JP2003160389A - Composite structural body - Google Patents

Composite structural body

Info

Publication number
JP2003160389A
JP2003160389A JP2001358398A JP2001358398A JP2003160389A JP 2003160389 A JP2003160389 A JP 2003160389A JP 2001358398 A JP2001358398 A JP 2001358398A JP 2001358398 A JP2001358398 A JP 2001358398A JP 2003160389 A JP2003160389 A JP 2003160389A
Authority
JP
Japan
Prior art keywords
group metal
composite structure
core material
diamond
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001358398A
Other languages
Japanese (ja)
Other versions
JP4095287B2 (en
Inventor
Kenji Noda
謙二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001358398A priority Critical patent/JP4095287B2/en
Publication of JP2003160389A publication Critical patent/JP2003160389A/en
Application granted granted Critical
Publication of JP4095287B2 publication Critical patent/JP4095287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly hardened composite structural body while maintaining impact resistance. <P>SOLUTION: This composite structural body 1 is constituted as follows: an outer circumference of a long-sized core material 4 consisting of a diamond sintered compact, in which diamond particles 2 and 2 are bonded with an iron- family metal 3, is coated with a skin member 8 of a sintered alloy in which hard particles 6 of at least one kind among a carbide, a nitride and a carbonitride of at least a metal element (M) selected from the group consisting of groups 4a, 5a and 6a in the periodic table, wherein the quantity of the iron- family metal 3 in the diamond sintered compact 4 is less than that of the iron- family metal 7 in the sintered alloy 8. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ダイヤモンド焼結
体からなる芯材の外周を、焼結合金からなる表皮部材に
て被覆してなる複合構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite structure in which the outer circumference of a core material made of a diamond sintered body is covered with a skin member made of a sintered alloy.

【0002】[0002]

【従来の技術】従来より、繊維等長尺状の芯材の外周を
他の部材にて被覆することにより、構造体の硬度や強度
に加えて靭性を改善する技術が研究されており、例え
ば、特開平11−139884号公報では、セラミック
スからなる芯材(線状セラミックス)の外周に第2相成
分の被覆層を吹き付け、これを一方向に収束して圧縮成
形して焼成した複合セラミック焼結体が記載され、構造
体の破壊抵抗が増大することが開示されている。
2. Description of the Related Art Conventionally, a technique for improving the toughness in addition to the hardness and strength of a structure by covering the outer circumference of a long core material such as a fiber with another member has been studied. In Japanese Patent Laid-Open No. 11-139884, a composite ceramic calcination in which a coating layer of a second phase component is sprayed on the outer periphery of a core material (linear ceramics) made of ceramics, which is converged in one direction and compression molded and baked. Knots are described and it is disclosed that the fracture resistance of the structure is increased.

【0003】一方、ダイヤモンドは、高い硬度を有する
という特性を生かして、ダイヤモンド粒子間を鉄属金属
にて結合したダイヤモンド焼結体は、切削工具または掘
削工具や耐摩耗部材として利用されている。
On the other hand, a diamond sintered body, in which diamond particles are bonded with an iron-group metal, is utilized as a cutting tool or an excavating tool or a wear-resistant member by taking advantage of the fact that diamond has a high hardness.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のダイヤモンド焼結体では、硬度はある程度高いもの
のダイヤモンドの焼結性および耐衝撃性が低いために、
所定量の金属結合相を添加する必要があり、高硬度化に
は限界があった。
However, in the above-mentioned conventional diamond sintered body, although the hardness is high to some extent, the sinterability and impact resistance of diamond are low.
It was necessary to add a predetermined amount of metallic binder phase, and there was a limit to increase the hardness.

【0005】また、上述した複合構造体として芯材にダ
イヤモンド焼結体を用い表皮部材に超硬合金(WC)等
の周期律表4a、5a、6a族金属を主成分とする焼結
合金にて被覆した複合構造体が考えられるが、構造体を
より高硬度化させる構成については検討されていなかっ
た。
Further, a diamond sintered body is used as a core material in the above-mentioned composite structure, and a sintered alloy mainly composed of a metal of group 4a, 5a, 6a of the periodic table such as cemented carbide (WC) is used as a skin member. Although a composite structure coated with the structure may be considered, a structure for increasing the hardness of the structure has not been studied.

【0006】本発明は上記課題を解決するためになされ
たもので、その目的は、耐衝撃性を維持しつつ、より高
硬度化が可能な複合構造体を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a composite structure capable of achieving higher hardness while maintaining impact resistance.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題に
ついて検討した結果、ダイヤモンド焼結体中の鉄族金属
量を焼結合金中のそれよりも少なくした構成からなる芯
材がダイヤモンド焼結体で表皮部材が焼結合金からなる
複合構造体とすることによって、芯材中のダイヤモンド
含有比率を高め、かつ芯材側に圧縮の残留応力を生ぜし
めることができる結果、構造体をより高硬度化できるこ
とを知見した。
DISCLOSURE OF THE INVENTION As a result of studying the above-mentioned problems, the inventors of the present invention have found that a core material having a structure in which the amount of iron group metal in the diamond sintered body is smaller than that in the sintered alloy is diamond fired. By forming a composite structure in which the skin member is made of a sintered alloy by binding, it is possible to increase the diamond content ratio in the core material and to generate a compressive residual stress on the core material side. It was found that the hardness can be increased.

【0008】すなわち、本発明の複合構造体は、ダイヤ
モンド粒子間を鉄属金属にて結合したダイヤモンド焼結
体からなる長尺状の芯材の外周を、周期律表4a、5
a、6a族金属の群から選ばれる少なくとも1種以上の
金属元素(M)の炭化物、窒化物および炭窒化物のうち
の1種以上の硬質粒子を鉄属金属にて結合した焼結合金
からなる表皮部材にて被覆してなる複合構造体であっ
て、前記芯材中の鉄属金属量が前記表皮部材中の鉄属金
属量よりも少ないことを特徴とする複合構造体である。
That is, in the composite structure of the present invention, the outer circumference of a long core made of a diamond sintered body in which diamond particles are bonded by an iron-group metal is set to the periodic table 4a, 5
From a sintered alloy in which at least one kind of hard particles of at least one kind of metal element (M) selected from the group of a and 6a metals, carbides, nitrides and carbonitrides are bound by an iron group metal In the composite structure, the amount of iron group metal in the core material is smaller than the amount of iron group metal in the skin member.

【0009】[0009]

【発明の実施の形態】本発明の複合構造体について、そ
の一実施例である図1の概略斜視図およびその要部拡大
図である図2を基に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A composite structure of the present invention will be described with reference to a schematic perspective view of FIG. 1 which is one embodiment thereof and FIG.

【0010】図1によれば、複合構造体1は、ダイヤモ
ンド粒子2、2間を鉄属金属3にて結合したダイヤモン
ド焼結体4からなる長尺状の芯材(4)の外周を、周期
律表4a、5a、6a族金属の群から選ばれる少なくと
も1種以上の金属元素(M)の炭化物、窒化物および炭
窒化物のうちの1種以上の硬質粒子6を鉄属金属7にて
結合した焼結合金8の表皮部材(8)にて被覆してな
る。
As shown in FIG. 1, the composite structure 1 has a long core (4) made of a diamond sintered body 4 in which diamond particles 2 and 2 are bonded together by an iron-group metal 3, An iron group metal 7 containing at least one hard particle 6 selected from the group consisting of carbides, nitrides and carbonitrides of at least one metal element (M) selected from the group of metals of groups 4a, 5a and 6a of the periodic table. It is covered with the skin member (8) of the sintered alloy 8 bonded together.

【0011】本発明によれば、芯材(ダイヤモンド焼結
体)4中の鉄属金属3の量が表皮部材(焼結合金)8中
の鉄属金属7の量よりも少ないことが大きな特徴であ
り、これによって、芯部は高含有化されたダイヤモンド
の特性により高硬度となり、さらに芯部と表皮部材との
焼結時の収縮挙動の差異および熱膨張係数差によって発
生する圧縮の残留応力によって高硬度化が促進される。
また、その圧縮残留応力で強化された芯部および鉄族金
属層で高靭性化された表皮部によって耐衝撃性は維持さ
れる。
According to the present invention, the major feature is that the amount of the iron group metal 3 in the core material (diamond sintered body) 4 is smaller than the amount of the iron group metal 7 in the skin member (sintered alloy) 8. As a result, the core has a high hardness due to the characteristics of the high-content diamond, and the residual stress of compression caused by the difference in shrinkage behavior between the core and the skin member during sintering and the difference in thermal expansion coefficient. This promotes high hardness.
Further, impact resistance is maintained by the core portion reinforced by the compressive residual stress and the skin portion toughened by the iron group metal layer.

【0012】ここで、本発明における鉄属金属量とは、
構造体1断面の波長分散型X線マイクロアナリシスにお
ける鉄族金属のピーク強度の合計であり、特に、ダイヤ
モンド焼結体4中の鉄属金属3量Mdと焼結合金8中の
鉄属金属7量Mcとの比(Md/Mc)が0.9以下で
あること、特に、0.25〜0.8であることが望まし
い。
Here, the amount of iron group metal in the present invention means
It is the sum of the peak intensities of the iron group metals in the wavelength-dispersive X-ray microanalysis of the cross section of the structure 1, in particular, the amount of iron group metal 3 in the diamond sintered body 4 and the amount of iron group metal 7 in the sintered alloy 8 The ratio (Md / Mc) to the amount Mc is preferably 0.9 or less, and particularly preferably 0.25 to 0.8.

【0013】また、本発明によれば、耐衝撃性を維持し
つつ、ダイヤモンド焼結体4中の鉄属金属3量と焼結合
金8中の鉄属金属7量とを所定量に抑制するために、ダ
イヤモンド粒子2の平均粒径d1が3.5μm以下、特
に0.01〜2.5μmであることが望ましく、さら
に、ダイヤモンド粒子2の平均粒径d1と、硬質粒子6
の平均粒径d2との比(d1/d2)が1.0〜500
0、特に1.1〜3500、さらに1.2〜700であ
ることが望ましい。これによって、焼結合金8の毛細管
力をダイヤモンド焼結体4の毛細管力よりも大きくし
て、焼成時に、特に1400℃以上の高温にて一部溶融
した結合材である鉄族金属の含浸力に差をつけることが
できる結果、鉄族金属の分布を焼結合金側にシフトさせ
ることができる。なお、d1/d2が1.0以下である場
合には、ダイヤモンド焼結体4中の鉄族金属の添加量を
焼結合金8中の鉄族金属よりも多くなるように調整し、
特に1400℃未満の低温にて焼成することにより、M
d/Mcを所定量に制御することができる。または、芯
材4と表皮部材8との間に鉄属金属の拡散を防止するT
i等を主体とする拡散防止層を介層することによっても
鉄属金属の含有量の制御が可能である。
Further, according to the present invention, the amount of the iron group metal 3 in the diamond sintered body 4 and the amount of the iron group metal 7 in the sintered alloy 8 are suppressed to a predetermined amount while maintaining the impact resistance. for, 3.5 [mu] m average particle size d 1 of the diamond particles 2 or less, it is desirable in particular 0.01~2.5Myuemu, further the average particle size d 1 of the diamond particles 2, the hard particles 6
Ratio (d 1 / d 2 ) to the average particle diameter d 2 of 1.0 to 500
It is preferably 0, particularly 1.1 to 3500, and more preferably 1.2 to 700. As a result, the capillary force of the sintered alloy 8 is made larger than that of the diamond sintered body 4, and at the time of firing, the impregnation force of the iron group metal, which is a binder partially melted at a high temperature of 1400 ° C. or higher. As a result, the distribution of the iron group metal can be shifted to the sintered alloy side. When d 1 / d 2 is 1.0 or less, the addition amount of the iron group metal in the diamond sintered body 4 is adjusted to be larger than that in the sintered alloy 8.
Especially by firing at a low temperature of less than 1400 ° C, M
It is possible to control d / Mc to a predetermined amount. Alternatively, T for preventing the diffusion of the iron group metal between the core material 4 and the skin member 8
It is also possible to control the content of the iron group metal by interposing a diffusion prevention layer mainly containing i or the like.

【0014】さらには、芯材4と表皮部材8との界面に
おける密着性を高めるとともに、局所的な応力集中を抑
制するために、図2の鉄族金属量の分布に示すように、
鉄属金属3の含有量が芯材4から表皮部材8に向かって
次第に、換言すれば連続的または段階的に減少すること
が望ましい。
Further, in order to improve the adhesion at the interface between the core material 4 and the skin member 8 and suppress local stress concentration, as shown in the distribution of the amount of iron group metal in FIG.
It is desirable that the content of the iron group metal 3 gradually decreases from the core material 4 toward the skin member 8, in other words, continuously or stepwise.

【0015】また、例えば、芯材4の平均直径は500
μm以下、特に2〜200μm、さらに、本発明によれ
ば、芯材4の硬度が高いために2〜100μm、表皮部
材の平均厚みは500μm以下、特に20〜200μm
からなるが、高硬度を達成するためには、芯材4の平均
直径D1と表皮部材の平均厚みD2との比D2/D1が0.
01〜500であることが望ましい。さらに、芯材4に
圧縮の残留応力を付与しつつ両者間での剥離を防止する
ためには、特に0.3〜100とすることが望ましい。
Further, for example, the average diameter of the core material 4 is 500.
According to the present invention, the hardness of the core material 4 is 2 to 100 μm, and the average thickness of the skin member is 500 μm or less, and particularly 20 to 200 μm.
However, in order to achieve high hardness, the ratio D 2 / D 1 of the average diameter D 1 of the core material 4 and the average thickness D 2 of the skin member is 0.
It is desirable that it is 01 to 500. Furthermore, in order to impart a compressive residual stress to the core material 4 and prevent separation between the core material 4 and the core material 4, it is particularly desirable to set it to 0.3 to 100.

【0016】さらに、図1では芯材4が1本、すなわち
単体の周囲に表皮部材8が被覆された場合について示し
たが、本発明はこれに限定されるものではなく、図3に
示すように、図1の構造体1を例えば4本以上の複数本
収束したマルチフィラメント構造であってもよい。
Further, although FIG. 1 shows the case where one core member 4, that is, the periphery of the single body is covered with the skin member 8, the present invention is not limited to this, and as shown in FIG. Further, the structure 1 of FIG. 1 may have a multifilament structure in which a plurality of, for example, four or more bundles are converged.

【0017】次に、本発明の複合構造体を製造する方法
について図4の模式図をもとに説明する。
Next, a method for producing the composite structure of the present invention will be described with reference to the schematic view of FIG.

【0018】まず、平均粒径0.01〜3.5μmのダ
イヤモンド粉末を50〜98重量%と平均粒径10μm
以下の鉄族金属粉末を2〜50重量%以下を混合し、こ
れにパラフィンワックス、ポリスチレン、ポリエチレ
ン、エチレン−エチルアクリレ−ト、エチレン−ビニル
アセテート、ポリブチルメタクリレート、ポリエチレン
グリコール、ジブチルフタレート等の有機バインダを添
加して混錬して、プレス成形、押出成形または鋳込成形
等の成形方法により円柱形状の芯材用成形体4'を成形
する(工程(a)参照)。
First, 50 to 98% by weight of diamond powder having an average particle size of 0.01 to 3.5 μm and an average particle size of 10 μm are used.
The following iron group metal powders are mixed in an amount of 2 to 50% by weight or less and an organic binder such as paraffin wax, polystyrene, polyethylene, ethylene-ethyl acrylate, ethylene-vinyl acetate, polybutyl methacrylate, polyethylene glycol or dibutyl phthalate. Is added and kneaded, and a columnar molded body 4'for a core material is molded by a molding method such as press molding, extrusion molding or cast molding (see step (a)).

【0019】一方、平均粒径0.01〜10μmの硬質
粒子または硬質粒子形成成分を70〜95重量%と平均
粒径10μm以下の鉄族金属粉末を5〜30重量%との
割合で混合し、これに前述のバインダ等を添加して混錬
して、プレス成形、押出成形8'または鋳込成形等の成
形方法により半割円筒形状の2本の表皮部材用成形体
8'を作製し、該表皮部材用成形体8'を前記芯材用成形
体4'の外周を覆うように配置した複合成形体を作製す
る(工程(a)参照)。
On the other hand, 70 to 95% by weight of hard particles or components for forming hard particles having an average particle size of 0.01 to 10 μm and 5 to 30% by weight of iron group metal powder having an average particle size of 10 μm or less are mixed. The above-mentioned binder and the like are added to this and kneaded to produce two half-cylindrical molded bodies 8'for skin members by a molding method such as press molding, extrusion molding 8'or cast molding. Then, a composite molded body in which the molded body for skin member 8 ′ is arranged so as to cover the outer periphery of the molded body for core 4 ′ is prepared (see step (a)).

【0020】そして、上記複合成形体を共押出成形する
ことにより芯材4'の周囲に表皮部材8'が被覆された細
い径に伸延された複合成形体1'を作製する(工程
(b)参照)。また、マルチフィラメント構造の構造体
を作製するには、上記共押出しした長尺状の成形体1'
を複数本収束して再度共押出し成形すればよい(工程
(c)参照)。
Then, the composite molded body is co-extruded to produce a composite molded body 1'in which a core member 4'is covered with a skin member 8'and stretched to have a small diameter (step (b)). reference). Further, in order to produce a structure having a multifilament structure, the co-extruded elongated shaped body 1 '
A plurality of the above may be converged and co-extruded again (see step (c)).

【0021】さらに、上記伸延された長尺状の成形体を
所望により円柱、三角柱、四角柱に成形すればよい。ま
た、整列させてシートとなし、該シートの長尺状の成形
体同士が平行、直交または45°等の所定の角度をなす
ように積層させた積層体とすることもできる。また、公
知のラピッドプロトダイビング法等の成形方法によって
任意の形状に成形することも可能である。さらには、上
記整列したシートまたは該シートを断面方向にスライス
した複合構造体シートを従来の超硬合金等の硬質合金焼
結体(塊状体)の表面に貼り合わせ、または接合するこ
とも可能である。
Further, the elongated elongated shaped body may be shaped into a cylinder, a triangular prism or a quadrangular prism as desired. It is also possible to form a sheet by arranging the sheets and stacking the long shaped articles of the sheets so as to form a predetermined angle such as parallel, orthogonal or 45 °. Further, it is also possible to mold it into an arbitrary shape by a known molding method such as a rapid protodiving method. Furthermore, it is also possible to attach or join the above-mentioned aligned sheets or a composite structure sheet obtained by slicing the sheets in the cross-sectional direction to the surface of a conventional hard alloy sintered body (lump) such as cemented carbide. is there.

【0022】その後、前記成形体を脱バインダ処理した
後、超高圧焼成することにより本発明の複合構造体を作
製することができる。本発明によれば、芯材4と表皮部
材8との鉄族金属量を所定の範囲内に制御するために、
前記焼成条件として、超高圧装置等を用いて圧力4GP
a以上、温度1300℃以上で5分〜1時間とすること
が望ましい。特に、ダイヤモンド粒子2の平均粒径d1
と、硬質粒子6の平均粒径d2との比(d1/d2)が
1.0〜5000である場合には1400℃〜1800
℃であることが望ましく、1.0以下である場合140
0℃未満であるが望ましい。
After that, the composite body of the present invention can be manufactured by subjecting the molded body to binder removal processing and then firing at ultrahigh pressure. According to the present invention, in order to control the iron group metal amount of the core material 4 and the skin member 8 within a predetermined range,
As the firing condition, a pressure of 4 GP is applied using an ultra-high pressure device or the like.
It is preferable that the temperature is a or higher and the temperature is 1300 ° C. or higher for 5 minutes to 1 hour. In particular, the average particle diameter d 1 of the diamond particles 2
And the ratio (d 1 / d 2 ) of the average particle diameter d 2 of the hard particles 6 is 1.0 to 5000, 1400 ° C. to 1800
℃ is desirable, if less than 1.0 140
It is preferably below 0 ° C.

【0023】[0023]

【実施例】(実施例)表1に示す平均粒径のダイヤモン
ド粒子80〜98重量%に対し、平均粒径2μmのコバ
ルト粉末を2〜20重量%添加し、これにバインダと滑
剤を添加して混錬した後、プレス成形により直径16m
mの芯材用成形体を作製した。
EXAMPLES (Example) 2 to 20% by weight of cobalt powder having an average particle size of 2 μm was added to 80 to 98% by weight of diamond particles having an average particle size shown in Table 1, and a binder and a lubricant were added thereto. 16m in diameter by press molding after kneading
m core material molding was produced.

【0024】一方、表1に示す硬質粒子粉末80〜90
重量%に対し、平均粒径0.5〜2μmのコバルト粉末
を10〜20重量%添加し、これにバインダと滑剤を添
加して混錬した後、プレス成形により肉厚2mmで半割
円筒状の表皮部材用成形体を2本作製し、前記芯材用成
形体の周囲に被覆した複合成形体を作製した。
On the other hand, hard particle powders 80 to 90 shown in Table 1
10 to 20% by weight of cobalt powder having an average particle size of 0.5 to 2 μm is added to the weight%, and a binder and a lubricant are added to the mixture and kneaded, followed by press molding to form a half-cylindrical cylinder with a wall thickness of 2 mm. The two molded articles for the skin member of 1 were produced, and the composite molded article in which the periphery of the molded article for the core material was coated was produced.

【0025】そして、前記複合成形体を共押出した伸延
された成形体を作製した後、該伸延された成形体100
本を収束して再度共押出し成形し、マルチフィラメント
タイプの成形体を作製した。その後、該成形体に対して
脱バインダ処理を行い、続いて試料を超高圧装置内にセ
ットして圧力5GPaにて、表1の温度条件で焼成して
複合構造体を作製した。
After forming a stretched molded body by coextruding the composite molded body, the stretched molded body 100 is obtained.
The book was converged and coextruded again to produce a multifilament type molded body. Then, the molded body was subjected to binder removal treatment, and subsequently, the sample was set in an ultrahigh pressure apparatus and fired at a pressure of 5 GPa under the temperature conditions shown in Table 1 to produce a composite structure.

【0026】得られた複合構造体に対して、ヴィッカー
ス硬度(JISR1601に準じる)を測定した。さら
に、試料の研磨断面について波長分散型X線マイクロア
ナリシス分析を行い、鉄族金属のピーク強度の合計量を
芯材と表皮部材のそれぞれの平均値について大小を比較
した。EPMAの条件は、加速電圧1.5kV、プロー
ブ電流3×10-7A、スポットサイズ2μmである。そ
の結果を表1に示す。
Vickers hardness (according to JIS R1601) was measured for the obtained composite structure. Furthermore, wavelength-dispersive X-ray microanalysis analysis was performed on the polished cross section of the sample, and the total amount of peak intensities of the iron group metal was compared in magnitude with respect to each average value of the core material and the skin member. The EPMA conditions are an acceleration voltage of 1.5 kV, a probe current of 3 × 10 −7 A, and a spot size of 2 μm. The results are shown in Table 1.

【0027】また、構造体の組織を観察し、芯材の直径
および表皮部材の厚みを測定したところ、各試料の平均
は芯材の直径D1=130μm、表皮部材の厚みD2=2
0μmであった。なお、焼結体中のCo量は、Coの移
動後の結果として、不等号で記載した。
Further, when the structure of the structure was observed and the diameter of the core material and the thickness of the skin member were measured, the average of each sample was the diameter D 1 = 130 μm of the core material and the thickness D 2 = 2 of the skin member.
It was 0 μm. In addition, the amount of Co in the sintered body is described by an inequality sign as a result after the movement of Co.

【0028】また、上記複合構造体用成形体を作製し、
その断面方向に厚さ1mmにスライスしたシートを超硬
合金と貼り合わせて上記同様の条件にて超高圧焼結し、
工具形状(SPGN120408)の超硬合金の切刃を
なす位置にロウ付けし、切刃部分が複合構造体からなる
切削工具を作製した。
Further, a molded body for the above composite structure is prepared,
A sheet sliced to have a thickness of 1 mm in the cross-sectional direction is bonded to a cemented carbide and sintered under ultrahigh pressure under the same conditions as above,
A cutting tool having a tool shape (SPGN120408) made of cemented carbide was brazed at a position to form a cutting edge, and a cutting tool having a cutting edge portion made of a composite structure was produced.

【0029】得られた切削工具について、以下の切削条
件でフライス切削テストを行い、テスト後の刃先のチッ
ピング状態を観察するとともに、摩耗幅を測定した。そ
の結果を表1に示す。 被削材:ハイシリコンアルミ(Al−16%Si) 切削速度:1000m/min 切込み:2mm 送り:0.1mm/刃 切削時間:60min
The obtained cutting tool was subjected to a milling cutting test under the following cutting conditions to observe the chipping state of the cutting edge after the test and to measure the wear width. The results are shown in Table 1. Work Material: High Silicon Aluminum (Al-16% Si) Cutting Speed: 1000m / min Depth of Cut: 2mm Feed: 0.1mm / Blade Cutting Time: 60min

【0030】[0030]

【表1】 [Table 1]

【0031】試料No.1、2ではテスト途中にてチッ
ピングが大きく進行してしまい、また試料No.3では
摩耗量52μmと非常に大きな摩耗であった。これに対
し、試料No.4〜11の複合構造体を有する工具で
は、チッピングすることもなく、また、摩耗量が30μ
m以下と非常に優れた切削特性であることが確認され
た。
Sample No. In Nos. 1 and 2, chipping greatly progressed during the test, and Sample No. In No. 3, the amount of wear was 52 μm, which was a very large amount of wear. On the other hand, the sample No. The tool having the composite structure of 4 to 11 does not chip and has a wear amount of 30 μm.
It was confirmed that the cutting characteristics were very excellent as m or less.

【0032】[0032]

【発明の効果】以上詳述したとおり、本発明の複合構造
体によれば、芯材であるダイヤモンド焼結体中の鉄族金
属量を表皮部材である焼結合金中のそれよりも少なくす
ることによって、ダイヤモンドが高含有化され、さらに
芯部へ圧縮残留応力が付与され、耐衝撃性を維持しつ
つ、より高硬度な複合構造体となる。
As described in detail above, according to the composite structure of the present invention, the amount of the iron group metal in the diamond sintered body as the core material is made smaller than that in the sintered alloy as the skin member. As a result, the content of diamond is increased, compressive residual stress is applied to the core, and a composite structure having higher hardness while maintaining impact resistance is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合構造体の一例を示す概略斜視図で
ある。
FIG. 1 is a schematic perspective view showing an example of a composite structure of the present invention.

【図2】図1の複合構造体の要部拡大図である。FIG. 2 is an enlarged view of a main part of the composite structure shown in FIG.

【図3】本発明の複合構造体の他の一例を示す概略斜視
図である。
FIG. 3 is a schematic perspective view showing another example of the composite structure of the present invention.

【図4】本発明の複合構造体の製造方法を説明するため
の概念図である。
FIG. 4 is a conceptual diagram for explaining a method for manufacturing a composite structure of the present invention.

【符号の説明】[Explanation of symbols]

1 複合構造体 2 ダイヤモンド粒子 3 鉄族金属 4 芯材(ダイヤモンド焼結体) 6 硬質粒子 7 鉄族金属 8 表皮部材(焼結合金) 1 composite structure 2 diamond particles 3 Iron group metal 4 Core material (diamond sintered body) 6 hard particles 7 Iron group metal 8 Skin material (sintered alloy)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 29/02 C22C 29/02 Z 29/16 29/16 P ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 29/02 C22C 29/02 Z 29/16 29/16 P

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンド粒子間を鉄属金属にて結合
したダイヤモンド焼結体からなる長尺状の芯材の外周
を、周期律表4a、5a、6a族金属の群から選ばれる
少なくとも1種以上の金属元素(M)の炭化物、窒化物
および炭窒化物のうちの1種以上の硬質粒子を鉄属金属
にて結合した焼結合金からなる表皮部材にて被覆してな
る複合構造体であって、前記芯材中の鉄属金属量が前記
表皮部材中の鉄属金属量よりも少ないことを特徴とする
複合構造体。
1. An outer periphery of a long core made of a diamond sintered body in which diamond particles are bonded by an iron-group metal, at least one kind selected from the group of metals of groups 4a, 5a and 6a of the periodic table. A composite structure in which one or more hard particles of the above-mentioned metal element (M) carbides, nitrides, and carbonitrides are coated with a skin member made of a sintered alloy bonded with an iron group metal. A composite structure characterized in that the amount of iron group metal in the core material is smaller than the amount of iron group metal in the skin member.
【請求項2】 前記ダイヤモンド粒子の平均粒径d1
3.5μm以下であることを特徴とする請求項1記載の
複合構造体。
2. The composite structure according to claim 1, wherein the average particle diameter d 1 of the diamond particles is 3.5 μm or less.
【請求項3】 前記ダイヤモンド粒子の平均粒径d
1と、前記硬質粒子の平均粒径d2との比(d1/d2)が
1.0〜5000であることを特徴とする請求項1また
は2記載の複合構造体。
3. The average particle diameter d of the diamond particles
3. The composite structure according to claim 1 , wherein the ratio (d 1 / d 2 ) of 1 to the average particle diameter d 2 of the hard particles is 1.0 to 5000.
【請求項4】 前記鉄属金属の含有量が芯材から表皮部
材に向かって次第に増加することを特徴とする請求項1
乃至3のいずれか記載の複合構造体。
4. The content of the iron-group metal gradually increases from the core material to the skin member.
4. The composite structure according to any one of 3 to 3.
【請求項5】 前記芯材の平均直径D1と前記表皮部材
の平均厚みD2との比(D2/D1)が0.01〜50で
あることを特徴とする請求項1乃至4のいずれか記載の
複合構造体。
5. The ratio (D 2 / D 1 ) of the average diameter D 1 of the core material and the average thickness D 2 of the skin member is 0.01 to 50. 7. The composite structure according to any one of 1.
JP2001358398A 2001-11-22 2001-11-22 Multi-core composite structure Expired - Fee Related JP4095287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358398A JP4095287B2 (en) 2001-11-22 2001-11-22 Multi-core composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358398A JP4095287B2 (en) 2001-11-22 2001-11-22 Multi-core composite structure

Publications (2)

Publication Number Publication Date
JP2003160389A true JP2003160389A (en) 2003-06-03
JP4095287B2 JP4095287B2 (en) 2008-06-04

Family

ID=19169583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358398A Expired - Fee Related JP4095287B2 (en) 2001-11-22 2001-11-22 Multi-core composite structure

Country Status (1)

Country Link
JP (1) JP4095287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008462A (en) * 2003-06-17 2005-01-13 Kyocera Corp Compound sintered compact, compound structure and method of manufacturing them
JP2014095119A (en) * 2012-11-08 2014-05-22 Mitsubishi Materials Corp Wc-based super hard alloy wire for cutting tool excellent in breakage resistance with high deflection strength

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008462A (en) * 2003-06-17 2005-01-13 Kyocera Corp Compound sintered compact, compound structure and method of manufacturing them
JP4574129B2 (en) * 2003-06-17 2010-11-04 京セラ株式会社 Method for manufacturing composite structure
JP2014095119A (en) * 2012-11-08 2014-05-22 Mitsubishi Materials Corp Wc-based super hard alloy wire for cutting tool excellent in breakage resistance with high deflection strength

Also Published As

Publication number Publication date
JP4095287B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US7250123B2 (en) Composite construction and manufacturing method thereof
Yasrebi et al. Biomimetic processing of ceramics and ceramic-metal composites
US6777074B2 (en) Composite construction
JP2003160389A (en) Composite structural body
KR100683105B1 (en) Composite Material Containing Ultra-Hard Particle
JP4220801B2 (en) Composite structure
JP2003160388A (en) Composite structural body
JP3825347B2 (en) Composite structure
JP4109471B2 (en) Method for producing composite structure
JP4889226B2 (en) Composite sintered body and cutting tool
JP4183162B2 (en) Composite structure
JP4400850B2 (en) Composite member and cutting tool using the same
JP2004232001A (en) Composite hard sintered compact, and composite member and cutting tool using it
JP4126449B2 (en) Multi-core composite structure
JP2004256851A (en) Composite structure
JP4336111B2 (en) Composite parts, cutting tools
JP2004283949A (en) Cutting tool
JP4195797B2 (en) Composite hard sintered body and cutting tool using the same
JP4574129B2 (en) Method for manufacturing composite structure
JP4309777B2 (en) Cutting tools
JP4084583B2 (en) Cutting tools
JP4328118B2 (en) Method for producing composite structure
JP2007261894A (en) Ceramic composite and cutting tool for fabricating heat-resistant alloy
JP2004043255A (en) Composite structure
JP2008121119A (en) Composite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees