JP2003163204A - Plasma treating device - Google Patents
Plasma treating deviceInfo
- Publication number
- JP2003163204A JP2003163204A JP2001361897A JP2001361897A JP2003163204A JP 2003163204 A JP2003163204 A JP 2003163204A JP 2001361897 A JP2001361897 A JP 2001361897A JP 2001361897 A JP2001361897 A JP 2001361897A JP 2003163204 A JP2003163204 A JP 2003163204A
- Authority
- JP
- Japan
- Prior art keywords
- gas supply
- processing chamber
- plasma
- electric field
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はプラズマ処理装置に
係り、特に直径300mm以上の被処理基板を処理するの
に好適なプラズマ処理装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus, and more particularly to a plasma processing apparatus suitable for processing a substrate having a diameter of 300 mm or more.
【0002】[0002]
【従来の技術】従来のプラズマ処理装置としては、例え
ば、特開平11−260594号公報に記載のようにマ
イクロ波,UHFあるいはVHFの電磁波を同軸線路を
利用して処理室に伝送しプラズマを生成するプラズマ処
理装置において、処理室の上部を石英窓で仕切り、石英
窓の反処理室側に同軸線路の内部導体の端につながる円
板状アンテナを設け、円板状アンテナの外径を処理室内
径よりも小さくし、円板状アンテナの外周部より石英窓
を介して電磁波を処理室内に導入可能とし、さらに円板
状アンテナにスロットアンテナを設け、円板状アンテナ
内部からも処理室内に電磁波を導入して、プラズマ分布
を制御し均一なプラズマ処理を行うようにしたプラズマ
処理装置が知られている。2. Description of the Related Art As a conventional plasma processing apparatus, for example, as described in JP-A-11-260594, microwaves, UHF or VHF electromagnetic waves are transmitted to a processing chamber using a coaxial line to generate plasma. In the plasma processing device, the upper part of the processing chamber is partitioned by a quartz window, and a disk-shaped antenna connected to the end of the inner conductor of the coaxial line is installed on the side opposite to the processing window of the quartz window. It is smaller than the inner diameter, and electromagnetic waves can be introduced into the processing chamber from the outer circumference of the disk antenna through the quartz window.Furthermore, a slot antenna is provided on the disk antenna, and electromagnetic waves are introduced into the processing chamber from inside the disk antenna. There is known a plasma processing apparatus in which the plasma distribution is controlled by controlling the plasma distribution and performing uniform plasma processing.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術は、処理
ガスの導入位置について配慮されておらず、処理室を形
成する石英窓部にガス供給板であるシャワープレートを
設け処理室内にシャワー状にガスを供給するようにした
場合、長期間のプラズマ処理の繰り返しによりシャワー
プレートが劣化し、シャワープレートに設けたガス供給
孔内で放電が発生する恐れがある。シャワープレートの
ガス供給孔内で放電が生じると、プラズマの特性が変化
しプラズマ処理特性が劣化してしまうという問題があ
る。In the above prior art, no consideration is given to the introduction position of the processing gas, and a shower plate, which is a gas supply plate, is provided in the quartz window portion forming the processing chamber to form a shower shape in the processing chamber. When the gas is supplied, the shower plate may deteriorate due to repeated plasma treatment for a long period of time, and discharge may occur in the gas supply hole provided in the shower plate. When an electric discharge occurs in the gas supply hole of the shower plate, there is a problem that the characteristics of plasma change and the plasma processing characteristics deteriorate.
【0004】本発明の目的は、ガス供給板のガス供給孔
内での放電を防止し、安定なプラズマ処理が行えるプラ
ズマ処理装置を提供することにある。An object of the present invention is to provide a plasma processing apparatus capable of preventing discharge in the gas supply holes of the gas supply plate and performing stable plasma processing.
【0005】[0005]
【課題を解決するための手段】上記目的は、内部が減圧
排気される処理室と、処理室内に設けられ被処理基板が
配置される基板電極と、処理室内で基板電極に対向して
設けられ面内に複数のガス供給孔を有するガス供給板と
を有し、処理室内に電磁波を導入してプラズマを生成
し、該プラズマを用いて被処理基板を処理するプラズマ
処理装置において、処理室内に導入される電磁波のガス
供給板面内の電界強度分布に従い、電界強度が所定の電
界強度以上である領域のガス供給板面内にガス供給孔の
未形成領域を設けることにより、達成される。The above object is to provide a processing chamber whose inside is decompressed and evacuated, a substrate electrode in which a substrate to be processed is placed in the processing chamber, and a substrate electrode which faces the substrate electrode in the processing chamber. In a plasma processing apparatus having a gas supply plate having a plurality of gas supply holes in a plane, plasma is generated by introducing an electromagnetic wave into the processing chamber, and the substrate to be processed is processed using the plasma. According to the electric field intensity distribution in the gas supply plate surface of the introduced electromagnetic wave, it is achieved by providing a gas supply hole non-formed region in the gas supply plate surface in a region where the electric field intensity is equal to or higher than a predetermined electric field intensity.
【0006】また、上記目的は、内部が減圧排気される
処理室と、処理室内に設けられ被処理基板が配置される
基板電極と、処理室内で基板電極に対向して設けられ面
内に複数のガス供給孔を有するガス供給板と、ガス供給
板に対向して配置される電磁波放射手段とを有し、電磁
波放射手段により処理室内に電磁波を導入してプラズマ
を生成し、該プラズマを用いて被処理基板を処理するプ
ラズマ処理装置において、処理室内に導入される電磁波
のガス供給板面内の電界強度分布に従い、電界強度が所
定の電界強度以下となる領域にガス供給板のガス供給孔
を配置することにより、達成される。[0006] Further, the above-mentioned objects are as follows: a processing chamber whose inside is evacuated to a reduced pressure; a substrate electrode which is provided in the processing chamber and on which a substrate to be processed is placed; A gas supply plate having a gas supply hole and an electromagnetic wave radiating unit arranged to face the gas supply plate, the electromagnetic wave radiating unit introduces an electromagnetic wave into a processing chamber to generate plasma, and the plasma is used. In a plasma processing apparatus for processing a substrate to be processed with a gas supply hole of a gas supply plate in a region where the electric field strength is equal to or lower than a predetermined electric field strength according to the electric field strength distribution in the surface of the gas supply plate of the electromagnetic wave introduced into the processing chamber. It is achieved by arranging.
【0007】さらに、所定の電界強度が最大値の1/2
である。Further, the predetermined electric field strength is 1/2 of the maximum value.
Is.
【0008】また、所定の電界強度が50kV/mであ
る。Further, the predetermined electric field strength is 50 kV / m.
【0009】また、上記目的は、内部が減圧排気される
処理室と、処理室内に設けられ被処理基板が配置される
基板電極と、処理室内で基板電極に対向して設けられ面
内に複数のガス供給孔を有するガス供給板と、ガス供給
板に対向して配置される電磁波放射手段とを有し、電磁
波放射手段により処理室内に電磁波を導入してプラズマ
を生成し、該プラズマを用いて被処理基板を処理するプ
ラズマ処理装置において、処理室内に導入される電磁波
の前記ガス供給板面内の電界強度分布が複数の極大値を
有し、第1の極大値よりも電界絶対値が小さい第2の極
大値の値以下の領域にガス供給板のガス供給孔を配置す
ることにより、達成される。Further, the above-mentioned objects are: a processing chamber whose inside is evacuated to a reduced pressure; a substrate electrode which is provided in the processing chamber and on which a substrate to be processed is placed; A gas supply plate having a gas supply hole and an electromagnetic wave radiating unit arranged to face the gas supply plate, the electromagnetic wave radiating unit introduces an electromagnetic wave into a processing chamber to generate plasma, and the plasma is used. In a plasma processing apparatus for processing a substrate to be processed, the electric field intensity distribution of the electromagnetic wave introduced into the processing chamber on the surface of the gas supply plate has a plurality of maximum values, and the absolute value of the electric field is higher than the first maximum value. This is achieved by arranging the gas supply holes of the gas supply plate in a region below the second minimum value which is small.
【0010】また、上記目的は、内部が減圧排気される
処理室と、処理室内に設けられ被処理基板が配置される
基板電極と、処理室内で基板電極に対向して設けられ面
内に複数のガス供給孔を有するガス供給板と、ガス供給
板に対向して配置される電磁波放射手段とを有し、電磁
波放射手段により処理室内に電磁波を導入するとともに
処理室内に磁場を形成し相互の作用によるプラズマを生
成して、該プラズマを用いて被処理基板を処理するプラ
ズマ処理装置において、処理室内径の30%以下のガス
供給板中央部の領域にガス供給孔の未形成領域を設ける
ことにより、達成される。Further, the above object is to provide a processing chamber whose inside is evacuated under reduced pressure, a substrate electrode in which the substrate to be processed is placed in the processing chamber, and a plurality of electrodes provided in the processing chamber so as to face the substrate electrode. A gas supply plate having a gas supply hole and an electromagnetic wave radiating means arranged so as to face the gas supply plate. The electromagnetic wave radiating means introduces an electromagnetic wave into the processing chamber and forms a magnetic field in the processing chamber. In a plasma processing apparatus for generating a plasma by the action and processing a substrate to be processed by using the plasma, an area where a gas supply hole is not formed is provided in an area of a central portion of a gas supply plate that is 30% or less of a diameter of a processing chamber. Is achieved by
【0011】また、上記目的は、内部が減圧排気される
処理室と、処理室内に設けられ被処理基板が配置される
基板電極と、処理室内で基板電極に対向して設けられ面
内に複数のガス供給孔を有する誘電体のガス供給板と、
ガス供給板に対向し処理室を形成する誘電体窓を介して
配置される平板状アンテナとを有し、平板状アンテナに
より処理室内に電磁波を導入してプラズマを生成し、該
プラズマを用いて被処理基板を処理するプラズマ処理装
置において、処理室内に導入される電磁波のガス供給板
内の電界強度分布に従い、電界強度が所定の電界強度以
下となる領域にガス供給板のガス供給孔を配置すること
により、達成される。Further, the above-mentioned objects are: a processing chamber whose inside is evacuated to a reduced pressure; a substrate electrode in which a substrate to be processed is placed in the processing chamber; and a plurality of electrodes provided in the processing chamber so as to face the substrate electrode. A dielectric gas supply plate having a gas supply hole of
And a flat plate-shaped antenna arranged through a dielectric window facing the gas supply plate to form a processing chamber, the flat plate-shaped antenna introduces electromagnetic waves into the processing chamber to generate plasma, and the plasma is used. In a plasma processing apparatus for processing a substrate to be processed, a gas supply hole of the gas supply plate is arranged in a region where the electric field strength is equal to or lower than a predetermined electric field strength according to the electric field strength distribution of the electromagnetic wave introduced into the processing chamber in the gas supply plate. It is achieved by
【0012】また、上記目的は、内部が減圧排気される
処理室と、処理室内に設けられ被処理基板が配置される
基板電極と、処理室内に設けられ基板電極に対向して設
けられた平板状アンテナと、平板状アンテナの基板電極
側面に取り付けられ面内に複数のガス供給孔を有する導
電性のガス供給板とを有し、平板状アンテナにより処理
室内に電磁波を導入してプラズマを生成し、該プラズマ
を用いて被処理基板を処理するプラズマ処理装置におい
て、処理室内に導入される電磁波のガス供給板面内の電
界強度分布に従い、電界強度が所定の電界強度以下とな
る領域にガス供給板のガス供給孔を配置することによ
り、達成される。Further, the above object is to provide a processing chamber whose inside is evacuated to a reduced pressure, a substrate electrode which is provided in the processing chamber and on which a substrate to be processed is placed, and a flat plate which is provided in the processing chamber and faces the substrate electrode. -Shaped antenna and a conductive gas supply plate that is attached to the side surface of the plate electrode of the plate-shaped antenna and has a plurality of gas supply holes in the plane, and the plate-shaped antenna introduces electromagnetic waves into the processing chamber to generate plasma Then, in the plasma processing apparatus for processing the substrate to be processed using the plasma, the gas is applied to a region where the electric field strength is equal to or lower than a predetermined electric field strength according to the electric field strength distribution in the gas supply plate surface of the electromagnetic wave introduced into the processing chamber. This is achieved by arranging the gas feed holes in the feed plate.
【0013】[0013]
【発明の実施の形態】処理室内で試料台である基板電極
に対向して設けられ電磁波放射手段である電磁波供給用
のアンテナの下方に位置するガス供給板であるシャワー
プレートが誘電体製の場合、シャワープレート内部にお
いてプラズマ発生用として処理室内に供給する電磁波が
周囲の境界条件,投入電磁波の電力等によって定まるあ
るパターンに分布する。また、電磁波供給用のアンテナ
の下方に位置するガス供給板であるシャワープレートが
導電性材料で形成されアンテナ下面に取り付けられてい
る場合は、シャワープレートと処理室内に発生させるプ
ラズマの界面に形成されるシース領域に投入電磁波の電
磁界が分布する。BEST MODE FOR CARRYING OUT THE INVENTION In the case where a shower plate, which is a gas supply plate located below an antenna for supplying electromagnetic waves, which is an electromagnetic wave radiating means, is provided in the processing chamber so as to face a substrate electrode, and is made of a dielectric The electromagnetic waves supplied into the processing chamber for generating plasma inside the shower plate are distributed in a certain pattern determined by the surrounding boundary conditions, the power of the input electromagnetic waves, and the like. When the shower plate, which is a gas supply plate located below the antenna for supplying electromagnetic waves, is made of a conductive material and attached to the lower surface of the antenna, it is formed at the interface between the shower plate and the plasma generated in the processing chamber. The electromagnetic field of the input electromagnetic wave is distributed in the sheath region.
【0014】一方、処理室の圧力やガス種,シャワープ
レートのガス供給孔形状等によってガス供給孔内に生じ
る放電の電界強度の閾値が決まると考えられている。そ
の閾値を超えた電界強度となる領域がシャワープレート
内またはシャワープレートに接したシース領域に存在
し、その領域にガス供給孔があると、そのガス供給孔内
で放電が起きることになる。そこでシャワープレート内
の電界分布に応じて、電界の強い領域を避けてガス供給
孔を配置することで、シャワープレートのガス供給孔で
の放電を防止することができる。On the other hand, it is considered that the threshold value of the electric field intensity of the discharge generated in the gas supply hole is determined by the pressure of the processing chamber, the gas species, the shape of the gas supply hole in the shower plate, and the like. If a region having an electric field strength exceeding the threshold exists in the shower plate or in a sheath region in contact with the shower plate, and if there is a gas supply hole in that region, discharge will occur in the gas supply hole. Therefore, depending on the electric field distribution in the shower plate, by disposing the gas supply hole while avoiding the region where the electric field is strong, it is possible to prevent discharge in the gas supply hole of the shower plate.
【0015】以下、本発明のプラズマ処理装置の一実施
例を図1から図5を用いて説明する。図1は本発明のプ
ラズマ処理装置の一実施例であるエッチング装置を示
す。処理室7の上部には誘電体窓5が気密に取り付けら
れ、真空排気装置(図示省略)によって内部を減圧可能
になっている。誘電体窓5の上面には電磁波放射手段で
ある円板状の平板状アンテナ1が設けてあり、同軸線路
2および整合器3を介して、この場合、周波数450M
Hzの高周波電源4に接続されている。誘電体窓5の下
面、言い換えると、誘電体窓5と処理室7の間にガス供
給板であるシャワープレート6が設けられ、ガス供給装
置8によって処理ガスが供給され、処理室内へ導入可能
になっている。シャワープレート6は誘電体でできてお
り、図2に示すように中央部を除き面内にガス供給孔9
を有する。ガス供給孔9は直径0.5mmの穴を複数個設け
たものである。処理室7の下部には誘電体窓5に対向し
て被処理基板10を載置可能な基板電極11が取り付け
られ、基板電極11には整合器12を介してバイアス電
源13が接続されている。処理室7の周囲には電磁石1
4が設けられ、処理室7内部に静磁界を形成可能になっ
ている。An embodiment of the plasma processing apparatus of the present invention will be described below with reference to FIGS. 1 to 5. FIG. 1 shows an etching apparatus which is an embodiment of the plasma processing apparatus of the present invention. A dielectric window 5 is airtightly attached to the upper portion of the processing chamber 7, and the inside of the processing chamber 7 can be depressurized by a vacuum exhaust device (not shown). On the upper surface of the dielectric window 5, a disk-shaped flat plate antenna 1 serving as an electromagnetic wave radiating means is provided, and in this case, a frequency of 450 M is generated through the coaxial line 2 and the matching box 3.
It is connected to a high frequency power source 4 of Hz. A lower surface of the dielectric window 5, in other words, a shower plate 6 which is a gas supply plate is provided between the dielectric window 5 and the processing chamber 7, and the processing gas is supplied by the gas supply device 8 so that it can be introduced into the processing chamber. Has become. The shower plate 6 is made of a dielectric material, and as shown in FIG.
Have. The gas supply hole 9 is provided with a plurality of holes each having a diameter of 0.5 mm. A substrate electrode 11 on which the substrate 10 to be processed can be mounted is attached to the lower portion of the processing chamber 7 so as to face the dielectric window 5, and a bias power supply 13 is connected to the substrate electrode 11 via a matching unit 12. . An electromagnet 1 is provided around the processing chamber 7.
4 is provided so that a static magnetic field can be formed inside the processing chamber 7.
【0016】なお、この場合、被処理基板として12イ
ンチウエハに対応可能なように、処理室7は内径約50
0mmの円柱状となっている。誘電体窓5およびシャワー
プレート6の材質として石英を用いているが、プラズマ
処理に悪影響を与えず、電磁波に対する損失が大きくな
ければ他の材質、例えば、アルミナセラミックなどを用
いても良い。また、シャワープレート6と誘電体窓5は
必ずしも同じ材質とする必要もない。例えば、一方を石
英、他方をアルミナセラミックとしても良い。ガス供給
孔9の直径は0.5mm としたが、ガス供給孔内の放電を
防止する立場からはより小さいほうが望ましい。In this case, the processing chamber 7 has an inner diameter of about 50 so that a 12-inch wafer can be processed.
It has a cylindrical shape of 0 mm. Although quartz is used as the material of the dielectric window 5 and the shower plate 6, other materials such as alumina ceramics may be used as long as they do not adversely affect the plasma processing and the loss of electromagnetic waves is not large. The shower plate 6 and the dielectric window 5 do not necessarily have to be made of the same material. For example, one may be quartz and the other may be alumina ceramic. The diameter of the gas supply hole 9 is set to 0.5 mm, but a smaller diameter is desirable from the standpoint of preventing discharge in the gas supply hole.
【0017】上述のように構成した装置において、ガス
供給装置8によって処理ガスがシャワープレート6と誘
電体窓5の間に設けたガス流路からガス供給孔9にもた
らされ、処理室7に供給される。一方、平板状アンテナ
1直下に設けた誘電体窓5を介して高周波電源4からの
電磁波を処理室7に放射するとともに、電磁石14によ
って磁場を形成し、電界と磁界との作用を利用して処理
室7内にプラズマを発生させる。また、静磁界によりプ
ラズマの拡散を制御し、プラズマ分布の調整が可能とな
る。さらにプラズマ中の電子のサイクロトロン運動の周
波数と、投入する電磁波の周波数(450MHz)を一
致させる静磁界(0.016テスラ)を発生させること
で、電磁波のエネルギーが効率よく電子に供給されるE
CR(Electron Cyclotron Resonance電子サイクロトロ
ン共鳴)現象を起こすこともできる。これによりプラズ
マの発生を安定に行うことができ、プラズマ密度の向上
も可能となる。バイアス電源13からは整合器12を介
してバイアス電力を被処理基板10に供給できる。バイ
アス電力の印加により被処理基板にプラズマ中のイオン
を引き込みエッチング処理の効率化,エッチング形状の
制御等を行うことができる。In the apparatus configured as described above, the processing gas is introduced into the processing chamber 7 by the gas supply apparatus 8 from the gas flow path provided between the shower plate 6 and the dielectric window 5 into the gas supply hole 9. Supplied. On the other hand, the electromagnetic wave from the high frequency power source 4 is radiated to the processing chamber 7 through the dielectric window 5 provided directly below the flat antenna 1, and a magnetic field is formed by the electromagnet 14 to utilize the action of the electric field and the magnetic field. Plasma is generated in the processing chamber 7. Further, it is possible to control the plasma diffusion by the static magnetic field and adjust the plasma distribution. Furthermore, by generating a static magnetic field (0.016 Tesla) that matches the frequency of the cyclotron motion of the electrons in the plasma with the frequency of the input electromagnetic waves (450 MHz), the energy of the electromagnetic waves is efficiently supplied to the electrons.
A CR (Electron Cyclotron Resonance) phenomenon can also occur. Thereby, the plasma can be stably generated, and the plasma density can be improved. Bias power can be supplied to the target substrate 10 from the bias power source 13 via the matching unit 12. By applying the bias power, the ions in the plasma can be drawn into the substrate to be processed, and the etching process can be made more efficient and the etching shape can be controlled.
【0018】本発明者等はシャワープレートの中心部に
ガス供給孔が無い領域の半径を変えて、ガス供給孔での
放電が起きるかどうかについてシミュレーションを行っ
た。以下に説明する。The present inventors changed the radius of the region where there is no gas supply hole in the central portion of the shower plate and simulated whether or not discharge occurs in the gas supply hole. This will be described below.
【0019】図3にシャワープレート6内のプラズマ発
生用に供給した450MHzの電磁波の電界強度分布を
示す。なお、このときの条件は、電力:1200W,プ
ラズマ密度:9×1016/m3 とし、シャワープレート
6の半径を処理室内径と同じ約500mmとし、誘電体窓
5およびシャワープレート6の材質をそれぞれ石英とし
た場合について、処理室内に均一なプラズマが存在する
場合のシミュレーション結果である。シミュレーション
はマックスウェルの方程式を有限要素法により解くこと
で行ったものである。FIG. 3 shows the electric field intensity distribution of an electromagnetic wave of 450 MHz supplied for generating plasma in the shower plate 6. The conditions at this time are: electric power: 1200 W, plasma density: 9 × 10 16 / m 3 , the radius of the shower plate 6 is about 500 mm, which is the same as the inner diameter of the processing chamber, and the materials of the dielectric window 5 and the shower plate 6 are The simulation results are for the case where uniform plasma exists in the processing chamber for each case of quartz. The simulation was performed by solving Maxwell's equation by the finite element method.
【0020】本実施例では、同軸線路によって中心から
電磁波を供給しており、電磁界分布は軸対称で方位角方
向に均一であって、中心からの距離により電界強度分布
が決まる。中心で最大値となり、中心から遠ざかるに従
い電界強度は波打ちながら全体として低下する傾向にあ
る。石英を誘電体窓とすると中心に第1の極大値である
第1のピーク、半径約160mmの位置に第2の極大値で
ある第2のピーク(以下第2ピークと呼ぶ。)が存在す
る。シャワープレート6および誘電体窓5として比誘電
率の高い材質を使用すると材質内の波長が短くなるた
め、シャワープレート6内のピークの数が増加する。例
えば、誘電体窓5としてアルミナセラミック(比誘電率
9.8)を用いると、シャワープレート6が石英(比誘
電率3.8)またはアルミナセラミックいずれの場合で
もシャワープレート6内の電界ピークは3つに増加す
る。In this embodiment, the electromagnetic wave is supplied from the center by the coaxial line, the electromagnetic field distribution is axisymmetric and uniform in the azimuth direction, and the electric field strength distribution is determined by the distance from the center. It has a maximum value at the center, and the electric field strength tends to fall as a whole as it moves away from the center. When quartz is used as the dielectric window, there is a first peak having a first maximum value at the center and a second peak having a second maximum value (hereinafter referred to as a second peak) at a position of a radius of about 160 mm. . When a material having a high relative dielectric constant is used for the shower plate 6 and the dielectric window 5, the wavelength in the material is shortened, so that the number of peaks in the shower plate 6 increases. For example, when alumina ceramic (relative permittivity 9.8) is used as the dielectric window 5, the electric field peak in the shower plate 6 is 3 regardless of whether the shower plate 6 is quartz (relative permittivity 3.8) or alumina ceramic. Increase.
【0021】電界強度の高い場所にガス供給孔9を配置
すると、ガス供給孔9内で放電する可能性が高くなる。
図4にガス供給孔9が存在しない領域をシャワープレー
ト6の中央付近に円形に設け、その外側に均一にガス供
給孔9の存在する領域を設けた場合であって、ガス供給
孔9のない領域の半径とガス供給孔9の存在する領域で
の最大電界の関係を示す。これによると、ガス供給孔9
の無い領域を中心部から円周方向に拡大していくと、ガ
ス供給孔9の存在する領域での最大値が徐々に下がって
いく。しかしながら、半径約90mm程度までガス供給孔
9の無い領域を拡大するとそれ以降は、半径160mm付
近の第2ピークが電界の最大値となるため、ガス供給孔
9の存在しない領域を拡大しても電界の最大値は下がら
ない。さらに、ガス供給孔9の無い領域を拡大し半径が
約160mmを超えるようになると第2ピークの極大値を
含まなくなるため、再び電界強度が下がり始める。一
方、処理室内のガス流れを制御する立場からは、ガス供
給孔9をシャワープレート6内に自由に配置できること
が望ましい。従って、ガス供給孔9の存在する領域の電
界強度を下げたい場合、中心から半径約90mm以下の領
域にガス供給孔の無い領域を設定することが望ましい。If the gas supply hole 9 is arranged at a place where the electric field strength is high, the possibility of electric discharge in the gas supply hole 9 increases.
FIG. 4 shows a case where a region where the gas supply holes 9 do not exist is provided in a circular shape near the center of the shower plate 6 and a region where the gas supply holes 9 uniformly exist is provided outside the shower plate 6 without the gas supply holes 9. The relationship between the radius of the region and the maximum electric field in the region where the gas supply holes 9 are present is shown. According to this, the gas supply hole 9
When the region without the gas is expanded from the central portion in the circumferential direction, the maximum value in the region where the gas supply hole 9 exists gradually decreases. However, when the area without the gas supply hole 9 is expanded to a radius of about 90 mm, the second peak near the radius of 160 mm becomes the maximum value of the electric field after that, so that even if the area without the gas supply hole 9 is expanded. The maximum value of the electric field does not decrease. Further, when the region without the gas supply hole 9 is expanded and the radius exceeds about 160 mm, the maximum value of the second peak is not included and the electric field strength starts to decrease again. On the other hand, from the standpoint of controlling the gas flow in the processing chamber, it is desirable that the gas supply hole 9 can be freely arranged in the shower plate 6. Therefore, when it is desired to reduce the electric field strength in the region where the gas supply hole 9 exists, it is desirable to set a region without a gas supply hole in a region having a radius of about 90 mm or less from the center.
【0022】以上の結果より、本実施例の場合、半径約
75mmの領域にガス供給孔の無い領域を設定すること
で、UHF電力が1200Wまでのプロセス条件でガス
供給孔9内の放電を防止することができる。図5に種々
のプラズマ密度における、シャワープレート6の中心か
ら半径75mm位置での電界強度のUHF投入電力依存性
をシミュレーションした結果を示す。なお、本装置にお
けるシャワープレート6直下のプラズマ密度は9×10
16/m3 程度であることが測定されている。したがっ
て、図5から本発明者等はガス供給孔9で放電を起こす
電界強度の閾値は50kV/m程度と推測する。ここ
で、ガス供給孔の無い領域の大きさはシャワープレート
内電界分布に大きく依存し、処理室7またはシャワープ
レート6の直径によっても規定される。処理室7または
シャワープレート6の径が縮小または拡大した場合、ガ
ス供給孔の無い領域の直径は処理室7またはシャワープ
レート6の直径との比率で決めれば良い。本実施例の場
合、処理室7またはシャワープレート6の直径500mm
に対し、ガス供給孔の無い領域は直径150mm(半径7
5mm)となり、比率は30%となる。また、ガス供給孔
の無い領域の直径150mm位置でのUHF電界は図3より
最大値をとる中心位置のおよそ半分の電界強度となって
いる。From the above results, in the case of the present embodiment, by setting the region having no gas supply hole in the region of the radius of about 75 mm, the discharge in the gas supply hole 9 is prevented under the process condition of UHF power up to 1200 W. can do. FIG. 5 shows the results of simulating the UHF input power dependence of the electric field strength at a radius of 75 mm from the center of the shower plate 6 at various plasma densities. The plasma density directly below the shower plate 6 in this apparatus is 9 × 10.
It has been measured to be around 16 / m 3 . Therefore, from FIG. 5, the present inventors presume that the threshold value of the electric field strength that causes discharge in the gas supply hole 9 is about 50 kV / m. Here, the size of the region having no gas supply hole largely depends on the electric field distribution in the shower plate, and is also defined by the diameter of the processing chamber 7 or the shower plate 6. When the diameter of the processing chamber 7 or the shower plate 6 is reduced or expanded, the diameter of the region having no gas supply hole may be determined by the ratio with the diameter of the processing chamber 7 or the shower plate 6. In the case of this embodiment, the diameter of the processing chamber 7 or the shower plate 6 is 500 mm.
On the other hand, the area without gas supply holes has a diameter of 150 mm (radius 7
5 mm) and the ratio is 30%. Further, the UHF electric field at the position of 150 mm in diameter in the region without the gas supply hole has an electric field intensity which is about half of the central position where it takes the maximum value from FIG.
【0023】以上、本実施例によれば、シャワープレー
トのガス供給孔内での放電を防止でき、安定なプラズマ
処理が行えるという効果がある。As described above, according to the present embodiment, there is an effect that the discharge in the gas supply hole of the shower plate can be prevented and stable plasma processing can be performed.
【0024】なお、本実施例によれば、シャワープレー
ト6内の電界分布が軸対称な場合を例に説明したが、他
の分布に関しても同様に以下のように考えてガス供給孔
を設けない領域を求めることができる。
(1)誘電体製シャワープレートの場合、シャワープレ
ート内の電界分布を求める。これは、電界測定部分に感
熱紙を設ける方法や、処理室内にプローブを設けた測定
用の装置を用いることにより実施できる。
(2)ガス供給孔内で放電を起こさない電界強度を定め
る。
(3)上記(1)のデータから電界強度の等高線図を求
め、上記(2)で定めた電界強度以上の電界となる領域
にガス供給孔を設けない。According to the present embodiment, the case where the electric field distribution in the shower plate 6 is axisymmetric has been described as an example. However, regarding other distributions, the gas supply holes are not provided in the same manner as described below. The area can be determined. (1) In the case of a dielectric shower plate, the electric field distribution in the shower plate is obtained. This can be carried out by providing a thermal paper at the electric field measuring portion or by using a measuring device provided with a probe inside the processing chamber. (2) Determine the electric field strength that does not cause discharge in the gas supply hole. (3) A contour map of the electric field strength is obtained from the data in (1) above, and no gas supply hole is provided in a region where the electric field is equal to or higher than the electric field strength determined in (2) above.
【0025】また、シャワープレートが導電性材料でな
り、図6に示すように平板状アンテナに直接取り付けら
れているような装置の場合には、上記(1)のステップ
としてシャワープレートとプラズマ界面とのシース領域
内の電界分布を求める。なお、図6に示す装置におい
て、図1に示す装置と同符号は同一部材を示し説明を省
略し、異なる点を述べる。平板状アンテナ1a内には処
理ガスの供給路が形成され、平板状アンテナ1aの下部
にシャワープレート6aが取り付けられ、シャワープレ
ート6aもアンテナとして作用する。Further, in the case of an apparatus in which the shower plate is made of a conductive material and is directly attached to the flat plate antenna as shown in FIG. 6, as the step (1), the shower plate and the plasma interface are separated. The electric field distribution in the sheath region of is calculated. In the apparatus shown in FIG. 6, the same reference numerals as those in the apparatus shown in FIG. A supply path for the processing gas is formed in the flat plate antenna 1a, a shower plate 6a is attached to the lower portion of the flat plate antenna 1a, and the shower plate 6a also functions as an antenna.
【0026】また、本実施例では、周波数450MHz
のUHF帯の電磁波によりプラズマを発生させるエッチ
ング装置を例に説明したが、シャワープレート部の電界
強度分布において局部的に強い電界強度が発生する構造
のものでは、本実施例に限らず周波数の異なるものやプ
ラズマCVD装置,スパッタ装置等の他のプラズマ処理
装置にも同様に適用できる。In this embodiment, the frequency is 450 MHz.
The description has been made by taking the etching apparatus for generating plasma by electromagnetic waves in the UHF band as described above as an example. However, the structure having a locally strong electric field strength in the electric field strength distribution of the shower plate section is not limited to this embodiment, and the frequency is different. The same can be applied to other plasma processing apparatuses such as a plasma CVD apparatus and a sputtering apparatus.
【0027】[0027]
【発明の効果】処理室内にシャワー状のガスを供給する
ためのガス供給板を有するプラズマ処理装置において、
ガス供給板に設ける複数のガス供給孔内での放電の発生
を防ぐことができ、安定したプラズマ処理を実施するこ
とができるという効果がある。In the plasma processing apparatus having the gas supply plate for supplying the shower-like gas into the processing chamber,
There is an effect that it is possible to prevent discharge from occurring in the plurality of gas supply holes provided in the gas supply plate, and to perform stable plasma processing.
【図1】本発明のプラズマ処理装置の一実施例を示す縦
断面図である。FIG. 1 is a vertical sectional view showing an embodiment of a plasma processing apparatus of the present invention.
【図2】図1の装置のシャワープレート詳細を示す平面
図である。FIG. 2 is a plan view showing details of a shower plate of the apparatus shown in FIG.
【図3】シャワープレート内の電界強度分布を示す図で
ある。FIG. 3 is a diagram showing an electric field intensity distribution in a shower plate.
【図4】シャワープレートのガス供給孔の存在しない領
域の半径とガス供給孔領域の最大電界強度との関係を示
す図である。FIG. 4 is a diagram showing a relationship between a radius of a region of the shower plate where no gas supply hole is present and a maximum electric field intensity of the gas supply hole region.
【図5】UHF投入電力と電界強度との関係を示す図で
ある。FIG. 5 is a diagram showing a relationship between UHF input power and electric field strength.
【図6】本発明のプラズマ処理装置の他の実施例を示す
縦断面図である。FIG. 6 is a vertical sectional view showing another embodiment of the plasma processing apparatus of the present invention.
1,1a…平板状アンテナ、2…同軸線路、3…整合
器、4…高周波電源、5,5a…誘電体窓、6,6a…
シャワープレート、7…処理室、8…処理ガス供給装
置、9…ガス供給孔、10…被処理基板、11…基板電
極、12…整合器、13…バイアス電源。1, 1a ... Flat antenna, 2 ... Coaxial line, 3 ... Matching device, 4 ... High frequency power supply, 5, 5a ... Dielectric window, 6, 6a ...
Shower plate, 7 ... Processing chamber, 8 ... Processing gas supply device, 9 ... Gas supply hole, 10 ... Substrate to be processed, 11 ... Substrate electrode, 12 ... Matching device, 13 ... Bias power supply.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮 豪 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内 (72)発明者 藤本 幸太郎 山口県下松市大字東豊井794番地 株式会 社日立インダストリイズ笠戸事業所内 (72)発明者 牧野 昭孝 山口県下松市大字東豊井794番地 株式会 社日立ハイテクノロジーズ笠戸事業所内 Fターム(参考) 4G075 AA24 AA30 BC02 BC04 BC06 CA24 DA02 DA18 EB42 EC21 EE12 FA02 FC15 4K030 EA05 FA04 JA14 KA30 KA32 5F004 AA01 BA03 BA04 BA05 BA14 BB28 BC03 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Go Miya 5-20-1 Kamimizuhonmachi, Kodaira-shi, Tokyo Stock Ceremony Company within Hitachi Semiconductor Group (72) Inventor Kotaro Fujimoto Yamaguchi Prefecture Kudamatsu City Oita Toyoi 794 Stock Association Company Hitachi Industries Kasado Works (72) Inventor Akitaka Makino Yamaguchi Prefecture Kudamatsu City Oita Toyoi 794 Stock Association Hitachi High-Technologies Kasado Works F-term (reference) 4G075 AA24 AA30 BC02 BC04 BC06 CA24 DA02 DA18 EB42 EC21 EE12 FA02 FC15 4K030 EA05 FA04 JA14 KA30 KA32 5F004 AA01 BA03 BA04 BA05 BA14 BB28 BC03
Claims (8)
室内に設けられ被処理基板が配置される基板電極と、前
記処理室内で前記基板電極に対向して設けられ面内に複
数のガス供給孔を有するガス供給板とを有し、前記処理
室内に電磁波を導入してプラズマを生成し、前記プラズ
マを用いて前記被処理基板を処理するプラズマ処理装置
において、 前記処理室内に導入される電磁波の前記ガス供給板面内
の電界強度分布に従い、前記電界強度が所定の電界強度
以上である領域の前記ガス供給板面内に前記ガス供給孔
の未形成領域を設けたことを特徴とするプラズマ処理装
置。1. A processing chamber, the interior of which is evacuated to a reduced pressure, a substrate electrode which is provided in the processing chamber and on which a substrate to be processed is disposed, and a plurality of substrates which are provided in the processing chamber so as to face the substrate electrode and are arranged in a plane. In a plasma processing apparatus having a gas supply plate having gas supply holes, introducing electromagnetic waves into the processing chamber to generate plasma, and processing the substrate to be processed using the plasma, the plasma processing apparatus being introduced into the processing chamber. According to the electric field intensity distribution in the gas supply plate surface of the electromagnetic wave, the non-formed area of the gas supply hole is provided in the gas supply plate surface in the area where the electric field strength is equal to or higher than a predetermined electric field strength. Plasma processing apparatus.
室内に設けられ被処理基板が配置される基板電極と、前
記処理室内で前記基板電極に対向して設けられ面内に複
数のガス供給孔を有するガス供給板と、前記ガス供給板
に対向して配置される電磁波放射手段とを有し、前記電
磁波放射手段により前記処理室内に電磁波を導入してプ
ラズマを生成し、前記プラズマを用いて前記被処理基板
を処理するプラズマ処理装置において、 前記処理室内に導入される電磁波の前記ガス供給板面内
の電界強度分布に従い、前記電界強度が所定の電界強度
以下となる領域に前記ガス供給板の前記ガス供給孔を配
置したことを特徴とするプラズマ処理装置。2. A processing chamber whose inside is evacuated to a reduced pressure, a substrate electrode which is provided in the processing chamber and on which a substrate to be processed is disposed, and a plurality of substrates which are provided in the processing chamber so as to face the substrate electrode. A gas supply plate having a gas supply hole; and an electromagnetic wave emission means arranged to face the gas supply plate, the electromagnetic wave emission means introduces an electromagnetic wave into the processing chamber to generate plasma, and the plasma In the plasma processing apparatus for processing the substrate to be processed using, according to the electric field strength distribution in the gas supply plate surface of the electromagnetic wave introduced into the processing chamber, the electric field strength in a region below a predetermined electric field strength A plasma processing apparatus, wherein the gas supply holes of the gas supply plate are arranged.
において、前記所定の電界強度が最大値の1/2である
ことを特徴とするプラズマ処理装置。3. The plasma processing apparatus according to claim 1 or 2, wherein the predetermined electric field strength is 1/2 of a maximum value.
理装置において、前記所定の電界強度が50kV/mで
あることを特徴とするプラズマ処理装置。4. The plasma processing apparatus according to claim 1 or 2, wherein the predetermined electric field strength is 50 kV / m.
室内に設けられ被処理基板が配置される基板電極と、前
記処理室内で前記基板電極に対向して設けられ面内に複
数のガス供給孔を有するガス供給板と、前記ガス供給板
に対向して配置される電磁波放射手段とを有し、前記電
磁波放射手段により前記処理室内に電磁波を導入してプ
ラズマを生成し、前記プラズマを用いて前記被処理基板
を処理するプラズマ処理装置において、 前記処理室内に導入される電磁波の前記ガス供給板面内
の電界強度分布が複数の極大値を有し、第1の極大値よ
りも電界絶対値が小さい第2の極大値の値以下の領域に
前記ガス供給板の前記ガス供給孔を配置したことを特徴
とするプラズマ処理装置。5. A processing chamber whose inside is evacuated to a reduced pressure, a substrate electrode which is provided in the processing chamber and on which a substrate to be processed is disposed, and a plurality of substrates which are provided in the processing chamber so as to face the substrate electrode. A gas supply plate having a gas supply hole; and an electromagnetic wave emission means arranged to face the gas supply plate, the electromagnetic wave emission means introduces an electromagnetic wave into the processing chamber to generate plasma, and the plasma In the plasma processing apparatus for processing the substrate to be processed using, the electric field intensity distribution of the electromagnetic wave introduced into the processing chamber within the gas supply plate surface has a plurality of local maximum values, and the electric field strength distribution is higher than the first local maximum value. A plasma processing apparatus, wherein the gas supply hole of the gas supply plate is arranged in a region where the absolute value of the electric field is smaller than the second maximum value.
室内に設けられ被処理基板が配置される基板電極と、前
記処理室内で前記基板電極に対向して設けられ面内に複
数のガス供給孔を有するガス供給板と、前記ガス供給板
に対向して配置される電磁波放射手段とを有し、前記電
磁波放射手段により前記処理室内に電磁波を導入すると
ともに前記処理室内に磁場を形成し相互の作用によるプ
ラズマを生成して、前記プラズマを用いて前記被処理基
板を処理するプラズマ処理装置において、 前記処理室内径の30%以下の前記ガス供給板中央部の
領域に前記ガス供給孔の未形成領域を設けたことを特徴
とするプラズマ処理装置。6. A processing chamber whose inside is evacuated to a reduced pressure, a substrate electrode which is provided in the processing chamber and on which a substrate to be processed is disposed, and a plurality of electrodes which are provided in the processing chamber so as to face the substrate electrode and are in a plane. A gas supply plate having a gas supply hole and an electromagnetic wave emission unit arranged to face the gas supply plate, and the electromagnetic wave emission unit introduces an electromagnetic wave into the processing chamber and forms a magnetic field in the processing chamber. In the plasma processing apparatus, which generates plasma by mutual action and processes the substrate to be processed using the plasma, the gas supply hole is provided in a region of the central portion of the gas supply plate that is 30% or less of the inner diameter of the processing chamber. A plasma processing apparatus having an unformed region.
室内に設けられ被処理基板が配置される基板電極と、前
記処理室内で前記基板電極に対向して設けられ面内に複
数のガス供給孔を有する誘電体のガス供給板と、前記ガ
ス供給板に対向し前記処理室を形成する誘電体窓を介し
て配置される平板状アンテナとを有し、前記平板状アン
テナにより前記処理室内に電磁波を導入してプラズマを
生成し、前記プラズマを用いて前記被処理基板を処理す
るプラズマ処理装置において、 前記処理室内に導入される電磁波の前記ガス供給板内の
電界強度分布に従い、前記電界強度が所定の電界強度以
下となる領域に前記ガス供給板の前記ガス供給孔を配置
したことを特徴とするプラズマ処理装置。7. A processing chamber whose inside is evacuated to a reduced pressure, a substrate electrode which is provided in the processing chamber and on which a substrate to be processed is disposed, and a plurality of substrates which are provided in the processing chamber so as to face the substrate electrode and are in a plane. A dielectric gas supply plate having a gas supply hole, and a flat plate-shaped antenna arranged through a dielectric window facing the gas supply plate and forming the processing chamber. In a plasma processing apparatus that introduces electromagnetic waves into a chamber to generate plasma, and processes the substrate to be processed using the plasma, according to an electric field intensity distribution in the gas supply plate of the electromagnetic waves introduced into the processing chamber, A plasma processing apparatus, wherein the gas supply hole of the gas supply plate is arranged in a region where the electric field strength is equal to or lower than a predetermined electric field strength.
室内に設けられ被処理基板が配置される基板電極と、前
記処理室内に設けられ前記基板電極に対向して設けられ
た平板状アンテナと、前記平板状アンテナの前記基板電
極側面に取り付けられ面内に複数のガス供給孔を有する
導電性のガス供給板とを有し、前記平板状アンテナによ
り前記処理室内に電磁波を導入してプラズマを生成し、
前記プラズマを用いて前記被処理基板を処理するプラズ
マ処理装置において、 前記処理室内に導入される電磁波の前記ガス供給板面内
の電界強度分布に従い、前記電界強度が所定の電界強度
以下となる領域に前記ガス供給板の前記ガス供給孔を配
置したことを特徴とするプラズマ処理装置。8. A processing chamber whose inside is evacuated to a reduced pressure, a substrate electrode which is provided in the processing chamber and on which a substrate to be processed is placed, and a flat plate which is provided in the processing chamber and faces the substrate electrode. An antenna and a conductive gas supply plate attached to the substrate electrode side surface of the flat antenna and having a plurality of gas supply holes in the surface are provided, and electromagnetic waves are introduced into the processing chamber by the flat antenna. Generate plasma,
In a plasma processing apparatus for processing the substrate to be processed using the plasma, a region in which the electric field strength is equal to or lower than a predetermined electric field strength according to an electric field strength distribution in the gas supply plate surface of an electromagnetic wave introduced into the processing chamber. The plasma processing apparatus, wherein the gas supply hole of the gas supply plate is arranged in the.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001361897A JP3757159B2 (en) | 2001-11-28 | 2001-11-28 | Plasma processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001361897A JP3757159B2 (en) | 2001-11-28 | 2001-11-28 | Plasma processing equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005303795A Division JP2006080550A (en) | 2005-10-19 | 2005-10-19 | Plasma processing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003163204A true JP2003163204A (en) | 2003-06-06 |
JP3757159B2 JP3757159B2 (en) | 2006-03-22 |
Family
ID=19172487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001361897A Expired - Fee Related JP3757159B2 (en) | 2001-11-28 | 2001-11-28 | Plasma processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3757159B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005033167A (en) * | 2003-06-19 | 2005-02-03 | Tadahiro Omi | Shower plate, plasma processing device and method of producing products |
US7879182B2 (en) | 2003-12-26 | 2011-02-01 | Foundation For Advancement Of International Science | Shower plate, plasma processing apparatus, and product manufacturing method |
CN112176322A (en) * | 2019-07-03 | 2021-01-05 | 株式会社国际电气 | Substrate processing apparatus, method for manufacturing semiconductor device, and program |
WO2021241256A1 (en) * | 2020-05-26 | 2021-12-02 | 東京エレクトロン株式会社 | Plasma treatment device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11111494A (en) * | 1997-09-30 | 1999-04-23 | Hitachi Ltd | Plasma processing unit |
JP2000183038A (en) * | 1998-12-14 | 2000-06-30 | Hitachi Ltd | Plasma processing apparatus |
JP2000357683A (en) * | 1999-04-14 | 2000-12-26 | Hitachi Ltd | Plasma treatment method and apparatus |
-
2001
- 2001-11-28 JP JP2001361897A patent/JP3757159B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11111494A (en) * | 1997-09-30 | 1999-04-23 | Hitachi Ltd | Plasma processing unit |
JP2000183038A (en) * | 1998-12-14 | 2000-06-30 | Hitachi Ltd | Plasma processing apparatus |
JP2000357683A (en) * | 1999-04-14 | 2000-12-26 | Hitachi Ltd | Plasma treatment method and apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005033167A (en) * | 2003-06-19 | 2005-02-03 | Tadahiro Omi | Shower plate, plasma processing device and method of producing products |
JP4502639B2 (en) * | 2003-06-19 | 2010-07-14 | 財団法人国際科学振興財団 | Shower plate, plasma processing apparatus, and product manufacturing method |
US7879182B2 (en) | 2003-12-26 | 2011-02-01 | Foundation For Advancement Of International Science | Shower plate, plasma processing apparatus, and product manufacturing method |
CN112176322A (en) * | 2019-07-03 | 2021-01-05 | 株式会社国际电气 | Substrate processing apparatus, method for manufacturing semiconductor device, and program |
CN112176322B (en) * | 2019-07-03 | 2022-07-15 | 株式会社国际电气 | Substrate processing apparatus, method for manufacturing semiconductor device, and program |
WO2021241256A1 (en) * | 2020-05-26 | 2021-12-02 | 東京エレクトロン株式会社 | Plasma treatment device |
Also Published As
Publication number | Publication date |
---|---|
JP3757159B2 (en) | 2006-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI593319B (en) | Plasma generating antenna, plasma processing device and plasma processing method | |
US6783628B2 (en) | Plasma processing apparatus | |
KR100549554B1 (en) | Apparatus for treating substrate by plasma and thereof | |
TWI674042B (en) | Microwave plasma source and plasma processing device | |
KR102523730B1 (en) | Dual-frequency surface wave plasma source | |
US11145490B2 (en) | Plasma processing method | |
TW201304617A (en) | Plasma processing apparatus and plasma generation antenna | |
US20060096706A1 (en) | Dry etching apparatus and a method of manufacturing a semiconductor device | |
KR20190052633A (en) | Etching method | |
JPH07263187A (en) | Plasma treatment device | |
CN111183504A (en) | Superlocal and plasma uniformity control in manufacturing processes | |
KR102690756B1 (en) | Plasma processing apparatus and precoating method | |
KR20190033672A (en) | Substrate treating apparatus and substrate treating method | |
JP2000357683A (en) | Plasma treatment method and apparatus | |
JPH09289099A (en) | Plasma processing method and device | |
JP2005019508A (en) | Plasma processing apparatus and processing method | |
JP2003163204A (en) | Plasma treating device | |
JP3676680B2 (en) | Plasma apparatus and plasma generation method | |
JP3774965B2 (en) | Plasma processing equipment | |
JP2006080550A (en) | Plasma processing apparatus | |
JPH1126189A (en) | Plasma processing method and device | |
JP3814266B2 (en) | Plasma processing equipment | |
JP2000260757A (en) | Plasma treatment device | |
US9659752B2 (en) | Method for presetting tuner of plasma processing apparatus and plasma processing apparatus | |
JP2002176033A (en) | Plasma treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051019 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20051019 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20051031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051226 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |