JP2003161181A - Operation method for driving structure of hybrid vehicle provided with transmission - Google Patents

Operation method for driving structure of hybrid vehicle provided with transmission

Info

Publication number
JP2003161181A
JP2003161181A JP2001361215A JP2001361215A JP2003161181A JP 2003161181 A JP2003161181 A JP 2003161181A JP 2001361215 A JP2001361215 A JP 2001361215A JP 2001361215 A JP2001361215 A JP 2001361215A JP 2003161181 A JP2003161181 A JP 2003161181A
Authority
JP
Japan
Prior art keywords
transmission
internal combustion
combustion engine
hybrid vehicle
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001361215A
Other languages
Japanese (ja)
Other versions
JP3747842B2 (en
Inventor
Masakiyo Kojima
正清 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001361215A priority Critical patent/JP3747842B2/en
Publication of JP2003161181A publication Critical patent/JP2003161181A/en
Application granted granted Critical
Publication of JP3747842B2 publication Critical patent/JP3747842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further facilitate the stop control of an internal combustion engine in the vehicle operation by the driving structure of a hybrid vehicle with a transmission, and also to suppress the occurrence of shock or vibration caused by the rapid change of torque at engine stop. <P>SOLUTION: In this hybrid vehicle-driving structure, the output shaft of the internal combustion engine 1 is connected to a first motor generator 8 and a wheel driving shaft 11 via a power transfer mechanism 3, a second motor generator 12 is connected to the wheel driving shaft, and a transmission 100 is provided at the side near the engine away from the connection part of the second motor generator on the halfway driving shaft. In the operation of the structure, when the engine is stopped, the torque transmittance between the input and output shafts of the transmission is cut out prior to engine stop. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関と電動機
の組合せにより車輪を駆動するハイブリッド車駆動構造
の運転方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a hybrid vehicle drive structure in which wheels are driven by a combination of an internal combustion engine and an electric motor.

【0002】[0002]

【従来の技術】近年、ますます高まりつつある大気環境
保全と燃料資源の節約の重要性の認識の下に、内燃機関
と電動機の組合せにより車輪が駆動されるハイブリッド
車が脚光を浴びてきている。多様な回転数と駆動トルク
の組合せが求められる自動車の車輪を内燃機関と電動機
により駆動する場合に、その駆動態様をどのようにする
かについては、種々の態様が可能であろうが、自動車は
元来専ら内燃機関のみによって駆動されてきたものであ
り、また自動車の分野に於けるハイブリッド車は、従来
の内燃機関のみによる駆動の一部を状況が許す限り電動
駆動にて置き換えることから出発しているので、ハイブ
リッド車といえども、内燃機関のみによる駆動が可能と
なっていることは当然と考えられている。特開平11−
198669には、内燃機関のクランク軸に第一の電動
発電機を直列に接続して内燃機関または電動機のいずれ
か一方または両方により駆動される動力軸を構成し、か
かる動力軸と第二の電動発電機の出力軸とをそれぞれ遊
星歯車機構のリングギヤとサンギヤとに接続して組み合
わせ、遊星歯車機構のキャリアを出力軸として、これに
変速機を接続してなるハイブリッド車駆動構造が示され
ている。かかるハイブリッド車駆動構造によれば、内燃
機関のみを原動機として働かせても、変速機の変速機能
を得て、従来の内燃機関車と同様に自動車に求められる
多様な運行態様に対応できる。これは上記の如きハイブ
リッド車の由来を反映する一つの典型であると思われ
る。
2. Description of the Related Art In recent years, hybrid vehicles in which wheels are driven by a combination of an internal combustion engine and an electric motor have been in the limelight in recognition of the increasing importance of environmental protection and fuel resource saving. . When driving the wheels of an automobile, which require various combinations of rotational speed and driving torque, by an internal combustion engine and an electric motor, various driving modes may be possible. Originally, it was driven exclusively by an internal combustion engine, and hybrid vehicles in the field of automobiles started by replacing some conventional internal combustion engine-only drive with electric drive as far as the situation allows. Therefore, it is considered natural that even a hybrid vehicle can be driven only by the internal combustion engine. JP-A-11-
In 198669, a first motor / generator is connected in series to a crankshaft of an internal combustion engine to form a power shaft driven by either or both of the internal combustion engine and the electric motor. A hybrid vehicle drive structure is shown in which an output shaft of a generator is connected to and combined with a ring gear and a sun gear of a planetary gear mechanism, and a carrier of the planetary gear mechanism is used as an output shaft and a transmission is connected to the carrier. . According to such a hybrid vehicle drive structure, even if only the internal combustion engine is used as a prime mover, the shift function of the transmission is obtained, and it is possible to cope with various operating modes required for a vehicle, like a conventional internal combustion engine vehicle. This seems to be one of the typical examples reflecting the origin of the hybrid vehicle as described above.

【0003】しかし、一方、自動車の原動機として内燃
機関と電動機とを組み合わせる機会に、車輪に求められ
る回転数対駆動トルクと内燃機関より得られる回転数対
駆動トルクの間の乖離に起因する内燃機関出力軸と車軸
の間の回転数の差を電動機により差動的に吸収し、内燃
機関出力軸と車軸の間に従来から必要とされていた変速
機を無くすことが本件出願人と同一人により提案され
た。添付の図1は、そのようなハイブリッド車の駆動構
造を示す概略図である。
On the other hand, however, on the occasion of combining an internal combustion engine and an electric motor as a prime mover of an automobile, the internal combustion engine is caused by the difference between the rotational speed required for the wheels and the driving torque and the rotational speed obtained from the internal combustion engine versus the driving torque. By the same person as the applicant of the present application, it is possible to differentially absorb the difference in rotation speed between the output shaft and the axle by the electric motor and eliminate the transmission that has been conventionally required between the internal combustion engine output shaft and the axle. was suggested. FIG. 1 attached herewith is a schematic view showing a drive structure of such a hybrid vehicle.

【0004】図1に於いて、1は内燃機関であり、図に
は示されていない車体に取り付けられている。2はその
出力軸(クランク軸)である。3は遊星歯車装置であ
り、4はそのサンギヤ、5はリングギヤ、6はプラネタ
リピニオン、7はキャリアである。クランク軸2はキャ
リア7に連結されている。8は第一の電動発電機(MG
1)であり、コイル9と回転子10と有し、回転子10
はサンギヤ4と連結されている。コイル9は車体より支
持されている。リングギヤ5にはプロペラ軸11の一端
が連結されている。かくして、遊星歯車装置3は、内燃
機関の出力軸2に現れる内燃機関の出力を第一の電動発
電機3と車輪駆動軸をなすプロペラ軸11とに分配する
動力分配機構を構成している。プロペラ軸11の途中に
は第二の電動発電機(MG2)12が連結されている。
第二の電動発電機12はコイル13と回転子14と有
し、コイル13は車体より支持されている。プロペラ軸
11に対する回転子14の連結は任意の構造であってよ
いが、図示の例では、プロペラ軸11に設けられた歯車
15に回転子14により支持されて回転する歯車16が
噛み合う構造とされている。プロペラ軸11の他端はデ
ィファレンシャル装置17を介して一対の車軸18に連
結されている。車軸18の各々には車輪19が取り付け
られている。
In FIG. 1, reference numeral 1 denotes an internal combustion engine, which is mounted on a vehicle body (not shown). Reference numeral 2 is its output shaft (crank shaft). 3 is a planetary gear device, 4 is its sun gear, 5 is a ring gear, 6 is a planetary pinion, and 7 is a carrier. The crankshaft 2 is connected to the carrier 7. 8 is the first motor generator (MG
1), which has the coil 9 and the rotor 10, and the rotor 10
Is connected to the sun gear 4. The coil 9 is supported by the vehicle body. One end of a propeller shaft 11 is connected to the ring gear 5. Thus, the planetary gear device 3 constitutes a power distribution mechanism that distributes the output of the internal combustion engine, which appears on the output shaft 2 of the internal combustion engine, to the first motor generator 3 and the propeller shaft 11 that serves as a wheel drive shaft. A second motor generator (MG2) 12 is connected in the middle of the propeller shaft 11.
The second motor generator 12 has a coil 13 and a rotor 14, and the coil 13 is supported by the vehicle body. The connection of the rotor 14 to the propeller shaft 11 may have any structure, but in the illustrated example, the structure is such that the gear 15 provided on the propeller shaft 11 meshes with the rotating gear 16 supported by the rotor 14. ing. The other end of the propeller shaft 11 is connected to a pair of axles 18 via a differential device 17. Wheels 19 are attached to each of the axles 18.

【0005】図示の駆動構造に於いて、クランク軸2の
回転とキャリア7の回転とは同じであり、今この回転数
をNcで表すものとする。また第一の電動発電機8の回
転とサンギヤ4の回転とは同じであり、今この回転数を
Nsで表すものとする。一方、リングギヤ5の回転と第
二の電動発電機12の回転と車輪19の回転とは互いに
対応し、最終的には車速に対応するものであるが、それ
ぞれの回転数は歯車15と16の間の歯数の比、ディフ
ァレンシャル装置17に於ける減速比、およびタイヤ径
によって異なる。しかし、今ここでは便宜上これらの部
分の回転数をリングギヤ5の回転数にて代表するものと
し、それをNrとする。そうすると、内燃機関と二つの
電動発電機とを遊星歯車装置にて図示の如く組み合わせ
たハイブリッド車駆動構造に於ける内燃機関と二つの電
動発電機MG1、MG2の回転数Nc、Ns、Nrの間
の関係は、遊星歯車装置の原理に基づき、図2に示す線
図により表される。図にてρはリングギヤの歯数に対す
るサンギヤの歯数である(ρ<1)。Ncは機関回転数
により定まり、Nrは車速により定まるので、Nsは機
関回転数と車速の如何により Ns=(1+1/ρ)Nc−(1/ρ)Nr として定まる。
In the illustrated drive structure, the rotation of the crankshaft 2 and the rotation of the carrier 7 are the same, and this rotation speed is now represented by Nc. Further, the rotation of the first motor generator 8 and the rotation of the sun gear 4 are the same, and this rotation speed is now represented by Ns. On the other hand, the rotation of the ring gear 5, the rotation of the second motor generator 12, and the rotation of the wheels 19 correspond to each other and finally correspond to the vehicle speed, but the respective rotation speeds are those of the gears 15 and 16. It depends on the ratio of the number of teeth between them, the speed reduction ratio in the differential device 17, and the tire diameter. However, here, for the sake of convenience, the rotational speed of these portions is represented by the rotational speed of the ring gear 5, and is represented by Nr. Then, between the internal combustion engine and the two motor generators MG1, MG2 in the hybrid vehicle drive structure in which the internal combustion engine and the two motor generators are combined by a planetary gear device as shown in the drawing, between the rotational speeds Nc, Ns, Nr. The relationship is expressed by the diagram shown in FIG. 2 based on the principle of the planetary gear device. In the figure, ρ is the number of teeth of the sun gear with respect to the number of teeth of the ring gear (ρ <1). Since Nc is determined by the engine speed and Nr is determined by the vehicle speed, Ns is determined as Ns = (1 + 1 / ρ) Nc− (1 / ρ) Nr depending on the engine speed and the vehicle speed.

【0006】一方、キャリアとサンギヤとリングギヤの
トルクをTc、Ts、Trとすると、これらは Ts:Tc:Tr=ρ/(1+ρ):1:1/(1+
ρ) の比にて互いに平衡し、従ってまた、これら3要素のい
ずれかがトルクを発生しあるいは吸収するときには、上
記の平衡が成り立つまで相互間にトルクのやりとりが行
なわれる。
On the other hand, if the torques of the carrier, sun gear, and ring gear are Tc, Ts, and Tr, these are Ts: Tc: Tr = ρ / (1 + ρ): 1: 1 / (1+
When a ratio of ρ) balances each other, and thus any of these three elements produces or absorbs torque, torque is exchanged between them until the above balance is established.

【0007】以上の如き駆動構造を備えたハイブリッド
車に於いて、内燃機関、MG1、MG2の作動は、図に
は示されていない車輌運転制御装置により、運転者から
の運転指令と車輌の運行状態とに基づいて制御される。
即ち、車輌運転制御装置はマイクロコンピュータを備
え、運転者からの運転指令と種々のセンサにより検出さ
れる車輌の運行状態とに基づいて目標車速および目標車
輪駆動トルクを計算すると共に、蓄電装置の充電状態に
基づいて蓄電装置に許される電流出力あるいは蓄電装置
の充電のために必要な発電量を計算し、これらの計算結
果に基づいて、内燃機関を休止を含む如何なる運転状態
にて運転すべきか、またMG1およびMG2を如何なる
電動状態あるいは発電状態にて運転すべきかを計算し、
その計算結果に基づいて内燃機関、MG1、MG2の作
動を制御する。
In the hybrid vehicle having the above-described drive structure, the internal combustion engines, MG1 and MG2 are operated by a vehicle operation control device (not shown) from the driver and operation of the vehicle. It is controlled based on the state and.
That is, the vehicle operation control device includes a microcomputer, calculates the target vehicle speed and the target wheel drive torque based on the operation command of the driver and the operation state of the vehicle detected by various sensors, and charges the power storage device. Based on the state, calculate the current output allowed for the power storage device or the amount of power generation required for charging the power storage device, and based on these calculation results, what operating state should the internal combustion engine operate in, including stoppage, Also, calculate what kind of electric state or electric power generation state MG1 and MG2 should be operated in,
The operation of the internal combustion engine, MG1 and MG2 is controlled based on the calculation result.

【0008】[0008]

【発明が解決しようとする課題】課題に関する関連出願
以上の如く内燃機関の出力軸が動力分配機構を経て第一
の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸
に第二の電動発電機が連結されたハイブリッド車駆動構
造によれば、図2より理解される通り、内燃機関出力軸
の回転数Ncと車速に対応する回転数Nrの各々の値お
よびその間の相対関係は、その変化を第一の電動発電機
の回転数Nsにて吸収することにより大幅に変えること
ができるので、かかるハイブリッド車駆動構造に於いて
は、これまで変速機は不要とされていた。即ち、動力分
配機構の調節次第で、NcとNrの間の関係を自由に変
えることができ、また停車中(Nr=0)であっても機
関運転(Nc>0)すること、逆に、前進中(Nr>0)
であっても機関停止(Nc=0)すること、あるいは機
関の運転または停止(Nc≧0)にかかわらず後進(N
r<0)することができる。
As described above, the output shaft of the internal combustion engine is connected to the first motor / generator and the wheel drive shaft through the power distribution mechanism, and the second shaft is connected to the wheel drive shaft. According to the hybrid vehicle drive structure in which the motor generator is connected, as understood from FIG. 2, the respective values of the rotation speed Nc of the internal combustion engine output shaft and the rotation speed Nr corresponding to the vehicle speed, and the relative relationship between them are as follows. Since the change can be drastically changed by absorbing the change in the number of revolutions Ns of the first motor-generator, a transmission has not been required in the hybrid vehicle drive structure. That is, the relationship between Nc and Nr can be freely changed depending on the adjustment of the power distribution mechanism, and the engine is operated (Nc> 0) even when the vehicle is stopped (Nr = 0). Moving forward (Nr> 0)
Even if the engine is stopped (Nc = 0), or if the engine is operated or stopped (Nc ≧ 0), the vehicle is moved backward (Nc = 0).
r <0).

【0009】しかし、MG2の回転数は車速の如何によ
って左右され、蓄電装置の充電度は車速とは一応無関係
であるため、MG2が蓄電装置の充電のための発電機と
して作動するには大きな制約がある。そこで蓄電装置の
充電は専らMG1に頼ることとなり、逆に車輪の電動駆
動は専らMG2に頼ることとなる。そのため変速機を備
えない上記の如きハイブリッド車駆動構造に於いて、低
車速領域にても必要に応じて高い車輪駆動トルクを得る
ことができる車輌運転性能を確保しておくためには、畢
竟MG2は大型化せざるを得ない。
However, the number of revolutions of MG2 depends on the vehicle speed, and the degree of charge of the power storage device is irrelevant to the vehicle speed. Therefore, MG2 has a large limitation in operating as a generator for charging the power storage device. There is. Therefore, charging of the power storage device depends exclusively on MG1, and conversely, electric drive of the wheels depends exclusively on MG2. Therefore, in the hybrid vehicle drive structure as described above, which is not provided with a transmission, in order to secure the vehicle driving performance capable of obtaining a high wheel drive torque as necessary even in the low vehicle speed range, the quality MG2 Is inevitably larger.

【0010】このことを車軸トルクの要求値の大きさを
車速に対比させた車速対車軸トルクの座標系で示せば、
図3の通りである。即ち、今、車輌の内燃機関を広い車
速域に亙って高燃費にて運転し、しかも車輌の車速対車
軸トルク性能として望まれる限界性能として線Aにて示
す如き性能を車輌に持たせようとすれば、高燃費を得る
内燃機関の車速対車軸トルク性能は領域Bの如くほぼ平
らになるので、残りを専らMG2にて補わなければなら
ず、その車速対車軸トルク性能は領域Cを賄うものでな
ければなない。そのためMG2は低回転速度にて高トル
クを発生することができるよう、それ相当の大型のもの
とされなければならない。
If this is shown by the coordinate system of the vehicle speed versus the axle torque in which the magnitude of the required value of the axle torque is compared with the vehicle speed,
It is as shown in FIG. That is, now, the internal combustion engine of the vehicle should be operated with high fuel efficiency over a wide range of vehicle speeds, and the vehicle should have the performance shown by line A as the limit performance desired as the vehicle speed vs. axle torque performance. Then, since the vehicle speed versus axle torque performance of the internal combustion engine that obtains high fuel consumption becomes almost flat as in region B, the rest must be compensated exclusively with MG2, and the vehicle velocity versus axle torque performance covers region C. Must be something. Therefore, the MG2 must be large enough to generate high torque at a low rotation speed.

【0011】しかし、図3を吟味すれば、領域Cの深さ
は領域Bの深さに対比して些か深すぎるのではないかと
の疑問がもたれる。これは、観点を変えれば、内燃機関
と第一および第二の電動発電機なる三つの原動装置の大
きさの相対的釣合い、特に内燃機関と第二の電動発電機
の大きさの釣合いの問題である。かかる疑問に端を発
し、この点に関し上記の如きハイブリッド車輌駆動構造
を更に改良するものとして、本件出願人と同一人は、別
途出願に係わる特願2001−323578号にて内燃
機関の出力軸が動力分配機構を経て第一の電動発電機と
車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発
電機が連結されたハイブリッド車駆動構造に於いて、車
輪駆動軸の途中または車輪駆動軸への第二の電動発電機
の連結の途中の少なくとも一方に変速機を設けたことを
特徴とするハイブリッド車駆動構造を提案した。
However, when examining FIG. 3, it is doubted that the depth of the region C is a little too deep as compared with the depth of the region B. From a different point of view, this is a problem of the relative balance between the sizes of the internal combustion engine and the three prime movers, that is, the first and second motor-generators, and particularly the size balance between the internal combustion engine and the second motor-generator. Is. In order to further improve the hybrid vehicle drive structure as described above in view of this point, the same person as the applicant of the present invention has disclosed that the output shaft of the internal combustion engine is the same as in Japanese Patent Application No. 2001-323578. In a hybrid vehicle drive structure in which a first motor / generator and a wheel drive shaft are connected via a power distribution mechanism, and a second motor / generator is connected to the wheel drive shaft, in the middle of the wheel drive shaft or in the wheel A hybrid vehicle drive structure characterized in that a transmission is provided at least on one side of the connection of the second motor generator to the drive shaft is proposed.

【0012】本願発明の課題 図1に示す、内燃機関の出力軸が動力分配機構を経て第
一の電動発電機と車輪駆動軸とに連結され、該車輪駆動
軸に第二の電動発電機が連結されたハイブリッド車駆動
構造であって、上記特願2001−323578による
変速機を備えない本来のハイブリッド車駆動構造に於い
ては、車輌運転中に内燃機関の作動を停止させること
は、動力分配機構により内燃機関と第一の電動発電機と
第二の電動発電機の間の回転数の相互関係を変更する一
種の無段変速に於ける一つの変速態様であった。即ち、
図2に於いてみれば、車輌の走行中に内燃機関を停止さ
せることは、車速に対応するMG2の回転数Nrを尊重
しつつ,平衡線がNc線を横切る位置を0位置もたらす
よう、MG1の回転数Nsを調節することであり、これ
は微妙なタイミング調節を伴う制御である。しかし、上
記特願2001−323578に於ける如く変速機が設
けられれば、ハイブリッド運転制御の都合により車輌運
転中に内燃機関を停止しようとするとき、図2上でNc
が0にならなくても、変速機の入出力軸間のトルク伝達
を断絶し(即ち変速機を所謂ニュートラルに切り換
え)、その後で内燃機関の燃料供給を遮断してこれを停
止させればよいことになり、車輌走行中に内燃機関を停
止させることに関し、動力分配機構の制御が簡単になる
という利点が得られる。
Problem to be Solved by the Invention The output shaft of an internal combustion engine shown in FIG. 1 is connected to a first motor generator and a wheel drive shaft via a power distribution mechanism, and a second motor generator is connected to the wheel drive shaft. In the original hybrid vehicle drive structure which is a connected hybrid vehicle drive structure and is not provided with a transmission according to the above-mentioned Japanese Patent Application No. 2001-323578, stopping the operation of the internal combustion engine while the vehicle is operating is a power distribution. This is one shift mode in a kind of continuously variable shift in which the mutual relationship of the rotational speeds of the internal combustion engine, the first motor generator, and the second motor generator is changed by the mechanism. That is,
Referring to FIG. 2, stopping the internal combustion engine while the vehicle is traveling is performed so as to bring the position where the equilibrium line crosses the Nc line to 0 position while respecting the rotational speed Nr of the MG2 corresponding to the vehicle speed. Is to adjust the number of revolutions Ns of the motor, which is a control accompanied by delicate timing adjustment. However, if the transmission is provided as in the above-mentioned Japanese Patent Application No. 2001-323578, when the internal combustion engine is to be stopped during the vehicle operation due to the convenience of the hybrid operation control, the Nc in FIG.
Even if does not become 0, the torque transmission between the input and output shafts of the transmission may be cut off (that is, the transmission may be switched to the so-called neutral), and then the fuel supply to the internal combustion engine may be cut off and stopped. Therefore, there is an advantage that the control of the power distribution mechanism is simplified with respect to stopping the internal combustion engine while the vehicle is traveling.

【0013】しかし、変速機がニュートラルに切り換え
られるとき、変速機を通ってかなりの大きさのトルクが
伝達されつつあると、変速機の入出力軸間のトルク伝達
が遮断された瞬間に車輪駆動トルクに急変が生ずること
や急な負荷解除により内燃機関に振動が生ずることによ
り、車輌の乗り心地が損なわれる恐れがある。
However, when a considerable amount of torque is being transmitted through the transmission when the transmission is switched to neutral, the wheel drive is performed at the moment when the torque transmission between the input and output shafts of the transmission is cut off. A sudden change in torque or a sudden load release may cause vibration in the internal combustion engine, which may impair the riding comfort of the vehicle.

【0014】本発明は、上記特願2001−32357
8にて新たに提案された変速機付きハイブリッド車駆動
構造を上記の問題が生じないように運転する方法を提供
すること課題としている。
The present invention is directed to the above-mentioned Japanese Patent Application No. 2001-32357.
It is an object of the present invention to provide a method of operating the hybrid vehicle drive structure with a transmission newly proposed in No. 8 so as to avoid the above problems.

【0015】[0015]

【課題を解決するための手段】かかる課題を解決するも
のとして、本発明は、内燃機関の出力軸が動力分配機構
を経て第一の電動発電機と車輪駆動軸とに連結され、該
車輪駆動軸に第二の電動発電機が連結され、該車輪駆動
軸の途中の前記第二の電動発電機の連結部より前記内燃
機関の側に入出力軸間のトルク伝達が断絶可能な変速機
を備えたハイブリッド車駆動構造の運転方法にして、前
記内燃機関を停止させるとき、それに先立って前記変速
機の入出力軸間のトルク伝達を断絶することを特徴とす
るハイブリッド車駆動構造運転方法を提案するものであ
る。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an output shaft of an internal combustion engine, which is connected to a first motor / generator and a wheel drive shaft through a power distribution mechanism to drive the wheel. A transmission in which a second motor generator is connected to the shaft, and torque transmission between the input and output shafts can be cut off from the connecting portion of the second motor generator in the middle of the wheel drive shaft to the internal combustion engine side. A hybrid vehicle drive structure operating method is provided, wherein when the internal combustion engine is stopped, the torque transmission between the input and output shafts of the transmission is interrupted prior to stopping the internal combustion engine. To do.

【0016】尚、電動発電機なる語は、電動機および発
電機の両機能を有する手段を指すが、本願発明は、内燃
機関の出力軸が動力分配機構を経て第一の電動発電機と
車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発
電機が連結されたハイブリッド車駆動構造の、短期的車
輌駆動性能に関するものであり、換言すれば、車輌のハ
イブリッド駆動に於ける内燃機関駆動と、電動駆動と、
蓄電装置に対する自己充電作用の相互関係が関与する長
期的車輌駆動性能に関するものではないので、本願発明
の作用および効果に関する限り、第一および第二の電動
発電機は、いずれも単なる電動機であってよいものであ
る。確かに、実働する車輌駆動装置としては、既に記し
た通り、第二の電動発電機は専ら電動機として作動せざ
るを得ず(しかし発電機として作動することも可能)、
従って長期的に作動可能な車輌駆動装置を構成するため
には、第一の電動発電機は発電機能を有している必要が
あるが、この必要性は本願発明の技術的思想とは関係な
いことである。従って、本発明の構成に於いて、電動発
電機と記載された手段は、発電機能を有しない電動機を
その均等物として含むものとする。
The term "motor generator" refers to means having both functions of an electric motor and a generator. In the present invention, however, the output shaft of the internal combustion engine goes through the power distribution mechanism to drive the first motor generator and the wheels. The present invention relates to a short-term vehicle drive performance of a hybrid vehicle drive structure that is connected to a shaft and a second motor generator is connected to the wheel drive shaft, in other words, an internal combustion engine in a hybrid drive of the vehicle. Drive, electric drive,
As far as the operation and effect of the present invention are concerned, both the first and second motor-generators are mere electric motors because they are not related to the long-term vehicle driving performance in which the mutual relationship of the self-charging action on the power storage device is involved. It's good. Certainly, as a vehicle drive device that actually works, as already mentioned, the second motor generator has to operate exclusively as an electric motor (but it can also operate as a generator),
Therefore, in order to construct a vehicle drive device that can operate for a long period of time, the first motor generator must have a power generation function, but this need is not related to the technical idea of the present invention. That is. Therefore, in the configuration of the present invention, the means described as a motor generator includes a motor having no power generation function as its equivalent.

【0017】上記の如きハイブリッド車駆動構造運転方
法に於いて、更に、変速機の入出力軸間のトルク伝達を
断絶するに先立って、変速機を所定の高速段にする制御
が行われてよい。
In the hybrid vehicle drive structure operating method as described above, the transmission may be controlled to a predetermined high speed stage before the torque transmission between the input and output shafts of the transmission is interrupted. .

【0018】更にまた、上記の如きハイブリッド車駆動
構造運転方法に於いて、変速機の入出力軸間のトルク伝
達を断絶するに先立って、変速機を通る伝達トルクを所
定値以下とするよう、内燃機関と第一の電動発電機と第
二の電動発電機の間の出力の配分を制御することが行わ
れてよい。
Furthermore, in the hybrid vehicle drive structure operating method as described above, prior to interrupting the torque transmission between the input and output shafts of the transmission, the transmission torque passing through the transmission is set to a predetermined value or less. Controlling the distribution of power between the internal combustion engine, the first motor generator and the second motor generator may be performed.

【0019】更にまた、上記の如きハイブリッド車駆動
構造運転方法に於いて、変速機の入出力軸間のトルク伝
達を断絶した後、内燃機関の回転を制動することが行わ
れてよい。この場合、特に動力分配機構がサンギヤと、
リングギヤと、プラネタリピニオンと、キャリアとを有
する遊星歯車機構であり、内燃機関の出力軸はキャリア
に連結され、第一の電動発電機はサンギヤに連結され、
車輪駆動軸はリングギヤに連結されているときには、内
燃機関の回転の制動はリングギヤの回転を制動すること
により行なわれでよい。
Furthermore, in the hybrid vehicle drive structure operating method as described above, the rotation of the internal combustion engine may be braked after the torque transmission between the input and output shafts of the transmission is interrupted. In this case, especially the power distribution mechanism is the sun gear,
A ring gear, a planetary pinion, and a planetary gear mechanism having a carrier, the output shaft of the internal combustion engine is connected to the carrier, the first motor generator is connected to the sun gear,
When the wheel drive shaft is connected to the ring gear, braking of the rotation of the internal combustion engine may be performed by braking the rotation of the ring gear.

【0020】[0020]

【発明の作用及び効果】上記特願2001−32357
8にて提案された、内燃機関の出力軸が動力分配機構を
経て第一の電動発電機と車輪駆動軸とに連結され、車輪
駆動軸に第二の電動発電機が連結されたハイブリッド車
駆動構造に於いて、車輪駆動軸の途中または該車輪駆動
軸への第二の電動発電機の連結の途中の少なくとも一方
に変速機が設けられた構造のうち、特に変速機が車輪駆
動軸の途中に第二の電動発電機の連結部より内燃機関の
側に設けられている場合には、変速機を介さずに第二の
電動発電機によって車輪を駆動することが可能であり、
しかも内燃機関を車輪より変速機の部分にて完全に切り
離すことができるので、第二の電動発電機により車輌の
駆動性能を確保する制御さえ行っておけば、内燃機関の
回転を停止させるタイミングには大きな自由度が得ら
れ、また機関停止タイミングの誤りにより車輪にトルク
に急変を来たしたり、あるいはその反力により内燃機関
が振動してその振動が車体に伝わるような好ましからざ
る現象が生ずることを容易に回避することができる。
OPERATION AND EFFECT OF THE INVENTION Japanese Patent Application No. 2001-32357
A hybrid vehicle drive in which the output shaft of the internal combustion engine is connected to the first motor / generator and the wheel drive shaft through the power distribution mechanism, and the second motor / generator is connected to the wheel drive shaft, as proposed in 8. In the structure, a transmission is provided in the middle of the wheel drive shaft or in the middle of connection of the second motor generator to the wheel drive shaft. When provided on the side of the internal combustion engine from the connecting portion of the second motor-generator, it is possible to drive the wheels by the second motor-generator without going through the transmission,
Moreover, since the internal combustion engine can be completely separated from the wheels at the transmission part, the timing for stopping the rotation of the internal combustion engine is only required if the control for ensuring the driving performance of the vehicle is performed by the second motor generator. Has a high degree of freedom, and the torque may change suddenly at the wheels due to an incorrect engine stop timing, or the reaction force may vibrate the internal combustion engine, causing an undesirable phenomenon such that the vibration is transmitted to the vehicle body. It can be easily avoided.

【0021】更に、変速機の入出力軸間のトルク伝達を
断絶するに先立って、変速機を所定の高速段にしておけ
ば、車輪の側から変速機を介して見た内燃機関の回転慣
性は可及的に小さくされるので、変速機の入出力軸間の
トルク伝達を断絶する瞬間に変速機を通ってトルクが伝
達されつつあっても、該トルク伝達を遮断することによ
り生ずる衝撃を可及的に小さくすることをことができ
る。
Further, if the transmission is set to a predetermined high speed stage before the torque transmission between the input and output shafts of the transmission is interrupted, the rotational inertia of the internal combustion engine seen from the side of the wheels through the transmission is seen. Is made as small as possible, so even if torque is being transmitted through the transmission at the moment when the torque transmission between the input and output shafts of the transmission is cut off, the shock caused by interrupting the torque transmission is It can be made as small as possible.

【0022】更にまた、変速機の入出力軸間のトルク伝
達を断絶するに先立って、変速機を通る伝達トルクを所
定値以下とするよう、内燃機関と第一の電動発電機と第
二の電動発電機の間の出力の配分を制御しておけば、変
速機の入出力軸間のトルク伝達を断絶する際に生ずる衝
撃を更に小さくすることをことができる。
Furthermore, prior to disconnecting the torque transmission between the input and output shafts of the transmission, the internal combustion engine, the first motor-generator, and the second motor generator are set so that the transmission torque passing through the transmission is set to a predetermined value or less. By controlling the distribution of the output between the motor generators, it is possible to further reduce the impact that occurs when the torque transmission between the input and output shafts of the transmission is interrupted.

【0023】また、変速機が車輪駆動軸の途中に第二の
電動発電機の連結部より内燃機関の側に設けられている
場合には、内燃機関を車輪より変速機の部分にて完全に
切り離すことができるので、変速機の入出力軸間のトル
ク伝達を断絶した後は、内燃機関の回転は自由であり、
内燃機関の回転は可能ならば直ちに止められてもよいも
のである。従って、変速機の入出力軸間のトルク伝達を
断絶した後、内燃機関の回転を制動し、その回転を早く
停止させれば、機関空転により排気触媒へ送られる酸素
の量が抑えられ、次回の機関始動時に於けるNOxの排
出が抑制される。
Further, in the case where the transmission is provided on the side of the internal combustion engine with respect to the connecting portion of the second motor generator in the middle of the wheel drive shaft, the internal combustion engine is completely removed from the wheels at the portion of the transmission. Since it can be disconnected, the rotation of the internal combustion engine is free after the torque transmission between the input and output shafts of the transmission is cut off.
The rotation of the internal combustion engine may be stopped immediately if possible. Therefore, if the rotation of the internal combustion engine is braked after the torque transmission between the input and output shafts of the transmission is cut off and the rotation is stopped early, the amount of oxygen sent to the exhaust catalyst due to engine idling is suppressed, The emission of NOx is suppressed when the engine is started.

【0024】上記の機関空転の制動に当たっては、動力
分配機構が、サンギヤと、リングギヤと、プラネタリピ
ニオンと、キャリアとを有する遊星歯車機構であり、内
燃機関の出力軸がキャリアに連結され、第一の電動発電
機がサンギヤに連結され、車輪駆動軸がリングギヤに連
結された構造であるときには、内燃機関の回転の制動が
リングギヤの回転を制動することにより行なわれれば、
図2の線図からもう理解される通り、内燃機関の回転は
第一の電動発電機のロータの回転慣性にて柔軟に緩衝さ
れた状態となり、内燃機関の回転の押さえ込みが高い緩
衝性をもって行われ、機関停止が滑らかに達成される。
In braking the engine idling, the power distribution mechanism is a planetary gear mechanism having a sun gear, a ring gear, a planetary pinion, and a carrier, and the output shaft of the internal combustion engine is connected to the carrier. When the motor generator is connected to the sun gear and the wheel drive shaft is connected to the ring gear, if the braking of the rotation of the internal combustion engine is performed by braking the rotation of the ring gear,
As can be understood from the diagram of FIG. 2, the rotation of the internal combustion engine is flexibly buffered by the rotational inertia of the rotor of the first motor / generator, and the rotation of the internal combustion engine is suppressed with a high buffering property. The engine stop is smoothly achieved.

【0025】[0025]

【発明の実施の形態】図4は、図1に示す如く内燃機関
の出力軸が動力分配機構を経て第一の電動発電機と車輪
駆動軸とに連結され、該車輪駆動軸に第二の電動発電機
が連結されたハイブリッド車駆動構造に、上記特願20
01−323578にて提案された要領により、その車
輪駆動軸の途中であって、第二の電動機が連結されてい
る箇所より内燃機関の側に変速機が組み込まれた実施例
を示す図1と同様の概略図である。図4に於いて、図1
に示す部分に対応する部分は対応する符号により示され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 4 shows an output shaft of an internal combustion engine connected to a first motor generator and a wheel drive shaft via a power distribution mechanism as shown in FIG. The above-mentioned Japanese Patent Application No.
According to the procedure proposed in 01-323578, FIG. 1 showing an embodiment in which a transmission is incorporated on the side of the internal combustion engine from the point where the second electric motor is connected in the middle of the wheel drive shaft thereof. It is a similar schematic diagram. In FIG. 4, FIG.
The portions corresponding to the portions shown in are indicated by the corresponding symbols.

【0026】この変速機100は、図1についての説明
の文言でいえば、車輪駆動軸の一部をなすプロペラ軸1
1の一部であってMG2の連結部をなす歯車15よりも
内燃機関の側に設けられている。変速機100は2段な
いし3段のものであってよく、更に後進段を含むもので
あってよく、またこの種の車輌用変速機に於いては当然
とされていることではあるが、その入出力軸間のトルク
伝達が断絶される、通常ニュートラルと称される作動状
態をとりうるようになっている。そのような変速機は既
に公知の技術により種々の態様にて得られるが、前進3
段と後進段を有するものについてその一例を解図的に示
せば、図5の通りである。
This transmission 100 has a propeller shaft 1 which is a part of a wheel drive shaft in terms of the description of FIG.
It is provided closer to the internal combustion engine than the gear 15 that is a part of the MG 1 and forms the coupling portion of the MG 2. The transmission 100 may have two or three gears, and may further include a reverse gear. As is obvious in this type of vehicle transmission, The torque transmission between the input and output shafts is cut off, so that an operating state usually called neutral can be taken. Such a transmission can be obtained in various manners according to the techniques already known, but
FIG. 5 is a schematic view showing an example of the one having a step and a reverse step.

【0027】図5に於いて、20、22、24、26は
一つの遊星歯車機構を構成するサンギヤ、リングギヤ、
プラネタリピニオン、キャリアであり、また21、2
3、25、27は他の一つの遊星歯車機構を構成するサ
ンギヤ、リングギヤ、プラネタリピニオン、キャリアで
あり、28(C1)、29(C2)はクラッチであり、
30(B1)、31(B2)はブレーキであり、32
(F1)はワンウェイクラッチである。そしてこれらの
回転要素が、33を入力軸とし、34を出力軸として、
その間に図示の如く組み合わされていると、クラッチC
1が係合されることにより減速比が最も大きい第1速段
が達成され、クラッチC1とブレーキB1とが係合され
ることにより減速比が中程の第2速段が達成され、クラ
ッチC1とC2とが係合されることにより減速比が最も
小さい(減速比=1)第3速段が達成され、クラッチC
2とブレーキB2とが係合されることにより後進段が達
成される。そしてクラッチC1とクラッチC2のいずれ
も係合されない状態が、入力軸33と出力軸34の間の
トルク伝達が断絶されたニュートラルの状態である。
In FIG. 5, reference numerals 20, 22, 24 and 26 designate a sun gear, a ring gear and a planetary gear mechanism, respectively.
Planetary pinion, carrier, also 21, 2
3, 25 and 27 are sun gears, ring gears, planetary pinions and carriers that constitute another planetary gear mechanism, and 28 (C1) and 29 (C2) are clutches,
30 (B1) and 31 (B2) are brakes, 32
(F1) is a one-way clutch. These rotary elements have 33 as an input shaft and 34 as an output shaft,
In the meantime, if it is combined as shown, the clutch C
The first speed stage having the largest reduction ratio is achieved by engaging 1 and the second speed stage having an intermediate reduction ratio is achieved by engaging the clutch C1 and the brake B1. And C2 are engaged, the third speed ratio having the smallest reduction ratio (reduction ratio = 1) is achieved, and the clutch C
The reverse gear is achieved by the engagement of 2 and the brake B2. The state in which neither the clutch C1 nor the clutch C2 is engaged is the neutral state in which the torque transmission between the input shaft 33 and the output shaft 34 is cut off.

【0028】図6は、図4に示す如き変速機付きハイブ
リッド車駆動構造を本発明の方法により運転する要領の
一つの実施例を示すフローチャートである。
FIG. 6 is a flow chart showing an embodiment of the procedure for operating the hybrid vehicle drive structure with a transmission as shown in FIG. 4 by the method of the present invention.

【0029】車輌の運転が開始されると、図には示され
ていないが車輌自動運転制御の分野に於いては既に種々
の態様にて公知のマイクロコンピュータを備えた車輌運
転制御装置により、数10〜数100マイクロセカンド
の周期にて、ステップ10として示す如く機関の運転を
停止すべき条件が成立しているか否かが判断される。こ
れは車輌運転制御装置により別途なされるハイブリッド
運転制御に於ける判断である。答がノーである限り、制
御は元に戻り、同様の判断が繰り返し続けられる。そし
て、内燃機関を停止すべき条件が成立し、ステップ10
の答がイエスになると、制御はステップ20へ進む。
When the operation of the vehicle is started, in the field of automatic vehicle operation control, which is not shown in the figure, a vehicle operation control device equipped with a microcomputer already known in various modes is used to In a cycle of 10 to several hundreds of microseconds, it is judged whether or not the condition for stopping the operation of the engine is satisfied as shown in step 10. This is a judgment in the hybrid driving control separately performed by the vehicle driving control device. As long as the answer is no, control returns and the same judgment continues. Then, the condition for stopping the internal combustion engine is satisfied, and step 10
If the answer is yes, control proceeds to step 20.

【0030】ステップ20に於いては、変速機100が
直結段になっているが否かが判断される。但し、この
「直結段」は一つの実施例であり、概念としては、減速
比の小さい高速段である。答がイエスのときには、制御
はそのままステップ30へ進むが、答がノーのときに
は、制御はステップ40へ進み、変速機を直結段へ変速
した後、ステップ30へ進む。ここで変速機を直結段等
の高速段とするのは、変速機の出口側から見た変速機入
口側の回転慣性をできるだけ小さくしておくためであ
る。
In step 20, it is judged whether or not the transmission 100 is in the direct connection stage. However, this "direct connection stage" is one embodiment, and the concept is a high-speed stage having a small reduction ratio. When the answer is yes, the control directly proceeds to step 30, but when the answer is no, the control proceeds to step 40, shifts the transmission to the direct coupling stage, and then proceeds to step 30. The reason why the transmission is set to a high speed stage such as a direct connection stage is to keep the rotational inertia on the transmission inlet side as viewed from the transmission outlet side as small as possible.

【0031】ステップ30にては、変速機を通って伝達
されつつあるトルクTtの大きさが所定の或る小さいし
きい値Ts以下であるか否かが判断される。多くの場
合、答は当初はノーであり、制御はステップ50へ進
む。ステップ50に於いては、フラグFが1であるか否
かが判断される。制御が初めてこのステップに至ったと
きには、答はノーであり、制御はステップ60へ進み、
その瞬間に於ける内燃機関の出力トルクTeがその制御
初期値Teoとして記憶され、また同時に第二の電動発電
機MG2の出力トルクTmがその制御初期値Tmoとして
記憶される。そして制御はステップ70へ進み、フラグ
Fが1にセットされる。次いで制御はステップ80へ進
み、カウント値nが当初にリセットされた0より始まっ
て1ずつ増分される。尚、フラグFの作用から明らかな
通り、制御は最初に一度ステップ60を通った後は、ス
テップ60をバイパスする。
In step 30, it is determined whether or not the magnitude of the torque Tt being transmitted through the transmission is less than a predetermined small threshold value Ts. In many cases, the answer is initially no and control proceeds to step 50. In step 50, it is determined whether the flag F is 1. When control first reaches this step, the answer is no and control proceeds to step 60
The output torque Te of the internal combustion engine at that moment is stored as its control initial value Teo, and at the same time, the output torque Tm of the second motor generator MG2 is stored as its control initial value Tmo. Then, the control proceeds to step 70, and the flag F is set to 1. Control then proceeds to step 80, where the count value n is incremented by 1 starting at 0, which was initially reset. As is clear from the operation of the flag F, the control first passes through the step 60 once and then bypasses the step 60.

【0032】ステップ90に於いては、制御がこのステ
ップに至る度に、上に記憶されたTeoおよびTmoと、そ
のときのカウント値nと、その瞬間に於ける車輌自動運
転装置により算出された車輌駆動トルクの目標値Ttag
と、或る微小なトルク偏差ΔTとに基づき、内燃機関が
賄うべきトルクTeとMG2が賄うべきトルクTmの値
が、例えば以下の通り計算される。
In step 90, each time the control reaches this step, Teo and Tmo stored above, the count value n at that time, and the automatic vehicle driving device at that moment were calculated. Target value of vehicle drive torque Ttag
Then, based on a certain small torque deviation ΔT, the values of the torque Te that the internal combustion engine should cover and the torque Tm that the MG2 should cover are calculated as follows, for example.

【0033】 Te=Ttag×(Teo − nΔT)/(Teo + Tmo) Tm=Ttag×(Tmo + nΔT)/(Teo +Tmo)[0033] Te = Ttag × (Teo − nΔT) / (Teo + Tmo) Tm = Ttag × (Tmo + nΔT) / (Teo + Tmo)

【0034】次いでステップ100にて、上に計算され
たTeおよびTmに基づいて、内燃機関およびMG2が、
それぞれその出力トルクをTeおよびTmとするように制
御される。
Then, in step 100, based on Te and Tm calculated above, the internal combustion engine and MG2 are
The output torques are controlled to be Te and Tm, respectively.

【0035】その後、制御はステップ30へ戻り、再
度、変速機を通って伝達されるトルクTtの大きさがし
きい値Ts以下に下がったか否かが判断される。上記の
ステップ90および100による制御が何度か繰り返し
行なわれると、やがてステップ30に於ける答はイエス
に転ずる筈である。こうしてステップ90および100
による制御が何度か繰り返えされた後、ステップ30の
答がイエスになると、制御はステップ110へ進み、変
速機をニュートラルへ切り換えること、即ち、変速機の
入出力軸間のトルク伝達を断絶することが行なわれ、こ
の時点で内燃機関は車輪駆動から切り離される。車輪駆
動からの内燃機関の切り離しがこのように変速機に於い
て行われれば、変速機を含まない図1のハイブリッド車
駆動構造の場合の如く、内燃機関を停止させるとき、図
2でNcの大きさを0の位置にもたらす制御が達成され
なくてもよくなり、かかるハイブリッド車駆動構造の制
御がその点に於いて簡単化される。この場合、変速機に
より車輪駆動から変速機を切り離すとき、たとえ内燃機
関の回転数がかなり高い状態であったとしても、変速機
を通って伝達されるトルクTtが小さい値に設定された
しきい値Ts以下に下がっていれば、内燃機関の切り離
しにより、変速機の両側にあるいずれの駆動系にもトル
ク急変による衝撃は生じない。
Thereafter, the control returns to step 30, and it is again judged whether or not the magnitude of the torque Tt transmitted through the transmission has dropped below the threshold value Ts. If the control in steps 90 and 100 above is repeated several times, the answer in step 30 should eventually turn to yes. Thus steps 90 and 100
If the answer to step 30 becomes yes after the control by the control is repeated several times, the control proceeds to step 110 to switch the transmission to neutral, that is, to transmit the torque between the input and output shafts of the transmission. A disconnect is performed, at which point the internal combustion engine is disconnected from the wheel drive. If the disconnection of the internal combustion engine from the wheel drive is performed in the transmission in this way, when the internal combustion engine is stopped as in the hybrid vehicle drive structure of FIG. The control that brings the magnitude to the zero position need not be achieved, and control of such a hybrid vehicle drive structure is simplified in that respect. In this case, when the transmission is separated from the wheel drive by the transmission, the threshold value of the torque Tt transmitted through the transmission is set to a small value even if the rotation speed of the internal combustion engine is considerably high. When the value is lower than the value Ts, the drive system on both sides of the transmission is not impacted by the sudden torque change due to the disconnection of the internal combustion engine.

【0036】この後、図示の実施例では、制御は更にス
テップ120へ進み、排気触媒への酸素の持ち込みを抑
制すべく、内燃機関の回転を可及的速やかに停止させる
よう、機関制動が行なわれる。この場合、機関の制動
は、図4には示されていないが適当な制動装置により、
リングギヤ5と変速機100との間にある回転部にて行
われてよく、それによってピストン機関が制動に対し呈
するトルク変動はサンギヤ4およびそれに連なるMG1
のロータの回転慣性により緩衝的に吸収され、機関制動
による振動の発生をよりよく抑制することができる。
Thereafter, in the illustrated embodiment, the control further proceeds to step 120, in which engine braking is performed so as to stop the rotation of the internal combustion engine as quickly as possible in order to suppress the introduction of oxygen into the exhaust catalyst. Be done. In this case, the braking of the engine is not shown in FIG.
This may be done in a rotating part between the ring gear 5 and the transmission 100, whereby the torque fluctuations exerted by the piston engine upon braking are the sun gear 4 and the MG1 connected to it.
This is absorbed by the rotational inertia of the rotor in a buffered manner, and the generation of vibration due to engine braking can be further suppressed.

【0037】以上に於いては本発明を一つの実施例につ
いて詳細に説明したが、本発明がかかる実施例にのみ限
られるものではなく、本発明の範囲内にて他に種々の実
施例が可能であることは当業者にとって明らかであろ
う。
In the above, the present invention has been described in detail with respect to one embodiment, but the present invention is not limited to this embodiment, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art that it is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるハイブリッド車駆動構造運転方法
の対象となるハイブリッド車駆動構造の基となるハイブ
リッド車駆動構造を示す概略図。
FIG. 1 is a schematic diagram showing a hybrid vehicle drive structure that is a basis of a hybrid vehicle drive structure that is a target of a hybrid vehicle drive structure operating method according to the present invention.

【図2】図1に示すハイブリッド車駆動構造に於ける内
燃機関と二つの電動発電機MG1、MG2の回転数N
c、Ns、Nrの間の関係を示す線図。
2 is a rotational speed N of an internal combustion engine and two motor generators MG1 and MG2 in the hybrid vehicle drive structure shown in FIG.
A diagram showing the relationship between c, Ns, and Nr.

【図3】図1に示すハイブリッド車駆動構造に於いて内
燃機関および電動発電機MG2の各々により分担される
べき車軸トルクを車速に対し示す線図。
3 is a diagram showing an axle torque to be shared by each of an internal combustion engine and a motor generator MG2 with respect to a vehicle speed in the hybrid vehicle drive structure shown in FIG.

【図4】本発明によるハイブリッド車駆動構造運転方法
の対象となるハイブリッド車駆動構造を示す概略図。
FIG. 4 is a schematic diagram showing a hybrid vehicle drive structure that is a target of a hybrid vehicle drive structure operating method according to the present invention.

【図5】入出力軸間のトルク伝達が断絶可能で三つの変
速段と後進段とを提供する変速機の一例を示す概略図。
FIG. 5 is a schematic diagram showing an example of a transmission that can disconnect the torque transmission between the input and output shafts and provides three shift speeds and a reverse speed.

【図6】本発明によるハイブリッド車駆動構造運転方法
を一つの実施例について示すフローチャート。
FIG. 6 is a flowchart showing a hybrid vehicle drive structure operating method according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…内燃機関 2…内燃機関の出力軸 3…遊星歯車装置 4…サンギヤ 5…リングギヤ 6…プラネタリピニオン 7…キャリア 8…第一の電動発電機(MG1) 9…コイル 10…回転子 11…プロペラ軸 12…第二の電動発電機(MG2) 13…コイル 14…回転子 15,16…歯車 17…ディファレンシャル装置 18…車軸 19…車輪 20…サンギヤ 22…リングギヤ 24…プラネタリピニオン 26…キャリア 21…サンギヤ 23…リングギヤ 25…プラネタリピニオン 27…キャリア 28,29…クラッチ 28,29…ブレーキ 32…ワンウェイクラッチ 100…変速機 1 ... Internal combustion engine 2 ... Output shaft of internal combustion engine 3 ... Planetary gear device 4 ... Sun gear 5 ... Ring gear 6 ... Planetary pinion 7 ... Career 8 ... First motor generator (MG1) 9 ... Coil 10 ... rotor 11 ... Propeller shaft 12 ... Second motor generator (MG2) 13 ... Coil 14 ... rotor 15, 16 ... Gears 17 ... Differential device 18 ... Axle 19 ... Wheels 20 ... Sun gear 22 ... Ring gear 24 ... Planetary pinion 26 ... Career 21 ... Sun gear 23 ... Ring gear 25 ... Planetary pinion 27 ... Career 28, 29 ... Clutch 28, 29 ... Brakes 32 ... One-way clutch 100 ... Transmission

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の出力軸が動力分配機構を経て第
一の電動発電機と車輪駆動軸とに連結され、該車輪駆動
軸に第二の電動発電機が連結され、該車輪駆動軸の途中
の前記第二の電動発電機の連結部より前記内燃機関の側
に入出力軸間のトルク伝達が断絶可能な変速機を備えた
ハイブリッド車駆動構造の運転方法にして、前記内燃機
関を停止させるとき、それに先立って前記変速機の入出
力軸間のトルク伝達を断絶することを特徴とするハイブ
リッド車駆動構造運転方法。
1. An output shaft of an internal combustion engine is connected to a first motor / generator and a wheel drive shaft via a power distribution mechanism, and a second motor / generator is connected to the wheel drive shaft, and the wheel drive shaft is connected to the wheel drive shaft. In the operating method of the hybrid vehicle drive structure including a transmission capable of interrupting torque transmission between the input and output shafts on the side of the internal combustion engine from the connecting portion of the second motor generator in the middle of A hybrid vehicle drive structure operating method, wherein when transmission is stopped, torque transmission between the input and output shafts of the transmission is interrupted prior to the stop.
【請求項2】前記変速機の入出力軸間のトルク伝達を断
絶するに先立って、該変速機を所定の高速段にすること
を特徴とする請求項1に記載のハイブリッド車駆動構造
運転方法。
2. The hybrid vehicle drive structure operating method according to claim 1, wherein the transmission is set to a predetermined high speed stage before the torque transmission between the input and output shafts of the transmission is disconnected. .
【請求項3】前記変速機の入出力軸間のトルク伝達を断
絶するに先立って、該変速機を通る伝達トルクを所定値
以下とするよう、前記内燃機関と前記第一の電動発電機
と前記第二の電動発電機の間の出力の配分を制御するこ
とを特徴とする請求項1または2に記載のハイブリッド
車駆動構造運転方法。
3. The internal combustion engine and the first motor generator so that the transmission torque passing through the transmission is set to a predetermined value or less prior to disconnecting the torque transmission between the input and output shafts of the transmission. 3. The hybrid vehicle drive structure operating method according to claim 1, wherein the distribution of the output between the second motor generators is controlled.
【請求項4】前記変速機の入出力軸間のトルク伝達を断
絶した後、前記内燃機関の回転を制動することを特徴と
する請求項1〜3のいずれかに記載のハイブリッド車駆
動構造運転方法。
4. The hybrid vehicle drive structure operation according to claim 1, wherein the rotation of the internal combustion engine is braked after the torque transmission between the input and output shafts of the transmission is cut off. Method.
【請求項5】前記動力分配機構はサンギヤと、リングギ
ヤと、プラネタリピニオンと、キャリアとを有する遊星
歯車機構であり、前記内燃機関の出力軸は前記キャリア
に連結され、前記第一の電動発電機は前記サンギヤに連
結され、前記車輪駆動軸は前記リングギヤに連結されて
おり、前記内燃機関の回転の制動は前記リングギヤの回
転を制動することにより行なわれることを特徴とする請
求項4に記載のハイブリッド車駆動構造運転方法。
5. The power distribution mechanism is a planetary gear mechanism having a sun gear, a ring gear, a planetary pinion, and a carrier, and an output shaft of the internal combustion engine is connected to the carrier, and the first motor generator. Is coupled to the sun gear, the wheel drive shaft is coupled to the ring gear, and braking of rotation of the internal combustion engine is performed by braking rotation of the ring gear. Hybrid vehicle drive structure driving method.
JP2001361215A 2001-11-27 2001-11-27 Driving method of hybrid vehicle drive structure equipped with transmission Expired - Fee Related JP3747842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361215A JP3747842B2 (en) 2001-11-27 2001-11-27 Driving method of hybrid vehicle drive structure equipped with transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361215A JP3747842B2 (en) 2001-11-27 2001-11-27 Driving method of hybrid vehicle drive structure equipped with transmission

Publications (2)

Publication Number Publication Date
JP2003161181A true JP2003161181A (en) 2003-06-06
JP3747842B2 JP3747842B2 (en) 2006-02-22

Family

ID=19171914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361215A Expired - Fee Related JP3747842B2 (en) 2001-11-27 2001-11-27 Driving method of hybrid vehicle drive structure equipped with transmission

Country Status (1)

Country Link
JP (1) JP3747842B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100921273B1 (en) 2007-12-13 2009-10-09 현대자동차주식회사 Engine off shock reducing method of transmission mounted electric device type hybrid vehicle
US7771309B2 (en) 2005-03-04 2010-08-10 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive device
US8052570B2 (en) 2007-09-14 2011-11-08 Toyota Jidosha Kabushiki Kaisha Control device for vehicular power transmitting apparatus
JP2014065365A (en) * 2012-09-25 2014-04-17 Toyota Motor Corp Hybrid vehicle control device and hybrid vehicle provided therewith, and hybrid vehicle control method
US9132822B2 (en) 2013-08-29 2015-09-15 Hyundai Motor Company Device and method for controlling clutch of hybrid vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771309B2 (en) 2005-03-04 2010-08-10 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive device
US8052570B2 (en) 2007-09-14 2011-11-08 Toyota Jidosha Kabushiki Kaisha Control device for vehicular power transmitting apparatus
KR100921273B1 (en) 2007-12-13 2009-10-09 현대자동차주식회사 Engine off shock reducing method of transmission mounted electric device type hybrid vehicle
JP2014065365A (en) * 2012-09-25 2014-04-17 Toyota Motor Corp Hybrid vehicle control device and hybrid vehicle provided therewith, and hybrid vehicle control method
US9132822B2 (en) 2013-08-29 2015-09-15 Hyundai Motor Company Device and method for controlling clutch of hybrid vehicle

Also Published As

Publication number Publication date
JP3747842B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
JP3893938B2 (en) Hybrid vehicle drive structure with transmission
JP3852321B2 (en) HV drive structure and method with cranking support torque increasing means
US10513251B2 (en) Multi-mode engine-disconnect clutch assemblies and control logic for hybrid electric vehicles
JP5069246B2 (en) HYBRID DRIVE FOR VEHICLE AND METHOD FOR CONTROLLING TRANSMISSION DEVICE FOR HYBRID DRIVE
EP3057818B1 (en) Electrically variable transmission
EP1544019A1 (en) Mode switch control apparatus and method for hybrid transmission
US20060289212A1 (en) Hybrid vehicle control operation
WO2010058470A1 (en) Controller of power transmission device for vehicle
JP2007118723A (en) Controller for drive unit for vehicle
JP2007118728A (en) Engine start control unit
JP2001047881A (en) Hybrid vehicle
JP3757845B2 (en) Driving method of hybrid vehicle drive structure with transmission
JP2013510027A (en) Hybrid vehicle transmission
US9932040B2 (en) Hybrid car
JP3852322B2 (en) Driving method of hybrid vehicle drive structure with transmission
JP2004255973A (en) Hybrid automobile
JP6972905B2 (en) Vehicle control device
EP2399795A2 (en) Shift controller and shift controlling method for a hybrid vehicle
JP2010076625A (en) Hybrid car
JPH11227476A (en) Driving device for automobile
JP5104493B2 (en) Power output device and vehicle
JP2017154511A (en) Driving device for vehicle
JP4434128B2 (en) Control device for vehicle drive device
JP2003161181A (en) Operation method for driving structure of hybrid vehicle provided with transmission
JP4005589B2 (en) Power output device, automobile equipped with the same, and power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees