JP2003163010A - Method for manufacturing electrode of fuel battery - Google Patents

Method for manufacturing electrode of fuel battery

Info

Publication number
JP2003163010A
JP2003163010A JP2001362229A JP2001362229A JP2003163010A JP 2003163010 A JP2003163010 A JP 2003163010A JP 2001362229 A JP2001362229 A JP 2001362229A JP 2001362229 A JP2001362229 A JP 2001362229A JP 2003163010 A JP2003163010 A JP 2003163010A
Authority
JP
Japan
Prior art keywords
electrode
electrode material
fuel cell
manufacturing
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001362229A
Other languages
Japanese (ja)
Other versions
JP3888145B2 (en
Inventor
Takashi Kaji
敬史 加治
Masashi Murate
政志 村手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001362229A priority Critical patent/JP3888145B2/en
Publication of JP2003163010A publication Critical patent/JP2003163010A/en
Application granted granted Critical
Publication of JP3888145B2 publication Critical patent/JP3888145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing the electrode of a fuel battery in which the composition and the concentration of an electrode constituting component in the electrode of a predetermined arbitrary shape are changed in a three-dimensional manner. <P>SOLUTION: (1) The method for manufacturing the electrodes 14, 17 of fuel the battery comprises the steps of charging a photosensitive drum, emitting a light to the drum to discharge the emitted part in response to the intensity of the light, adhering an electrode material to the electrified site in response to the intensity of the charging by a static electricity, transferring the material to a film, and performing a plurality of times the previous steps to form the electrodes. In this method, the types of the electrode materials 12P, 15P are differentiated at each step, and the thickness of the coating layer is controlled at each time, thereby controlling the electrode structure in the three-dimensional manner. (2) When the manufacture of the electrodes of the fuel battery is dealt with color copying, the type of the electrode material of the each time corresponds to the color of the color copying, and the thickness of the coating layer of each time corresponds to the density of the color to be coated at the time. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、種類の異なる触媒
層を複数層塗り重ねた、固体高分子電解質型燃料電池電
極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid polymer electrolyte fuel cell electrode in which a plurality of different types of catalyst layers are applied in layers.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、イオン
交換膜からなる電解質膜とこの電解質膜の一面に配置さ
れたアノードおよび電解質膜の他面に配置されたカソー
ドとからなる膜−電極アッセンブリ(MEA:Membrane
-Electrode Assembly )と、アノード、カソードに燃料
ガス(水素)および酸化ガス(酸素、通常は空気)を供
給するための流体流路を形成するセパレータとを複数重
ねてセル積層体とし、セル積層体のセル積層方向両端
に、ターミナル(電極板)、インシュレータ、エンドプ
レートを配置し、セル積層体をセル積層方向に締め付
け、セル積層体の外側でセル積層方向に延びる締結部材
(たとえば、テンションプレート)にて固定したスタッ
クからなる。アノード、カソードは触媒層を有する。触
媒層とセパレータとの間には拡散層が設けられる。固体
高分子電解質型燃料電池では、アノード側では、水素を
水素イオンと電子にする反応が行われ、水素イオンは電
解質膜中をカソード側に移動し、カソード側では酸素と
水素イオンおよび電子(隣りのMEAのアノードで生成
した電子がセパレータを通してくる、またはセル積層体
の一端のセルのアノードで生成した電子が外部回路を通
してくる)から水を生成する反応が行われる。 アノード側:H2 →2H+ +2e- カソード側:2H+ +2e- +(1/2)O2 →H2 O 電解質膜には、通常、厚さが10〜100μm程度のも
のが用いられる。触媒層は、それぞれ1〜10μm程度
の厚さで、電解質膜の両面に、あるいは拡散層(カーボ
ンペーパ、カーボンクロスからなる)の片面に、塗布・
形成される。電解質膜に電極(アノード、カソード)材
料を塗布する方法としては、従来、印刷、ローラーコー
ト、スプレー等により直接塗布する湿式塗布方法と、予
めポリテトラフルオロエチレンシート等に塗布した触媒
層を熱転写(ホットプレス)で電解質膜に付着させシー
トを除去する方法がある。また、特殊な塗布方法とし
て、特開平3−295168号公報は、燃料電池の電極
材料を電解質膜全面に静電気により付着させる方法を開
示している。
2. Description of the Related Art A solid polymer electrolyte fuel cell is a membrane-electrode assembly composed of an electrolyte membrane composed of an ion exchange membrane, an anode arranged on one side of the electrolyte membrane and a cathode arranged on the other side of the electrolyte membrane. (MEA: Membrane
-Electrode Assembly) and a separator that forms a fluid flow path for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the anode and cathode to form a cell stack, A terminal (electrode plate), an insulator, and an end plate are arranged at both ends of the cell stacking direction, the cell stacking body is fastened in the cell stacking direction, and a fastening member (for example, a tension plate) extending outside the cell stacking body in the cell stacking direction. It consists of a stack fixed at. The anode and the cathode have a catalyst layer. A diffusion layer is provided between the catalyst layer and the separator. In a solid polymer electrolyte fuel cell, hydrogen is converted into hydrogen ions and electrons on the anode side, the hydrogen ions move to the cathode side in the electrolyte membrane, and on the cathode side, oxygen, hydrogen ions and electrons (adjacent The electrons generated at the MEA anode come through the separator, or the electrons generated at the cell anode at one end of the cell stack come through the external circuit) to generate water. Anode side: H 2 → 2H + + 2e Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O An electrolyte membrane having a thickness of about 10 to 100 μm is usually used. The catalyst layers each have a thickness of about 1 to 10 μm, and are applied on both sides of the electrolyte membrane or on one side of the diffusion layer (consisting of carbon paper and carbon cloth).
It is formed. As a method of applying an electrode (anode, cathode) material to the electrolyte membrane, conventionally, a wet application method of directly applying by printing, roller coating, spraying or the like, or a thermal transfer of a catalyst layer previously applied to a polytetrafluoroethylene sheet or the like ( There is a method of adhering to the electrolyte membrane by hot pressing) and removing the sheet. Further, as a special coating method, Japanese Patent Application Laid-Open No. 3-295168 discloses a method of statically attaching an electrode material of a fuel cell to the entire surface of an electrolyte membrane.

【0003】[0003]

【発明が解決しようとする課題】特開平3−29516
8号公報の方法は、乾式塗布のため、従来の湿式塗布に
おける溶剤の電解質膜の攻撃、膨潤・収縮による電極の
クラック発生などの問題は除去できるが、なお、つぎの
問題があった。すなわち、所定形状パターンの電極中に
おいて電極構成成分の組成や濃度を三次元的に(電極厚
さ方向および電極厚さ方向と直交する面内方向の少なく
とも一方向に)変えた電極を作ることはできない。本発
明の目的は、任意の所定形状の電極中の、電極構成成分
の組成、濃度を三次元的に(電極厚さ方向、それと直交
面内方向の少なくとも一方向に)変化させた燃料電池電
極の製造方法を提供することにある。
[Patent Document 1] Japanese Patent Application Laid-Open No. 3-29516
Since the method of Japanese Patent Publication No. 8 is a dry coating method, problems such as the attack of the solvent on the electrolyte membrane and the generation of cracks in the electrodes due to swelling / contraction in conventional wet coating can be eliminated, but the following problems still exist. That is, it is not possible to form an electrode in which the composition and concentration of the electrode constituents are three-dimensionally changed (in at least one direction of the electrode thickness direction and the in-plane direction orthogonal to the electrode thickness direction) in the electrode having the predetermined shape pattern. Can not. An object of the present invention is to provide a fuel cell electrode in which the composition and concentration of electrode constituents in an electrode having an arbitrary predetermined shape are three-dimensionally changed (in the electrode thickness direction and at least one direction in the plane orthogonal thereto). It is to provide a manufacturing method of.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明はつぎの通りである。 (1) 感光体ドラムを帯電させ光を照射して照射部分
を光の強さに応じて除電し帯電部位に電極材料を帯電の
強さに応じて静電気で付着させこれを膜に転写すること
を複数回実行して電極を形成する燃料電池電極の製造方
法において、各回で電極材料の種類を異ならしめ、各回
で塗布層厚を制御して、電極構造を三次元的に制御する
燃料電池電極の製造方法。 (2) 燃料電池電極の製造をカラー複写に対応させた
場合、各回の電極材料の種類がカラー複写の色に対応
し、各回の塗布層厚がその回で塗布される色の濃さに対
応する(1)記載の燃料電池電極の製造方法。 (3) 電極材料はカーボン粒子、該カーボン粒子に担
持される触媒貴金属と、該カーボン粒子および該触媒貴
金属が膜へ転写される前または転写された後に該カーボ
ン粒子および該触媒貴金属に混合されるバインダーを成
分として含んでおり、これら成分の種類、混合比率、混
合形態、各成分の粒子サイズの何れか少なくとも一つを
異ならせることにより、電極材料の種類が異ならされる
(1)記載の燃料電池電極の製造方法。
The present invention which achieves the above object is as follows. (1) Charge the photoconductor drum, irradiate it with light, remove static electricity depending on the intensity of light, attach the electrode material to the charged part with static electricity according to the intensity of charge, and transfer it to the film. In a method of manufacturing a fuel cell electrode in which an electrode is formed by performing a plurality of times, the type of electrode material is made different at each time, the thickness of the coating layer is controlled at each time, and the electrode structure is three-dimensionally controlled. Manufacturing method. (2) When the production of fuel cell electrodes is adapted to color copying, the type of electrode material at each time corresponds to the color of the color copying, and the coating layer thickness at each time corresponds to the color depth applied at that time. A method for manufacturing a fuel cell electrode according to (1) above. (3) The electrode material is mixed with carbon particles, the catalytic noble metal supported on the carbon particles, and the carbon particles and the catalytic noble metal before or after the carbon particles and the catalytic noble metal are transferred to the film. The fuel according to (1), which contains a binder as a component, and the type of electrode material is made different by making at least one of the type, mixing ratio, mixing form, and particle size of each component different. Battery electrode manufacturing method.

【0005】上記(1)〜(3)の燃料電池電極の製造
方法では、各回で電極材料の種類を異ならしめ、各回で
塗布層厚を制御するので、電極の構造(組成・密度、膜
厚等)を、三次元的に(電極厚さ方向およびそれと直交
する面内方向に)任意に制御することができる。本方法
をカラー複写(カラーコピー)に対応させると、各回の
電極材料の種類がカラー複写の色に対応し、各回の塗布
層厚がその回で塗布される色の濃さに対応する。電極材
料の種類は、成分の混合比率、混合形態、各成分の粒子
サイズの何れか少なくとも一つを異ならせることにより
変えることができる。本方法は、静電気による電極材料
の感光体ドラム表面への付着とその転写であるため、乾
式法であり、従来の湿式塗布における溶剤の電解質膜の
攻撃、膨潤・収縮による電極のクラック発生はない。
In the above methods (1) to (3) of manufacturing a fuel cell electrode, since the type of electrode material is made different each time and the coating layer thickness is controlled at each time, the structure of the electrode (composition / density, film thickness) is controlled. Etc.) can be arbitrarily controlled three-dimensionally (in the electrode thickness direction and in the in-plane direction orthogonal thereto). When this method is applied to color copying (color copying), the type of electrode material at each time corresponds to the color of the color copying, and the coating layer thickness at each time corresponds to the depth of the color applied at that time. The kind of the electrode material can be changed by making at least one of the mixing ratio of the components, the mixing form, and the particle size of each component different. This method is a dry method because it is the adhesion and transfer of the electrode material to the surface of the photoconductor drum due to static electricity, and there is no attack of the electrolyte membrane of the solvent in conventional wet coating and no electrode cracking due to swelling / contraction. .

【0006】[0006]

【発明の実施の形態】以下に、本発明の燃料電池電極の
製造方法を図1〜図8を参照して、説明する。本発明の
燃料電池電極の製造方法によって製造された電極を有す
る燃料電池は、固体高分子電解質型燃料電池10であ
る。本発明の燃料電池10は、たとえば燃料電池自動車
に搭載される。ただし、自動車以外に用いられてもよ
い。
BEST MODE FOR CARRYING OUT THE INVENTION A method for manufacturing a fuel cell electrode according to the present invention will be described below with reference to FIGS. A fuel cell having an electrode manufactured by the method for manufacturing a fuel cell electrode of the present invention is a solid polymer electrolyte fuel cell 10. The fuel cell 10 of the present invention is mounted in, for example, a fuel cell vehicle. However, it may be used for other than automobiles.

【0007】固体高分子電解質型燃料電池10は、図
1、図2に示すように、イオン交換膜からなる電解質膜
11とこの電解質膜11の一面に配置されたアノード1
4および電解質膜11の他面に配置されたカソード17
とからなる膜−電極アッセンブリ(MEA:Membrane-E
lectrode Assembly )と、アノード、カソードに燃料ガ
ス(水素)および酸化ガス(酸素、通常は空気)を供給
するための燃料ガス流路27、酸化ガス流路28を形成
するセパレータ18とを複数重ねてセル19の積層体と
し、セル積層体のセル積層方向両端に、ターミナル20
(電極板)、インシュレータ21、エンドプレート22
を配置し、セル積層体をセル積層方向に締め付け、セル
積層体の外側でセル積層方向に延びる締結部材(テンシ
ョンプレート24)、ボルト25にて固定したスタック
23からなる。アノード14、カソード17は触媒層1
2、15を有する。触媒層12、15とセパレータ18
との間には拡散層13、16が設けられる。セパレータ
18には、セルを冷却するための冷媒(通常、冷却水)
が流れる冷媒流路26も形成されている。
As shown in FIGS. 1 and 2, the solid polymer electrolyte fuel cell 10 includes an electrolyte membrane 11 made of an ion exchange membrane and an anode 1 arranged on one surface of the electrolyte membrane 11.
4 and the cathode 17 arranged on the other surface of the electrolyte membrane 11
Membrane-electrode assembly (MEA: Membrane-E)
lectrode assembly) and a plurality of fuel gas flow passages 27 for supplying a fuel gas (hydrogen) and an oxidizing gas (oxygen, usually air) to the anode and cathode, and a separator 18 forming an oxidizing gas flow passage 28 in a stacked manner. A stack of cells 19 is provided, and terminals 20 are provided at both ends of the stack in the cell stacking direction.
(Electrode plate), insulator 21, end plate 22
Is arranged, the cell stack is fastened in the cell stacking direction, and a fastening member (tension plate 24) extending outside the cell stacking body in the cell stacking direction, and a stack 23 fixed by bolts 25. Anode 14 and cathode 17 are catalyst layers 1
2 and 15. Catalyst layers 12, 15 and separator 18
Diffusion layers 13 and 16 are provided between and. The separator 18 has a coolant for cooling the cells (usually cooling water).
A coolant flow path 26 through which the air flows is also formed.

【0008】触媒層12、15からなる電極14、18
は、電解質膜11の両面に塗布形成されるか、あるいは
拡散層13、16の片面に塗布形成される。電極形成材
料は、カーボン粉末に触媒貴金属(たとえば、Pt)を
担持させたものである。カーボン粉末および触媒貴金属
の電極形成材料は、導電性を有するが、非磁性である。
そして、非磁性である点において、コピー機のトナーと
異なる。電極形成材料はバインダー(電解質)粉末を混
合されているものを用いてもよい。電解質膜は非磁性、
非導電性である。
Electrodes 14, 18 comprising catalyst layers 12, 15
Is applied to both sides of the electrolyte membrane 11 or applied to one side of the diffusion layers 13 and 16. The electrode forming material is carbon powder carrying a catalytic noble metal (for example, Pt). The electrode forming material of carbon powder and catalytic noble metal is electrically conductive but non-magnetic.
It is different from the toner of the copying machine in that it is non-magnetic. As the electrode forming material, a material mixed with a binder (electrolyte) powder may be used. The electrolyte membrane is non-magnetic,
It is non-conductive.

【0009】本発明の燃料電池電極の製造方法を実施す
る装置は、図3、図4に示すように、膜送り方向に複数
の電極材料転写部が順に設置されている。各電極材料転
写部は、感光体ドラム30と、感光体ドラム30表面を
静電気で帯電させる帯電ローラー31と、感光体ドラム
30に投光し感光体ドラム表面のうち所定パターン(こ
の所定パターン部位に電極層が形成される)以外の部分
を除電する投光装置32(レーザ光が投光された部位が
除電される)と、電極材料粉末12P、15Pを収容し
ている容器33から感光体ドラム30表面に電極材料粉
末12P、15Pを供給する材料供給ローラー34と、
感光体ドラム30との間に電解質11または拡散層1
3、16からなる膜を通し該膜11(または13、16
であるが、以下では、膜11とする)を上記感光体ドラ
ム30に圧接するもう一つのドラム30Aまたはローラ
ー30Bと、感光体ドラム30位置より膜11の送り方
向下流に設けられた定着ローラー35と、からなる。
As shown in FIGS. 3 and 4, the apparatus for carrying out the method for producing a fuel cell electrode according to the present invention has a plurality of electrode material transfer portions arranged in sequence in the film feeding direction. Each electrode material transfer unit includes a photoconductor drum 30, a charging roller 31 that charges the surface of the photoconductor drum 30 with static electricity, and a predetermined pattern on the photoconductor drum surface by projecting light onto the photoconductor drum 30. A light projecting device 32 (which removes charge from the portion where the laser light is projected) for removing the charge other than the portion other than the electrode layer is formed), and a container 33 containing the electrode material powders 12P and 15P. A material supply roller 34 for supplying the electrode material powders 12P and 15P to the surface of 30;
Electrolyte 11 or diffusion layer 1 between photoconductor drum 30
The membrane 11 (or 13, 16)
However, in the following description, the film 11 will be referred to as the film 11) and another drum 30A or roller 30B that is pressed against the photoconductor drum 30 and a fixing roller 35 provided downstream of the photoconductor drum 30 in the feeding direction of the film 11. And consists of.

【0010】感光体ドラム30、帯電ローラー31、材
料供給ローラー34、感光体ドラム30に圧接するもう
一つのドラム30Aまたはローラー30Bを備えた電極
材料転写部と、定着ローラー31を備えた定着部とは、
不活性ガス雰囲気36中に配設されている。不活性ガス
は、たとえば窒素である。不活性ガス雰囲気36中に配
設するのは、加熱雰囲気(たとえば、定着ローラー35
を加熱する場合は50〜150℃に加熱する)で塗布が
行われるので、カーボン粉末の発火のおそれを皆無にし
て、万全の安全性を期するためである。
An electrode material transfer section having a photoconductor drum 30, a charging roller 31, a material supply roller 34, and another drum 30A or roller 30B that comes into pressure contact with the photoconductor drum 30, and a fixing section having a fixing roller 31. Is
It is arranged in an inert gas atmosphere 36. The inert gas is, for example, nitrogen. Arranged in the inert gas atmosphere 36 is a heating atmosphere (for example, the fixing roller 35).
Is applied at a temperature of 50 to 150 ° C.), so that there is no fear of ignition of the carbon powder and safety is ensured.

【0011】本発明の燃料電池電極の製造方法を実施す
る装置は、電極材料粉末12P、15Pがバインダー
(バインダーは電解質からなる)をまぶせられたりバイ
ンダー粒子を混合されていない場合には、定着ローラー
35より膜11の送り方向下流に設けられたバインダー
供給装置37およびその下流に設けられた乾燥部40と
をさらに有していてもよい。バインダー供給装置37は
バインダー塗布部を構成する。電極材料粉末12P、1
5Pがバインダーをまぶせられたりバインダー粒子を混
合されている場合は、バインダー供給装置37および乾
燥部40を設けなくてもよい。乾燥部40は常温〜15
0℃までの温度を有し、バインダーを乾燥させる。
The apparatus for carrying out the method for producing a fuel cell electrode of the present invention is fixed when the electrode material powders 12P and 15P are not sprinkled with a binder (the binder is an electrolyte) or mixed with binder particles. It may further have a binder supply device 37 provided downstream of the roller 35 in the feeding direction of the film 11 and a drying unit 40 provided downstream thereof. The binder supply device 37 constitutes a binder application unit. Electrode material powder 12P, 1
When 5P is sprinkled with a binder or mixed with binder particles, the binder supply device 37 and the drying unit 40 may not be provided. Drying section 40 is at room temperature to 15
Have a temperature of up to 0 ° C. and dry the binder.

【0012】本発明の燃料電池電極の製造方法は、電極
材料粉末12P、15Pを静電気にて感光体ドラム30
上に保持させる工程と、感光体ドラム30上の電極材料
粉末を、転写を行って(感光体ドラム30からいったん
中間媒体膜に転写し該中間媒体膜から目標の膜に転写す
る場合を含む)目標の膜(以下、膜が電解質膜11であ
る場合を例にとるが拡散層膜13、16でもよい)に転
写する工程と、転写された所定パターンの電極材料粉末
12P、15Pを膜11に定着させる工程と、を有して
いる。
In the method of manufacturing the fuel cell electrode of the present invention, the electrode material powders 12P and 15P are electrostatically charged to the photosensitive drum 30.
The step of holding it above, and the transfer of the electrode material powder on the photoconductor drum 30 (including the case of once transferring from the photoconductor drum 30 to the intermediate medium film and then transferring from the intermediate medium film to the target film) The step of transferring to a target film (hereinafter, the case where the film is the electrolyte film 11 is taken as an example, but the diffusion layer films 13 and 16 may be used), and the transferred electrode material powders 12P and 15P having a predetermined pattern are transferred to the film 11. And a fixing step.

【0013】上記電極材料粉末を静電気にて感光体ドラ
ム30上に保持させる工程においては、帯電ローラ31
を感光体ドラム30に接触させて感光体ドラム30表面
を静電気で帯電させ、感光体ドラム30表面に或るパタ
ーンをもってレーザ光をあてて光の強さに応じて除電
し、感光体ドラム30に電極材料粉末12P、15Pを
供給して感光体ドラム30表面の所定パターン(除電部
位のパターンと反対パターン)の帯電部位に帯電の強さ
に応じて電極材料粉末12P、15Pを静電気にて保持
させる。コピー機の場合は磁力で粉末をドラム上に保持
させるが、本発明では静電気で感光体ドラム30上に電
極材料粉末12P、15Pを保持させる。ついで、静電
保持させた電極材料粉末12P、15Pを膜11に転写
する。この転写を複数の電極材料転写部位で1回ずつ行
うことにより、全ての電極材料転写部位を通過した時に
は、複数回の塗布が行われた電極が形成される。
In the process of electrostatically holding the electrode material powder on the photosensitive drum 30, the charging roller 31 is used.
Is contacted with the photoconductor drum 30 to electrostatically charge the surface of the photoconductor drum 30 and a laser beam is applied to the surface of the photoconductor drum 30 with a certain pattern to eliminate the charge according to the intensity of the light, and The electrode material powders 12P and 15P are supplied to cause the electrode material powders 12P and 15P to be electrostatically held at the charged portions of a predetermined pattern (the pattern opposite to the static elimination portion pattern) on the surface of the photosensitive drum 30 according to the strength of the charge. . In the case of a copy machine, the powder is magnetically held on the drum, but in the present invention, the electrode material powders 12P and 15P are held on the photosensitive drum 30 by static electricity. Then, the electrostatically held electrode material powders 12P and 15P are transferred to the film 11. By performing this transfer once at a plurality of electrode material transfer sites, an electrode that has been applied a plurality of times is formed when all the electrode material transfer sites have been passed.

【0014】図5は所定パターンの一例を示す。図5で
は、触媒層の面内構成を、ガス流路27、28に対応す
る部分(「黒」と表示した部分)と、セパレータリブに
対応する部分(「赤」と表示した部分)とで変えたもの
を示している。ガス流路27、28に対応する部分は拡
散層13、16がセパレータリブで押圧されていないた
めガスが十分に流れてきて発電反応を生じ得るので触媒
成分が多いことが望ましいが、セパレータリブで押圧さ
れる部分はガスの流通が不十分なため触媒成分を少なく
して高価な触媒成分を少量にすることが望ましい。レー
ザ光をあてるパターンと光の強弱を変える(リブ対応部
はレーザ光量を強くしガス流路対応部はレーザ光量を零
にするかまたは弱くする)ことによって、この条件を容
易に満足させることができ、最適出力とコストダウンと
を両立させることができる。
FIG. 5 shows an example of the predetermined pattern. In FIG. 5, the in-plane structure of the catalyst layer is divided into a portion corresponding to the gas flow paths 27 and 28 (a portion indicated as “black”) and a portion corresponding to the separator rib (a portion indicated as “red”). It shows what has changed. Since the diffusion layers 13 and 16 are not pressed by the separator ribs in the portions corresponding to the gas flow paths 27 and 28, a sufficient amount of gas can flow and a power generation reaction can occur, so it is desirable that the catalyst components be large. Since gas flow is insufficient in the pressed portion, it is desirable to reduce the amount of expensive catalyst components by reducing the amount of catalyst components. This condition can be easily satisfied by changing the pattern of irradiating the laser light and the intensity of the light (the rib corresponding part makes the laser light amount strong and the gas passage corresponding part makes the laser light amount zero or weak). It is possible to achieve both optimum output and cost reduction.

【0015】膜11に転写された所定パターンの電極材
料粉末12P、15Pを膜11に定着させる工程におい
ては、定着が所定の圧力と所定の熱をもって行われる。
圧力は4MPa以上で、コピー機の場合の圧力の約10
倍であり、温度は50〜150℃が望ましい。150℃
以上では膜11が温度でダメージを受け、50℃以下で
は加熱の効果が少ないからである。80〜120℃程度
が好ましい。
In the step of fixing the electrode material powders 12P and 15P having the predetermined pattern transferred to the film 11 on the film 11, the fixing is performed with a predetermined pressure and a predetermined heat.
The pressure is 4 MPa or more, which is about 10 times that of a copying machine.
And the temperature is preferably 50 to 150 ° C. 150 ° C
This is because the film 11 is damaged by the temperature above, and the heating effect is small at 50 ° C. or lower. About 80 to 120 ° C is preferable.

【0016】転写された所定パターンの、カーボン粒
子、触媒貴金属からなる電極材料粉末12P、15Pを
膜11に定着ローラー35にて定着させる工程の後に、
定着された電極材料粉末上に液状バインダー38を塗布
する工程と、塗布した液状バインダーを乾燥させる工程
を、設けてもよい。液状バインダー38はローラー39
塗布してもよいし、スプレー塗布してもよい。これらの
工程を設けるのは、電極材料粉末12P、15Pの膜1
1への定着をより完全にするためである。
After the step of fixing the transferred electrode material powders 12P and 15P consisting of carbon particles and catalytic noble metal on the film 11 with the fixing roller 35,
You may provide the process of apply | coating the liquid binder 38 on the fixed electrode material powder, and the process of drying the applied liquid binder. Liquid binder 38 is roller 39
It may be applied or spray applied. These steps are provided for the film 1 of the electrode material powders 12P and 15P.
This is to make fixing to 1 more complete.

【0017】ただし、電極材料粉末12P、15Pを静
電気にて感光体ドラム30上に所定パターンをもって保
持させる工程において、カーボン、触媒貴金属からなる
電極材料粉末12P、15Pに予めバインダーをまぶし
ておいたり、あるいはカーボン、触媒貴金属からなる電
極材料粉末12P、15Pに予め粉体バインダーを混合
しておく場合は、定着工程でカーボン、触媒貴金属、バ
インダーからなる電極材料粉末12P、15Pが膜11
に十分に定着するので、上記の液状バインダー38塗布
工程とその乾燥工程は設けなくてもよい。
However, in the step of holding the electrode material powders 12P and 15P on the photosensitive drum 30 in a predetermined pattern by static electricity, the electrode material powders 12P and 15P made of carbon and catalytic noble metal may be pre-coated with a binder, Alternatively, when a powder binder is mixed in advance with the electrode material powders 12P and 15P composed of carbon and catalytic noble metal, the electrode material powders 12P and 15P composed of carbon, catalytic noble metal and binder are mixed in the film 11 in the fixing step.
Therefore, the liquid binder 38 coating step and its drying step may be omitted.

【0018】本発明の方法では、図6〜図8に示すよう
に、電極材料12P、15Pを膜11に転写することを
複数回実行して電極14、17を形成する際に、各回で
電極材料12P、15Pの種類を異ならしめ、各回で塗
布層厚を制御して、電極構造を三次元的に制御する。燃
料電池電極の製造をカラー複写に対応させた場合、各回
の電極材料の種類がカラー複写の色に対応し、各回の塗
布層厚がその回で塗布される色の濃さに対応する。
In the method of the present invention, as shown in FIGS. 6 to 8, when the electrodes 14 and 17 are formed by transferring the electrode materials 12P and 15P to the film 11 a plurality of times, the electrodes are formed at each time. The materials 12P and 15P are made different in type, the coating layer thickness is controlled each time, and the electrode structure is three-dimensionally controlled. When the manufacturing of the fuel cell electrode is adapted to color copying, the type of electrode material at each time corresponds to the color of the color copying, and the coating layer thickness at each time corresponds to the depth of the color applied at that time.

【0019】電極材料12P、15Pはカーボン粒子、
該カーボン粒子に担持される触媒貴金属と、該カーボン
粒子および該触媒貴金属が膜へ転写される前または転写
された後に該カーボン粒子および該触媒貴金属に混合さ
れるバインダーを成分として含んでおり、これら成分の
種類、混合比率、混合形態、各成分の粒子サイズの何れ
か少なくとも一つを異ならせることにより、電極材料の
種類が異ならされる。さらに詳しくは、カーボン粒子径
・形状を変えるか、カーボン粒子に担持させている貴金
属の種類(白金、ルテニウム、または複数種の貴金属の
混合したもの、その混合割合を変えたもの、等)を変え
るか、カーボンと貴金属と電解質の含有比率を変える
か、電解質の混合のさせ方を変えるか(貴金属担持のカ
ーボン粒子に電解質をまぶしておくか、電解質の粒子を
貴金属担持のカーボン粒子と混合させるか、等)等によ
り、電極材料の種類が変えられる。
The electrode materials 12P and 15P are carbon particles,
A catalyst noble metal supported on the carbon particles and a binder mixed with the carbon particles and the catalyst noble metal before or after the carbon particles and the catalyst noble metal are transferred to a film are contained as components. The kind of electrode material is made different by making at least one of the kind of components, the mixing ratio, the mixing form, and the particle size of each component different. More specifically, change the diameter and shape of the carbon particles, or change the type of noble metal supported on the carbon particles (platinum, ruthenium, or a mixture of two or more precious metals, or a mixture of different noble metals). Whether the content ratio of carbon, noble metal and electrolyte is changed, or how to mix the electrolyte is changed (whether the noble metal-supported carbon particles are sprinkled with the electrolyte, or the electrolyte particles are mixed with the noble metal-supported carbon particles). , Etc.) and the like, the kind of electrode material can be changed.

【0020】カラー複写の色は、青、赤(マゼンダ)、
黄、黒の4色であるが、電極材料の場合は色数は4に限
る必要はない。そして、電極材料の種類の数だけの電極
材料転写部の電極材料収容装置33を膜送り方向に設置
しておき、各種類の電極材料を別々に電極材料収容装置
33に入れておき、送られる膜11に各種の電極材料を
順次塗布していく。
The colors for color copying are blue, red (magenta),
There are four colors, yellow and black, but the number of colors need not be limited to four in the case of an electrode material. Then, as many electrode material accommodating devices 33 of the electrode material transfer portion as the number of kinds of electrode materials are installed in the film feeding direction, and each kind of electrode material is separately put in the electrode material accommodating device 33 and sent. Various electrode materials are sequentially applied to the film 11.

【0021】図7、図8は4種(カラー複写で言えば4
色)の電極材料を電解質膜11上に塗り重ねていく場合
の電極14、17の断面構造の一例を示している。図7
の例では、第1触媒層は第1の種類(カラー複写で言え
ば、たとえば、色が「黒」)の電極材料を電解質膜平面
上に面内方向に濃淡を付けて塗布する。第2触媒層は第
2の種類(カラー複写で言えば、たとえば、「黄」)の
電極材料を第1触媒層平面上に面内方向に厚さを異なら
せて(カラー複写で言えば、濃淡を付けて)塗り重ね
る。第3触媒層は第3の種類(カラー複写で言えば、た
とえば、「赤」)の電極材料を第2触媒層平面上に面内
方向に厚さを異ならせて(カラー複写で言えば、濃淡を
付けて)塗り重ねる。第4触媒層は第4の種類(カラー
複写で言えば、たとえば、「青」)の電極材料を第3触
媒層平面上に面内方向に厚さを異ならせて(カラー複写
で言えば、濃淡を付けて)濃淡を付けて塗り重ねる。そ
の結果、図8に示す断面構造をもつ電極14、17が形
成される。この場合、複数層からなる電極の厚さは、接
触圧を均一にする上で、一定であることが望ましい。
7 and 8 are four types (4 in color copying).
An example of the cross-sectional structure of the electrodes 14 and 17 in the case where the (color) electrode material is applied over the electrolyte membrane 11 is shown. Figure 7
In the above example, the first catalyst layer is formed by applying an electrode material of the first type (for color copying, for example, the color is “black”) on the plane of the electrolyte membrane with a shade in the in-plane direction. The second catalyst layer has a second type (for color copying, for example, “yellow”) of electrode material with a different thickness in the in-plane direction on the plane of the first catalyst layer (for color copying, Apply shades) and paint again. The third catalyst layer has a third type (for color copying, for example, "red") of electrode material with a different thickness in the in-plane direction on the plane of the second catalyst layer (for color copying, Apply shades) and paint again. The fourth catalyst layer has a fourth type (for color copying, for example, “blue”) of an electrode material having a different thickness in the in-plane direction on the plane of the third catalyst layer (for color copying, Apply light and shade and paint again. As a result, the electrodes 14 and 17 having the sectional structure shown in FIG. 8 are formed. In this case, the thickness of the electrode composed of a plurality of layers is preferably constant in order to make the contact pressure uniform.

【0022】たとえば、水素濃度、水素入口から水素出
口に向かって燃料ガス流路に沿って減少し、酸素濃度も
空気入口から空気出口に向かって酸化ガス流路に沿って
減少するので、発電をセル面内で均一に行う場合には、
水素出口側で水素入口側に比べてアノード14の触媒金
属比率を増大させ、空気出口側で空気入口側に比べてカ
ソード17の触媒金属比率を増大させる、といった具合
である。塗布制御は、反応ガスの流路パターン、その流
路に沿った反応ガスの設計濃度、温度、湿度、セル面内
の設計電流密度、各電極材料収容装置33に入れた各種
電極材料の種類、等のデータをコンピュータに入力して
投光装置32が投光すべき投光の強度値を演算し、その
出力値を投光装置32に送って、塗布面内方向に投光走
査していく際の投光の強度を制御する等によって、容易
に行うことができる。
For example, the hydrogen concentration decreases along the fuel gas passage from the hydrogen inlet to the hydrogen outlet, and the oxygen concentration also decreases along the oxidizing gas passage from the air inlet to the air outlet. When performing uniformly in the cell plane,
For example, the catalyst metal ratio of the anode 14 is increased on the hydrogen outlet side as compared with the hydrogen inlet side, and the catalyst metal ratio of the cathode 17 is increased on the air outlet side as compared with the air inlet side. The coating control is performed by the flow pattern of the reaction gas, the design concentration of the reaction gas along the flow path, the temperature, the humidity, the design current density in the cell plane, the type of various electrode materials put in each electrode material accommodation device 33, And the like are input to a computer to calculate the intensity value of the light to be projected by the light projecting device 32, and the output value is sent to the light projecting device 32 to perform light projecting scanning in the in-plane direction. This can be easily performed by controlling the intensity of the projected light.

【0023】つぎに、上記の本発明の方法の作用を説明
する。まず、感光体ドラム30表面全面を帯電させ、レ
ーザ光投光の際、電極材料を塗布しない部分にパターン
露光してその部分を除電し、静電気を帯電している部分
のみに電極材料粉末12P、15Pを付着させ、それを
電解質11または拡散層13、16からなる膜に転写す
るので、露光のパターンと該露光パターンの各部位での
強弱のコントロールで任意の形状の電極14、17や、
所定形状中の各部位において濃度等を変えた電極14、
17を作ることができる。
Next, the operation of the above-described method of the present invention will be described. First, the entire surface of the photosensitive drum 30 is charged, and when laser light is projected, pattern exposure is performed on a portion not coated with an electrode material to eliminate that portion, and only the portion charged with static electricity is charged with the electrode material powder 12P. Since 15P is attached and transferred to the film formed of the electrolyte 11 or the diffusion layers 13 and 16, the electrodes 14 and 17 having an arbitrary shape or the electrodes 14 and 17 having an arbitrary shape can be controlled by controlling the exposure pattern and the strength of each portion of the exposure pattern.
Electrodes 14 having different concentrations and the like at each site in the predetermined shape,
You can make 17.

【0024】すなわち、パターン露光のため、任意の形
状の電極14、17が得られ、かつその形状の中におい
ても、電極濃度(コピーで言えば濃淡)を変えることが
できる。たとえば、セパレータの溝(ガス流路)に対応
する部分は電極材料粉末を高濃度で形成し、セパレータ
のリブ(ガス流路でない部分)で拡散層を介して圧接さ
れる部分は電極材料粉末を低濃度で形成することがで
き、高価な触媒貴金属の塗布量を低減できる。また、ガ
スは下流にいく程低濃度になるので、それに合わせて電
極材料粉末の塗布濃度を変えることができ、流路に沿っ
て均一な発電とすることにも寄与できる。従来はこのよ
うなセル面内でパターンや濃度を変えることはできない
が、本発明ではコピーと同じように変えることが容易に
できる。
That is, because of the pattern exposure, the electrodes 14 and 17 having an arbitrary shape can be obtained, and even within the shape, the electrode density (shading in terms of copy) can be changed. For example, a portion of the separator corresponding to the groove (gas flow path) is formed with a high concentration of electrode material powder, and a portion of the separator rib (a portion other than the gas flow path) pressed against the diffusion layer is filled with the electrode material powder. It can be formed at a low concentration and the amount of expensive catalytic precious metal applied can be reduced. In addition, since the concentration of the gas becomes lower toward the downstream side, the coating concentration of the electrode material powder can be changed in accordance with it, which can contribute to uniform power generation along the flow path. Conventionally, it is not possible to change the pattern or density in such a cell plane, but in the present invention, it is possible to easily change it like a copy.

【0025】また、静電気による電極材料粉末12P、
15Pの感光体ドラム30表面への付着とその転写(膜
11への転写)であるため、本発明は乾式法であり、従
来の湿式塗布における溶剤の電解質膜の攻撃、膨潤・収
縮による電極のクラック発生などの問題が除去される。
Also, the electrode material powder 12P due to static electricity,
The present invention is a dry method because the 15P adheres to the surface of the photoconductor drum 30 and is transferred (transferred to the film 11). Problems such as cracks are eliminated.

【0026】つぎに、図3、図4のそれぞれの実施例に
示す方法を説明する。図3の実施例では、膜11の両面
に電極材料粉末12P、15Pが塗布され触媒層12、
15が形成される。膜11は、上から下に送られる。電
極材料転写工程とその定着工程が膜送り方向に複数回実
行される。図示例は複数回(図3の例では2回の場合を
示すが2回に限るものではない)実行される場合を示
し、第1回目の電極材料転写部、その定着部、第2回目
の電極材料転写部、その定着部が、膜送り方向に順に設
けられて、塗布、定着が実行される。また、電極材料粉
末収容容器33内の電極材料粉末12P、15Pはバイ
ンダーをまぶされておらず、あるいはバインダー粒子が
混合されていないので、最終の定着工程の後にバインダ
ー塗布工程とバインダー乾燥工程が設けられている。バ
インダー塗布はたとえばロールコートによる。図3の方
法では、電極材料粉末収容容器33にはそれぞれ異なる
種類の電極材料12P(15p)が入れられており、各
電極材料転写部では、各層の塗布パターン形状、濃度、
層厚を、変えることができる。これにより、セル面内方
向の塗布パターン形状、濃度、組成、および厚さ方向の
層厚さ、組成、等を変化させることができ、電極14、
17の構造を三次元に変化させることができる。
Next, the methods shown in the embodiments of FIGS. 3 and 4 will be described. In the embodiment shown in FIG. 3, the electrode material powders 12P and 15P are applied to both surfaces of the membrane 11 to form the catalyst layer 12,
15 is formed. The membrane 11 is fed from top to bottom. The electrode material transfer process and the fixing process thereof are performed multiple times in the film feeding direction. The illustrated example shows a case in which it is executed a plurality of times (in the example of FIG. 3, the case is shown twice, but the number is not limited to two times), and the first electrode material transfer portion, its fixing portion, and the second time The electrode material transfer section and its fixing section are sequentially provided in the film feeding direction, and coating and fixing are performed. Further, since the electrode material powders 12P and 15P in the electrode material powder storage container 33 are not sprinkled with a binder or mixed with binder particles, the binder coating step and the binder drying step are performed after the final fixing step. It is provided. The binder is applied by roll coating, for example. In the method of FIG. 3, different kinds of electrode materials 12P (15p) are put in the electrode material powder storage containers 33, and at each electrode material transfer section, the coating pattern shape, concentration, and
The layer thickness can be varied. Thereby, the coating pattern shape, concentration, composition in the in-plane direction of the cell, and layer thickness, composition, etc. in the thickness direction can be changed.
The structure of 17 can be changed in three dimensions.

【0027】図4の実施例では、膜11(または13、
16)の片面に膜送り方向に複数設けた電極材料転写部
で、複数回(図示例では回数は2であるが、2に限るも
のではない)、電極材料粉末12P、15Pが塗布さ
れ、全層の塗布後、塗布電極材料は定着部35で膜11
(または13、16)に定着され、電極14、17が形
成される。膜11(または13、16)は、水平に送ら
れる。電極材料粉末収容容器33内の電極材料粉末12
P、15Pはバインダーをまぶされておらず、あるいは
バインダー粒子が混合されていないので、定着工程の後
にバインダー塗布工程とバインダー乾燥工程が設けられ
ている。図4の方法では、電極材料粉末収容容器33に
はそれぞれ異なる種類の電極材料12P(15p)が入
れられており、各電極材料転写部では、各層の塗布パタ
ーン形状、濃度、層厚を、変えることができる。これに
より、セル面内方向の塗布パターン形状、濃度、組成、
および厚さ方向の層厚さ、組成、等を変化させることが
でき、電極14、17の構造を三次元に変化させること
ができる。
In the embodiment of FIG. 4, the membrane 11 (or 13,
16) In the electrode material transfer portion provided in plural on one surface in the film feeding direction, the electrode material powders 12P and 15P are applied a plurality of times (the number of times in the illustrated example is 2, but not limited to 2), After applying the layer, the applied electrode material is applied to the film 11 at the fixing unit 35.
(Or 13, 16) is fixed, and the electrodes 14, 17 are formed. The membrane 11 (or 13, 16) is fed horizontally. Electrode material powder 12 in the electrode material powder container 33
Since P and 15P are not sprinkled with a binder or mixed with binder particles, a binder coating step and a binder drying step are provided after the fixing step. In the method of FIG. 4, different kinds of electrode materials 12P (15p) are put in the electrode material powder container 33, and the coating pattern shape, concentration, and layer thickness of each layer are changed in each electrode material transfer section. be able to. Thereby, the coating pattern shape in the cell in-plane direction, the concentration, the composition,
Also, the layer thickness, composition, etc. in the thickness direction can be changed, and the structure of the electrodes 14, 17 can be changed three-dimensionally.

【0028】[0028]

【発明の効果】請求項1〜3の燃料電池電極の製造方法
によれば、各回で電極材料の種類を異ならしめ、各回で
塗布層厚を制御するので、電極の構造(組成・密度、膜
厚等)を、三次元的に(電極厚さ方向およびそれと直交
する面内方向に)任意に制御することができる。また、
本方法は、静電気による電極材料の感光体ドラム表面へ
の付着とその転写であるため、乾式法であり、従来の湿
式塗布における溶剤の電解質膜の攻撃、膨潤・収縮によ
る電極のクラック発生はない。請求項2の燃料電池電極
の製造方法によれば、本方法をカラー複写(カラーコピ
ー)に対応させることができる。その場合、各回の電極
材料の種類がカラー複写の色に対応し、各回の塗布層厚
がその回で塗布される色の濃さに対応する。請求項3の
燃料電池電極の製造方法によれば、電極材料の種類を、
成分の混合比率、混合形態、各成分の粒子サイズの何れ
か少なくとも一つを異ならせることにより変えることが
できる。
According to the method for producing a fuel cell electrode of claims 1 to 3, since the type of electrode material is made different each time and the coating layer thickness is controlled at each time, the structure of the electrode (composition / density, film Thickness, etc.) can be arbitrarily controlled three-dimensionally (in the thickness direction of the electrode and in the in-plane direction orthogonal thereto). Also,
This method is a dry method because it is the adhesion and transfer of the electrode material to the surface of the photoconductor drum due to static electricity, and there is no attack of the electrolyte membrane of the solvent in conventional wet coating and no electrode cracking due to swelling / contraction. . According to the manufacturing method of the fuel cell electrode of the second aspect, this method can be applied to color copying. In that case, the type of electrode material at each time corresponds to the color of the color copy, and the thickness of the coating layer at each time corresponds to the depth of the color applied at that time. According to the method for producing a fuel cell electrode of claim 3, the type of electrode material is
It can be changed by changing at least one of the mixing ratio of the components, the mixing form, and the particle size of each component.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池電極の製造方法で製造された
電極をもつ燃料電池の全体正面図である。
FIG. 1 is an overall front view of a fuel cell having an electrode manufactured by a method for manufacturing a fuel cell electrode of the present invention.

【図2】図1のセルの拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the cell of FIG.

【図3】本発明の一実施例の燃料電池電極の製造方法を
実施する装置の側面図である。
FIG. 3 is a side view of an apparatus for carrying out a method for manufacturing a fuel cell electrode according to an embodiment of the present invention.

【図4】本発明のもう一つの実施例の燃料電池電極の製
造方法を実施する装置の側面図である。
FIG. 4 is a side view of an apparatus for carrying out a method for manufacturing a fuel cell electrode according to another embodiment of the present invention.

【図5】本発明の燃料電池電極の製造方法で製造された
燃料電池電極の塗布パターンを示す平面図である。
FIG. 5 is a plan view showing a coating pattern of a fuel cell electrode manufactured by the method for manufacturing a fuel cell electrode according to the present invention.

【図6】本発明の燃料電池電極の製造方法で製造された
燃料電池電極の、流路に沿った、ガス圧・濃度の分布を
示す平面図である。
FIG. 6 is a plan view showing a gas pressure / concentration distribution along a flow path of a fuel cell electrode manufactured by the method for manufacturing a fuel cell electrode of the present invention.

【図7】本発明の燃料電池電極の製造方法における各回
塗布で塗布面内における濃度(色に対応)の変化を示す
各塗布層の平面図である。
FIG. 7 is a plan view of each coating layer showing changes in concentration (corresponding to color) in the coating surface after each coating in the method for producing a fuel cell electrode of the present invention.

【図8】図7の各回の塗布層を複数層に塗り重ねて示し
た電極の厚さ方向の断面図である。
FIG. 8 is a cross-sectional view in the thickness direction of the electrode, in which a plurality of coating layers of each time in FIG.

【符号の説明】[Explanation of symbols]

10 (固体高分子電解質型)燃料電池 11 電解質膜 12 触媒層 12P 電極材料粉末(アノード用) 13 拡散層 14 電極(アノード、燃料極) 15 触媒層 15P 電極材料粉末(カソード用) 16 拡散層 17 電極(カソード、空気極) 18 セパレータ 19 セル 20 ターミナル 21 インシュレータ 22 エンドプレート 23 スタック 24 テンションプレート 25 ボルト 30 感光体ドラム 30A 対向ドラム 30B 対向ローラー 31 帯電ローラー 32 投光装置(レーザ光投光手段) 33 電極材料収容装置 34 電極材料粉末供給ローラー 35 定着ローラー 36 不活性ガス雰囲気 37 バインダー塗布ユニット 38 バインダー 39 バインダー塗布ローラー 40 乾燥部 10 (Polymer electrolyte type) fuel cell 11 Electrolyte membrane 12 Catalyst layer 12P electrode material powder (for anode) 13 Diffusion layer 14 electrodes (anode, fuel electrode) 15 Catalyst layer 15P electrode material powder (for cathode) 16 diffusion layer 17 electrodes (cathode, air electrode) 18 separator 19 cells 20 terminals 21 insulator 22 End plate 23 stack 24 tension plate 25 volts 30 photoconductor drum 30A Opposing drum 30B Opposing roller 31 charging roller 32 Projector (laser light projector) 33 Electrode material storage device 34 Electrode material powder supply roller 35 fixing roller 36 Inert gas atmosphere 37 Binder coating unit 38 Binder 39 Binder coating roller 40 Drying section

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS02 AS03 BB00 BB08 BB12 EE03 EE05 5H026 AA06 BB00 BB04 BB08 CC08 CX07 EE02 EE05    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H018 AA06 AS02 AS03 BB00 BB08                       BB12 EE03 EE05                 5H026 AA06 BB00 BB04 BB08 CC08                       CX07 EE02 EE05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 感光体ドラムを帯電させ光を照射して照
射部分を光の強さに応じて除電し帯電部位に電極材料を
帯電の強さに応じて静電気で付着させこれを膜に転写す
ることを複数回実行して電極を形成する燃料電池電極の
製造方法において、各回で電極材料の種類を異ならし
め、各回で塗布層厚を制御して、電極構造を三次元的に
制御する燃料電池電極の製造方法。
1. A photosensitive drum is charged, and light is irradiated to remove static electricity from the irradiated portion according to the intensity of light, and an electrode material is electrostatically attached to the charged portion according to the strength of charging and transferred to a film. In a method for manufacturing a fuel cell electrode in which the electrode is formed by performing the above-mentioned multiple times, the type of electrode material is made different at each time, the coating layer thickness is controlled at each time, and the fuel is controlled three-dimensionally at the electrode structure. Battery electrode manufacturing method.
【請求項2】 燃料電池電極の製造をカラー複写に対応
させた場合、各回の電極材料の種類がカラー複写の色に
対応し、各回の塗布層厚がその回で塗布される色の濃さ
に対応する請求項1記載の燃料電池電極の製造方法。
2. When the production of a fuel cell electrode is adapted to color copying, the type of electrode material at each time corresponds to the color of the color copying, and the coating layer thickness at each time is the depth of the color applied at that time. The method for manufacturing a fuel cell electrode according to claim 1, which corresponds to.
【請求項3】 電極材料はカーボン粒子、該カーボン粒
子に担持される触媒貴金属と、該カーボン粒子および該
触媒貴金属が膜へ転写される前または転写された後に該
カーボン粒子および該触媒貴金属に混合されるバインダ
ーを成分として含んでおり、これら成分の種類、混合比
率、混合形態、各成分の粒子サイズの何れか少なくとも
一つを異ならせることにより、電極材料の種類が異なら
される請求項1記載の燃料電池電極の製造方法。
3. The electrode material is mixed with carbon particles, a catalytic noble metal supported on the carbon particles, and the carbon particles and the catalytic noble metal before or after the carbon particles and the catalytic noble metal are transferred to a film. 2. The type of electrode material is made different by containing at least one of the types, mixing ratios, mixing forms, and particle sizes of the respective components, which contains the binder as a component. Of manufacturing a fuel cell electrode of.
JP2001362229A 2001-11-28 2001-11-28 Manufacturing method of fuel cell electrode Expired - Fee Related JP3888145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001362229A JP3888145B2 (en) 2001-11-28 2001-11-28 Manufacturing method of fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001362229A JP3888145B2 (en) 2001-11-28 2001-11-28 Manufacturing method of fuel cell electrode

Publications (2)

Publication Number Publication Date
JP2003163010A true JP2003163010A (en) 2003-06-06
JP3888145B2 JP3888145B2 (en) 2007-02-28

Family

ID=19172765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001362229A Expired - Fee Related JP3888145B2 (en) 2001-11-28 2001-11-28 Manufacturing method of fuel cell electrode

Country Status (1)

Country Link
JP (1) JP3888145B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164910A (en) * 2004-12-10 2006-06-22 Ricoh Co Ltd Electrochemical device, its manufacturing method, and cellular phone equipped with it
JP2013048080A (en) * 2011-07-28 2013-03-07 Panasonic Corp Polymer electrolyte fuel cell and method for producing the same
CN110797564A (en) * 2019-11-07 2020-02-14 深圳市赢合科技股份有限公司 Solid-state battery electrode film forming device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164910A (en) * 2004-12-10 2006-06-22 Ricoh Co Ltd Electrochemical device, its manufacturing method, and cellular phone equipped with it
JP2013048080A (en) * 2011-07-28 2013-03-07 Panasonic Corp Polymer electrolyte fuel cell and method for producing the same
CN110797564A (en) * 2019-11-07 2020-02-14 深圳市赢合科技股份有限公司 Solid-state battery electrode film forming device and method
CN110797564B (en) * 2019-11-07 2024-05-31 深圳市赢合科技股份有限公司 Forming device and method for electrode film of solid-state battery

Also Published As

Publication number Publication date
JP3888145B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
CA2403132C (en) Method and apparatus for manufacturing a fuel cell electrode
JP4944345B2 (en) POLYMER ELECTROLYTE FUEL CELL, AND METHOD AND DEVICE FOR PRODUCING THE ELECTRODE
EP0911900B1 (en) Electrode for fuel cell and method of manufacturing electrode for fuel cell
US7285354B2 (en) Polymer electrolyte fuel cell, fuel cell electrode, method for producing electrode catalyst layer, and method for producing polymer electrolyte fuel cell
JP2004281221A (en) Apparatus and method for manufacturing electrode
JP2003109606A (en) High molecular electrolyte fuel cell and method of manufacturing the same
JP4253491B2 (en) Method and apparatus for manufacturing fuel cell electrode
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
JP3888145B2 (en) Manufacturing method of fuel cell electrode
JP3558021B2 (en) MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
JP3827653B2 (en) Method for producing electrode for fuel cell
US7060383B2 (en) Fuel cell
JP2004185900A (en) Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them
EP1749321B1 (en) System and method for forming a membrane electrode assembly for fuel cells
JP3898569B2 (en) Manufacturing method of fuel cell
JP3828507B2 (en) Fuel cell electrode
JP4092965B2 (en) Fuel cell vent layer, method for producing the same, and fuel cell having the vent layer
JP2004281152A (en) Apparatus and method foe manufacturing electrode
US11258086B2 (en) Method of manufacturing membrane electrode assembly and membrane electrode assembly
JP3828453B2 (en) Manufacturing method of fuel cell
JP3961983B2 (en) Manufacturing method of fuel cell
JP2002289203A (en) Polymer electrolyte fuel cell
JP2004031148A (en) Manufacturing method of solid high polymer fuel cell
DE202005010590U1 (en) Formation of catalytic anode and cathode layers on a fuel cell membrane uses a roller printing process
JP2003346822A (en) Method for manufacturing electrode for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees