JP2003160875A - Cvd apparatus - Google Patents

Cvd apparatus

Info

Publication number
JP2003160875A
JP2003160875A JP2001359631A JP2001359631A JP2003160875A JP 2003160875 A JP2003160875 A JP 2003160875A JP 2001359631 A JP2001359631 A JP 2001359631A JP 2001359631 A JP2001359631 A JP 2001359631A JP 2003160875 A JP2003160875 A JP 2003160875A
Authority
JP
Japan
Prior art keywords
electrode
space
ground electrode
film
cvd apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001359631A
Other languages
Japanese (ja)
Inventor
Masanori Sato
正律 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP2001359631A priority Critical patent/JP2003160875A/en
Priority to TW091134092A priority patent/TWI287044B/en
Priority to CNB021533296A priority patent/CN1239741C/en
Priority to KR1020020073931A priority patent/KR20030043734A/en
Publication of JP2003160875A publication Critical patent/JP2003160875A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CVD apparatus which supplies active species to a film- forming space by using a separating plasma-generating space, enables multiple- faces film formation, reduces a cost of the multiple-faces film formation, and simplifies a configuration of the apparatus. <P>SOLUTION: The CVD apparatus comprises having the plasma generation space separated from the film-forming space, taking out the active species from plasma, forming the film on the substrate in the film-forming space based on the CVD reaction, and having a structure 11 consisting of an RF application electrode 12 and an earth electrode 13; arranging the plasma generation space between both electrodes 12 and 13, and the RF application electrode so as to be surrounded by the earth electrode; and forming the film simultaneously on the several substrates which oppose to the structure from each different direction, and are arranged so as to be associated with locations of the RF application electrode, the earth electrode, and the substrate. Just one high frequency power source 27 for supplying an RF electric power to the RF application electrode is installed regardless of the number of the earth electrodes or the substrates. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はCVD装置に関し、
特に、プラズマ生成空間と成膜空間が分離された構造を
有し、薄膜トランジスタや集積回路など基板上に薄膜を
形成する際に多面成膜に適したCVD装置に関する。
TECHNICAL FIELD The present invention relates to a CVD apparatus,
In particular, the present invention relates to a CVD apparatus having a structure in which a plasma generation space and a film formation space are separated and suitable for multi-side film formation when forming a thin film on a substrate such as a thin film transistor or an integrated circuit.

【0002】[0002]

【従来の技術】従来より、基板が配置されかつ当該基板
の表面にCVD作用に基づき成膜が行われる成膜空間に
対して、当該成膜空間へ活性種を供給するプラズマ生成
空間が分離された構造で設けられたCVD装置(以下
「プラズマ分離型CVD装置」という)が知られてい
る。このようなプラズマ分離型CVD装置では、プラズ
マを生成しかつプラズマ中の活性種を成膜空間へ供給す
るための構造体を真空容器の内部に備えている。
2. Description of the Related Art Conventionally, a plasma generating space for supplying active species to a film forming space is separated from a film forming space in which a substrate is arranged and a film is formed on the surface of the substrate based on a CVD action. A CVD apparatus having such a structure (hereinafter referred to as "plasma separation type CVD apparatus") is known. In such a plasma separation type CVD apparatus, a structure for generating plasma and supplying active species in the plasma to the film forming space is provided inside the vacuum container.

【0003】[0003]

【発明が解決しようとする課題】プラズマを利用した基
板処理装置では、一般に、処理の高効率化とコスト低減
が求められる。処理の高効率化ということでは、同じ真
空容器内で一度に複数の基板を同時に処理できることが
望ましい。そこで、従来から、同一真空チャンバ内で同
時に複数の基板の処理が可能な装置が提案されている
(特開昭59−14633号公報等)。このような装置
では、通常、真空チャンバ中央に基板ホルダを設置し、
基板ホルダを中心に両側にRF印加電極が設置されてい
る。RF印加電極にはそれぞれ別の高周波電源が接続さ
れる。それぞれのRF印加電極へRF電力を供給する
と、基板ホルダとそれぞれのRF印加電極の間でプラズ
マが立つことになる。これにより、基板ホルダに設置さ
れた基板上に薄膜が堆積する。
In a substrate processing apparatus utilizing plasma, it is generally required that the processing efficiency and cost be reduced. In terms of high processing efficiency, it is desirable that a plurality of substrates can be processed at the same time in the same vacuum container. Therefore, conventionally, an apparatus capable of simultaneously processing a plurality of substrates in the same vacuum chamber has been proposed (Japanese Patent Laid-Open No. 59-14633, etc.). In such an apparatus, a substrate holder is usually installed in the center of the vacuum chamber,
RF applying electrodes are installed on both sides of the substrate holder. Different high frequency power supplies are connected to the RF application electrodes. When RF power is supplied to each RF applying electrode, plasma stands between the substrate holder and each RF applying electrode. As a result, a thin film is deposited on the substrate placed on the substrate holder.

【0004】しかし、上記のプラズマCVD装置は次の
ような欠点を有している。第1に、それぞれのRF印加
電極に別々の高周波電源が必要となり、コストが増加す
る。第2に、1つの真空容器内で複数の高周波電源を同
時に使うと、電磁波の干渉が生じる。この電磁波の干渉
は、放電を不安定にしたり、プラズマの不均一性を生じ
させる。また不安定な放電は、膜の特性に大きな障害を
もたらす。従来、この電磁波の干渉を解消するために
は、互いの電源の周波数や位相を調整するといった方法
を用いてきた。しかし、このような方法によって電磁波
の干渉を解決するためには、複雑な装置や調整が必要と
なり、さらにコストが増加していた。
However, the above plasma CVD apparatus has the following drawbacks. First, a separate high frequency power source is required for each RF applying electrode, which increases cost. Secondly, when a plurality of high frequency power supplies are simultaneously used in one vacuum container, electromagnetic wave interference occurs. The interference of the electromagnetic waves makes the discharge unstable and causes non-uniformity of plasma. In addition, the unstable discharge causes a great obstacle to the characteristics of the film. Conventionally, in order to eliminate the interference of this electromagnetic wave, a method of adjusting the frequency and phase of the mutual power supplies has been used. However, in order to solve the interference of electromagnetic waves by such a method, a complicated device and adjustment are required, which further increases the cost.

【0005】本発明の目的は、分離型のプラズマ生成空
間を利用して成膜空間へ活性種を供給するようにしたC
VD装置の構成において、多面成膜を可能にし、さらに
多面成膜を行う際のコストの低減と装置構成の簡略化を
企図したCVD装置を提供することにある。
An object of the present invention is to supply active species to the film formation space by utilizing a separate type plasma generation space.
It is an object of the present invention to provide a CVD device that enables multi-faceted film formation in the configuration of a VD device and further intends to reduce the cost when performing the multi-faceted film formation and to simplify the device configuration.

【0006】[0006]

【課題を解決するための手段】本発明に係るCVD装置
は、上記目的を達成するために、次のように構成され
る。
In order to achieve the above object, a CVD apparatus according to the present invention is constructed as follows.

【0007】本発明に係るCVD装置(請求項1に対
応)は、前提構成として、基板が配置された成膜空間か
ら分離されてプラズマ生成空間が設けられ、プラズマ生
成空間で生じたプラズマから活性種を成膜空間に取り出
し、成膜空間でCVD作用に基づき基板に成膜を行うよ
うに構成される。さらに、真空容器内にRF印加電極と
接地電極からなる構造体を備え、上記のプラズマ生成空
間は構造体の内部に設けられ、構造体に対してそれぞれ
異なる方向から対向し、かつRF印加電極、接地電極、
基板の位置関係で配置された複数の基板に対して同時に
成膜するように構成される。
As a precondition, the CVD apparatus according to the present invention (corresponding to claim 1) is provided with a plasma generating space which is separated from the film forming space in which the substrate is arranged, and is activated from the plasma generated in the plasma generating space. The seed is taken out to the film formation space, and the film is formed on the substrate based on the CVD action in the film formation space. Furthermore, a structure including an RF applying electrode and a ground electrode is provided in a vacuum container, the plasma generation space is provided inside the structure, faces the structure from different directions, and the RF applying electrode, Ground electrode,
It is configured to simultaneously form films on a plurality of substrates arranged in a positional relationship of the substrates.

【0008】本発明に係るCVD装置(請求項2に対
応)は、上記の構成において、好ましくは、RF印加電
極に高周波電力を供給する高周波電源は、接地電極また
は基板の個数に関わりなく1つであることを特徴とす
る。
In the CVD apparatus according to the present invention (corresponding to claim 2), preferably, the high frequency power source for supplying high frequency power to the RF applying electrode is one regardless of the number of ground electrodes or substrates. Is characterized in that.

【0009】本発明に係るCVD装置(請求項3に対
応)は、上記の構成において、好ましくは、RF印加電
極と接地電極は共に平板状であり、RF印加電極の両側
に平行状態で接地電極が配置され、さらに2つの接地電
極のそれぞれの外側に基板が平行状態で配置されること
を特徴とする。
In the CVD apparatus according to the present invention (corresponding to claim 3), preferably, the RF applying electrode and the ground electrode are both flat, and the ground electrode is parallel to both sides of the RF applying electrode. And the substrates are arranged in parallel with each other outside each of the two ground electrodes.

【0010】本発明に係るCVD装置(請求項4に対
応)は、上記の構成において、好ましくは、RF印加電
極はその全周囲を接地電極で囲まれていることを特徴と
する。
The CVD apparatus according to the present invention (corresponding to claim 4) is characterized in that, in the above structure, the RF applying electrode is preferably surrounded by a ground electrode all around.

【0011】本発明に係るCVD装置(請求項5に対
応)は、上記の構成において、好ましくは、RF印加電
極および接地電極は両方共に球形状または多面体形状で
あることを特徴とする。
A CVD apparatus according to the present invention (corresponding to claim 5) is characterized in that, in the above structure, both the RF applying electrode and the ground electrode are spherical or polyhedral.

【0012】本発明に係るCVD装置(請求項6に対
応)は、上記の構成において、好ましくは、RF印加電
極および接地電極は両方共に筒形状であることを特徴と
する。
A CVD apparatus according to the present invention (corresponding to claim 6) is characterized in that, in the above structure, both the RF applying electrode and the ground electrode are preferably cylindrical.

【0013】本発明に係るCVD装置(請求項7に対
応)は、上記の構成において、好ましくは、RF印加電
極はプラズマ生成用ガスをプラズマ生成空間に導入する
構造を有し、かつ接地電極は活性種と成膜用ガスとを異
なる通路で成膜空間に導入する構造を有することを特徴
とする。
In the CVD apparatus according to the present invention (corresponding to claim 7), preferably, the RF applying electrode has a structure for introducing a plasma generating gas into the plasma generating space, and the ground electrode is It is characterized by having a structure in which the active species and the film forming gas are introduced into the film forming space through different passages.

【0014】[0014]

【作用】本発明に係るCVD装置では、基板の表面にC
VDの作用によって成膜が行われる。プラズマ生成空間
のプラズマ中から活性種のみを成膜空間に取り出し、成
膜空間で活性種と材料ガス(SiH4等)を化学反応さ
せて、基板の表面に膜物質を堆積させる。プラズマ生成
空間は、内側に位置するRF印加電極と外側に位置する
接地電極とからなる構造体に設けられる。さらにRF印
加電極と接地電極との間においてプラズマを生成するた
めの空間が形成される。成膜空間は外側の接地電極の外
側の領域に作られ、基板は、接地電極の外側領域に当該
接地電極に対向するように配置されている。RF印加電
極には所要の高周波電力が供給される。RF印加電極に
高周波(RF)を供給する高周波電源は、接地電極や基
板の数に関わりなく1つで済み、簡素な構成で装置を実
現することができる。また単一の高周波電源で構成で
き、複数の高周波電源を使用しなくても済むので、コス
トを低減することができる。高周波エネルギによってプ
ラズマ生成空間に導入されたプラズマ生成用ガスについ
て放電が生じ、プラズマが生成される。
In the CVD apparatus according to the present invention, C is formed on the surface of the substrate.
Film formation is performed by the action of VD. Only active species are taken out from the plasma in the plasma generation space into the film formation space, and the active species and the material gas (SiH 4 etc.) are chemically reacted in the film formation space to deposit the film substance on the surface of the substrate. The plasma generation space is provided in a structure composed of an RF applying electrode located inside and a ground electrode located outside. Further, a space for generating plasma is formed between the RF applying electrode and the ground electrode. The film forming space is formed in an area outside the outer ground electrode, and the substrate is arranged in the outer area of the ground electrode so as to face the ground electrode. Required RF power is supplied to the RF application electrode. Only one high-frequency power source supplies high-frequency (RF) to the RF application electrode regardless of the number of ground electrodes or substrates, and the device can be realized with a simple configuration. Further, since it can be configured with a single high frequency power source and it is not necessary to use a plurality of high frequency power sources, the cost can be reduced. The high-frequency energy causes a discharge in the plasma generation gas introduced into the plasma generation space to generate plasma.

【0015】上記において、RF印加電極と接地電極の
形態に関しては特に限定されていない。RF印加電極は
接地電極の内側の領域に存在し、RF印加電極と接地電
極の間の空間でプラズマが生成され、生成されたプラズ
マ中から活性種が取り出されて、接地電極に形成された
通路を通って接地電極の外側領域に存在する成膜空間に
供給される。成膜空間は接地電極の外側に存在し、基板
に対しては、接地電極の外側位置に任意の枚数配置し
て、成膜処理を行うことが可能となる。こうして多面成
膜が可能となる構成が実現される。多面成膜は行う際、
基板は、接地電極に対向して配置されるが、その配置位
置は、異なる方向を選択することにより、任意に定める
ことができる。
In the above, the forms of the RF applying electrode and the ground electrode are not particularly limited. The RF applying electrode exists in the region inside the ground electrode, plasma is generated in the space between the RF applying electrode and the ground electrode, active species are extracted from the generated plasma, and the passage is formed in the ground electrode. And is supplied to the film formation space existing in the outer region of the ground electrode. The film forming space exists outside the ground electrode, and it is possible to arrange an arbitrary number of substrates at the outer position of the ground electrode and perform the film forming process on the substrate. In this way, a structure that enables multi-sided film formation is realized. When performing multi-sided film formation,
The substrate is arranged so as to face the ground electrode, but the arrangement position can be arbitrarily determined by selecting different directions.

【0016】通常の構成では、RF印加電極と接地電極
は共に平板状に形成され、1つのRF印加電極の両外側
において平行状態で接地電極が配置され、さらに2つの
接地電極のそれぞれの外側に処理対象の基板が平行状態
で配置される。この構成では、2枚の基板が成膜対象と
なる。2枚の基板によって、プラズマCVD装置のチャ
ンバ内にて分離型で設けられた構造体は挟まれることに
なる。RF印加電極と接地電極は絶縁体で結合され、電
極以外の箇所は絶縁部材で囲まれ、RF印加電極と接地
電極の間の空間はガス通路を除いて閉じられた状態に維
持される。
In a normal structure, both the RF applying electrode and the ground electrode are formed in a flat plate shape, the ground electrodes are arranged in parallel on both outsides of one RF applying electrode, and further outside of each of the two ground electrodes. The substrates to be processed are arranged in parallel. In this configuration, two substrates are targets for film formation. The structure provided as a separate type is sandwiched between the two substrates in the chamber of the plasma CVD apparatus. The RF applying electrode and the ground electrode are connected by an insulator, the portions other than the electrode are surrounded by an insulating member, and the space between the RF applying electrode and the ground electrode is kept closed except for the gas passage.

【0017】両方の電極を共に球形状または多面体形状
とするとき、内側のRF印加電極は、外側の接地電極の
内部空間に位置することになり、その全周囲を接地電極
によって囲まれる。接地電極の外側周囲は、すべて成膜
領域として利用することができ、多数の基板に表面に対
して膜を堆積することが可能となる。
When both electrodes have a spherical shape or a polyhedral shape, the inner RF applying electrode is located in the inner space of the outer ground electrode, and the entire circumference thereof is surrounded by the ground electrode. The entire outer periphery of the ground electrode can be used as a film formation region, and a film can be deposited on the surface of a large number of substrates.

【0018】両方の電極を共に筒形状とするとき、RF
印加電極はその全周囲を接地電極によって囲まれる。筒
形状には、例えば円筒形状あるいは角筒形状が採用され
る。筒形状のRF印加電極と接地電極の両端部は絶縁部
材で連結されている。かかる構成によれば、筒形状の接
地電極の外側周囲に成膜対象の基板が複数枚配置される
ことになる。
When both electrodes have a cylindrical shape, RF
The application electrode is surrounded by the ground electrode all around. As the tubular shape, for example, a cylindrical shape or a rectangular tubular shape is adopted. Both ends of the cylindrical RF applying electrode and the ground electrode are connected by an insulating member. According to this structure, a plurality of substrates to be film-formed are arranged around the outside of the cylindrical ground electrode.

【0019】上記の各構成において、RF印加電極はプ
ラズマ生成用ガスをプラズマ生成空間に導入する構造を
有し、かつ接地電極は活性種と成膜用ガスとを異なる通
路で成膜空間に導入する構造を有している。RF印加電
極と接地電極の間に形成されるプラズマ生成空間にプラ
ズマを生成するためのガス(N2,H2,O2等)は、R
F印加電極の内部を利用しかつ接地電極に形成されたガ
ス通路を通して供給される。さらに接地電極の外側に形
成される成膜空間にCVDの環境を作るために、接地電
極において、プラズマ中の活性種を成膜空間に拡散させ
る孔と、材料ガス(SiH4等)を供給するための構造
を備えている。活性種と材料ガスを成膜空間へ供給する
接地電極は、活性種と材料ガスは成膜空間内でのみ反応
して基板表面に膜の堆積を行い、成膜空間以外の箇所で
は反応しないように、構成されている。
In each of the above structures, the RF applying electrode has a structure for introducing the plasma generating gas into the plasma generating space, and the ground electrode introduces the active species and the film forming gas into the film forming space through different passages. It has a structure that The gas (N 2 , H 2 , O 2, etc.) for generating plasma in the plasma generation space formed between the RF applying electrode and the ground electrode is R
It is supplied through the gas passage formed in the ground electrode by utilizing the inside of the F applying electrode. Further, in order to create a CVD environment in the film forming space formed outside the ground electrode, holes for diffusing active species in plasma into the film forming space and material gas (SiH 4 etc.) are supplied to the ground electrode. It has a structure for The ground electrode that supplies active species and material gas to the film formation space does not react anywhere other than the film formation space where active species and material gas react only in the film formation space to deposit a film on the substrate surface. Is configured.

【0020】[0020]

【発明の実施の形態】以下に、本発明の好適な実施形態
を添付図面に基づいて説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0021】図1と図2は本発明に係るCVD装置の代
表的な実施形態を示す。図1は要部の内部構造を示した
縦断面図であり、図2はその平面図である。なお、真空
容器自体の図示は省略されている。真空容器内は所望の
真空状態に保持されている。真空容器の内部を真空にす
る排気機構の図示も省略されている。この実施形態によ
るCVD装置は2面(両面)成膜を行うための装置であ
る。プラズマ生成用構造体11は1つのRF印加電極1
2と2つの接地電極13とから主に構成されている。R
F印加電極12と接地電極13は平板状の形態を有し、
RF印加電極12を接地電極13で両側から挟むよう
に、かつ、互いに平行になるように対向させて配置され
ている。RF印加電極12と接地電極13の間の手前側
と向う側の側面部、および上端部と下端部とは、絶縁部
材14で連結されている。これによりRF印加電極12
と各接地電極13の間には空間15が形成される。この
空間15がプラズマ生成空間であり、放電電極であるR
F印加電極12に高周波電力が印加された場合、この空
間で放電が起き、プラズマが立つ(以下「放電空間1
5」という)。両側に位置する2つの接地電極13にお
けるRF印加電極12と反対側の真空容器内には、接地
電位に保持された基板ホルダ16が設けられる。基板ホ
ルダ16の構造体11と対向する面には基板17が取り
付けられている。基板17の表面に薄膜が堆積される。
1 and 2 show a typical embodiment of a CVD apparatus according to the present invention. FIG. 1 is a vertical sectional view showing an internal structure of a main part, and FIG. 2 is a plan view thereof. The illustration of the vacuum container itself is omitted. The inside of the vacuum container is maintained in a desired vacuum state. An illustration of an exhaust mechanism for evacuating the inside of the vacuum container is also omitted. The CVD apparatus according to this embodiment is an apparatus for performing two-sided (both-sided) film formation. The structure 11 for plasma generation has one RF application electrode 1
It is mainly composed of 2 and two ground electrodes 13. R
The F applying electrode 12 and the ground electrode 13 have a flat plate shape,
The RF application electrodes 12 are arranged so as to be sandwiched by the ground electrodes 13 from both sides and face each other so as to be parallel to each other. A side surface portion between the RF application electrode 12 and the ground electrode 13 on the front side and the side opposite to the front side, and an upper end portion and a lower end portion are connected by an insulating member 14. As a result, the RF applying electrode 12
A space 15 is formed between and each ground electrode 13. This space 15 is a plasma generation space and R which is a discharge electrode.
When high frequency power is applied to the F applying electrode 12, a discharge occurs in this space and plasma is generated (hereinafter, referred to as "discharge space 1").
5 ”). A substrate holder 16 held at a ground potential is provided in the vacuum container on the opposite side of the RF application electrode 12 of the two ground electrodes 13 located on both sides. A substrate 17 is attached to the surface of the substrate holder 16 facing the structure 11. A thin film is deposited on the surface of the substrate 17.

【0022】平板状のRF印加電極12は一定の厚みを
有し、内部にプラズマ生成用ガスを通すガス通路12a
が形成されている。プラズマ生成用ガス通路12aに
は、ガス供給管18からプラズマの生成に用いられるプ
ラズマ生成用ガス(N2,H2,O2等)が供給される。
またRF印加電極12の接地電極13に対向する壁部分
にはガス吹出し孔19が多数形成されている。ガス供給
管18からプラズマ生成用ガス通路12aに入ったプラ
ズマ生成用ガスは矢印20に示されるようにガス吹出し
孔19を通って放電空間15に導入される。また平板状
の接地電極13には、その内部に材料ガス(SiH
4等)を矢印22のごとく成膜空間21に導入するため
の複数の材料ガス通路23および材料ガス供給孔24と
放電空間15で生成されたプラズマの中から活性種を矢
印25のごとく成膜空間21に導入するための貫通孔が
活性種供給孔26として形成されている。そして接地電
極13において、材料ガスを成膜空間21に導入するた
めの材料ガス通路23と、活性種を成膜空間21に導入
するための活性種供給孔26とは、構造上分離されてい
るので、成膜空間21で初めて反応ガスと活性種は反応
することになっている。
The flat plate-shaped RF applying electrode 12 has a constant thickness and has a gas passage 12a through which a plasma generating gas is passed.
Are formed. A plasma generation gas (N 2 , H 2 , O 2, etc.) used for plasma generation is supplied from the gas supply pipe 18 to the plasma generation gas passage 12a.
Further, a large number of gas blowing holes 19 are formed in the wall portion of the RF applying electrode 12 facing the ground electrode 13. The plasma generating gas, which has entered the plasma generating gas passage 12 a from the gas supply pipe 18, is introduced into the discharge space 15 through the gas blowing hole 19 as shown by an arrow 20. Further, the flat-plate ground electrode 13 has a material gas (SiH
4 ) and the like are introduced into the film formation space 21 as indicated by the arrow 22, and a plurality of material gas passages 23 and material gas supply holes 24 and the plasma generated in the discharge space 15 are used to form active species as indicated by the arrow 25. A through hole for introducing into the space 21 is formed as the active species supply hole 26. In the ground electrode 13, the material gas passage 23 for introducing the material gas into the film forming space 21 and the active species supply hole 26 for introducing the active species into the film forming space 21 are structurally separated. Therefore, the reactive gas and the active species are to react with each other in the film formation space 21 for the first time.

【0023】上記の構成において符号27は高周波電源
(RF)を示している。高周波電源27はRF印加電極
12に接続されている。また2つの接地電極13と2つ
の基板ホルダ16はそれぞれ接地されている。RF印加
電極12とその両側の接地電極13の各々との間に、単
一の高周波電源27から給電される高周波による電圧が
同時に印加されることになる。
In the above structure, reference numeral 27 indicates a high frequency power supply (RF). The high frequency power source 27 is connected to the RF applying electrode 12. The two ground electrodes 13 and the two substrate holders 16 are grounded. A high frequency voltage supplied from a single high frequency power source 27 is simultaneously applied between the RF application electrode 12 and each of the ground electrodes 13 on both sides thereof.

【0024】上記の実施形態によれば、CVD装置の真
空容器の全空間は、図示しない排気機構によって所要の
真空状態に保持されている。この状態で、放電空間15
にRF印加電極12内を通して原料ガスが導入され、か
つRF印加電極12と両側の接地電極13との間に高周
波電源27から高周波が給電されると、放電空間15で
放電が生じ、プラズマが生成される。放電空間15で生
成されたプラズマの中に含まれる活性種は、接地電極1
3に形成された活性種供給孔26を通して成膜空間21
に拡散される。また2つの接地電極13の各々には材料
ガスを通す材料ガス通路23および材料ガス供給孔24
を有しているので、これらの構造によって成膜空間21
に材料ガスが導入される。成膜空間21に導入された材
料ガスと活性種は反応を生じ、CVD作用に基づいて基
板17の表面に膜が堆積されることになる。
According to the above embodiment, the entire space of the vacuum container of the CVD apparatus is maintained in a required vacuum state by the exhaust mechanism (not shown). In this state, the discharge space 15
When the raw material gas is introduced into the RF applying electrode 12 and the high frequency power is supplied from the high frequency power supply 27 between the RF applying electrode 12 and the ground electrodes 13 on both sides, discharge is generated in the discharge space 15 to generate plasma. To be done. The active species contained in the plasma generated in the discharge space 15 are the ground electrode 1
3 through the active species supply hole 26 formed in
Be spread to. In addition, a material gas passage 23 and a material gas supply hole 24 that allow the material gas to pass through each of the two ground electrodes 13.
Therefore, the film formation space 21 is formed by these structures.
Material gas is introduced into. The material gas introduced into the film formation space 21 reacts with the activated species, and a film is deposited on the surface of the substrate 17 based on the CVD action.

【0025】前述の実施形態で明らかなごとく、この実
施形態によるCVD装置では、放電空間15と成膜空間
21を分離する構成において、当該放電空間15を、平
板状の1つのRF印加電極12とその両側に位置する2
つの接地電極13とからなる構造体によって実現し、各
接地電極13のRF印加電極12に対向する面と反対側
の空間に成膜空間21を作ることができ、真空容器内の
2枚の基板17の各表面への成膜を同時に行うことを可
能にした。また単一の高周波電源27を利用して、RF
印加電極12と2つの接地電極13の各々との間に高周
波を印加することができるので、成膜装置の製作コスト
を低減することが可能となった。
As is apparent from the above-described embodiment, in the CVD apparatus according to this embodiment, the discharge space 15 and the film formation space 21 are separated from each other, and the discharge space 15 is connected to one flat plate-shaped RF applying electrode 12. 2 on both sides
It is realized by a structure composed of two ground electrodes 13, and a film formation space 21 can be formed in a space on the opposite side of the surface of each ground electrode 13 facing the RF application electrode 12, and two substrates in a vacuum container are formed. It became possible to perform film formation on each surface of 17 at the same time. Also, using a single high frequency power supply 27, RF
Since a high frequency can be applied between the application electrode 12 and each of the two ground electrodes 13, it is possible to reduce the manufacturing cost of the film forming apparatus.

【0026】次に図3と図4を参照して本発明の他の実
施形態を説明する。この実施形態によれば、CVD装置
において2面以上の多面成膜を行うことが可能となる。
図3はプラズマ生成用の構造体の部分の縦断面図、図4
は平面図である。図3において、前述の実施形態で説明
した同一要素には同一の符号を付している。この実施形
態では、成膜空間30に対し分離されたプラズマ生成空
間を形成する構造体31において、RF印加電極32と
接地外側電極33が共に円筒形状を有するように形成さ
れる。RF印加電極32は、接地電極33の内側空間に
存在し、円筒形状のRF印加電極32と接地電極33は
図4に示すごとく同心円の位置に配置されている。円筒
形のRF印加電極32はその全周囲を円筒形の接地電極
33によって囲まれている。RF印加電極32の内部に
設けられるプラズマ生成用ガスを供給する構造(ガス通
路32a)、および当該プラズマ生成用ガスを放電空間
34に導入するガス吹出し孔19の構造は、前述の実施
形態と同じである。また接地電極33におけるプラズマ
中の活性種を成膜空間へ導入する構造、およびプラズマ
生成用ガスを通しかつガス吹出し孔19を介して放電空
間34へ導入する構造は、前述の実施形態と同じであ
る。さらにRF印加電極32と接地電極33の両端部は
それぞれ絶縁部材35で結合され、RF印加電極32と
接地電極33との間の放電空間34はプラズマ生成空間
として形成されている。RF印加電極32と接地電極3
3の間に高周波電源27によって高周波が印加される構
成、接地電極33の外側に基板が配置され、成膜空間が
作られる構成は、前述の実施形態の場合と同じである。
成膜空間を形成する真空容器の図示は省略されている。
以上の構成によって円筒形状のRF印加電極32と、そ
の周囲の接地電極33との間にプラズマが生成され、接
地電極33の外側周囲に形成される成膜空間へ活性種と
材料ガスが導入され、複数の基板に対して多面成膜が行
われる。
Next, another embodiment of the present invention will be described with reference to FIGS. According to this embodiment, it is possible to perform multi-sided film formation on two or more surfaces in the CVD apparatus.
FIG. 3 is a longitudinal sectional view of a portion of a structure for plasma generation, FIG.
Is a plan view. In FIG. 3, the same elements as those described in the above embodiment are designated by the same reference numerals. In this embodiment, in the structure 31 forming a plasma generation space separated from the film formation space 30, both the RF application electrode 32 and the ground outer electrode 33 are formed to have a cylindrical shape. The RF applying electrode 32 exists in the inner space of the ground electrode 33, and the cylindrical RF applying electrode 32 and the ground electrode 33 are arranged in concentric positions as shown in FIG. The cylindrical RF application electrode 32 is surrounded by a cylindrical ground electrode 33 all around. The structure (gas passage 32a) for supplying the plasma generating gas provided inside the RF applying electrode 32 and the structure of the gas outlet hole 19 for introducing the plasma generating gas into the discharge space 34 are the same as those in the above-described embodiment. Is. Further, the structure in which the active species in the plasma in the ground electrode 33 are introduced into the film formation space and the structure in which the plasma generation gas is introduced and introduced into the discharge space 34 through the gas blowout holes 19 are the same as those in the above-described embodiment. is there. Further, both ends of the RF applying electrode 32 and the ground electrode 33 are coupled with each other by an insulating member 35, and the discharge space 34 between the RF applying electrode 32 and the ground electrode 33 is formed as a plasma generation space. RF application electrode 32 and ground electrode 3
The configuration in which a high frequency is applied by the high frequency power supply 27 between the three and the configuration in which the substrate is arranged outside the ground electrode 33 and the film forming space is created are the same as those in the above-described embodiment.
A vacuum container for forming the film formation space is not shown.
With the above structure, plasma is generated between the cylindrical RF applying electrode 32 and the surrounding ground electrode 33, and the active species and the material gas are introduced into the film forming space formed around the outside of the ground electrode 33. Multi-layer film formation is performed on a plurality of substrates.

【0027】上記構成を有するCVD装置では、成膜空
間から分離されたプラズマ生成空間が共に円筒形をした
RF印加電極32と接地電極33の間に形成され、接地
電極33の外側周囲に成膜空間すなわちCVD作用によ
って成膜を行うための領域が形成される。成膜対象であ
る基板は、図4で破線36で示すごとく接地電極33の
周囲空間の任意の箇所に配置することができ、これによ
って接地電極33の周囲に広く成膜領域を得ることがで
きるので、複数の基板に関して多面成膜を行うことが可
能となる。
In the CVD apparatus having the above structure, the plasma generation space separated from the film formation space is formed between the RF applying electrode 32 and the ground electrode 33, both of which have a cylindrical shape, and the film is formed around the outside of the ground electrode 33. A space, that is, a region for forming a film by the CVD action is formed. The substrate that is the target of film formation can be arranged at an arbitrary position in the space around the ground electrode 33 as shown by a broken line 36 in FIG. 4, whereby a wide film formation region can be obtained around the ground electrode 33. Therefore, it is possible to perform multi-faced film formation on a plurality of substrates.

【0028】上記の実施形態ではRF印加電極32と接
地電極33は円筒形に形成されたが、これに限定されな
い。筒形であればよく、例えば角筒形状であってもよ
い。
Although the RF applying electrode 32 and the ground electrode 33 are formed in a cylindrical shape in the above embodiment, the present invention is not limited to this. It may be a tubular shape, for example, a rectangular tubular shape.

【0029】次に図5を参照して本発明の更なる他の実
施形態を説明する。この実施形態によれば、CVD装置
において2面以上の多面成膜を行うことが可能となる。
図5は模式的に示した縦断面図である。図において、前
述の実施形態で説明した要素と同一の要素には同一の符
号を付している。この実施形態では、成膜空間に対し分
離されたプラズマ生成空間を形成する構造体41のRF
印加電極42と接地電極43が共に球形状を有するよう
に形成されている。RF印加電極42は、接地電極43
の内部空間に存在し、球形状のRF印加電極42と接地
電極43は中心位置が一致するように同心球の構成で配
置されている。これにより球形のRF印加電極42はそ
の全周囲を球形の接地電極43によって囲まれることに
なる。RF印加電極42の内部に設けられるプラズマ生
成用ガスを供給する構造、および当該プラズマ生成用ガ
スをプラズマ生成空間44に導入するガス吹出し孔の構
造は、前述の実施形態と同じである。また接地電極43
の内部のプラズマ中の活性種を成膜空間へ導入する構
造、および材料ガスを通しかつガス吹出し孔を介して成
膜空間45へ導入する構造は、前述の実施形態と同じで
ある。46はCVD装置を形成する真空容器であり、こ
の真空容器46も球形をしている。RF印加電極42と
接地電極43の間に高周波電源27によって高周波が印
加される構成、接地電極43の外側に基板が配置され、
成膜空間が作られる構成は、前述の実施形態の場合と同
じである。以上の構成によって球形状のRF印加電極4
2と、その周囲の接地電極43との間にプラズマが生成
され、接地電極43の外側周囲に形成される成膜空間へ
活性種と材料ガスが導入され、図示されない複数の基板
に対して多面成膜が行われる。
Next, still another embodiment of the present invention will be described with reference to FIG. According to this embodiment, it is possible to perform multi-sided film formation on two or more surfaces in the CVD apparatus.
FIG. 5 is a schematic vertical sectional view. In the figure, the same elements as the elements described in the above-described embodiment are designated by the same reference numerals. In this embodiment, the RF of the structure 41 that forms the plasma generation space separated from the film formation space is used.
Both the application electrode 42 and the ground electrode 43 are formed to have a spherical shape. The RF applying electrode 42 is the ground electrode 43.
The spherical RF applying electrode 42 and the ground electrode 43, which are present in the internal space of the above, are arranged in a concentric sphere configuration so that their center positions coincide with each other. As a result, the spherical RF application electrode 42 is surrounded by the spherical ground electrode 43 around the entire circumference. The structure for supplying the plasma generating gas provided inside the RF applying electrode 42 and the structure of the gas outlet hole for introducing the plasma generating gas into the plasma generating space 44 are the same as those in the above-described embodiment. In addition, the ground electrode 43
The structure for introducing the active species in the plasma inside the film forming space into the film forming space and the structure for introducing the material gas into the film forming space 45 through the gas blowing holes are the same as those in the above-described embodiment. Reference numeral 46 is a vacuum container forming a CVD apparatus, and this vacuum container 46 is also spherical. A structure in which a high frequency is applied by the high frequency power supply 27 between the RF applying electrode 42 and the ground electrode 43, the substrate is arranged outside the ground electrode 43,
The structure for forming the film formation space is the same as in the above-described embodiment. With the above configuration, the spherical RF applying electrode 4
2 and the surrounding ground electrode 43, plasma is generated, and the active species and the material gas are introduced into the film forming space formed around the outside of the ground electrode 43. The film is formed.

【0030】上記構成を有するCVD装置では、成膜空
間から分離されたプラズマ生成空間が共に球形状をした
RF印加電極42と接地電極43の間に形成され、接地
電極43の外側周囲に成膜空間45すなわちCVD作用
によって成膜を行うための領域が形成される。成膜対象
である基板は、接地電極43の外側周囲の三次元空間の
任意の箇所に配置することができ、これによって接地電
極43の周囲に広く成膜領域を得ることができるので、
複数の基板に関して多面成膜を行うことが可能となる。
In the CVD apparatus having the above structure, the plasma generation space separated from the film formation space is formed between the RF application electrode 42 and the ground electrode 43, both of which have a spherical shape, and the film is formed on the outer periphery of the ground electrode 43. A space 45, that is, a region for forming a film by the CVD action is formed. The substrate that is the target of film formation can be arranged at an arbitrary position in the three-dimensional space around the outside of the ground electrode 43, and thus a large film formation region can be obtained around the ground electrode 43.
It is possible to perform multi-faced film formation on a plurality of substrates.

【0031】上記の実施形態ではRF印加電極42およ
び接地電極43は共に球形状であったが、これに限定さ
れず、例えば多面体形状であってもよい。
Although the RF applying electrode 42 and the ground electrode 43 are both spherical in the above embodiment, the present invention is not limited to this and may be, for example, a polyhedral shape.

【0032】上記のCVD装置に基づく多面成膜は例え
ば移動成膜に適しており、大面積のガラス基板やロール
状のフィルムの上に容易に膜を堆積させることができ
る。
The multi-sided film formation based on the above CVD apparatus is suitable for, for example, the moving film formation, and the film can be easily deposited on a large-area glass substrate or a roll-shaped film.

【0033】[0033]

【発明の効果】以上の説明で明らかなように本発明によ
れば、次の効果を奏する。
As is apparent from the above description, the present invention has the following effects.

【0034】請求項1による本発明: 分離型のプラズ
マ生成空間を有するCVD装置において、真空容器内に
RF印加電極と接地電極からなる構造体を備え、プラズ
マ生成空間は構造体の内部に設けられ、構造体に対して
それぞれ異なる方向から対向し、かつRF印加電極、接
地電極、基板の位置関係で配置された複数の基板に対し
て同時に成膜するように構成されるため、接地電極の外
側に成膜領域を作ることができ、複数の基板を配置して
多面成膜を行うことができる。また電極装置部を形成す
る構造体を簡単な構成で実現でき、製作コストを安価に
することができる。
The present invention according to claim 1 is a CVD apparatus having a separate plasma generation space, wherein a structure comprising an RF applying electrode and a ground electrode is provided in a vacuum container, and the plasma generation space is provided inside the structure. Outside the ground electrode because the film is simultaneously formed on a plurality of substrates facing the structure from different directions and arranged in the positional relationship of the RF application electrode, the ground electrode, and the substrate. A film formation region can be formed in the substrate, and a plurality of substrates can be arranged to perform multi-faceted film formation. Further, the structure forming the electrode device portion can be realized with a simple structure, and the manufacturing cost can be reduced.

【0035】請求項2による本発明: 上記の構成にお
いて、RF印加電極に高周波電力を供給する高周波電源
は、接地電極または基板の個数に関わりなく1つである
ため、高周波電源に要するコストを低減でき、成膜コス
トを安価にできる。
According to a second aspect of the present invention, in the above configuration, the number of high frequency power supplies for supplying high frequency power to the RF applying electrodes is one regardless of the number of ground electrodes or substrates, so the cost required for the high frequency power supplies is reduced. Therefore, the film forming cost can be reduced.

【0036】請求項3による本発明: 上記の構成にお
いて、RF印加電極と接地電極を平板状とし、RF印加
電極の両側に平行状態で接地電極が配置され、2つの接
地電極のそれぞれの外側に基板を平行状態で配置したた
め、2面成膜を行うことができる。
According to a third aspect of the present invention: In the above structure, the RF application electrode and the ground electrode are formed in a flat plate shape, the ground electrodes are arranged in parallel on both sides of the RF application electrode, and the RF electrodes are arranged outside the two ground electrodes. Since the substrates are arranged in parallel, film formation on two surfaces can be performed.

【0037】請求項4,5,6による本発明: 上記の
構成において、特に、RF印加電極はその全周囲を、3
次元的にあるいは2次元的に接地電極で囲まれるように
したため、接地電極の周囲外側に広い成膜領域を作るこ
とができ、複数の基板を配置して多面成膜を行うことが
できる。
The present invention according to Claims 4, 5, and 6: In the above-mentioned structure, in particular, the RF applying electrode has 3
Since the electrodes are dimensionally or two-dimensionally surrounded by the ground electrode, a large film formation region can be formed outside the periphery of the ground electrode, and a plurality of substrates can be arranged to perform multi-face film formation.

【0038】請求項7による本発明: 上記の構成にお
いて、RF印加電極はプラズマ生成用ガスをプラズマ生
成空間に導入する構造を有し、かつ接地電極は活性種と
成膜用ガスとを異なる通路で成膜空間に導入する構造を
有するため、分離型プラズマ生成空間を有するCVD装
置である明確化され、本発明に基づく多面成膜はこのよ
うな構成のCVD装置に好適である。
The present invention according to claim 7: In the above-mentioned structure, the RF applying electrode has a structure for introducing the plasma generating gas into the plasma generating space, and the ground electrode has a passage for differentiating the active species and the film forming gas. Since it has a structure to be introduced into the film formation space in 1., it is clarified that it is a CVD apparatus having a separation type plasma generation space, and the multi-sided film formation according to the present invention is suitable for the CVD apparatus having such a configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るCVD装置の代表的な実施形態の
要部を模式的に示した縦断面図である。
FIG. 1 is a vertical sectional view schematically showing a main part of a typical embodiment of a CVD apparatus according to the present invention.

【図2】図1に示した構成の平面図である。FIG. 2 is a plan view of the configuration shown in FIG.

【図3】本発明に係るCVD装置の他の実施形態の要部
縦断面図である。
FIG. 3 is a vertical cross-sectional view of a main part of another embodiment of the CVD apparatus according to the present invention.

【図4】図3に示した実施形態の要部の平面図である。FIG. 4 is a plan view of a main part of the embodiment shown in FIG.

【図5】本発明に係るCVD装置の他の実施形態を模式
的に示した縦断面図である。
FIG. 5 is a vertical sectional view schematically showing another embodiment of the CVD apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

11,31,41 構造体 12,32,42 RF印加電極 13,33,43 接地電極 16 基板ホルダ 17 基板 21 プラズマ生成空間 27 高周波電源 11,31,41 structure 12, 32, 42 RF application electrode 13, 33, 43 Ground electrode 16 substrate holder 17 board 21 Plasma generation space 27 high frequency power supply

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板が配置された成膜空間から分離され
てプラズマ生成空間が設けられ、前記プラズマ生成空間
で生じたプラズマから活性種を前記成膜空間に取り出
し、前記成膜空間でCVD作用に基づき前記基板に成膜
を行うようにしたCVD装置において、 真空容器内にRF印加電極と接地電極からなる構造体を
備え、前記プラズマ生成空間は前記構造体の内部に設け
られ、前記構造体に対してそれぞれ異なる方向から対向
し、かつ前記RF印加電極、前記接地電極、前記基板の
位置関係で配置された複数の前記基板に対して同時に成
膜することを特徴とするCVD装置。
1. A plasma generation space is provided separately from a film formation space in which a substrate is arranged, active species are taken out from the plasma generated in the plasma generation space into the film formation space, and a CVD action is performed in the film formation space. In a CVD apparatus configured to form a film on the substrate based on the above, a structure including an RF application electrode and a ground electrode is provided in a vacuum container, and the plasma generation space is provided inside the structure. A film-forming apparatus that simultaneously forms films on a plurality of the substrates that are opposed to each other in different directions and that are arranged in the positional relationship of the RF applying electrode, the ground electrode, and the substrate.
【請求項2】 前記RF印加電極に高周波電力を供給す
る高周波電源は、前記接地電極または前記基板の個数に
関わりなく1つであることを特徴とする請求項1記載の
CVD装置。
2. The CVD apparatus according to claim 1, wherein there is one high frequency power source for supplying high frequency power to the RF applying electrode regardless of the number of the ground electrode or the substrate.
【請求項3】 前記RF印加電極と前記接地電極は共に
平板状であり、前記RF印加電極の両側に平行状態で前
記接地電極が配置され、さらに2つの前記接地電極のそ
れぞれの外側に前記基板が平行状態で配置されることを
特徴とする請求項1または2記載のCVD装置。
3. The RF applying electrode and the ground electrode are both flat plates, the ground electrodes are arranged in parallel on both sides of the RF applying electrode, and the substrate is provided outside each of the two ground electrodes. The CVD apparatus according to claim 1 or 2, wherein the CVD devices are arranged in parallel.
【請求項4】 前記RF印加電極はその全周囲を前記接
地電極で囲まれていることを特徴とする請求項1記載の
CVD装置。
4. The CVD apparatus according to claim 1, wherein the RF applying electrode is surrounded entirely by the ground electrode.
【請求項5】 前記RF印加電極および前記接地電極は
両方共に球形状または多面体形状であることを特徴とす
る請求項4記載のCVD装置。
5. The CVD apparatus according to claim 4, wherein both the RF applying electrode and the ground electrode have a spherical shape or a polyhedral shape.
【請求項6】 前記RF印加電極および前記接地電極は
両方共に筒形状であることを特徴とする請求項4記載の
CVD装置。
6. The CVD apparatus according to claim 4, wherein both the RF applying electrode and the ground electrode have a cylindrical shape.
【請求項7】 前記RF印加電極はプラズマ生成用ガス
を前記プラズマ生成空間に導入する構造を有し、かつ前
記接地電極は前記活性種と成膜用ガスとを異なる通路で
前記成膜空間に導入する構造を有することを特徴とする
請求項1〜6のいずれか1項に記載のCVD装置。
7. The RF applying electrode has a structure for introducing a plasma generating gas into the plasma generating space, and the ground electrode is provided in the film forming space through the passages of the active species and the film forming gas different from each other. The CVD apparatus according to any one of claims 1 to 6, which has a structure to be introduced.
JP2001359631A 2001-11-26 2001-11-26 Cvd apparatus Pending JP2003160875A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001359631A JP2003160875A (en) 2001-11-26 2001-11-26 Cvd apparatus
TW091134092A TWI287044B (en) 2001-11-26 2002-11-22 CVD device
CNB021533296A CN1239741C (en) 2001-11-26 2002-11-25 CVD apparatus
KR1020020073931A KR20030043734A (en) 2001-11-26 2002-11-26 Cvd system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359631A JP2003160875A (en) 2001-11-26 2001-11-26 Cvd apparatus

Publications (1)

Publication Number Publication Date
JP2003160875A true JP2003160875A (en) 2003-06-06

Family

ID=19170600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359631A Pending JP2003160875A (en) 2001-11-26 2001-11-26 Cvd apparatus

Country Status (4)

Country Link
JP (1) JP2003160875A (en)
KR (1) KR20030043734A (en)
CN (1) CN1239741C (en)
TW (1) TWI287044B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526095A (en) * 2013-05-06 2016-09-01 ロータス アプライド テクノロジー エルエルシーLotus Applied Technology, Llc Plasma generation to deposit thin films on flexible substrates

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307485B (en) * 2008-01-29 2010-08-18 南京大学 Nitrogen source ionization method and device for semiconductor material vapor deposition growth system
KR101425191B1 (en) * 2013-02-04 2014-08-01 한국기계연구원 Dielectric barrier discharge reactor for surface treatment
TWI502096B (en) 2013-06-17 2015-10-01 Ind Tech Res Inst Reaction device and manufacture method for chemical vapor deposition
CN110042348A (en) * 2019-03-12 2019-07-23 深圳奥拦科技有限责任公司 Plasma surface processing device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526095A (en) * 2013-05-06 2016-09-01 ロータス アプライド テクノロジー エルエルシーLotus Applied Technology, Llc Plasma generation to deposit thin films on flexible substrates

Also Published As

Publication number Publication date
TW200300458A (en) 2003-06-01
CN1421543A (en) 2003-06-04
CN1239741C (en) 2006-02-01
TWI287044B (en) 2007-09-21
KR20030043734A (en) 2003-06-02

Similar Documents

Publication Publication Date Title
KR100283853B1 (en) Plasma process apparatus
JP4896164B2 (en) Plasma processing equipment
JPH0521393A (en) Plasma processor
JP2001168083A (en) Plasma processor
JP2005217425A (en) Plasma cvd equipment and plasma cvd method for double-sided coating
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
TW201936978A (en) Geometrically selective deposition of dielectric films utilizing low frequency bias
TW201621973A (en) Plasma processing device
US20070017637A1 (en) Inductively coupled plasma processing apparatus
WO2011104803A1 (en) Plasma generator
JP3181473B2 (en) Plasma processing equipment
JP2003160875A (en) Cvd apparatus
JP4426632B2 (en) Plasma processing equipment
US6390020B1 (en) Dual face shower head magnetron, plasma generating apparatus and method of coating substrate
JP4283360B2 (en) Plasma processing equipment
US20080245969A1 (en) Method and Apparatus for Creating a Plasma
JP3129265B2 (en) Thin film forming equipment
JP4568467B2 (en) A plasma processing apparatus having a conductive wall.
JP2000073175A (en) Surface treating device
JP2000277506A (en) Plasma cvd system and film-forming method
JP2001196309A (en) Plasma treater
JP3874726B2 (en) Plasma processing apparatus and plasma generation method
KR20050054606A (en) Apparatus for processing under atmosphere pressure plasma
JPH0922798A (en) Electrode for high-frequency discharge and high-frequency plasma substrate processing device
JP2008251838A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108