
が望ましい。
In the vapor deposition apparatus according to the ninth, tenth and eleventh aspects, it is practical that each magnet is composed of an electromagnetic coil, and it is desirable to provide an automatic control means for the installation angle of the terminal magnet.

【0056】また、各磁石が電磁コイルからなり、終端
磁石の設置角度の制御に連動して各磁石の電磁コイルの
コイル電流を制御する手段を備えることが、成膜特性を
向上する上からは、一層好ましい。
Further, each magnet is composed of an electromagnetic coil, and means for controlling the coil current of the electromagnetic coil of each magnet in association with the control of the installation angle of the terminal magnet is provided in order to improve the film forming characteristics. Is more preferable.

【0057】さらに、蒸発源が複数個であってもよく、
各磁石を形成する電磁コイルのコイル電流の向きを一定
時間毎に切換えて逆にする通電制御手段を備えることが
一層好ましい。
Further, there may be a plurality of evaporation sources,
It is more preferable to include an energization control unit that switches the direction of the coil current of the electromagnetic coil forming each magnet at regular intervals to reverse the direction.

【0058】[0058]

【発明の実施の形態】本発明の実施の1形態につき、図
1ないし図8を参照して説明する。図1は図9に対応す
る真空アーク蒸着装置の平面図であり、図と同一記号は
同一のものを示す。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view of a vacuum arc vapor deposition apparatus corresponding to FIG. 9, and the same symbols as those in the drawings denote the same elements.

【0059】そして、図1においては、図9の終端磁石
としての電磁コイル14′の代わりに、他の電磁コイル
14より大きい電磁コイル21を、終端磁石として設け
る。
In FIG. 1, instead of the electromagnetic coil 14 'as the terminal magnet in FIG. 9, an electromagnetic coil 21 larger than the other electromagnetic coils 14 is provided as the terminal magnet.

【0060】この電磁コイル21は図2の斜視図に示す
ように矩形の枠状に形成され、図3の(a),(b)の
ダクト取付状態の平面図,右側面図に示すように、左右
方向をX軸方向(左方が正),前後方向をY軸方向(後
方が正),上下方向をZ軸方向(上方が正)とすると、
放出口13の放出面に平行な破線の状態から、X−Y軸
の平面内で角度α,Y−Z軸の平面内で角度β傾けて設
置される。
The electromagnetic coil 21 is formed in a rectangular frame shape as shown in the perspective view of FIG. 2, and as shown in the plan view and the right side view of the duct mounting state of FIGS. 3 (a) and 3 (b). If the left-right direction is the X-axis direction (left is positive), the front-back direction is the Y-axis direction (rear is positive), and the up-down direction is the Z-axis direction (upper is positive),
From the state of the broken line parallel to the emission surface of the emission port 13, the device is installed with an angle α in the plane of the XY axis and an angle β in the plane of the YZ axis.

【0061】この角度α,βは事前の荷電粒子軌道解析
シミュレーション及び試験蒸着等に基づいて最適に定め
られ、この形態にあっては、作業員の手作業で電磁コイ
ル21のダクト9への取付け角度等を調整し、電磁コイ
ル21を放出面に対して角度α,βのいずれか一方又は
両方傾ける。
The angles α and β are optimally determined based on the charged particle trajectory analysis simulation and test deposition in advance. In this embodiment, the worker manually attaches the electromagnetic coil 21 to the duct 9. By adjusting the angle and the like, the electromagnetic coil 21 is inclined with respect to the emission surface, either one or both of the angles α and β.

【0062】そして、この角度α,βの傾きにより、電
磁コイル21の発生磁場が制御され、放出口13付近で
図9の磁場17と異なる偏向磁場17′の磁気フィルタ
22が形成され、この磁気フィルタ22によって図9の
プラズマ電流20に相当するプラズマ流23が生成され
る。
The generated magnetic field of the electromagnetic coil 21 is controlled by the inclinations of the angles α and β, and a magnetic filter 22 having a deflection magnetic field 17 'different from the magnetic field 17 of FIG. The filter 22 produces a plasma stream 23 corresponding to the plasma current 20 of FIG.

【0063】このとき、図4の(a),(b)の電子軌
跡の平面図,右側面図に示すように、ダクト9を通って
基材6の表面に到達する電子の軌跡は、電子の基材到達
位置の中心がほぼ基材6表面の中心に一致するように補
正される。
At this time, as shown in the plan view and the right side view of the electron trajectories of FIGS. 4A and 4B, the trajectories of the electrons reaching the surface of the substrate 6 through the duct 9 are It is corrected so that the center of the base material reaching position of 1 substantially coincides with the center of the surface of the base material 6.

【0064】なお、図4の(a),(b)は電磁コイル
21の設置角度による効果を示すため、電磁コイル21
の代わりに、他の電磁コイル14と同じ大きさの電磁コ
イル21′を設け、その設置角度αを時計方向の15度
にして左右方向の磁場の発散を収束補正した場合の電子
軌跡を示したものであり、図11の(a),(b)と同
様、実線の1つおきの2個の電磁コイル21′,14に
のみ通電している。
4A and 4B show the effect of the installation angle of the electromagnetic coil 21, the electromagnetic coil 21
Instead of the above, an electromagnetic coil 21 'having the same size as the other electromagnetic coil 14 is provided, and its installation angle α is set to 15 degrees in the clockwise direction to show the electron trajectory when the divergence of the magnetic field in the left-right direction is converged and corrected. As in FIGS. 11 (a) and 11 (b), only the two electromagnetic coils 21 'and 14 in the alternate solid line are energized.

【0065】つぎに、電磁コイル21は他の電磁コイル
14と大きさが異なり、この形態にあっては上下方向の
磁場の発散を抑えるため、他の電磁コイル14より大型
である。
Next, the electromagnetic coil 21 is different in size from the other electromagnetic coils 14, and in this embodiment, it is larger than the other electromagnetic coils 14 in order to suppress the divergence of the vertical magnetic field.

【0066】そして、電磁コイル21を他の電磁コイル
14より大型にすると、上下方向の磁場に対する磁場フ
ォーカシングの機能が付加され、上下方向の磁場が収束
補正され、例えば、図5の(a),(b)の電子軌跡の
平面図,右側面図に示すように、電子の上下方向の軌跡
が基材6表面の中央寄りに補正されることが実験によっ
て確められた。
When the electromagnetic coil 21 is made larger than the other electromagnetic coils 14, the function of magnetic field focusing on the vertical magnetic field is added, and the vertical magnetic field is converged and corrected. For example, as shown in FIG. As shown in the plan view and the right side view of the electron trajectory of (b), it was confirmed by experiments that the trajectory of the electrons in the vertical direction is corrected toward the center of the surface of the substrate 6.

【0067】なお、図5の(a),(b)は、電磁コイ
ル21の設置角度αを時計方向の15度にし、かつ、そ
の寸法を他の電磁コイル14の120%にした場合の電
子軌跡であり、図4の(a),(b)の場合と同様、実
線の1つおきの2個の電磁コイル21,14にのみ通電
している。
5 (a) and 5 (b) show the electron when the installation angle α of the electromagnetic coil 21 is set to 15 degrees in the clockwise direction and the size thereof is set to 120% of the other electromagnetic coils 14. This is a locus, and as in the case of FIGS. 4A and 4B, only the two electromagnetic coils 21 and 14 in alternate lines are energized.

【0068】そして、図4,図5からも明かなように、
電子軌跡が基材6の表面付近で左右方向及び上下方向と
も中央寄りに補正されるため、陰極材料19のイオン
も、左右方向及び上下方向の飛着のずれ,拡散が中央寄
りに補正されて防止され、この結果、基材6の表面に均
一な成膜が行える。
Then, as is clear from FIGS. 4 and 5,
Since the electron trajectory is corrected toward the center in both the left-right direction and the up-down direction near the surface of the base material 6, the ions in the cathode material 19 are also corrected for the deviation in the landing in the left-right direction and the up-down direction and the diffusion toward the center. As a result, a uniform film can be formed on the surface of the base material 6.

【0069】つぎに、具体的な実験結果について説明す
る。まず、放出口13の放出面と基材6とを、中心が重
合し、かつ、両者の距離が400mmになるようにセット
し、電磁コイル21,14のコイル電流100Aの条件
下、電磁コイル21の設置角度αを時計方向の15度,
20度,25度にしたところ、電子軌跡の基材6表面の
到達位置の左右方向(水平方向),上下方向(垂直方
向)の基材6表面の中心からのずれは図6に示すように
なった。
Next, concrete experimental results will be described. First, the emission surface of the emission port 13 and the base material 6 are set so that the centers thereof are superposed and the distance between them is 400 mm, and the electromagnetic coil 21 is set under the condition of a coil current of 100 A. Installation angle α of 15 degrees clockwise,
At 20 degrees and 25 degrees, the deviation of the arrival position of the electron trajectory on the surface of the substrate 6 from the center of the surface of the substrate 6 in the left-right direction (horizontal direction) and the vertical direction (vertical direction) is as shown in FIG. became.

【0070】図6において、◆は設置角度αが0度のリ
ファレンス(基準コイル)のプロットを示し、■,△,
●は設置角度αを15度,20度,25度傾けたときの
プロットである。
In FIG. 6, ♦ indicates a plot of a reference (reference coil) whose installation angle α is 0 degree, and ■, △,
● is a plot when the installation angle α is tilted by 15 °, 20 °, and 25 °.

【0071】また、設置角度αを15度にしてコイル電
流を30A,50A,100Aにすると、電子軌跡のず
れは図7に示すようになった。
Further, when the installation angle α is set to 15 degrees and the coil current is set to 30 A, 50 A and 100 A, the deviation of the electron trajectory becomes as shown in FIG.

【0072】図7において、◆は設置角度αが0度でコ
イル電流が50Aのリファレンスのプロット、■,△,
●は設置角度αが15度でコイル電流が30A,50
A,100Aのときのプロットである。
In FIG. 7, ♦ is a plot of a reference in which the installation angle α is 0 degree and the coil current is 50 A, ■, Δ,
● indicates an installation angle α of 15 degrees and a coil current of 30A, 50
It is a plot at A and 100A.

【0073】そして、図6,図7からも明らかなよう
に、設置角度αをコイル電流に応じて適当に設定し、電
磁コイル21を放出口13の放出面に対して適当に傾け
ると、その影響により、基材6表面でのとくに左右方向
の電子到達位置が基材6の中央寄りに補正され、陰極材
料19が基材6の表面中央部を中心として蒸着する。
As is clear from FIGS. 6 and 7, when the installation angle α is appropriately set according to the coil current and the electromagnetic coil 21 is appropriately inclined with respect to the emission surface of the emission port 13, Due to the influence, particularly the electron arrival position on the surface of the base material 6 in the left-right direction is corrected toward the center of the base material 6, and the cathode material 19 is vapor-deposited around the center part of the surface of the base material 6.

【0074】つぎに、設置角度αを15度とし、コイル
電流30A,50A,100Aの条件下、電磁コイル2
1の大きさを80%,100%,120%にすると、図
8の(a),(b),(c)の結果が得られた。
Next, the installation angle α is set to 15 degrees, and the electromagnetic coil 2 is operated under the conditions of the coil currents of 30A, 50A and 100A.
When the size of 1 was set to 80%, 100%, and 120%, the results of (a), (b), and (c) of FIG. 8 were obtained.

【0075】図8の(a),(b),(c)において、
◆は設置角度αが0度で100%の大きさのリファレン
スのプロット、■,△,●は設置角度αが15度で80
%,100%,120%の大きさにした場合のプロット
を示す。
In FIGS. 8A, 8B and 8C,
◆ is a plot of a reference of 100% size when the installation angle α is 0 degree, and ■, △, ● are 80 when the installation angle α is 15 degrees.
The plots when the sizes are 100%, 120% and 120% are shown.

【0076】また、図8の(b)の▲は、△の場合と同
様、設置角度15度で100%の大きさにし、かつ、コ
イル電流の向きを他のプロットと逆にした場合のプロッ
トを示す。
Similarly to the case of Δ, the ▲ in FIG. 8B is a plot when the installation angle is 15 degrees and the magnitude is 100% and the direction of the coil current is opposite to the other plots. Indicates.

【0077】そして、図8の(a),(b),(c)か
らも明らかなように、電磁コイル21を120%に大き
くすれば、磁場の発散の抑制により、基材6表面での上
下方向の電子到達位置も基材6の中央寄りに補正され、
陰極材料19が基材6表面の中央部を中心として、一層
良好に蒸着し、均一な成膜が行われる。
As is clear from FIGS. 8A, 8B and 8C, if the electromagnetic coil 21 is increased to 120%, the divergence of the magnetic field is suppressed and the surface of the substrate 6 is suppressed. The vertical electron arrival position is also corrected toward the center of the base material 6,
The cathode material 19 is more favorably vapor-deposited centering on the central portion of the surface of the base material 6, and uniform film formation is performed.

【0078】すなわち、この形態の場合、終端磁石とし
ての電磁コイル21を、放出口13の放出面に対して角
度α,βのいずれか一方又は両方傾けて設置し、かつ、
電磁コイル21を他の電磁コイル14より大きくしたた
め、陰極材料19のイオンの飛着方向を、左右方向,上
下方向に制御して中央寄りに補正し、陰極材料19を、
基材6表面の中央部を中心に飛着させて蒸着し、基材6
表面に均一な蒸着薄膜を成膜することができる。
That is, in the case of this embodiment, the electromagnetic coil 21 as a terminal magnet is installed so as to incline one or both of the angles α and β with respect to the emission surface of the emission port 13, and
Since the electromagnetic coil 21 is made larger than the other electromagnetic coils 14, the flying direction of the ions of the cathode material 19 is controlled in the left-right direction and the vertical direction to correct it toward the center, and the cathode material 19 is
The central portion of the surface of the base material 6 is made to fly around and vapor deposited to form the base material 6
A uniform evaporated thin film can be formed on the surface.

【0079】ところで、前記形態では陰極材料19を基
材6表面の中央部を中心に飛着させて蒸着するように補
正したが、基材6によってはその表面中央部から離れた
位置を中心に蒸着することが好ましい場合もある。
By the way, in the above-described embodiment, the cathode material 19 is corrected so that the cathode material 19 is sprayed around the center of the surface of the base material 6 to be deposited, but depending on the base material 6, the position away from the center portion of the surface is centered. In some cases, vapor deposition is preferred.

【0080】このような場合は、前記の角度α,βの一
方又は両方を目的に応じて設定し、基材6表面の任意の
位置を中心に蒸着するようにしてもよい。
In such a case, one or both of the angles α and β may be set according to the purpose, and vapor deposition may be performed centering on an arbitrary position on the surface of the base material 6.

【0081】つぎに、前記形態では作業員の手作業で電
磁コイル21を角度α,βだけ事前に傾けたが、例え
ば、電磁コイル21をX−X軸の平面内で回動してその
角度αを可変する治具と、電磁コイル21をZ−Y軸の
平面内で回動してその角度βを可変する治具とのいずれ
か一方又は両方を、電磁コイル21の設置角度を自在に
可変する手段として設け、事前の試験成膜の結果に基づ
いて電磁コイル21の設置角度を初期設定したり、実際
の蒸着中に電磁コイル21の設置角度を可変するように
してもよい。
Next, in the above-mentioned embodiment, the electromagnetic coil 21 is pre-inclined by the angles α and β manually by the worker, but for example, the electromagnetic coil 21 is rotated in the plane of the XX axis and the angle is changed. Either the jig for changing α or the jig for rotating the electromagnetic coil 21 in the plane of the Z-Y axis to change the angle β thereof, or both, can freely set the installation angle of the electromagnetic coil 21. It may be provided as a variable means, and the installation angle of the electromagnetic coil 21 may be initialized based on the result of the test film formation in advance, or the installation angle of the electromagnetic coil 21 may be changed during the actual vapor deposition.

【0082】また、前記形態では終端磁石及び他の磁石
をいずれも電磁コイル21,14としたが、これらの磁
石はいわゆる永久磁石で形成してもよい。
Further, in the above-mentioned embodiment, the terminal magnets and the other magnets are both electromagnetic coils 21 and 14, but these magnets may be so-called permanent magnets.

【0083】さらに、前記形態では、説明を簡単にする
ため、蒸発源11が1個の場合について説明したが、基
材6が大面積の場合や複数種類の陰極材料を同時に蒸着
する場合等には、蒸発源11を、例えば上下方向に複数
個設ければよい。
Further, in the above-mentioned embodiment, the case where the number of the evaporation sources 11 is one has been described for simplification of description, but when the substrate 6 has a large area or a plurality of kinds of cathode materials are vapor-deposited at the same time, etc. For example, a plurality of evaporation sources 11 may be provided vertically, for example.

【0084】つぎに、終端磁石の設置角度は、例えば図
9の制御装置16の代わりに設けた図1の制御装置24
のシーケンス制御,プログラム制御等が形成する自動制
御手段により、図示省略した膜厚計による基材6表面の
膜厚の計測に基づき、事前に又は実際の成膜の進行に応
じて前記の両治具を自動制御し、この自動制御によって
自動設定したり成膜中に自動可変することが、実用的で
あり、また、成膜作業の効率化等の面からも、好まし
い。
Next, the installation angle of the terminating magnet is set to, for example, the control device 24 of FIG. 1 provided instead of the control device 16 of FIG.
Based on the measurement of the film thickness on the surface of the substrate 6 by a film thickness meter (not shown), the automatic control means formed by the sequence control, program control, etc. It is practical to automatically control the tool and automatically set it by this automatic control or automatically change it during the film formation, and it is also preferable from the viewpoint of the efficiency of the film formation operation.

【0085】さらに、各磁石が電磁コイル14,21か
らなる場合、制御装置24の通電制御手段により、前記
の膜厚計の計測に基づき、成膜中の電磁コイル21の設
置角度α,βの制御に連動して各電磁コイル14,21
のコイル電流を制御すれば、一層精度の高い成膜が行え
る。
Further, when each magnet is composed of the electromagnetic coils 14 and 21, the energization control means of the controller 24 controls the installation angles α and β of the electromagnetic coil 21 during film formation based on the measurement of the film thickness meter. Each electromagnetic coil 14, 21 interlocked with the control
If the coil current is controlled, the film can be formed with higher accuracy.

【0086】つぎに、制御装置24の通電制御手段によ
り、各電磁コイル14,21のコイル電流の向きを一定
時間毎に切換えて逆にすれば、電流方向の逆転により、
磁場Bの勾配∇Bの方向は変化しないが、磁場Bの方向
が反転して変化するため、プラズマ流23の輸送に作用
するドリフト速度が変わり、基材6の表面への陰極材料
19の飛着方向が変化して膜厚分布の一層の均一化を図
ることができ、成膜特性が一層向上する。
Next, the energization control means of the control device 24 switches the direction of the coil current of each of the electromagnetic coils 14 and 21 at regular time intervals to reverse the direction.
The direction of the gradient ∇B of the magnetic field B does not change, but since the direction of the magnetic field B changes and changes, the drift velocity that acts on the transport of the plasma flow 23 changes, and the cathode material 19 fly to the surface of the base material 6. By changing the deposition direction, the film thickness distribution can be made more uniform, and the film forming characteristics are further improved.

【0087】また、各電磁コイル21,14のコイル電
流を交流電源から得るようにすれば、前記の通電制御手
段による切換えを行うことなく、各電磁コイル21,1
4の電流方向を一定時間毎に逆転することができる。
Further, if the coil current of each electromagnetic coil 21, 14 is obtained from the AC power supply, each electromagnetic coil 21, 1 can be operated without switching by the energization control means.
It is possible to reverse the current direction of No. 4 at regular intervals.

【0088】つぎに、前記形態においては、ダクト9を
断面矩形としたが、ダクト9は断面が円形,楕円形等で
あってもよく、この場合、ダクト9の断面形状に応じて
各磁石の断面も円形,楕円形等にすることが好ましい。
Next, in the above-mentioned embodiment, the duct 9 has a rectangular cross section, but the duct 9 may have a circular cross section, an elliptical cross section, or the like. The cross section is also preferably circular or elliptical.

【0089】また、前記形態においては、1個のダクト
9を真空容器2に接続して真空アーク蒸着装置を形成し
たが、真空容器2に複数のダクトを接続し、各ダクトの
終端磁石を、各ダクトの放出口の放出面に対して、それ
ぞれ傾けるようにしてもよい。
In the above embodiment, one duct 9 is connected to the vacuum container 2 to form the vacuum arc vapor deposition apparatus. However, a plurality of ducts are connected to the vacuum container 2 and the end magnets of each duct are You may make it incline with respect to the discharge surface of the discharge port of each duct, respectively.

【0090】さらに、前記形態では説明を簡単にするた
め、成膜室1内に、1個のホルダ5を設け、1個の基材
6を蒸着して成膜するようにしたが、例えば、前記公報
に記載のアーク式イオンブレーディング装置のように、
成膜室内に円筒形の回転式のホルダを設け、このホルダ
の各面に基材を保持して複数の基材の真空アーク蒸着を
行う場合にも、本発明は同様に適用することができる。
Further, in the above-mentioned embodiment, in order to simplify the explanation, one holder 5 is provided in the film forming chamber 1 and one substrate 6 is vapor-deposited to form a film. Like the arc type ion braiding device described in the above publication,
The present invention can be similarly applied to a case where a cylindrical rotary holder is provided in the film forming chamber, and a substrate is held on each surface of the holder to perform vacuum arc vapor deposition of a plurality of substrates. .

【0091】つぎに、前記形態では電磁コイル21を他
の電磁コイル14より大きくして終端磁石を他の磁石よ
り大きくしたが、放出口13と基材6の距離が近いなど
成膜条件等によっては、終端磁石を他の磁石より小さく
して良好な成膜特性を得ることができる場合もあり、こ
のような場合には、終端磁石を他の磁石より小さくすれ
ばよい。
Next, in the above-mentioned embodiment, the electromagnetic coil 21 is made larger than the other electromagnetic coils 14 and the terminal magnet is made larger than the other magnets. However, depending on the film forming conditions such as the distance between the discharge port 13 and the substrate 6 being short. In some cases, the termination magnet may be made smaller than other magnets to obtain good film formation characteristics. In such a case, the termination magnet may be made smaller than the other magnets.

【0092】また、前記形態では湾曲したダクト9を用
いた場合について説明したが、ダクト9の代わりに屈曲
したダクトを用いた場合にも、本発明は同様に適用する
ことができる。
Further, although the case where the curved duct 9 is used has been described in the above embodiment, the present invention can be similarly applied to the case where the bent duct is used instead of the duct 9.

【0093】つぎに、成膜特性の一層の向上等を図る場
合は、終端磁場(電磁コイル21)の左右方向及び上下
方向のいずれか一方又は両方の設置角度を調整するだけ
でなく、他の磁石(電磁コイル14)の全部又は一部に
ついても、終端磁石と同様に、左右方向及び上下方向の
いずれか一方又は両方の設置角度を調整することが好ま
しい。
Next, in order to further improve the film formation characteristics, not only the installation angle of the terminal magnetic field (electromagnetic coil 21) in the left and right direction or the up and down direction but also both of them is adjusted. For all or part of the magnet (electromagnetic coil 14), it is preferable to adjust the installation angle in one or both of the left-right direction and the up-down direction, similarly to the terminal magnet.

【0094】[0094]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、請求項1の真空アーク蒸着方法の場合、放出
口13に最も近い終端磁石(電磁コイル21)を、放出
口13の放出面に対し傾けて設置し、終端磁石の発生磁
場により、陰極材料19のイオンの飛着方向を制御した
ため、終端磁石により生じる偏向磁場が、従来の終端磁
石を放出面に平行に設置する場合と異なり、陰極材料1
9のイオンを基材6表面の中心部に到達するように制御
し、均一な蒸着膜の成膜を行うことができる。
The present invention has the following effects. First, in the case of the vacuum arc vapor deposition method according to claim 1, the terminal magnet (electromagnetic coil 21) closest to the emission port 13 is installed inclined with respect to the emission surface of the emission port 13, and the cathode material is generated by the magnetic field generated by the termination magnet. Since the flying direction of 19 ions is controlled, the deflection magnetic field generated by the terminal magnet is different from the conventional case where the terminal magnet is installed parallel to the emission surface.
The ions of 9 are controlled so as to reach the central portion of the surface of the base material 6, and a uniform vapor deposition film can be formed.

【0095】また、終端磁石の設置角度を種々に定める
ことにより、陰極材料19のイオンが基材表面の所望の
位置を中心にして飛着するようになり、所望の成膜特性
で蒸着膜を成膜することができる。
Further, by setting the installation angle of the terminal magnet in various ways, the ions of the cathode material 19 are made to fly around the desired position on the surface of the base material, and the deposited film is formed with the desired film forming characteristics. A film can be formed.

【0096】つぎに、請求項2の真空アーク蒸着方法の
場合は、終端磁石の設置角度を可変自在にしたため、終
端磁石の設置角度を成膜前及び成膜中に自在に変えるこ
とができ、種々の成膜特性の蒸着薄膜を自在に成膜する
ことができる。
Next, in the vacuum arc vapor deposition method of claim 2, since the installation angle of the terminal magnet is made variable, the installation angle of the terminal magnet can be freely changed before and during film formation. It is possible to freely form vapor-deposited thin films having various film forming characteristics.

【0097】つぎに、請求項3の真空アーク蒸着方法の
場合、終端磁石を他の磁石と異なる大きさにしたため、
終端磁石の発散磁場につき、とくに、その上下方向の発
散を、終端磁石の大きさを変えることで、種々に制御す
ることができ、例えば、終端磁石を他の磁石より大きく
して磁場の上下方向の発散を良好に抑制し、請求項1,
2の成膜特性より一層均一な特性にすることができる。
そして、各磁石が電磁コイル14,21からなることが
実用的で好ましい。また、終端磁石の設置角度が自動制
御されることが実用上は好ましい。
Next, in the case of the vacuum arc vapor deposition method of claim 3, since the terminal magnet has a different size from other magnets,
Regarding the divergent magnetic field of the terminating magnet, the divergence in the vertical direction can be controlled in various ways by changing the size of the terminating magnet. Satisfactorily suppresses the divergence of
It is possible to obtain more uniform characteristics than the film forming characteristics of 2.
It is practical and preferable that each magnet is composed of the electromagnetic coils 14 and 21. Further, it is practically preferable that the installation angle of the terminal magnet is automatically controlled.

【0098】さらに、各磁石が電磁コイル14,21か
らなり、終端磁石の設置角度の制御に連動して各磁石の
電磁コイル14,21のコイル電流を制御することが、
成膜特性上からは一層好ましい。
Furthermore, each magnet is composed of electromagnetic coils 14 and 21, and the coil current of the electromagnetic coils 14 and 21 of each magnet can be controlled in conjunction with the control of the installation angle of the terminal magnet.
It is more preferable from the viewpoint of film forming characteristics.

【0099】つぎに、蒸発源11を複数個にすれば、成
膜能力の向上が図れ、複数種類の陰極材料19の同時成
膜も行うことができる。
Next, if a plurality of evaporation sources 11 are used, the film forming ability can be improved and a plurality of kinds of cathode materials 19 can be formed simultaneously.

【0100】また、各磁石を形成する電磁コイル14,
21のコイル電流の向きを一定時間毎に切換えて逆にす
れば、陰極材料19のイオンの飛着位置を周期的にずら
すことができ、大面積の基材6の均一な蒸着成膜を行う
ことができる。
Further, the electromagnetic coil 14 forming each magnet,
If the direction of the coil current of 21 is switched at regular intervals and reversed, the ion deposition position of the cathode material 19 can be periodically shifted, and uniform vapor deposition of the large-area substrate 6 is performed. be able to.

【0101】つぎに、請求項9〜16の真空アーク蒸着
装置は、前記の各真空アーク蒸着方法を実現する具体的
な装置を提供することができる。
Next, the vacuum arc vapor deposition apparatus according to claims 9 to 16 can provide a concrete apparatus for realizing each of the above-mentioned vacuum arc vapor deposition methods.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の1形態の真空アーク蒸着装置の
平面図である。
FIG. 1 is a plan view of a vacuum arc vapor deposition apparatus according to an embodiment of the present invention.

【図2】図1の終端磁石としての電磁コイルの斜視図で
ある。
FIG. 2 is a perspective view of an electromagnetic coil as a terminal magnet of FIG.

【図3】(a),(b)は図2の電磁コイルの傾きの説
明図である。
3 (a) and 3 (b) are explanatory views of the inclination of the electromagnetic coil of FIG.

【図4】(a),(b)は終端磁石としての電磁コイル
を角度α=15度傾けたときの電子軌跡説明図の平面
図,右側面図である。
4A and 4B are a plan view and a right side view of an electron trajectory explanatory diagram when an electromagnetic coil as a terminal magnet is inclined by an angle α = 15 degrees.

【図5】(a),(b)は終端磁石としての電磁コイル
を角度α=15度傾け、かつ、その寸法を他の磁石の電
磁コイルより大きくしたときの電子軌跡説明図の平面
図,右側面図である。
5 (a) and 5 (b) are plan views of an electron trajectory explanatory diagram when an electromagnetic coil serving as a terminal magnet is tilted at an angle α = 15 degrees and its dimension is made larger than those of other magnets. It is a right side view.

【図6】終端磁石としての電磁コイルの角度αを変えた
ときの電子到達位置の実測結果である。
FIG. 6 is an actual measurement result of an electron arrival position when an angle α of an electromagnetic coil as a terminal magnet is changed.

【図7】終端磁石としての電磁コイルを角度α=15度
傾けてコイル電流を変えたときの電子到達位置の実測結
果である。
FIG. 7 is an actual measurement result of electron arrival positions when the coil current is changed by inclining an electromagnetic coil as a terminal magnet at an angle α = 15 degrees.

【図8】(a),(b),(c)は終端磁石としての電
磁コイルを角度α=15度傾けてコイル電流を30A,
50A,100Aにしたときの大きさ(コイル寸法)の
違いによる電子到達位置の実測結果である。
8 (a), (b) and (c) show a coil current of 30 A with an electromagnetic coil as a terminal magnet inclined at an angle α = 15 degrees.
It is the measurement result of the electron arrival position due to the difference in the size (coil size) when it is set to 50A and 100A.

【図9】従来装置の平面図である。FIG. 9 is a plan view of a conventional device.

【図10】(a),(b)は図9の従来装置の発散磁場
説明図の平面図,右側面図である。
10A and 10B are a plan view and a right side view of a divergent magnetic field explanatory diagram of the conventional device of FIG.

【図11】図9の従来装置の電子軌跡説明図の平面図,
右側面図である。
11 is a plan view of an electron trajectory explanatory diagram of the conventional device of FIG. 9;
It is a right side view.

【符号の説明】[Explanation of symbols]

1 成膜室 6 基材 9 ダクト 11 蒸発源 13 放出口 14,21 電磁コイル 17′ 偏向磁場 19 陰極材料 22 磁気フィルタ 23 プラズマ流 1 Film forming chamber 6 base material 9 ducts 11 evaporation sources 13 outlet 14,21 electromagnetic coil 17 'deflection magnetic field 19 Cathode material 22 Magnetic filter 23 Plasma flow

───────────────────────────────────────────────────── フロントページの続き (72)発明者 緒方 潔 京都市右京区梅津高畝町47番地 日新電機 株式会社内 (72)発明者 村上 浩 京都市右京区梅津高畝町47番地 日新電機 株式会社内 Fターム(参考) 4K029 DB14 DD06 EA00 EA07 EA09   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kiyoshi Ogata             47 Umezu Takaune Town, Ukyo-ku, Kyoto Nissin Electric             Within the corporation (72) Inventor Hiroshi Murakami             47 Umezu Takaune Town, Ukyo-ku, Kyoto Nissin Electric             Within the corporation F term (reference) 4K029 DB14 DD06 EA00 EA07 EA09

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 湾曲又は屈曲したダクトの一端に位置し
た蒸発源から、アーク放電により陰極材料を蒸発し、 前記ダクトの複数個所それぞれに前記ダクトを囲んだ磁
石を設けて磁気フィルタを形成し、 前記磁気フィルタにより前記ダクトの内部に偏向磁場を
発生し、 前記偏向磁場に基づき、前記蒸発によって発生した粗大
粒子を除去しつつ、前記陰極材料のイオンを含むプラズ
マ流を前記ダクトの一端から他端の放出口に輸送し、 前記プラズマ流の前記イオンを前記放出口から成膜室に
引出して前記成膜室の基材に飛着し、 前記基材に前記陰極材料を蒸着する真空アーク蒸着方法
において、 前記放出口に最も近い終端磁石を、前記放出口の放出面
に対して傾けて設置し、 前記終端磁石の発生磁場により、前記イオンの飛着方向
を制御することを特徴とする真空アーク蒸着方法。
1. A magnetic filter is formed by evaporating a cathode material by arc discharge from an evaporation source located at one end of a curved or bent duct, and providing a magnet surrounding the duct at each of a plurality of positions of the duct, A deflection magnetic field is generated inside the duct by the magnetic filter, and based on the deflection magnetic field, coarse particles generated by the evaporation are removed, and a plasma flow containing ions of the cathode material is applied from one end to the other end of the duct. Vacuum arc vapor deposition method of transporting the ions of the plasma flow to the film formation chamber from the emission port and ejecting the ions to the substrate of the film formation chamber to deposit the cathode material on the substrate. In, the terminal magnet closest to the emission port is installed so as to be inclined with respect to the emission surface of the emission port, and the flying direction of the ions is controlled by the magnetic field generated by the termination magnet. Vacuum arc deposition method comprising and.
【請求項2】 終端磁石の設置角度を可変自在にしたこ
とを特徴とする請求項1記載の真空アーク蒸着方法。
2. The vacuum arc vapor deposition method according to claim 1, wherein the installation angle of the terminal magnet is variable.
【請求項3】 終端磁石が他の磁石と異なる大きさであ
ることを特徴とする請求項1又は2記載の真空アーク蒸
着方法。
3. The vacuum arc vapor deposition method according to claim 1, wherein the terminal magnet has a size different from that of the other magnets.
【請求項4】 各磁石が電磁コイルからなることを特徴
とする請求項1,2又は3記載の真空アーク蒸着方法。
4. The vacuum arc vapor deposition method according to claim 1, wherein each magnet comprises an electromagnetic coil.
【請求項5】 終端磁石の設置角度が自動制御されるこ
とを特徴とする請求項1,2,3又は4記載の真空アー
ク蒸着方法。
5. The vacuum arc vapor deposition method according to claim 1, 2, 3 or 4, wherein the installation angle of the terminal magnet is automatically controlled.
【請求項6】 各磁石が電磁コイルからなり、終端磁石
の設置角度の制御に連動して前記各磁石の電磁コイルの
コイル電流を制御することを特徴とする請求項1,2,
3,4又は5記載の真空アーク蒸着方法。
6. The magnet according to claim 1, wherein each magnet is composed of an electromagnetic coil, and the coil current of the electromagnetic coil of each magnet is controlled in association with the control of the installation angle of the terminal magnet.
The vacuum arc vapor deposition method according to 3, 4, or 5.
【請求項7】 蒸発源が複数個であることを特徴とする
請求項1,2,3,4,5又は6記載の真空アーク蒸着
方法。
7. The vacuum arc vapor deposition method according to claim 1, 2, 3, 4, 5, or 6, wherein a plurality of evaporation sources are provided.
【請求項8】 各磁石を形成する電磁コイルのコイル電
流の向きを一定時間毎に切換えて逆にしたことを特徴と
する請求項1,2,3,4,5,6又は7記載の真空ア
ーク蒸着方法。
8. A vacuum according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the directions of the coil currents of the electromagnetic coils forming each magnet are switched at regular intervals to be reversed. Arc vapor deposition method.
【請求項9】 基材が設けられた成膜室と、 湾曲又は屈曲したダクトと、 前記ダクトの一端に位置し、真空中でのアーク放電によ
り陰極材料が蒸発する蒸発源と、 前記成膜室に連通した前記ダクトの他端の放出口と、 前記ダクトの複数個所それぞれに前記ダクトを囲んだ磁
石を設けて形成され、前記ダクト内に偏向磁場を発生
し、前記蒸発により発生した粗大粒子を除去しつつ、前
記陰極材料のイオンを含むプラズマ流を前記ダクトの一
端から前記放出口に輸送する磁気フィルタとを備え、 前記プラズマ流の前記イオンを前記放出口から前記成膜
室に引出して前記基材に飛着し、前記基材に前記陰極材
料を蒸着する真空アーク蒸着装置において、 前記放出口に最も近い終端磁石を、前記放出口の放出面
に対し傾けて設置したことを特徴とする真空アーク蒸着
装置。
9. A film forming chamber provided with a base material, a curved or bent duct, an evaporation source located at one end of the duct for evaporating a cathode material by arc discharge in vacuum, and the film forming process. Coarse particles that are formed by providing a discharge port at the other end of the duct that communicates with the chamber and magnets that surround the duct at a plurality of locations in the duct, generate a deflection magnetic field in the duct, and generate by the evaporation. And a magnetic filter that transports a plasma flow containing ions of the cathode material from one end of the duct to the discharge port while removing the ions of the plasma flow from the discharge port to the film forming chamber. In a vacuum arc vapor deposition apparatus for spraying on the base material and vapor-depositing the cathode material on the base material, a terminal magnet closest to the emission port is installed so as to be inclined with respect to the emission surface of the emission port. You Vacuum arc vapor deposition equipment.
【請求項10】 終端磁石の設置角度を可変する手段を
備えたことを特徴とする請求項9記載の真空アーク蒸着
装置。
10. The vacuum arc vapor deposition apparatus according to claim 9, further comprising means for varying the installation angle of the terminal magnet.
【請求項11】 終端磁石が他の磁石と異なる大きさで
あることを特徴とする請求項9又は10記載の真空アー
ク蒸着装置。
11. The vacuum arc vapor deposition apparatus according to claim 9, wherein the terminal magnet has a size different from that of the other magnets.
【請求項12】 各磁石が電磁コイルからなることを特
徴とする請求項9,10又は11記載の真空アーク蒸着
装置。
12. The vacuum arc vapor deposition apparatus according to claim 9, 10 or 11, wherein each magnet comprises an electromagnetic coil.
【請求項13】 終端磁石の設置角度の自動制御手段を
備えたことを特徴とする請求項9,10,11又は12
記載の真空アーク蒸着装置。
13. The automatic control means for controlling the installation angle of the terminal magnet is provided.
The vacuum arc vapor deposition apparatus described.
【請求項14】 各磁石が電磁コイルからなり、終端磁
石の設置角度の制御に連動して前記各磁石の電磁コイル
のコイル電流を制御する手段を備えたことを特徴とする
請求項9,10,11.12又は13記載の真空アーク
蒸着装置。
14. Each of the magnets is composed of an electromagnetic coil, and means for controlling the coil current of the electromagnetic coil of each of the magnets is provided in association with the control of the installation angle of the terminal magnet. 11. 11. The vacuum arc vapor deposition apparatus according to 12 or 13.
【請求項15】 蒸発源が複数個であることを特徴とす
る請求項9,10,11,12,13又は14記載の真
空アーク蒸着装置。
15. The vacuum arc vapor deposition apparatus according to claim 9, 10, 11, 12, 13 or 14, wherein a plurality of evaporation sources are provided.
【請求項16】 各磁石を形成する電磁コイルのコイル
電流の向きを一定時間毎に切換えて逆にする通電制御手
段を備えたとを特徴とする請求項9,10,11,1
2,13,14又は15記載の真空アーク蒸着装置。
16. An energization control means for switching the direction of a coil current of an electromagnetic coil forming each magnet at regular time intervals to reverse the direction is provided.
The vacuum arc vapor deposition apparatus according to 2, 13, 14 or 15.
JP2001365606A 2001-11-30 2001-11-30 Vacuum arc deposition method and apparatus Expired - Fee Related JP4003448B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001365606A JP4003448B2 (en) 2001-11-30 2001-11-30 Vacuum arc deposition method and apparatus
US10/305,008 US7033462B2 (en) 2001-11-30 2002-11-27 Vacuum arc vapor deposition process and apparatus
EP02026683A EP1316986B1 (en) 2001-11-30 2002-11-29 Vacuum arc vapor deposition process and apparatus
TW91134753A TW575672B (en) 2001-11-30 2002-11-29 Vacuum arc vapor deposition process and apparatus
DE60212551T DE60212551T2 (en) 2001-11-30 2002-11-29 Apparatus and method for vacuum coating by means of an arc
KR1020020075172A KR100569905B1 (en) 2001-11-30 2002-11-29 Vacuum arc vapor deposition process and apparatus
CNB02160651XA CN1205353C (en) 2001-11-30 2002-11-30 Method and device for vacuum arc vapour deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365606A JP4003448B2 (en) 2001-11-30 2001-11-30 Vacuum arc deposition method and apparatus

Publications (2)

Publication Number Publication Date
JP2003166050A true JP2003166050A (en) 2003-06-13
JP4003448B2 JP4003448B2 (en) 2007-11-07

Family

ID=19175605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365606A Expired - Fee Related JP4003448B2 (en) 2001-11-30 2001-11-30 Vacuum arc deposition method and apparatus

Country Status (1)

Country Link
JP (1) JP4003448B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033462B2 (en) 2001-11-30 2006-04-25 Nissin Electric Co., Ltd. Vacuum arc vapor deposition process and apparatus
KR100683174B1 (en) 2005-06-17 2007-02-15 삼성전자주식회사 Plasma accelerating apparatus and plasma processing system having the same
US7644861B2 (en) 2006-04-18 2010-01-12 Bgc Partners, Inc. Systems and methods for providing access to wireless gaming devices
US7811172B2 (en) 2005-10-21 2010-10-12 Cfph, Llc System and method for wireless lottery
US8070604B2 (en) 2005-08-09 2011-12-06 Cfph, Llc System and method for providing wireless gaming as a service application
US8092303B2 (en) 2004-02-25 2012-01-10 Cfph, Llc System and method for convenience gaming
US8162756B2 (en) 2004-02-25 2012-04-24 Cfph, Llc Time and location based gaming
US8292741B2 (en) 2006-10-26 2012-10-23 Cfph, Llc Apparatus, processes and articles for facilitating mobile gaming
US8319601B2 (en) 2007-03-14 2012-11-27 Cfph, Llc Game account access device
US8397985B2 (en) 2006-05-05 2013-03-19 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US8504617B2 (en) 2004-02-25 2013-08-06 Cfph, Llc System and method for wireless gaming with location determination
US8510567B2 (en) 2006-11-14 2013-08-13 Cfph, Llc Conditional biometric access in a gaming environment
US8506400B2 (en) 2005-07-08 2013-08-13 Cfph, Llc System and method for wireless gaming system with alerts
JP2013536315A (en) * 2010-06-22 2013-09-19 メルク パテント ゲーエムベーハー Method and apparatus for coating a surface
JP2013218881A (en) * 2012-04-09 2013-10-24 Chugai Ro Co Ltd Plasma generator and vapor deposition device and vapor deposition method
US8581721B2 (en) 2007-03-08 2013-11-12 Cfph, Llc Game access device with privileges
US8613658B2 (en) 2005-07-08 2013-12-24 Cfph, Llc System and method for wireless gaming system with user profiles
US8645709B2 (en) 2006-11-14 2014-02-04 Cfph, Llc Biometric access data encryption
US8899477B2 (en) 2006-05-05 2014-12-02 Cfph, Llc Device detection
US8956231B2 (en) 2010-08-13 2015-02-17 Cfph, Llc Multi-process communication regarding gaming information
US9183693B2 (en) 2007-03-08 2015-11-10 Cfph, Llc Game access device
US9306952B2 (en) 2006-10-26 2016-04-05 Cfph, Llc System and method for wireless gaming with location determination
US9411944B2 (en) 2006-11-15 2016-08-09 Cfph, Llc Biometric access sensitivity
US10510214B2 (en) 2005-07-08 2019-12-17 Cfph, Llc System and method for peer-to-peer wireless gaming
WO2021255242A1 (en) * 2020-06-19 2021-12-23 Nanofilm Technologies International Limited Improved cathode arc source, filters thereof and method of filtering macroparticles

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033462B2 (en) 2001-11-30 2006-04-25 Nissin Electric Co., Ltd. Vacuum arc vapor deposition process and apparatus
US10360755B2 (en) 2004-02-25 2019-07-23 Interactive Games Llc Time and location based gaming
US9355518B2 (en) 2004-02-25 2016-05-31 Interactive Games Llc Gaming system with location determination
US8504617B2 (en) 2004-02-25 2013-08-06 Cfph, Llc System and method for wireless gaming with location determination
US8616967B2 (en) 2004-02-25 2013-12-31 Cfph, Llc System and method for convenience gaming
US8092303B2 (en) 2004-02-25 2012-01-10 Cfph, Llc System and method for convenience gaming
US8162756B2 (en) 2004-02-25 2012-04-24 Cfph, Llc Time and location based gaming
US10783744B2 (en) 2004-02-25 2020-09-22 Cfph, Llc System and method for wireless lottery
US8308568B2 (en) 2004-02-25 2012-11-13 Cfph, Llc Time and location based gaming
US10391397B2 (en) 2004-02-25 2019-08-27 Interactive Games, Llc System and method for wireless gaming with location determination
US9430901B2 (en) 2004-02-25 2016-08-30 Interactive Games Llc System and method for wireless gaming with location determination
US8696443B2 (en) 2004-02-25 2014-04-15 Cfph, Llc System and method for convenience gaming
US10653952B2 (en) 2004-02-25 2020-05-19 Interactive Games Llc System and method for wireless gaming with location determination
KR100683174B1 (en) 2005-06-17 2007-02-15 삼성전자주식회사 Plasma accelerating apparatus and plasma processing system having the same
US8506400B2 (en) 2005-07-08 2013-08-13 Cfph, Llc System and method for wireless gaming system with alerts
US10510214B2 (en) 2005-07-08 2019-12-17 Cfph, Llc System and method for peer-to-peer wireless gaming
US8613658B2 (en) 2005-07-08 2013-12-24 Cfph, Llc System and method for wireless gaming system with user profiles
US8708805B2 (en) 2005-07-08 2014-04-29 Cfph, Llc Gaming system with identity verification
US8070604B2 (en) 2005-08-09 2011-12-06 Cfph, Llc System and method for providing wireless gaming as a service application
US8690679B2 (en) 2005-08-09 2014-04-08 Cfph, Llc System and method for providing wireless gaming as a service application
US7811172B2 (en) 2005-10-21 2010-10-12 Cfph, Llc System and method for wireless lottery
US7644861B2 (en) 2006-04-18 2010-01-12 Bgc Partners, Inc. Systems and methods for providing access to wireless gaming devices
US8403214B2 (en) 2006-04-18 2013-03-26 Bgc Partners, Inc. Systems and methods for providing access to wireless gaming devices
US8695876B2 (en) 2006-05-05 2014-04-15 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US8740065B2 (en) 2006-05-05 2014-06-03 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US8899477B2 (en) 2006-05-05 2014-12-02 Cfph, Llc Device detection
US8939359B2 (en) 2006-05-05 2015-01-27 Cfph, Llc Game access device with time varying signal
US8397985B2 (en) 2006-05-05 2013-03-19 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US11017628B2 (en) 2006-10-26 2021-05-25 Interactive Games Llc System and method for wireless gaming with location determination
US9306952B2 (en) 2006-10-26 2016-04-05 Cfph, Llc System and method for wireless gaming with location determination
US8292741B2 (en) 2006-10-26 2012-10-23 Cfph, Llc Apparatus, processes and articles for facilitating mobile gaming
US10535221B2 (en) 2006-10-26 2020-01-14 Interactive Games Llc System and method for wireless gaming with location determination
US8510567B2 (en) 2006-11-14 2013-08-13 Cfph, Llc Conditional biometric access in a gaming environment
US8645709B2 (en) 2006-11-14 2014-02-04 Cfph, Llc Biometric access data encryption
US9280648B2 (en) 2006-11-14 2016-03-08 Cfph, Llc Conditional biometric access in a gaming environment
US9411944B2 (en) 2006-11-15 2016-08-09 Cfph, Llc Biometric access sensitivity
US9183693B2 (en) 2007-03-08 2015-11-10 Cfph, Llc Game access device
US8581721B2 (en) 2007-03-08 2013-11-12 Cfph, Llc Game access device with privileges
US8319601B2 (en) 2007-03-14 2012-11-27 Cfph, Llc Game account access device
JP2013536315A (en) * 2010-06-22 2013-09-19 メルク パテント ゲーエムベーハー Method and apparatus for coating a surface
KR101780521B1 (en) 2010-06-22 2017-09-21 메르크 파텐트 게엠베하 Method and device for coating a surface
US10406446B2 (en) 2010-08-13 2019-09-10 Interactive Games Llc Multi-process communication regarding gaming information
US10744416B2 (en) 2010-08-13 2020-08-18 Interactive Games Llc Multi-process communication regarding gaming information
US8956231B2 (en) 2010-08-13 2015-02-17 Cfph, Llc Multi-process communication regarding gaming information
JP2013218881A (en) * 2012-04-09 2013-10-24 Chugai Ro Co Ltd Plasma generator and vapor deposition device and vapor deposition method
WO2021255242A1 (en) * 2020-06-19 2021-12-23 Nanofilm Technologies International Limited Improved cathode arc source, filters thereof and method of filtering macroparticles
US11903116B2 (en) 2020-06-19 2024-02-13 Nanofilm Technologies International Limited Cathode arc source, filters thereof and method of filtering macroparticles

Also Published As

Publication number Publication date
JP4003448B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP2003166050A (en) Vacuum arc vapor-deposition method, and apparatus therefor
EP1316986B1 (en) Vacuum arc vapor deposition process and apparatus
TWI224149B (en) Thin-film formation system and thin-film formation process
JP2002294433A (en) Vacuum arc deposition apparatus
US6579421B1 (en) Transverse magnetic field for ionized sputter deposition
WO2015134108A1 (en) Ion beam sputter deposition assembly, sputtering system, and sputter method of physical vapor deposition
US6613199B1 (en) Apparatus and method for physical vapor deposition using an open top hollow cathode magnetron
JP2000506225A (en) Method and apparatus for coating workpieces
US20080196661A1 (en) Plasma sprayed deposition ring isolator
US8834685B2 (en) Sputtering apparatus and sputtering method
KR20130121078A (en) Arc deposition source having a defined electric field
JPH10212573A (en) Ionized pvd source to generate uniform low particle deposition
TWI296813B (en) Improvements in and relating to magnetron sputtering
US20070023282A1 (en) Deflection magnetic field type vacuum arc vapor deposition device
JPH0122729B2 (en)
US7022209B2 (en) PVD method and PVD apparatus
JP2018040057A (en) Method for depositing layer using magnetron sputtering device
US9624570B2 (en) Compact, filtered ion source
JP3744467B2 (en) Vacuum arc deposition method and apparatus
JP2001059165A (en) Arc type ion plating device
US5843293A (en) Arc-type evaporator
EP3587618A2 (en) Selective vapor deposition process for additive manufacturing
JP2004018899A (en) Evaporation source and film-formation equipment
JP2004183021A (en) Apparatus and method for forming film
JP2004010920A (en) Vacuum arc vapor deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees