JP2003166050A - Vacuum arc vapor-deposition method, and apparatus therefor - Google Patents

Vacuum arc vapor-deposition method, and apparatus therefor

Info

Publication number
JP2003166050A
JP2003166050A JP2001365606A JP2001365606A JP2003166050A JP 2003166050 A JP2003166050 A JP 2003166050A JP 2001365606 A JP2001365606 A JP 2001365606A JP 2001365606 A JP2001365606 A JP 2001365606A JP 2003166050 A JP2003166050 A JP 2003166050A
Authority
JP
Japan
Prior art keywords
magnet
duct
vacuum arc
electromagnetic coil
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001365606A
Other languages
Japanese (ja)
Other versions
JP4003448B2 (en
Inventor
Takashi Mikami
Hiroshi Murakami
Yasuo Murakami
Kiyoshi Ogata
隆司 三上
泰夫 村上
浩 村上
潔 緒方
Original Assignee
Nissin Electric Co Ltd
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, 日新電機株式会社 filed Critical Nissin Electric Co Ltd
Priority to JP2001365606A priority Critical patent/JP4003448B2/en
Priority claimed from US10/305,008 external-priority patent/US7033462B2/en
Publication of JP2003166050A publication Critical patent/JP2003166050A/en
Application granted granted Critical
Publication of JP4003448B2 publication Critical patent/JP4003448B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To realize vacuum arc vapor-deposition having uniform film-forming characteristics by preventing the degradation of the film-forming characteristics caused by a divergent magnetic field around a termination magnet surrounding a duct.
SOLUTION: When evaporating a cathode material 19 by arc discharge from an evaporation source 11 located in one end of a curving or inflecting duct 9, forming a magnetic filter 22 by arranging magnets so as to surround duct 9, at each of several positions of the duct 9, generating a deflected magnetic field 17' in the duct 9 by the filter 22, transporting a plasma stream 23 including ions of a cathode material 19 from one end of the duct 9 to an emitting port 13 at the other and while removing coarse particles, drawing the ions of the plasma stream 23 from the emitting port 13 to a film forming chamber 1, flying them toward a substrate 6 in the film forming chamber 1, and depositing the cathode material 19 onto the substrate 6, this method is characterized by installing the termination magnet nearest to the emitting port 13 (an electromagnetic coil 21), so as to tilt against the discharging plane of the emitting port 13, to control the flying direction of ions.
COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、自動車部品、機械部品、工具、金型等の基材の耐摩耗性を向上するために、基材表面に薄膜を蒸着して形成する真空アーク蒸発方法及びその装置に関する。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention is, automotive parts, machine parts, tools, in order to improve the wear resistance of the base material of the mold or the like, thin film on the surface of a substrate a vacuum arc evaporation method and apparatus for forming and depositing. 【0002】 【従来の技術】一般に、真空アーク蒸着は、陰極と陽極の間にアーク放電を生じさせ、陰極材料を蒸発させて基材に蒸着するという簡便な薄膜形成方法であり、生産性に優れるという特徴を持つ。 2. Description of the Related Art Generally, a vacuum arc evaporation gives rise to an arc discharge between the cathode and the anode, a simple thin film formation method of depositing on a substrate by evaporating the cathode material, the productivity It has a feature that excellent. 【0003】しかし、陰極材料から(放電状態によっては陰極からも)、直径が数μmにもなる大きな固まりの粗大粒子(ドロップレット)が飛出し、このドロップレットが基材に付着して成膜特性が劣下することが知られている。 However, (also from the cathode in some discharging conditions) from the cathode material, popping out coarse particles of larger chunks diameter also becomes several [mu] m (droplets), the droplets adhering to the substrate deposition characteristics are known to lower degradation. 【0004】このドロップレットによる成膜特性の劣下を防止するため、電磁コイル等の磁石によりつつ、陰極と基材との間で磁場を発生し、この磁場によってドロップレットを除去し、プラズマ流だけを磁場に沿って基材方向に輸送する蒸着方法や、前記磁場でプラズマを集束させて高密度化することによってドロップレットを溶解する蒸着方法が提案されている。 [0004] To prevent the deterioration of a film-forming property due to the droplet, while more magnets such as an electromagnetic coil to generate a magnetic field between the cathode and the substrate to remove the droplets by the magnetic field, the plasma flow only and deposition method of transport to the substrate direction along the magnetic field, the deposition method of dissolving the droplets by high density by focusing the plasma in the magnetic field have been proposed. 【0005】前者のプラズマ流だけを基材方向に輸送する従来の真空アーク蒸着方法及び装置は、本出願人の既出願に係る特開平2001−59165号公報(C23 [0005] The former conventional vacuum arc deposition method and apparatus for only the plasma stream to transport the substrate direction, JP-A 2001-59165 discloses according to the foregoing prior application of the applicant (C23
C14/32)等に記載されている。 It is described in C14 / 32) or the like. 【0006】この公報等に記載の従来の真空アーク蒸着装置(アーク式イオンブレーディング装置)は、図9の平面図に示すように形成される。 Conventional vacuum arc vapor deposition apparatus described in Publication (arc-type ion blading apparatus) is formed as shown in the plan view of FIG. 【0007】そして、成膜室1を形成する金属製の接地された真空容器2は、図示省略した真空排気装置によって右側の排気口3から排気され、左側のガス導入口4から、アルゴンガス等の不活性ガスや反応性ガスが導入される。 [0007] Then, the vacuum vessel 2 made of metal which is grounded to form a deposition chamber 1 is exhausted from the right exhaust port 3 by the vacuum exhaust device (not shown in the figure), from the left side of the gas inlet 4, an argon gas or the like inert gas or reactive gas is introduced. 【0008】また、前記公報においては、成膜室1の円筒形のホルダに基材を複数個取付けた構造が示されているが、図9においては、説明を簡単にするため、成膜室1のほぼ中央に平板状の1個のホルダ5が、その表面を前方に向けて、かつ、回転自在に設けられ、このホルダ5の表面側に基材6が着脱自在に保持される。 Further, in the above publication, although the structure is attached a plurality of substrate in a cylindrical holder of the film forming chamber 1 is shown, in FIG. 9, for simplicity of explanation, the film-forming chamber 1 of one holder 5 tabular approximately centrally, the surface towards the front, and, rotatably mounted, the substrate 6 on the surface side of the holder 5 is detachably held. 【0009】この基材はホルダ5を介してバイアス電源7の陰極に接続され、基材6が真空容器2に対して代表的には−50V〜−500Vに直流バイアスされる。 [0009] The substrate is connected to the cathode of the bias power supply 7 via the holder 5, the substrate 6 is typically to the vacuum vessel 2 is DC biased to -50V~-500V. 【0010】なお、図中の8はバイアス電源7の陰極を絶縁する真空容器2の後面板2′の絶縁体である。 [0010] Incidentally, 8 in the figure is an insulator of the face plate 2 after the vacuum vessel 2 for insulating the cathode of a bias power source 7 '. 【0011】つぎに、真空容器2の前方にほぼ「ノ」の字状に湾曲した断面矩形の金属製のダクト9が設けられ、このダクト9は、前側一端の接地された端板9′の中央部に絶縁体10を介して蒸発源11が設けられ、この蒸発源11に陽極接地の数10V程度のアーク電源1 [0011] Next, a rectangular section of metal duct 9 curved in substantially shaped "Bruno" in front of the vacuum vessel 2 is provided, the duct 9, the front end grounded end plate 9 'of the central evaporation source 11 via an insulator 10 is provided, the arc power source 1 having about 10V of anode grounded to the evaporation source 11
2の陰極が接続され、ダクト9が陽極、蒸発源11が陰極を形成する。 2 of the cathode are connected, the duct 9 is an anode, the evaporation source 11 to form a cathode. 【0012】なお、ダクト9を陽極に兼用する代わりに、ダクト9と別個に陽極電極が設けられることもある。 [0012] Instead of also serves as a duct 9 to the anode, the duct 9 there separately also that the anode electrode is provided. 【0013】また、蒸発源11は、図示省略した水冷機構、真空シール機構、トリガ機構等も備える。 Further, the evaporation source 11 is provided with water-cooling mechanism (not shown), vacuum sealing mechanism, even trigger mechanism or the like. 【0014】さらに、ダクト9の他端が真空容器2の前面板2″の中央部に取付けられ、ダクト9の他端の放出口13が成膜室1に連通し、このとき、放出口13の左右方向(水平方向)の放出面の中心がホルダ5、基材6 Furthermore, the other end of the duct 9 is attached to the central portion of the front plate 2 of the vacuum vessel 2 ', the other end of the outlet 13 of the duct 9 communicates with the film forming chamber 1, this time, the discharge port 13 the left-right direction center holder 5 of emitting surface (horizontal direction), the substrate 6
の中心に重なる。 It overlaps in the center of. 【0015】つぎに、ダクト9の両端間の複数個所それぞれに、ダクト9を囲んだ磁石としての電磁コイル1 Next, at a plurality of locations each across the duct 9, the electromagnetic coil 1 as a magnet surrounding the duct 9
4′,14が設けられる。 4 ', 14 is provided. 【0016】このとき、従来は、放出口13に最も近い終端磁石としての電磁コイル14′及び他の電磁コイル14が全て同じ大きさ(寸法)に形成される。 [0016] In this case, conventionally, an electromagnetic coil 14 'and the other electromagnetic coils 14 of the nearest end magnet outlet 13 is formed all the same size (dimension). 【0017】さらに、各電磁コイル14′,14は電流源としてのコイル電源15の出力両端間に直列接続され、制御装置16のコイル電流の制御により、各電磁コイル14′,14の通電が制御され、この制御に基づく各電磁コイル14′,14の通電により、図中の実線矢印のループに示すダクト9に沿って湾曲した偏向磁場1 Furthermore, the electromagnetic coil 14 ', 14 are connected in series between the output ends of the coil power source 15 as a current source, the control of the coil current of the control device 16, the electromagnetic coil 14', 14 energization control is, the electromagnetic coil 14 'based on the control by the energization of 14, the deflection magnetic field 1 which is curved along the duct 9 as shown in solid arrows loop in FIG.
7が形成され、この磁場17が磁気フィルタ18を形成する。 7 is formed, the magnetic field 17 to form a magnetic filter 18. 【0018】そして、陽極であるダクト9と陰極である蒸発源11との間の真空アーク放電により、蒸発源11 [0018] Then, by a vacuum arc discharge between the evaporation source 11 is a duct 9 and the cathode is an anode, the evaporation source 11
のTi,Cr,Mo,Ta,W,Al,Cuのような単体金属、TiAlのような合金等の導電体の陰極材料1 Of Ti, Cr, Mo, Ta, W, Al, elemental metals such as Cu, cathode material of the conductor alloys such as TiAl 1
9が蒸発する。 9 is evaporated. 【0019】さらに、アーク放電によって生成された電子及び陰極材料19のイオンを含んだ破線矢印のプラズマ流20が偏向磁場17に沿ってダクト9の一端から他端の放出口13に輸送される。 Furthermore, the plasma flow 20 of dashed arrows containing ions of an electron and cathode material 19 produced by the arc discharge is transported to the outlet 13 from one end of the other end of the duct 9 along the deflection magnetic field 17. 【0020】このとき、蒸発源11から飛出したドロップレットは、電気的に中性であるか、又は、プラズマ中で負に帯電したりするが、いずれにしても質量が非常に大きいため、偏向磁場17に関係なく直進し、ダクト9 [0020] In this case, the droplets were ejected from the evaporation source 11 are either electrically neutral, or will be or negatively charged in the plasma, the mass in any event is very large, straight ahead regardless of the deflection magnetic field 17, duct 9
の内壁に衝突して除去される。 It is removed by colliding with the inner wall. 【0021】そして、放出口13に到達した陰極材料1 [0021] Then, the cathode material reaches the discharge port 13 1
9のイオンは、バイアス電源7による基材6の大きな負電位のバイアスに基づき、成膜室1に引出されて基材6 9 of ions, based on the bias of the large negative potential of the substrate 6 by the bias power source 7, is drawn into the film forming 1 substrate 6
の表面に飛着し、基材6の表面に陰極材料19の蒸着膜が成膜される。 And Higi on the surface of the deposition film of cathode material 19 is deposited on the surface of the substrate 6. 【0022】なお、陰極材料19のイオンの引出しに連動してガス導入口4から成膜室1内に反応性ガスを導入すると、このガスが陰極材料19のイオンと反応し、基材6の表面に、例えば炭化チタンや窒化チタン等の金属化合物薄膜が蒸着される。 [0022] Incidentally, when in conjunction with the withdrawal of ions of the cathode material 19 for introducing a reactive gas into the deposition chamber 1 through the gas inlet 4, the gas reacts with ions of the cathode material 19, the substrate 6 on the surface, for example, a metal compound thin film of titanium carbide or titanium nitride or the like is deposited. 【0023】 【発明が解決しようとする課題】前記図9の従来装置の真空アーク蒸着においては、終端磁石の電磁コイル1 [0023] In the [0006] vacuum arc deposition of the conventional apparatus of FIG. 9, the end magnet electromagnetic coil 1
4′が放出口13の放出面及び基材6に平行に設置される。 4 'are placed in parallel with the emitting surface and the substrate 6 of the outlet 13. 【0024】一方、一様な磁場中で電子が輸送される状態を考えると、よく知られるように、電子はつぎの数1 On the other hand, considering the state of electrons in a uniform magnetic field is transported, as is well known, the number of electrons following 1
の式のローレンツ力Fを受ける。 Receive the Lorentz force F of the equation. 【0025】 【数1】F=v×B(v:電子の速度ベクトル、B:磁束密度のベクトル、×はベクトル積(外積)演算子) 【0026】そして、このローレンツ力Fにより、電子が螺旋状に回転しながら偏向磁場17の磁力線に沿って進む。 [0025] Equation 1] F = v × B (v: electron velocity vector, B: vector of the magnetic flux density, × is the vector product (cross product) operator) [0026] Then, by the Lorentz force F, electrons while rotating spirally travels along the magnetic field lines of the deflection magnetic field 17. 【0027】そして、陰極材料19のイオンは、この電子に引張られるようにダクト9内を進んで放出口13に輸送される。 [0027] Then, ions of cathode material 19 is transported to the discharge port 13 Proceed in the duct 9 as pulled to the electronic. 【0028】ところで、終端磁石の電磁コイル14′の付近では図10の(a),(b)の実線矢印の磁力線に示すように発散磁場になり、放出口13に到達した電子はこの発散磁場に沿って飛行する。 By the way, (a) in FIG. 10 in the vicinity of the electromagnetic coil 14 'of the end magnets, solid arrow becomes the divergent magnetic field as shown in magnetic field lines, electrons having reached the outlet 13 the divergent magnetic field of the (b) to fly along the. 【0029】なお、図10の(a),(b)は図9の4 [0029] Note that in FIG. 10 (a), (b) 4 of FIG. 9
個の電磁コイル14,14′のうちの1つおきの2個の電磁コイル14,14′のみ通電した場合の磁力線を示す平面図,右側面図である。 Plan view illustrating the magnetic field lines in the case of energizing only 'every two electromagnetic coils 14 and 14 of the' number of the electromagnetic coils 14 and 14 is a right side view. 【0030】この磁力線に沿う電子の飛行軌跡は、電子に引っ張られて移動する陰極材料19のイオンの飛行軌跡に相当し、電子の飛行軌跡から陰極材料19のイオンの軌跡を把握できる。 The flight trajectories of electrons along the magnetic field lines correspond to the ion flight path of the cathode material 19 to be moved by being pulled in electronic, it can grasp the ion trajectory of the cathode material 19 from the electronic flight trajectory. 【0031】そして、図10の(a),(b)の磁力線に基づく電子の飛行軌跡は、図11の(a),(b)の平面図,右側面図の実線に示すようになる。 [0031] Then, the electronic flight trajectory based on magnetic field lines in FIG. 10 (a), (b) is, (a) in FIG. 11, as shown in solid line in plan view, right side view of (b). 【0032】すなわち、前記の発散磁場により、電子の基材到達位置が、湾曲の向きに応じて、基材6の中心から左方向に大きく偏向し、上下方向(垂直方向)には大きく発散する。 [0032] That is, by the divergent magnetic field of the substrate reaches the position of the electrons, depending on the curvature of the orientation, largely deflected leftward from the center of the substrate 6, diverges significantly in the vertical direction (vertical direction) . 【0033】また、発散磁場をBとすると、この磁場B Further, when the divergent magnetic field and B, the magnetic field B
の勾配∇Bが発生し、電子のような荷電粒子は、つぎの数2の式に示す速度V Bで勾配∇Bが磁場Bに重なるように回転したときに右ねじが進む方向にドリフトし、この∇Bドリフトによって電子の軌跡が一層ずれる。 Gradient ∇B occurs, the charged particles such as electrons, drift in a direction in which the right screw progresses when the speed V B gradient ∇B shown in Expression 2 the following is rotated so as to overlap the magnetic field B , further shifts the electron trajectory by this ∇B drift. 【0034】 【数2】VB=−μ・(∇B×B)/(q・B2), [0034] [number 2] VB = -μ · (∇B × B) / (q · B2),
(μ:透磁率、q:電荷、B:磁場ベクトル、∇B:磁場Bの勾配ベクトル、×はベクトル外積の演算子、・はベクトル内積の演算子) 【0035】したがって、陰極材料19のイオンを、基材6表面中心等の所望の位置を中心にして飛着させることができない。 (Mu: permeability, q: electric charge, B: magnetic field vector, ∇B: gradient vector of the magnetic field B, × is the vector cross product operator, - the operator of the vector dot product) Thus [0035], the cathode material 19 ions and it can not be Higi around the desired position such as the substrate 6 surface center. 【0036】なお、ダクト9及び電磁コイル14,1 [0036] It should be noted that the duct 9 and the electromagnetic coil 14, 1
4′が断面矩形の場合、矩形の電磁コイル14,14′ 4 'when the rectangular cross section, a rectangular electromagnetic coil 14, 14'
の磁場特性に基づき、中心部よりも外寄りになる程、磁場の勾配∇Bが強くなるため、斜め下方向のドリフト速度が大きくなり、陰極材料19の飛着位置の上方向の発散より、下方向の発散が大きくなる。 Based on the magnetic field properties, enough to be outboard of the center portion, since the magnetic field gradient ∇B becomes stronger, the drift velocity of the diagonally downward direction becomes larger than the divergence on the direction of the flight attachment position of the cathode material 19, downward divergence increases. 【0037】そして、陰極材料19のイオンの飛着中心を、例えば基材6表面の中心部に制御することができないため、電磁コイル14,14′を通流するコイル電流の向きを周期的に逆に切換えて陰極材料19のイオンの飛着位置を周期的にずらすようにしても、基材6に陰極材料19を、所望の位置へ薄膜を蒸着して成膜することができず、均一な成膜特性を得るには十分とはいえない問題点がある。 [0037] Then, the Higi center of the ion of the cathode material 19, for example, can not be controlled in the center of the substrate 6 surface, the direction of the coil current flowing through the electromagnetic coil 14, 14 'periodically even if the flying attachment position of the ion in the cathode material 19 is switched to the contrary to periodically shifted, the cathode material 19 to the substrate 6 can not be formed by depositing a thin film to a desired position, uniform such order to obtain the deposition characteristics has a problem that not enough. 【0038】本発明は、終端磁石(電磁コイル14′) The present invention, termination magnet (electromagnetic coil 14 ')
の付近での発散磁場に基づく陰極材料19の蒸着位置の左右方向のずれや上下方向の発散を防止し、基材6に均一な蒸着薄膜を成膜し得るようにすることを課題とし、 Of divergence in the horizontal direction of displacement and vertical deposition position of the cathode material 19 to prevent based on the divergent magnetic field in the vicinity, and an object thereof is to be capable of forming a uniform deposition film on the substrate 6,
さらには、陰極材料19のイオンの基材到達位置を自由に制御して成膜特性の一層の向上等を図ることも課題とする。 Furthermore, the present invention also has an object to achieve further improvement of freely controlled and film formation properties substrates arrival position of the ion in the cathode material 19. 【0039】 【課題を解決するための手段】前記の課題を解決するために、本発明の請求項1の真空アーク蒸着方法は、放出口に最も近い終端磁石を、放出口の放出面に対し傾けて設置し、終端磁石の発生磁場により、陰極材料のイオンの飛着方向を制御する。 [0039] In order to solve the above object, according to an aspect of the vacuum arc evaporation method according to claim 1 of the present invention, the nearest end magnet outlet, to release surface of the discharge port tilt installed, by the generated magnetic field of the terminal magnet, to control the flight attachment direction of the cathode material ions. 【0040】したがって、終端磁石により生じる磁場が、従来のように終端磁石を放出面に平行に設置する場合と異なり、終端磁石を放出面に対して適当な角度傾けて設置することにより、陰極材料のイオンが基材表面の中心部に飛着するようになる。 [0040] Thus, the magnetic field caused by terminating magnets, unlike the case of installing in parallel with the conventional discharge surface termination magnet as, by installing inclined suitable angle with respect to emitting surface of the end magnets, the cathode material ion comes to Higi in the center of the substrate surfaces. 【0041】また、終端磁石の設置角度を種々に定めることにより、陰極材料のイオンが基材表面の所望位置に飛着するようになり、所望の成膜特性で蒸着膜を成膜することができる。 Further, by determining the installation angle of the termination magnet variously, that ions of the cathode material is such that Higi a desired position of the substrate surface, forming a deposited film with a desired film characteristics it can. 【0042】つぎに、本発明の請求項2の真空アーク蒸着方法の場合は、終端磁石の設置角度を可変自在にする。 Next, when the vacuum arc deposition method according to claim 2 of the present invention is variable freely installation angle of the termination magnet. 【0043】したがって、終端磁石の設置角度を成膜前及び成膜中に自在に変えることができ、種々の成膜特性の蒸着薄膜を自在に成膜することができる。 [0043] Thus, it is possible to vary freely the installation angle of the termination magnet during deposition prior to and deposited, it can be formed freely deposited thin films of various film forming characteristics. 【0044】つぎに、本発明の請求項3の真空アーク蒸着方法の場合、終端磁石が他の磁石と異なる大きさにする。 Next, when the vacuum arc deposition method according to claim 3 of the present invention, as large end magnet is different from the other magnets of. 【0045】したがって、終端磁石の発散磁場につき、 [0045] Therefore, per the divergent magnetic field of the end magnet,
とくに、その上下方向の発散を、終端磁石の大きさを変えることで、種々に制御することができ、例えば、終端磁石を他の磁石より大きくすれば、放出口より基材側での磁場の上下方向の発散を良好に抑制し、陰極材料の蒸着粒子(イオン)の上下方向の拡がりを防止することができ、請求項1,2の成膜特性より一層良好な特性で均一な成膜が行える。 In particular, the divergence of the vertical direction of the terminal magnet by changing the size, can be controlled in various, for example, if the termination magnet larger than the other magnet, the magnetic field at the substrate side from the discharge port the divergence in the vertical direction satisfactorily suppressed, it is possible to prevent the vertical spread of vapor deposition particles of the cathode material (ions), uniform film formation in a more favorable properties than the film formation characteristics of claim 1, 2 It can be carried out. 【0046】そして、請求項1,2,3の真空アーク蒸着方法において、各磁石は電磁コイルからなることが実用的で好ましい。 [0046] Then, in the vacuum arc deposition method according to claim 1, 2, 3, preferably each magnet is it practical to an electromagnetic coil. また、終端磁石の設置角度が自動制御されることが好ましい。 Further, it is preferable that the installation angle of the termination magnet is automatically controlled. 【0047】さらに、各磁石が電磁コイルからなり、終端磁石の設置角度の制御に連動して各磁石の電磁コイルのコイル電流を制御することが、成膜特性上からは一層好ましい。 [0047] Further, each magnet consists of an electromagnetic coil, in conjunction with the control of the installation angle of the termination magnet to control the coil current of the electromagnetic coils of the magnets, even more preferably from the film forming properties. 【0048】つぎに、蒸発源を複数個にすれば、成膜能力の向上が図れ、複数種類の陰極材料の同時成膜も行える。 Next, if the evaporation source to a plurality, model improves film forming capability, allows simultaneous formation of multiple types of cathode material. 【0049】また、各磁石を形成する電磁コイルのコイル電流の向きを一定時間毎に切換えて逆にすれば、電子のドリフト方向を逆転することによって陰極材料のイオンの飛着位置を周期的にずらすことができ、大面積の基材の均一蒸着等が可能になる。 [0049] Further, be reversed by switching the direction of the coil current of the electromagnetic coil forming each magnet at fixed time intervals, the flying attachment position of the cathode material ions periodically by reversing the drift direction of the electronic can be shifted, it is possible to uniform deposition or the like of the substrate having a large area. 【0050】つぎに、本発明の請求項9の真空アーク蒸着装置は、放出口に最も近い終端磁石を、放出口の放出面に対し傾けて設置したものである。 Next, vacuum arc vapor deposition device according to claim 9 of the present invention, the nearest end magnet outlet, in which set up at an angle with respect to emitting surface of the outlet. 【0051】また、本発明の請求項10の真空アーク蒸着装置は、終端磁石の設置角度を可変する手段を備えたものである。 [0051] A vacuum arc vapor deposition device according to claim 10 of the present invention is provided with means for varying the mounting angle of the terminal magnet. 【0052】したがって、請求項1,2の蒸着方法に用いられる真空アーク蒸着装置を提供することができる。 [0052] Therefore, it is possible to provide a vacuum arc vapor deposition apparatus used in a deposition method according to claim 1. 【0053】さらに、請求項11の真空アーク蒸着装置は、終端磁石が他の磁石と異なる大きさにしたものである。 [0053] Further, the vacuum arc vapor deposition device according to claim 11, in which the termination magnet is in a different size other magnets. 【0054】したがって、請求項9,10の蒸着装置に、上下方向の磁場発散抑制機能等を付加することができる。 [0054] Thus, it is possible to vapor deposition device according to claim 9, 10, adds the vertical magnetic field divergence suppression function. 【0055】そして、請求項9,10,11の蒸着装置において、各磁石が電磁コイルからなることが実用的であり、終端磁石の設置角度の自動制御手段を備えることが望ましい。 [0055] Then, in the vapor deposition device according to claim 9, 10, 11, each magnet is it practical to an electromagnetic coil, it is desirable to provide an automatic control unit of the installation angle of the termination magnet. 【0056】また、各磁石が電磁コイルからなり、終端磁石の設置角度の制御に連動して各磁石の電磁コイルのコイル電流を制御する手段を備えることが、成膜特性を向上する上からは、一層好ましい。 [0056] Each magnet consists of an electromagnetic coil, it is provided with means for controlling the coil current of the conjunction with the electromagnetic coils of the magnets to control the installation angle of the termination magnet from above to improve the film formation properties , more preferred. 【0057】さらに、蒸発源が複数個であってもよく、 [0057] In addition, may be the evaporation source is a plurality of,
各磁石を形成する電磁コイルのコイル電流の向きを一定時間毎に切換えて逆にする通電制御手段を備えることが一層好ましい。 It is more preferable to provide a current supply control means to reverse by switching the direction of the coil current of the electromagnetic coil at fixed time intervals to form each magnet. 【0058】 【発明の実施の形態】本発明の実施の1形態につき、図1ないし図8を参照して説明する。 [0058] per embodiments of the embodiment of the present invention will be described with reference to FIGS. 図1は図9に対応する真空アーク蒸着装置の平面図であり、図と同一記号は同一のものを示す。 Figure 1 is a plan view of a vacuum arc vapor deposition apparatus corresponding to FIG. 9, FIG same symbols depict the same components. 【0059】そして、図1においては、図9の終端磁石としての電磁コイル14′の代わりに、他の電磁コイル14より大きい電磁コイル21を、終端磁石として設ける。 [0059] Then, in Figure 1, in place of the electromagnetic coil 14 'as the termination magnet 9, the other electromagnetic coil 14 is larger than the electromagnetic coil 21 is provided as the terminal magnet. 【0060】この電磁コイル21は図2の斜視図に示すように矩形の枠状に形成され、図3の(a),(b)のダクト取付状態の平面図,右側面図に示すように、左右方向をX軸方向(左方が正),前後方向をY軸方向(後方が正),上下方向をZ軸方向(上方が正)とすると、 [0060] The electromagnetic coil 21 is formed in a rectangular frame shape as shown in the perspective view of FIG. 2, in FIG. 3 (a), as shown in the plan view, a right side view of the duct mounting state of (b) , the horizontal direction in the X-axis direction (toward the left is positive), the front-rear direction Y-axis direction (rearward is positive), when the vertical direction Z-axis direction (upward positive),
放出口13の放出面に平行な破線の状態から、X−Y軸の平面内で角度α,Y−Z軸の平面内で角度β傾けて設置される。 From parallel dashed state emitting surface of the discharge port 13, the angle alpha, is installed inclined angle β in the plane of the Y-Z-axis in the plane of the X-Y axis. 【0061】この角度α,βは事前の荷電粒子軌道解析シミュレーション及び試験蒸着等に基づいて最適に定められ、この形態にあっては、作業員の手作業で電磁コイル21のダクト9への取付け角度等を調整し、電磁コイル21を放出面に対して角度α,βのいずれか一方又は両方傾ける。 [0061] Mounting of the angle alpha, beta are optimally determined based on a pre-charged particle orbit analysis simulation and testing deposition or the like, in this embodiment, into the duct 9 of the electromagnetic coil 21 in manual workers adjust the angle and the like, the angle alpha, tilting one or both of the β electromagnetic coil 21 on the release surface. 【0062】そして、この角度α,βの傾きにより、電磁コイル21の発生磁場が制御され、放出口13付近で図9の磁場17と異なる偏向磁場17′の磁気フィルタ22が形成され、この磁気フィルタ22によって図9のプラズマ電流20に相当するプラズマ流23が生成される。 [0062] Then, the inclination of the angle alpha, beta, is controlled magnetic field generated electromagnetic coil 21, the magnetic filter 22 of the magnetic field 17 is different from the deflection magnetic field 17 'of FIG. 9 is formed in the vicinity of the discharge port 13, the magnetic plasma stream 23 corresponding to the plasma current 20 in FIG. 9 are generated by the filter 22. 【0063】このとき、図4の(a),(b)の電子軌跡の平面図,右側面図に示すように、ダクト9を通って基材6の表面に到達する電子の軌跡は、電子の基材到達位置の中心がほぼ基材6表面の中心に一致するように補正される。 [0063] At this time, in FIG. 4 (a), a plan view of an electronic trajectory of (b), as shown in right side view, electron trajectories to reach the surface of the substrate 6 through the duct 9, electronic It is corrected in such a manner that the center of the substrate reaches the position coincides with the center of the substantially substrate 6 surface. 【0064】なお、図4の(a),(b)は電磁コイル21の設置角度による効果を示すため、電磁コイル21 [0064] Incidentally, in FIG. 4 (a), (b) to indicate the effect of the installation angle of the electromagnetic coil 21, the electromagnetic coil 21
の代わりに、他の電磁コイル14と同じ大きさの電磁コイル21′を設け、その設置角度αを時計方向の15度にして左右方向の磁場の発散を収束補正した場合の電子軌跡を示したものであり、図11の(a),(b)と同様、実線の1つおきの2個の電磁コイル21′,14にのみ通電している。 Instead of, providing the same magnitude of the electromagnetic coil 21 'and the other electromagnetic coils 14, showing an electron trajectory in the case where the convergence correcting the divergence of the left and right direction of the magnetic field with its installation angle α of 15 ° clockwise is intended, (a) in FIG. 11, (b) the same, a solid line of every other two electromagnetic coils 21 'are energized only 14. 【0065】つぎに、電磁コイル21は他の電磁コイル14と大きさが異なり、この形態にあっては上下方向の磁場の発散を抑えるため、他の電磁コイル14より大型である。 Next, the electromagnetic coil 21 have different sizes and other electromagnetic coil 14, in this embodiment to suppress the divergence of the vertical magnetic field is large than the other of the electromagnetic coil 14. 【0066】そして、電磁コイル21を他の電磁コイル14より大型にすると、上下方向の磁場に対する磁場フォーカシングの機能が付加され、上下方向の磁場が収束補正され、例えば、図5の(a),(b)の電子軌跡の平面図,右側面図に示すように、電子の上下方向の軌跡が基材6表面の中央寄りに補正されることが実験によって確められた。 [0066] Then, when the electromagnetic coil 21 to a large than other electromagnetic coils 14, the function of the magnetic field focusing are added with respect to the vertical direction of the magnetic field, the magnetic field in the vertical direction is converged corrected, for example, in FIG. 5 (a), plan view of an electronic trajectory of (b), as shown in right side view, the vertical trajectory of the electrons are corrected toward the center of the substrate 6 surface was ascertained by experimentation. 【0067】なお、図5の(a),(b)は、電磁コイル21の設置角度αを時計方向の15度にし、かつ、その寸法を他の電磁コイル14の120%にした場合の電子軌跡であり、図4の(a),(b)の場合と同様、実線の1つおきの2個の電磁コイル21,14にのみ通電している。 [0067] Incidentally, in FIG. 5 (a), (b) makes the installation angle α of the electromagnetic coil 21 to 15 degrees in the clockwise direction, and electrons in the case of the size to 120% of the other electromagnetic coil 14 a trajectory of FIG. 4 (a), are energized only when the same solid line of every other two electromagnetic coils 21,14 of (b). 【0068】そして、図4,図5からも明かなように、 [0068] Then, as shown in FIG. 4, as such apparent from FIG. 5,
電子軌跡が基材6の表面付近で左右方向及び上下方向とも中央寄りに補正されるため、陰極材料19のイオンも、左右方向及び上下方向の飛着のずれ,拡散が中央寄りに補正されて防止され、この結果、基材6の表面に均一な成膜が行える。 Since electrons trajectory is corrected in the lateral direction and also vertically near the center in the vicinity of the surface of the substrate 6, also ions of the cathode material 19, the horizontal direction and vertical direction of the flight attachment of displacement, diffusion is corrected toward the center is prevented, as a result, it enables uniform film formation on the surface of the substrate 6. 【0069】つぎに、具体的な実験結果について説明する。 [0069] Next, a specific experimental results. まず、放出口13の放出面と基材6とを、中心が重合し、かつ、両者の距離が400mmになるようにセットし、電磁コイル21,14のコイル電流100Aの条件下、電磁コイル21の設置角度αを時計方向の15度, First, an emitting surface and the substrate 6 of the discharge port 13, the center is polymerized and set so that the distance therebetween becomes 400 mm, under the conditions of the coil current 100A of the electromagnetic coils 21,14, the electromagnetic coil 21 15 degrees of the installation angle α in the clockwise direction,
20度,25度にしたところ、電子軌跡の基材6表面の到達位置の左右方向(水平方向),上下方向(垂直方向)の基材6表面の中心からのずれは図6に示すようになった。 20 degrees, was 25 degrees, the left-right direction of the arrival position of the substrate 6 surface of the electronic trajectory (horizontal direction), the deviation from the center of the substrate 6 surface in the vertical direction (vertical direction) as shown in FIG. 6 became. 【0070】図6において、◆は設置角度αが0度のリファレンス(基準コイル)のプロットを示し、■,△, [0070] In FIG. 6, ◆ shows the plot of the installation angle α is 0 degrees reference (reference coil), ■, △,
●は設置角度αを15度,20度,25度傾けたときのプロットである。 ● 15 ° installation angle alpha, 20 degrees, is a plot when tilted 25 degrees. 【0071】また、設置角度αを15度にしてコイル電流を30A,50A,100Aにすると、電子軌跡のずれは図7に示すようになった。 [0071] Also, 30A coil current by the installation angle α to 15 °, 50A, when the 100A, the deviation of the electron trajectory becomes as shown in FIG. 【0072】図7において、◆は設置角度αが0度でコイル電流が50Aのリファレンスのプロット、■,△, [0072] In FIG. 7, ◆ the installation angle α is a plot of reference of the coil current is 50A at 0 degrees, ■, △,
●は設置角度αが15度でコイル電流が30A,50 ● The installation angle α is coil current 30A at 15 degrees, 50
A,100Aのときのプロットである。 A, it is a plot of time 100A. 【0073】そして、図6,図7からも明らかなように、設置角度αをコイル電流に応じて適当に設定し、電磁コイル21を放出口13の放出面に対して適当に傾けると、その影響により、基材6表面でのとくに左右方向の電子到達位置が基材6の中央寄りに補正され、陰極材料19が基材6の表面中央部を中心として蒸着する。 [0073] Then, FIG. 6, as is apparent from FIG. 7, the installation angle α set appropriately in accordance with the coil current, when appropriately tilted with respect to emitting surface of the discharge port 13 of the electromagnetic coil 21, the the effect, in particular electrons reach positions of the left and right direction in the substrate 6 surface is corrected toward the center of the substrate 6, the cathode material 19 is deposited around the center part of the surface of the substrate 6. 【0074】つぎに、設置角度αを15度とし、コイル電流30A,50A,100Aの条件下、電磁コイル2 Next, install the angle α is 15 degrees, the coil current 30A, 50A, 100A under the conditions of the electromagnetic coil 2
1の大きさを80%,100%,120%にすると、図8の(a),(b),(c)の結果が得られた。 1 of size 80%, 100%, when the 120%, in FIG. 8 (a), (b), it was obtained the result of (c). 【0075】図8の(a),(b),(c)において、 [0075] in FIG. 8 (a), in (b), (c),
◆は設置角度αが0度で100%の大きさのリファレンスのプロット、■,△,●は設置角度αが15度で80 ◆ the installation angle α is 100% of the size of the reference of the plot at 0 degrees, ■, △, 80 in the installation angle α is 15 degrees ●
%,100%,120%の大きさにした場合のプロットを示す。 %, It shows the plots in the case of 100%, 120% size. 【0076】また、図8の(b)の▲は、△の場合と同様、設置角度15度で100%の大きさにし、かつ、コイル電流の向きを他のプロットと逆にした場合のプロットを示す。 [0076] Further, the ▲ is (b) in FIG. 8, as in the case of △, the installation angle of 15 degrees to 100 percent of the size, and the plot of the case where the direction of the coil current to other plots and inverse It is shown. 【0077】そして、図8の(a),(b),(c)からも明らかなように、電磁コイル21を120%に大きくすれば、磁場の発散の抑制により、基材6表面での上下方向の電子到達位置も基材6の中央寄りに補正され、 [0077] Then, in FIG. 8 (a), (b), as is clear from (c), by increasing the electromagnetic coil 21 to 120%, by inhibition of the divergence of the magnetic field, in the substrate 6 surface electronic arrival position in the vertical direction are corrected toward the center of the substrate 6,
陰極材料19が基材6表面の中央部を中心として、一層良好に蒸着し、均一な成膜が行われる。 Cathode material 19 around the central portion of the substrate 6 surface, more favorably deposited, uniform film formation is performed. 【0078】すなわち、この形態の場合、終端磁石としての電磁コイル21を、放出口13の放出面に対して角度α,βのいずれか一方又は両方傾けて設置し、かつ、 [0078] That is, in this embodiment, the electromagnetic coil 21 as a termination magnet, the angle alpha, set up at an angle one or both of β with respect to emitting surface of the discharge port 13, and,
電磁コイル21を他の電磁コイル14より大きくしたため、陰極材料19のイオンの飛着方向を、左右方向,上下方向に制御して中央寄りに補正し、陰極材料19を、 Due to the electromagnetic coil 21 is larger than other electromagnetic coils 14, the flight attachment direction of the ion of the cathode material 19, the left-right direction, is corrected toward the center by controlling the vertical direction, the cathode material 19,
基材6表面の中央部を中心に飛着させて蒸着し、基材6 Deposited by Higi around the central portion of the substrate 6 surface, the substrate 6
表面に均一な蒸着薄膜を成膜することができる。 It is possible to form a uniform deposition film on the surface. 【0079】ところで、前記形態では陰極材料19を基材6表面の中央部を中心に飛着させて蒸着するように補正したが、基材6によってはその表面中央部から離れた位置を中心に蒸着することが好ましい場合もある。 [0079] Incidentally, the has been corrected so as to deposit by Higi the cathode material 19 around the central portion of the substrate 6 surface in the form, by the base 6 about a position away from the surface central portion If it is preferable to deposit also. 【0080】このような場合は、前記の角度α,βの一方又は両方を目的に応じて設定し、基材6表面の任意の位置を中心に蒸着するようにしてもよい。 [0080] In this case, the angle alpha, is set according to the purpose one or both of the beta, may be deposited about an arbitrary position of the substrate 6 surface. 【0081】つぎに、前記形態では作業員の手作業で電磁コイル21を角度α,βだけ事前に傾けたが、例えば、電磁コイル21をX−X軸の平面内で回動してその角度αを可変する治具と、電磁コイル21をZ−Y軸の平面内で回動してその角度βを可変する治具とのいずれか一方又は両方を、電磁コイル21の設置角度を自在に可変する手段として設け、事前の試験成膜の結果に基づいて電磁コイル21の設置角度を初期設定したり、実際の蒸着中に電磁コイル21の設置角度を可変するようにしてもよい。 Next, the electromagnetic coil 21 angle α with manual workers in the form has been tilted in advance by beta, for example, the angle by rotating the electromagnetic coil 21 in the plane of the X-X axis a jig for varying the alpha, either or both of the jig for varying the angle β the electromagnetic coil 21 rotates in the plane of the Z-Y-axis, freely installation angle of the electromagnetic coil 21 provided as the variable to means, or initialize the installation angle of the electromagnetic coil 21 based on the results of preliminary testing deposition, the installation angle of the electromagnetic coil 21 may be variably during actual deposition. 【0082】また、前記形態では終端磁石及び他の磁石をいずれも電磁コイル21,14としたが、これらの磁石はいわゆる永久磁石で形成してもよい。 [0082] The was an electromagnetic coil 21,14 both of the end magnets and other magnets in the form, the magnets may be formed by a so-called permanent magnets. 【0083】さらに、前記形態では、説明を簡単にするため、蒸発源11が1個の場合について説明したが、基材6が大面積の場合や複数種類の陰極材料を同時に蒸着する場合等には、蒸発源11を、例えば上下方向に複数個設ければよい。 [0083] Further, in the embodiment, for simplicity of explanation, the evaporation source 11 has been described for the case of one, if such substrate 6 is deposited or when plural kinds of cathode material having a large area at the same time it is the evaporation source 11, for example, may be provided plurality in the vertical direction. 【0084】つぎに、終端磁石の設置角度は、例えば図9の制御装置16の代わりに設けた図1の制御装置24 [0084] Next, the installation angle of the termination magnet may for example control device of FIG. 1 which is provided in place of the control device 16 of FIG. 9 24
のシーケンス制御,プログラム制御等が形成する自動制御手段により、図示省略した膜厚計による基材6表面の膜厚の計測に基づき、事前に又は実際の成膜の進行に応じて前記の両治具を自動制御し、この自動制御によって自動設定したり成膜中に自動可変することが、実用的であり、また、成膜作業の効率化等の面からも、好ましい。 Sequence control, the automatic control unit program control or the like is formed, based on the measurement of the thickness of the substrate 6 surface by the film thickness meter which is not shown, both jigs of the according to the progress of the pre or actual deposition ingredients were automatic control, be automatically variable during the deposition or automatically set by the automatic control is a practical, also in terms of increasing efficiency in deposition work, preferred. 【0085】さらに、各磁石が電磁コイル14,21からなる場合、制御装置24の通電制御手段により、前記の膜厚計の計測に基づき、成膜中の電磁コイル21の設置角度α,βの制御に連動して各電磁コイル14,21 [0085] Further, if each magnet consists of an electromagnetic coil 14 and 21, the energization control means of the control unit 24, based on the measurement of the film thickness gauge, the installation angle α of the electromagnetic coil 21 during the film formation, the β each electromagnetic coil in conjunction with the control 14, 21
のコイル電流を制御すれば、一層精度の高い成膜が行える。 By controlling the coil current, it enables high more precise deposition. 【0086】つぎに、制御装置24の通電制御手段により、各電磁コイル14,21のコイル電流の向きを一定時間毎に切換えて逆にすれば、電流方向の逆転により、 [0086] Then, the energization control means of the control unit 24, be reversed by switching the direction of the coil current of the electromagnetic coils 14 and 21 at every predetermined time, the reversal of the current direction,
磁場Bの勾配∇Bの方向は変化しないが、磁場Bの方向が反転して変化するため、プラズマ流23の輸送に作用するドリフト速度が変わり、基材6の表面への陰極材料19の飛着方向が変化して膜厚分布の一層の均一化を図ることができ、成膜特性が一層向上する。 The direction of the gradient ∇B of the magnetic field B remains unchanged, because the direction of the magnetic field B varies inverted, change the drift velocity acting on the transport of the plasma flow 23, Fei cathode material 19 to the surface of the substrate 6 Incoming it is possible to achieve further uniformity of changing the film thickness distribution, film formation characteristics are further improved. 【0087】また、各電磁コイル21,14のコイル電流を交流電源から得るようにすれば、前記の通電制御手段による切換えを行うことなく、各電磁コイル21,1 [0087] Further, when to obtain a coil current of the electromagnetic coil 21,14 from the AC power source, without performing switching by said energization control means, the electromagnetic coil 21, 1
4の電流方向を一定時間毎に逆転することができる。 4 of current direction may be reversed at fixed time intervals. 【0088】つぎに、前記形態においては、ダクト9を断面矩形としたが、ダクト9は断面が円形,楕円形等であってもよく、この場合、ダクト9の断面形状に応じて各磁石の断面も円形,楕円形等にすることが好ましい。 [0088] Next, in the embodiment, although the duct 9 was set to a rectangular cross section, the duct 9 has a circular cross section may be oval or the like, in this case, of each magnet in accordance with the sectional shape of the duct 9 section also circular, it is preferable that the elliptical or the like. 【0089】また、前記形態においては、1個のダクト9を真空容器2に接続して真空アーク蒸着装置を形成したが、真空容器2に複数のダクトを接続し、各ダクトの終端磁石を、各ダクトの放出口の放出面に対して、それぞれ傾けるようにしてもよい。 [0089] Further, in the above embodiment has formed the vacuum arc deposition apparatus by connecting one duct 9 into the vacuum vessel 2, by connecting a plurality of ducts to the vacuum vessel 2, the termination magnet of each duct, on the release surface of the outlet of each duct may be tilted, respectively. 【0090】さらに、前記形態では説明を簡単にするため、成膜室1内に、1個のホルダ5を設け、1個の基材6を蒸着して成膜するようにしたが、例えば、前記公報に記載のアーク式イオンブレーディング装置のように、 [0090] Furthermore, for simplicity of explanation in the embodiment, the film forming chamber 1, one holder 5 is provided, but so as to deposit by depositing one substrate 6, for example, as the arc-type ion blading apparatus according to JP,
成膜室内に円筒形の回転式のホルダを設け、このホルダの各面に基材を保持して複数の基材の真空アーク蒸着を行う場合にも、本発明は同様に適用することができる。 The rotary holder cylinder provided in a deposition chamber, even when performing the vacuum arc deposition of a plurality of substrates holding the substrate on each side of the holder, the present invention can be applied similarly . 【0091】つぎに、前記形態では電磁コイル21を他の電磁コイル14より大きくして終端磁石を他の磁石より大きくしたが、放出口13と基材6の距離が近いなど成膜条件等によっては、終端磁石を他の磁石より小さくして良好な成膜特性を得ることができる場合もあり、このような場合には、終端磁石を他の磁石より小さくすればよい。 [0091] Next, the was larger end magnets than the other magnet by increasing the electromagnetic coil 21 than the other of the electromagnetic coil 14 in the form, such as by deposition conditions such as a short distance of the outlet 13 and the base material 6 is sometimes the termination magnet is made smaller than the other magnets it is possible to obtain a good film forming properties, in this case, it may be the end magnet smaller than the other magnets. 【0092】また、前記形態では湾曲したダクト9を用いた場合について説明したが、ダクト9の代わりに屈曲したダクトを用いた場合にも、本発明は同様に適用することができる。 [0092] Also, the case has been described using a duct 9 which is curved in the form, in the case of using a duct bent in place of the duct 9 is also present invention can be applied similarly. 【0093】つぎに、成膜特性の一層の向上等を図る場合は、終端磁場(電磁コイル21)の左右方向及び上下方向のいずれか一方又は両方の設置角度を調整するだけでなく、他の磁石(電磁コイル14)の全部又は一部についても、終端磁石と同様に、左右方向及び上下方向のいずれか一方又は両方の設置角度を調整することが好ましい。 [0093] Then, if further improved in the film forming properties, not only to adjust either or both installation angle of the horizontal direction and vertical direction of the end magnetic field (electromagnetic coil 21), the other all or part of the magnet (electromagnetic coil 14), like the end magnet, it is preferable to adjust either or both installation angle of the horizontal direction and the vertical direction. 【0094】 【発明の効果】本発明は、以下に記載する効果を奏する。 [0094] The present invention has an effect as described below. まず、請求項1の真空アーク蒸着方法の場合、放出口13に最も近い終端磁石(電磁コイル21)を、放出口13の放出面に対し傾けて設置し、終端磁石の発生磁場により、陰極材料19のイオンの飛着方向を制御したため、終端磁石により生じる偏向磁場が、従来の終端磁石を放出面に平行に設置する場合と異なり、陰極材料1 First, when the vacuum arc deposition method according to claim 1, nearest end magnet outlet 13 (electromagnetic coil 21), set up at an angle with respect to emitting surface of the discharge port 13, the generated magnetic field of the terminal magnet, the cathode material because of controlled flight deposition direction 19 of the ion, unlike the case where the deflection magnetic fields generated by the termination magnet is installed parallel to the conventional discharge surface termination magnets, the cathode material 1
9のイオンを基材6表面の中心部に到達するように制御し、均一な蒸着膜の成膜を行うことができる。 9 of the ions is controlled to reach the center of the substrate 6 surface, it is possible to form a film of uniform deposition film. 【0095】また、終端磁石の設置角度を種々に定めることにより、陰極材料19のイオンが基材表面の所望の位置を中心にして飛着するようになり、所望の成膜特性で蒸着膜を成膜することができる。 [0095] Moreover, by determining the installation angle of the termination magnet variously, it comes to flying wear around the desired position of the ion is the substrate surface of the cathode material 19, a deposited film with a desired film characteristics it can be deposited. 【0096】つぎに、請求項2の真空アーク蒸着方法の場合は、終端磁石の設置角度を可変自在にしたため、終端磁石の設置角度を成膜前及び成膜中に自在に変えることができ、種々の成膜特性の蒸着薄膜を自在に成膜することができる。 [0096] Next, if the vacuum arc deposition method according to claim 2, since the installation angle of the termination magnet freely varies, can be changed freely installation angle of the termination magnet during deposition before and deposition, it can be formed freely deposited thin films of various film forming characteristics. 【0097】つぎに、請求項3の真空アーク蒸着方法の場合、終端磁石を他の磁石と異なる大きさにしたため、 [0097] Then, since the case of the vacuum arc deposition method according to claim 3, and the end magnets different sizes and other magnet,
終端磁石の発散磁場につき、とくに、その上下方向の発散を、終端磁石の大きさを変えることで、種々に制御することができ、例えば、終端磁石を他の磁石より大きくして磁場の上下方向の発散を良好に抑制し、請求項1, Per divergent magnetic field of the terminal magnet, in particular, the divergence of the vertical direction, by changing the size of the termination magnet may be controlled in various, for example, the vertical direction of the end magnets made larger than the other magnet field the divergence satisfactorily suppressed, according to claim 1,
2の成膜特性より一層均一な特性にすることができる。 It can be made more uniform properties than 2 of the film forming properties.
そして、各磁石が電磁コイル14,21からなることが実用的で好ましい。 Then, it is practical and preferable that each magnet consists of an electromagnetic coil 14, 21. また、終端磁石の設置角度が自動制御されることが実用上は好ましい。 Moreover, practically that the installation angle of the termination magnet is automatically controlled preferred. 【0098】さらに、各磁石が電磁コイル14,21からなり、終端磁石の設置角度の制御に連動して各磁石の電磁コイル14,21のコイル電流を制御することが、 [0098] Further, that each magnet consists of an electromagnetic coil 14, 21, in conjunction with the control of the installation angle of the termination magnet to control the coil current of the electromagnetic coil 14, 21 of each magnet,
成膜特性上からは一層好ましい。 More preferred from the deposition characteristics. 【0099】つぎに、蒸発源11を複数個にすれば、成膜能力の向上が図れ、複数種類の陰極材料19の同時成膜も行うことができる。 [0099] Then, when the evaporation source 11 into a plurality, model improves film forming capability, simultaneous deposition of a plurality of types of cathode material 19 may also be performed. 【0100】また、各磁石を形成する電磁コイル14, [0100] The electromagnetic coil 14 forming each magnet,
21のコイル電流の向きを一定時間毎に切換えて逆にすれば、陰極材料19のイオンの飛着位置を周期的にずらすことができ、大面積の基材6の均一な蒸着成膜を行うことができる。 If the 21 direction of the coil current of the reversed by switching every constant time, it is possible to shift the flying attachment position of the ion in the cathode material 19 are periodically, perform uniform film formation by vapor deposition of a substrate 6 of a large area be able to. 【0101】つぎに、請求項9〜16の真空アーク蒸着装置は、前記の各真空アーク蒸着方法を実現する具体的な装置を提供することができる。 Next, vacuum arc vapor deposition device according to claim 9 to 16, it is possible to provide a specific apparatus for realizing each vacuum arc vapor deposition process of the.

【図面の簡単な説明】 【図1】本発明の実施の1形態の真空アーク蒸着装置の平面図である。 It is a plan view of a vacuum arc deposition apparatus 1 embodiment BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] present invention. 【図2】図1の終端磁石としての電磁コイルの斜視図である。 2 is a perspective view of an electromagnetic coil as the termination magnet of FIG. 【図3】(a),(b)は図2の電磁コイルの傾きの説明図である。 [3] (a), it is an explanatory view of a slope of (b) an electromagnetic coil of FIG. 【図4】(a),(b)は終端磁石としての電磁コイルを角度α=15度傾けたときの電子軌跡説明図の平面図,右側面図である。 [4] (a), (b) is a plan view, a right side view of the electronic locus diagram when tilting the electromagnetic coil angle alpha = 15 degrees as the end magnets. 【図5】(a),(b)は終端磁石としての電磁コイルを角度α=15度傾け、かつ、その寸法を他の磁石の電磁コイルより大きくしたときの電子軌跡説明図の平面図,右側面図である。 [5] (a), (b) is inclined electromagnetic coil angle alpha = 15 degrees as the terminal magnet, and a plan view of an electronic trajectory illustration when its dimensions larger than the electromagnetic coil of the other magnet, it is a right side view. 【図6】終端磁石としての電磁コイルの角度αを変えたときの電子到達位置の実測結果である。 6 is a measurement result of electron arrival positions when varying the angle α of the electromagnetic coil as the terminal magnet. 【図7】終端磁石としての電磁コイルを角度α=15度傾けてコイル電流を変えたときの電子到達位置の実測結果である。 7 is a measurement result of electron arrival positions when changing the coil current the magnet coil as the terminal magnet is inclined an angle alpha = 15 °. 【図8】(a),(b),(c)は終端磁石としての電磁コイルを角度α=15度傾けてコイル電流を30A, 8 (a), (b), (c) is 30A coil current electromagnetic coil as the terminal magnet angle alpha = 15 degrees inclined,
50A,100Aにしたときの大きさ(コイル寸法)の違いによる電子到達位置の実測結果である。 50A, the actual measurement results of electron arrival positions due to the difference in size (coil size) when the 100A. 【図9】従来装置の平面図である。 9 is a plan view of a conventional device. 【図10】(a),(b)は図9の従来装置の発散磁場説明図の平面図,右側面図である。 [10] (a), (b) is a plan view of the divergent magnetic field illustration of a conventional apparatus of FIG. 9 is a right side view. 【図11】図9の従来装置の電子軌跡説明図の平面図, Figure 11 is a plan view of an electronic trajectory illustration of a conventional apparatus of FIG. 9,
右側面図である。 It is a right side view. 【符号の説明】 1 成膜室6 基材9 ダクト11 蒸発源13 放出口14,21 電磁コイル17′ 偏向磁場19 陰極材料22 磁気フィルタ23 プラズマ流 [Reference Numerals] 1 deposition chamber 6 base member 9 duct 11 evaporation source 13 outlet 14, 21 electromagnetic coil 17 'the deflection magnetic field 19 cathode material 22 magnetic filter 23 plasma flow

───────────────────────────────────────────────────── フロントページの続き (72)発明者 緒方 潔 京都市右京区梅津高畝町47番地 日新電機 株式会社内(72)発明者 村上 浩 京都市右京区梅津高畝町47番地 日新電機 株式会社内Fターム(参考) 4K029 DB14 DD06 EA00 EA07 EA09 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Kiyoshi Ogata Kyoto Ukyo-ku, Umezutakase-cho, 47 address Nissin Electric Co., Ltd. in the (72) inventor Hiroshi Murakami Kyoto Ukyo-ku, Umezutakase-cho, in the 47 address Nissin Electric Co., Ltd. F term (reference) 4K029 DB14 DD06 EA00 EA07 EA09

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 湾曲又は屈曲したダクトの一端に位置した蒸発源から、アーク放電により陰極材料を蒸発し、 前記ダクトの複数個所それぞれに前記ダクトを囲んだ磁石を設けて磁気フィルタを形成し、 前記磁気フィルタにより前記ダクトの内部に偏向磁場を発生し、 前記偏向磁場に基づき、前記蒸発によって発生した粗大粒子を除去しつつ、前記陰極材料のイオンを含むプラズマ流を前記ダクトの一端から他端の放出口に輸送し、 前記プラズマ流の前記イオンを前記放出口から成膜室に引出して前記成膜室の基材に飛着し、 前記基材に前記陰極材料を蒸着する真空アーク蒸着方法において、 前記放出口に最も近い終端磁石を、前記放出口の放出面に対して傾けて設置し、 前記終端磁石の発生磁場により、前記イオンの From Claims 1 Evaporation source located at one end of the curved or bent duct, a cathode material evaporated by arc discharge, providing a magnet that surrounds the duct to each plurality of positions of the duct forming a magnetic filter, the magnetically filter generates a deflection magnetic field within said duct, on the basis of said deflection magnetic field, while removing the coarse particles generated by the evaporation, the plasma stream containing ions of the cathode material transported from one end of the duct to the outlet at the other end, and Higi the ions of said plasma stream to the substrate of the film forming chamber drawer into the deposition chamber from the outlet, the cathode material to the substrate in vacuum arc deposition method of depositing, the nearest end magnet to said outlet, set up at an angle with respect to emitting surface of the outlet, the generated magnetic field of the end magnet of the ion 着方向を制御することを特徴とする真空アーク蒸着方法。 Vacuum arc deposition method characterized by controlling the Incoming. 【請求項2】 終端磁石の設置角度を可変自在にしたことを特徴とする請求項1記載の真空アーク蒸着方法。 2. A vacuum arc vapor deposition method according to claim 1, characterized in that the installation angle of the termination magnet freely varies. 【請求項3】 終端磁石が他の磁石と異なる大きさであることを特徴とする請求項1又は2記載の真空アーク蒸着方法。 3. A vacuum arc vapor deposition method according to claim 1 or 2, wherein the termination magnet is different from the size other magnets. 【請求項4】 各磁石が電磁コイルからなることを特徴とする請求項1,2又は3記載の真空アーク蒸着方法。 4. The method of claim 1, 2 or 3 vacuum arc deposition method according each magnet is characterized in that an electromagnetic coil. 【請求項5】 終端磁石の設置角度が自動制御されることを特徴とする請求項1,2,3又は4記載の真空アーク蒸着方法。 5. A method according to claim 1, 2, 3 or 4 vacuum arc deposition method, wherein the installation angle of the termination magnet is automatically controlled. 【請求項6】 各磁石が電磁コイルからなり、終端磁石の設置角度の制御に連動して前記各磁石の電磁コイルのコイル電流を制御することを特徴とする請求項1,2, Wherein each magnet has an electromagnetic coil, according to claim 1 and 2 in conjunction with the control of the installation angle of the termination magnet and controls the coil current of the electromagnetic coil of each magnet,
    3,4又は5記載の真空アーク蒸着方法。 3, 4 or 5 vacuum arc deposition method according. 【請求項7】 蒸発源が複数個であることを特徴とする請求項1,2,3,4,5又は6記載の真空アーク蒸着方法。 7. A vacuum arc vapor deposition method according to claim 2, 3, 4, 5 or 6, wherein the evaporation source is plural. 【請求項8】 各磁石を形成する電磁コイルのコイル電流の向きを一定時間毎に切換えて逆にしたことを特徴とする請求項1,2,3,4,5,6又は7記載の真空アーク蒸着方法。 8. A vacuum of claims 1,2,3,4,5,6 or 7, wherein it has reversed by switching the direction of the coil current of the electromagnetic coil at fixed time intervals to form each magnet arc deposition method. 【請求項9】 基材が設けられた成膜室と、 湾曲又は屈曲したダクトと、 前記ダクトの一端に位置し、真空中でのアーク放電により陰極材料が蒸発する蒸発源と、 前記成膜室に連通した前記ダクトの他端の放出口と、 前記ダクトの複数個所それぞれに前記ダクトを囲んだ磁石を設けて形成され、前記ダクト内に偏向磁場を発生し、前記蒸発により発生した粗大粒子を除去しつつ、前記陰極材料のイオンを含むプラズマ流を前記ダクトの一端から前記放出口に輸送する磁気フィルタとを備え、 前記プラズマ流の前記イオンを前記放出口から前記成膜室に引出して前記基材に飛着し、前記基材に前記陰極材料を蒸着する真空アーク蒸着装置において、 前記放出口に最も近い終端磁石を、前記放出口の放出面に対し傾けて設置したことを特徴とす 9. A deposition chamber the substrate is provided, a curved or bent duct, positioned at one end of the duct, and the evaporation source cathode material is evaporated by arc discharge in vacuum, the film forming and outlet at the other end of the duct communicating with the chamber, is formed by providing a magnet that surrounds the duct to each plurality of positions of the duct, the deflection magnetic field generated within the duct, coarse particles generated by said evaporator while removing the plasma stream containing ions of the cathode material and a magnetic filter transporting the outlet from one end of the duct, it is pulled out the ions of the plasma flow into the film forming chamber from the outlet and Higi to the substrate, in a vacuum arc deposition apparatus for depositing the cathode material to the substrate, and characterized in that the nearest end magnet to said outlet, was set up at an angle with respect to emitting surface of the outlet to る真空アーク蒸着装置。 Vacuum arc vapor deposition apparatus that. 【請求項10】 終端磁石の設置角度を可変する手段を備えたことを特徴とする請求項9記載の真空アーク蒸着装置。 10. A vacuum arc vapor deposition device according to claim 9, wherein the installation angle of the termination magnet comprising means for variably. 【請求項11】 終端磁石が他の磁石と異なる大きさであることを特徴とする請求項9又は10記載の真空アーク蒸着装置。 11. The vacuum arc vapor deposition device according to claim 9 or 10, wherein the termination magnet is different from the size other magnets. 【請求項12】 各磁石が電磁コイルからなることを特徴とする請求項9,10又は11記載の真空アーク蒸着装置。 12. The vacuum arc vapor deposition device according to claim 9, 10 or 11, wherein each magnet is characterized in that an electromagnetic coil. 【請求項13】 終端磁石の設置角度の自動制御手段を備えたことを特徴とする請求項9,10,11又は12 13. The method of claim, characterized in that an automatic control unit of the installation angle of the termination magnet 9, 10, 11 or 12
    記載の真空アーク蒸着装置。 Vacuum arc vapor deposition apparatus according. 【請求項14】 各磁石が電磁コイルからなり、終端磁石の設置角度の制御に連動して前記各磁石の電磁コイルのコイル電流を制御する手段を備えたことを特徴とする請求項9,10,11.12又は13記載の真空アーク蒸着装置。 14. Each magnet is an electromagnetic coil, according to claim 9 and 10 in conjunction with the control of the installation angle of the termination magnet characterized by comprising means for controlling the coil current of the electromagnetic coil of each magnet , 11.12 or 13 vacuum arc vapor deposition apparatus according. 【請求項15】 蒸発源が複数個であることを特徴とする請求項9,10,11,12,13又は14記載の真空アーク蒸着装置。 15. A vacuum arc vapor deposition device according to claim 9,10,11,12,13 or 14, wherein the evaporation source is plural. 【請求項16】 各磁石を形成する電磁コイルのコイル電流の向きを一定時間毎に切換えて逆にする通電制御手段を備えたとを特徴とする請求項9,10,11,1 16. A method according to claim, characterized in city with the energization control means to reverse by switching the direction of the coil current of the electromagnetic coil at fixed time intervals to form the individual magnets 9,10,11,1
    2,13,14又は15記載の真空アーク蒸着装置。 2,13,14 or 15 vacuum arc vapor deposition apparatus according.
JP2001365606A 2001-11-30 2001-11-30 Vacuum arc deposition method and apparatus Expired - Fee Related JP4003448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365606A JP4003448B2 (en) 2001-11-30 2001-11-30 Vacuum arc deposition method and apparatus

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2001365606A JP4003448B2 (en) 2001-11-30 2001-11-30 Vacuum arc deposition method and apparatus
US10/305,008 US7033462B2 (en) 2001-11-30 2002-11-27 Vacuum arc vapor deposition process and apparatus
KR20020075172A KR100569905B1 (en) 2001-11-30 2002-11-29 Vacuum arc vapor deposition process and apparatus
TW91134753A TW575672B (en) 2001-11-30 2002-11-29 Vacuum arc vapor deposition process and apparatus
DE2002612551 DE60212551T2 (en) 2001-11-30 2002-11-29 Apparatus and method for vacuum deposition by means of arc
EP20020026683 EP1316986B1 (en) 2001-11-30 2002-11-29 Vacuum arc vapor deposition process and apparatus
CN 02160651 CN1205353C (en) 2001-11-30 2002-11-30 Method and device for vacuum arc vapour deposition

Publications (2)

Publication Number Publication Date
JP2003166050A true JP2003166050A (en) 2003-06-13
JP4003448B2 JP4003448B2 (en) 2007-11-07

Family

ID=19175605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365606A Expired - Fee Related JP4003448B2 (en) 2001-11-30 2001-11-30 Vacuum arc deposition method and apparatus

Country Status (1)

Country Link
JP (1) JP4003448B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033462B2 (en) 2001-11-30 2006-04-25 Nissin Electric Co., Ltd. Vacuum arc vapor deposition process and apparatus
KR100683174B1 (en) 2005-06-17 2007-02-15 삼성전자주식회사 Plasma accelerating apparatus and plasma processing system having the same
US7644861B2 (en) 2006-04-18 2010-01-12 Bgc Partners, Inc. Systems and methods for providing access to wireless gaming devices
US7811172B2 (en) 2005-10-21 2010-10-12 Cfph, Llc System and method for wireless lottery
US8070604B2 (en) 2005-08-09 2011-12-06 Cfph, Llc System and method for providing wireless gaming as a service application
US8092303B2 (en) 2004-02-25 2012-01-10 Cfph, Llc System and method for convenience gaming
US8162756B2 (en) 2004-02-25 2012-04-24 Cfph, Llc Time and location based gaming
US8292741B2 (en) 2006-10-26 2012-10-23 Cfph, Llc Apparatus, processes and articles for facilitating mobile gaming
US8319601B2 (en) 2007-03-14 2012-11-27 Cfph, Llc Game account access device
US8397985B2 (en) 2006-05-05 2013-03-19 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US8504617B2 (en) 2004-02-25 2013-08-06 Cfph, Llc System and method for wireless gaming with location determination
US8510567B2 (en) 2006-11-14 2013-08-13 Cfph, Llc Conditional biometric access in a gaming environment
US8506400B2 (en) 2005-07-08 2013-08-13 Cfph, Llc System and method for wireless gaming system with alerts
JP2013536315A (en) * 2010-06-22 2013-09-19 メルク パテント ゲーエムベーハー Method and apparatus for coating a surface
JP2013218881A (en) * 2012-04-09 2013-10-24 Chugai Ro Co Ltd Plasma generator and vapor deposition device and vapor deposition method
US8581721B2 (en) 2007-03-08 2013-11-12 Cfph, Llc Game access device with privileges
US8613658B2 (en) 2005-07-08 2013-12-24 Cfph, Llc System and method for wireless gaming system with user profiles
US8645709B2 (en) 2006-11-14 2014-02-04 Cfph, Llc Biometric access data encryption
US8899477B2 (en) 2006-05-05 2014-12-02 Cfph, Llc Device detection
US8956231B2 (en) 2010-08-13 2015-02-17 Cfph, Llc Multi-process communication regarding gaming information
US9183693B2 (en) 2007-03-08 2015-11-10 Cfph, Llc Game access device
US9306952B2 (en) 2006-10-26 2016-04-05 Cfph, Llc System and method for wireless gaming with location determination
US9411944B2 (en) 2006-11-15 2016-08-09 Cfph, Llc Biometric access sensitivity

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033462B2 (en) 2001-11-30 2006-04-25 Nissin Electric Co., Ltd. Vacuum arc vapor deposition process and apparatus
US8504617B2 (en) 2004-02-25 2013-08-06 Cfph, Llc System and method for wireless gaming with location determination
US8696443B2 (en) 2004-02-25 2014-04-15 Cfph, Llc System and method for convenience gaming
US9430901B2 (en) 2004-02-25 2016-08-30 Interactive Games Llc System and method for wireless gaming with location determination
US9355518B2 (en) 2004-02-25 2016-05-31 Interactive Games Llc Gaming system with location determination
US8092303B2 (en) 2004-02-25 2012-01-10 Cfph, Llc System and method for convenience gaming
US8162756B2 (en) 2004-02-25 2012-04-24 Cfph, Llc Time and location based gaming
US8308568B2 (en) 2004-02-25 2012-11-13 Cfph, Llc Time and location based gaming
US8616967B2 (en) 2004-02-25 2013-12-31 Cfph, Llc System and method for convenience gaming
KR100683174B1 (en) 2005-06-17 2007-02-15 삼성전자주식회사 Plasma accelerating apparatus and plasma processing system having the same
US8708805B2 (en) 2005-07-08 2014-04-29 Cfph, Llc Gaming system with identity verification
US8506400B2 (en) 2005-07-08 2013-08-13 Cfph, Llc System and method for wireless gaming system with alerts
US8613658B2 (en) 2005-07-08 2013-12-24 Cfph, Llc System and method for wireless gaming system with user profiles
US8070604B2 (en) 2005-08-09 2011-12-06 Cfph, Llc System and method for providing wireless gaming as a service application
US8690679B2 (en) 2005-08-09 2014-04-08 Cfph, Llc System and method for providing wireless gaming as a service application
US7811172B2 (en) 2005-10-21 2010-10-12 Cfph, Llc System and method for wireless lottery
US8403214B2 (en) 2006-04-18 2013-03-26 Bgc Partners, Inc. Systems and methods for providing access to wireless gaming devices
US7644861B2 (en) 2006-04-18 2010-01-12 Bgc Partners, Inc. Systems and methods for providing access to wireless gaming devices
US8899477B2 (en) 2006-05-05 2014-12-02 Cfph, Llc Device detection
US8397985B2 (en) 2006-05-05 2013-03-19 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US8939359B2 (en) 2006-05-05 2015-01-27 Cfph, Llc Game access device with time varying signal
US8740065B2 (en) 2006-05-05 2014-06-03 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US8695876B2 (en) 2006-05-05 2014-04-15 Cfph, Llc Systems and methods for providing access to wireless gaming devices
US8292741B2 (en) 2006-10-26 2012-10-23 Cfph, Llc Apparatus, processes and articles for facilitating mobile gaming
US9306952B2 (en) 2006-10-26 2016-04-05 Cfph, Llc System and method for wireless gaming with location determination
US9280648B2 (en) 2006-11-14 2016-03-08 Cfph, Llc Conditional biometric access in a gaming environment
US8645709B2 (en) 2006-11-14 2014-02-04 Cfph, Llc Biometric access data encryption
US8510567B2 (en) 2006-11-14 2013-08-13 Cfph, Llc Conditional biometric access in a gaming environment
US9411944B2 (en) 2006-11-15 2016-08-09 Cfph, Llc Biometric access sensitivity
US9183693B2 (en) 2007-03-08 2015-11-10 Cfph, Llc Game access device
US8581721B2 (en) 2007-03-08 2013-11-12 Cfph, Llc Game access device with privileges
US8319601B2 (en) 2007-03-14 2012-11-27 Cfph, Llc Game account access device
JP2013536315A (en) * 2010-06-22 2013-09-19 メルク パテント ゲーエムベーハー Method and apparatus for coating a surface
KR101780521B1 (en) 2010-06-22 2017-09-21 메르크 파텐트 게엠베하 Method and device for coating a surface
US8956231B2 (en) 2010-08-13 2015-02-17 Cfph, Llc Multi-process communication regarding gaming information
JP2013218881A (en) * 2012-04-09 2013-10-24 Chugai Ro Co Ltd Plasma generator and vapor deposition device and vapor deposition method

Also Published As

Publication number Publication date
JP4003448B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US6103074A (en) Cathode arc vapor deposition method and apparatus
EP1690279B1 (en) Plasma source with segmented magnetron cathode
US7014889B2 (en) Process and apparatus for plasma activated depositions in a vacuum
US6153067A (en) Method for combined treatment of an object with an ion beam and a magnetron plasma with a combined magnetron-plasma and ion-beam source
US5800688A (en) Apparatus for ionized sputtering
US6787010B2 (en) Non-thermionic sputter material transport device, methods of use, and materials produced thereby
US4842703A (en) Magnetron cathode and method for sputter coating
JP4926067B2 (en) Ionizer and methods for gas cluster ion beam formation
EP0757615B1 (en) Process of coating a layer of amorphous diamond on blades
US6113752A (en) Method and device for coating substrate
JP3343620B2 (en) Thin film forming method and apparatus according to magnetron sputtering
US5380414A (en) Shield and collimator pasting deposition chamber with a wafer support periodically used as an acceptor
JP2643149B2 (en) The surface treatment method
US20080138529A1 (en) Method and apparatus for cathodic arc ion plasma deposition
JP3231900B2 (en) The film-forming apparatus
US6692623B2 (en) Vacuum arc vapor deposition apparatus and vacuum arc vapor deposition method
US4992153A (en) Sputter-CVD process for at least partially coating a workpiece
US4941915A (en) Thin film forming apparatus and ion source utilizing plasma sputtering
EP0537011A1 (en) Sputtering apparatus
JP3706157B2 (en) Gas introduction device and method
JP5305571B2 (en) Peripheral electrode is biased segmented in a plasma processing method and apparatus
JP5642721B2 (en) Beam-shaped plasma source
Bohlmark et al. Guiding the deposition flux in an ionized magnetron discharge
US5130005A (en) Magnetron sputter coating method and apparatus with rotating magnet cathode
US5110435A (en) Apparatus and process for producing a thin layer on a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees