JP2003160388A - Composite structural body - Google Patents

Composite structural body

Info

Publication number
JP2003160388A
JP2003160388A JP2001358397A JP2001358397A JP2003160388A JP 2003160388 A JP2003160388 A JP 2003160388A JP 2001358397 A JP2001358397 A JP 2001358397A JP 2001358397 A JP2001358397 A JP 2001358397A JP 2003160388 A JP2003160388 A JP 2003160388A
Authority
JP
Japan
Prior art keywords
group metal
iron
composite structure
core material
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001358397A
Other languages
Japanese (ja)
Other versions
JP4095286B2 (en
Inventor
Kenji Noda
謙二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001358397A priority Critical patent/JP4095286B2/en
Priority to US10/302,772 priority patent/US6777074B2/en
Publication of JP2003160388A publication Critical patent/JP2003160388A/en
Application granted granted Critical
Publication of JP4095286B2 publication Critical patent/JP4095286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite structural body having compatibly high hardness and high toughness. <P>SOLUTION: This composite structural body 1 is constituted as follows: an outer circumference of a long-sized core material 4 consisting of a diamond sintered compact, in which diamond particles 2 and 2 are bonded with an iron- family metal 3, is coated with a skin member 8 of a sintered alloy in which hard particles 6 of at least one kind among a carbide, a nitride and a carbonitride of at least a metal element (M) selected from the group consisting of groups 4a, 5a and 6a in the periodic table, wherein the quantity of the iron- family metal 3 in the diamond sintered compact 4 is more than that of the iron-family metal 7 in the sintered alloy 8. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ダイヤモンド焼結
体からなる芯材の外周を、焼結合金からなる表皮部材に
て被覆してなる複合構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite structure in which the outer circumference of a core material made of a diamond sintered body is covered with a skin member made of a sintered alloy.

【0002】[0002]

【従来の技術】従来より、繊維等長尺状の芯材の外周を
他の部材にて被覆することにより、構造体の硬度や強度
に加えて靭性を改善する技術が研究されており、例え
ば、特開平11−139884号公報では、セラミック
スからなる芯材(線状セラミックス)の外周に第2相成
分の被覆層を吹き付け、これを一方向に収束して圧縮成
形して焼成した複合セラミック焼結体が記載されてお
り、構造体の破壊抵抗が増大することが開示されてい
る。
2. Description of the Related Art Conventionally, a technique for improving the toughness in addition to the hardness and strength of a structure by covering the outer circumference of a long core material such as a fiber with another member has been studied. In Japanese Patent Laid-Open No. 11-139884, a composite ceramic calcination in which a coating layer of a second phase component is sprayed on the outer periphery of a core material (linear ceramics) made of ceramics, which is converged in one direction and compression molded and baked. A knot is described and it is disclosed that the fracture resistance of the structure is increased.

【0003】一方、ダイヤモンドは、高い硬度を有する
という特性を生かして、ダイヤモンド粒子間を鉄属金属
にて結合したダイヤモンド焼結体が、切削工具または掘
削用の工具や耐摩耗部材として利用されている。
On the other hand, a diamond sintered body in which diamond particles are bonded by an iron-group metal is utilized as a cutting tool or a tool for excavation or a wear-resistant member by taking advantage of the fact that diamond has a high hardness. There is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のダイヤモンド焼結体では、硬度は高いものの靭性お
よび耐衝撃性が低く、例えば切削工具または掘削工具等
として使用すると耐欠損性が劣るという問題があった。
However, the above-mentioned conventional diamond sintered body has a problem that the hardness is high but the toughness and the impact resistance are low, and the fracture resistance is poor when it is used as a cutting tool or a drilling tool, for example. there were.

【0005】また、上述した複合構造体として芯材にダ
イヤモンド焼結体を用い表皮部材に超硬合金(WC)等
の周期律表4a、5a、6a族金属を主成分とする焼結
合金にて被覆した複合構造体が考えられるが、構造体の
高強度と高靭性を両立させる組成については検討されて
おらず、さらに、単純に上記ダイヤモンド焼結体と焼結
金属を組み合わせただけでは、芯部のダイヤモンドと表
皮部材の主成分である硬質粒子との熱膨張係数差が大き
いために、芯部と表皮部材との界面に部分的にクラック
や剥離が発生する場合があり、靭性の低下につながると
いう問題があった。
Further, a diamond sintered body is used as a core material in the above-mentioned composite structure, and a sintered alloy mainly composed of a metal of group 4a, 5a, 6a of the periodic table such as cemented carbide (WC) is used as a skin member. Although a composite structure coated with is conceivable, the composition that achieves both high strength and high toughness of the structure has not been studied, and further, simply combining the diamond sintered body and the sintered metal, Due to the large difference in thermal expansion coefficient between the core diamond and the hard particles that are the main component of the skin member, there may be partial cracking or peeling at the interface between the core and the skin member, resulting in reduced toughness. There was a problem that led to.

【0006】本発明は上記課題を解決するためになされ
たもので、その目的は、高硬度と高靭性とを両立できる
複合構造体を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a composite structure capable of achieving both high hardness and high toughness.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題に
ついて検討した結果、芯材であるダイヤモンド焼結体中
の鉄族金属量を表皮部材である焼結合金中の鉄族金属量
よりも多くすることによって、両者間の熱膨張係数差を
小さくでき、高硬度と高靭性を両立できる複合構造体が
得られることを知見した。
Means for Solving the Problems As a result of studying the above problems, the present inventors have found that the amount of iron group metal in a diamond sintered body as a core material is more than that in a sintered alloy as a skin member. It has been found that by increasing the amount, the difference in the coefficient of thermal expansion between the two can be reduced, and a composite structure that can achieve both high hardness and high toughness can be obtained.

【0008】すなわち、本発明の複合構造体は、ダイヤ
モンド粒子間を鉄属金属にて結合したダイヤモンド焼結
体からなる長尺状の芯材の外周を、周期律表4a、5
a、6a族金属の群から選ばれる少なくとも1種以上の
金属元素(M)の炭化物、窒化物および炭窒化物のうち
の1種以上の硬質粒子を鉄属金属にて結合した焼結合金
からなる表皮部材にて被覆してなる複合構造体であっ
て、前記芯材中の鉄属金属量が前記表皮部材中の鉄属金
属量よりも多いことを特徴とする複合構造体である。
That is, in the composite structure of the present invention, the outer circumference of a long core made of a diamond sintered body in which diamond particles are bonded by an iron-group metal is set to the periodic table 4a, 5
From a sintered alloy in which at least one kind of hard particles of at least one kind of metal element (M) selected from the group of a and 6a metals, carbides, nitrides and carbonitrides are bound by an iron group metal The composite structure is formed by coating with the following skin member, wherein the amount of the iron group metal in the core material is larger than the amount of the iron group metal in the skin member.

【0009】[0009]

【発明の実施の形態】本発明の複合構造体について、そ
の一実施例である図1の概略図およびその要部拡大図で
ある図2を基に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The composite structure of the present invention will be described with reference to the schematic view of FIG. 1 which is an embodiment of the composite structure and FIG.

【0010】図1によれば、複合構造体1は、ダイヤモ
ンド粒子2、2間を鉄属金属3にて結合したダイヤモン
ド焼結体4からなる長尺状の芯材(4)の外周を、周期
律表4a、5a、6a族金属の群から選ばれる少なくと
も1種以上の金属元素(M)の炭化物、窒化物および炭
窒化物のうちの1種以上のからなる硬質粒子6を鉄属金
属7にて結合した焼結合金8からなる表皮部材(8)に
て被覆してなる。
As shown in FIG. 1, the composite structure 1 has a long core (4) made of a diamond sintered body 4 in which diamond particles 2 and 2 are bonded together by an iron-group metal 3, The hard particles 6 made of one or more of carbides, nitrides and carbonitrides of at least one metal element (M) selected from the group of metals of groups 4a, 5a and 6a of the Periodic Table are iron group metals. It is covered with a skin member (8) made of a sintered alloy 8 bonded at 7.

【0011】本発明によれば、芯材(ダイヤモンド焼結
体)4中の鉄属金属3の量が表皮部材(焼結合金)8中
の鉄属金属7の量よりも多いことが大きな特徴であり、
これによって、両者間の熱膨張係数差を小さくでき、高
硬度と高靭性を両立できる複合構造体となる。ここで、
本発明における鉄属金属量とは、構造体1断面のエネル
ギー分散型X線マイクロアナリシスにおける鉄族金属の
ピーク強度の合計であり、特に、ダイヤモンド焼結体4
中の鉄属金属3量Mdと、焼結合金8中の鉄属金属7量
Mcとの比(Md/Mc)が1.2以上、特に1.5〜
100であることが望ましい。
According to the present invention, the amount of the iron group metal 3 in the core material (diamond sintered body) 4 is larger than the amount of the iron group metal 7 in the skin member (sintered alloy) 8. And
This makes it possible to reduce the difference in thermal expansion coefficient between the two and to provide a composite structure that can achieve both high hardness and high toughness. here,
The amount of iron group metal in the present invention is the total peak intensity of the iron group metal in the energy dispersive X-ray microanalysis of the cross section of the structure 1, and particularly the diamond sintered body 4
The ratio (Md / Mc) of the iron group metal 3 amount Md in the inside and the iron group metal 7 amount Mc in the sintered alloy 8 is 1.2 or more, particularly 1.5 to.
It is preferably 100.

【0012】また、本発明によれば、ダイヤモンド焼結
体4中の鉄属金属3量と焼結合金8中の鉄属金属7量と
を所定量に抑制して複合構造体の破壊靱性値を向上させ
るために、ダイヤモンド粒子2の平均粒径d1が3.5
μm以下、特に0.01〜2.5μmであることが望ま
しく、さらに、ダイヤモンド粒子2の平均粒径d1と、
硬質粒子6の平均粒径d2との比(d1/d2)が0.0
01〜1.0、特に0.01〜0.9、さらに0.05
〜0.8であることが望ましい。これによって、ダイヤ
モンド焼結体4の毛細管力を焼結合金8のそれよりも大
きくして、結合材である鉄族金属3の含浸力に差をつけ
ることができることから、焼成時に溶融した鉄属金属を
十分に浸透させることによって容易に鉄族金属の分布を
ダイヤモンド焼結体側にシフトさせることができる。こ
のようにダイモンド粒子の平均粒径d1を3.5μm以
下とするか、ダイヤモンド粒子の平均粒径d1と硬質粒
子の平均粒径d2との比(d1/d2)を0.001〜
1.0とすると、複合構造体の破壊靱性値を20MPa
√m以上とすることができる。
Further, according to the present invention, the fracture toughness value of the composite structure is controlled by suppressing the amounts of the iron group metal 3 in the diamond sintered body 4 and the iron group metal 7 in the sintered alloy 8 to predetermined amounts. to improve the average particle size d 1 of the diamond particles 2 3.5
The average particle diameter d 1 of the diamond particles 2 is preferably 0.01 μm or less, particularly 0.01 to 2.5 μm.
The ratio (d 1 / d 2 ) of the hard particles 6 to the average particle diameter d 2 is 0.0
01-1.0, especially 0.01-0.9, and even 0.05
It is desirable to be 0.8. As a result, the capillary force of the diamond sintered body 4 can be made larger than that of the sintered alloy 8 and the impregnation force of the iron group metal 3 as the binder can be made different. By sufficiently permeating the metal, the distribution of the iron group metal can be easily shifted to the diamond sintered body side. Thus if the average particle size d 1 of Dimond particles to 3.5μm or less, the ratio of the average particle size d 2 of an average particle diameter d 1 and the hard particles of diamond particles (d 1 / d 2) 0. 001-
If 1.0, the fracture toughness value of the composite structure is 20 MPa.
It can be √m or more.

【0013】なお、d1/d2が1.0より大きい場合で
あっても、鉄族金属の添加量をダイヤモンド焼結体側が
多くなる所定の比率に調整し、かつ焼成温度を例えば1
400℃未満とするか、または芯材と表皮部材間に鉄族
金属の拡散を阻害する中間層を配して焼結時の鉄族金属
の拡散を抑制することにより、芯材中の鉄族金属量を焼
結合金のそれよりも多くすることが可能である。
Even when d 1 / d 2 is larger than 1.0, the addition amount of the iron group metal is adjusted to a predetermined ratio that increases the diamond sintered body side, and the firing temperature is set to, for example, 1.
By setting the temperature to less than 400 ° C. or by disposing an intermediate layer that inhibits the diffusion of the iron group metal between the core material and the skin member to suppress the diffusion of the iron group metal during sintering, the iron group in the core material It is possible to have a higher metal content than that of the sintered alloy.

【0014】さらには、芯材4と被皮部材8との界面に
おける密着性を高めるとともに、局所的な応力集中を抑
制するために、図2の鉄族金属量の分布に示すように、
鉄属金属3の含有量が芯材4から表皮部材8に向かって
次第に、換言すれば連続的または段階的に減少すること
が望ましい。
Further, in order to enhance the adhesion at the interface between the core material 4 and the covering member 8 and suppress local stress concentration, as shown in the distribution of the amount of iron group metal in FIG.
It is desirable that the content of the iron group metal 3 gradually decreases from the core material 4 toward the skin member 8, in other words, continuously or stepwise.

【0015】また、例えば、芯材4の平均直径は500
μm以下、特に2〜200μm、表皮部材8の平均厚み
は500μm以下、特に0.1〜200μmからなる
が、硬度50GPa以上、靭性18MPa√m以上とす
るためには、芯材4の平均直径D1と表皮部材8の平均
厚みD2との比D2/D1が0.01〜0.5、特に0.
02〜0.2であることが望ましい。
Further, for example, the average diameter of the core material 4 is 500.
The average thickness D of the core material 4 is not more than μm, particularly 2 to 200 μm, and the average thickness of the skin member 8 is not more than 500 μm, especially 0.1 to 200 μm, but in order to have a hardness of 50 GPa or more and a toughness of 18 MPa√m or more. 1 and the average ratio of D 2 / D 1 between the thickness D 2 of the skin member 8 is 0.01 to 0.5, especially 0.
It is desirable that it is from 02 to 0.2.

【0016】さらに、図1では芯材4が1本、すなわち
単体の周囲に表皮部材8が被覆された場合について示し
たが、本発明はこれに限定されるものではなく、図3に
示すように、図1の構造体1を例えば4本以上の複数本
収束したマルチフィラメント構造であってもよい。
Further, although FIG. 1 shows the case where one core member 4, that is, the periphery of the single body is covered with the skin member 8, the present invention is not limited to this, and as shown in FIG. Further, the structure 1 of FIG. 1 may have a multifilament structure in which a plurality of, for example, four or more bundles are converged.

【0017】次に、本発明の複合構造体を製造する方法
について図4の模式図をもとに説明する。
Next, a method for producing the composite structure of the present invention will be described with reference to the schematic view of FIG.

【0018】まず、平均粒径0.01〜3.5μmのダ
イヤモンド粉末を50重量%以上と平均粒径10μm以
下の鉄族金属粉末を50重量%以下を混合し、これにパ
ラフィンワックス、ポリスチレン、ポリエチレン、エチ
レン−エチルアクリレ−ト、エチレン−ビニルアセテー
ト、ポリブチルメタクリレート、ポリエチレングリコー
ル、ジブチルフタレート等の有機バインダを添加して混
錬して、プレス成形、押出成形または鋳込成形等の成形
方法により円柱形状の芯材用成形体4'を成形する(工
程(a))。
First, 50 wt% or more of diamond powder having an average particle diameter of 0.01 to 3.5 μm and 50 wt% or less of iron group metal powder having an average particle diameter of 10 μm or less are mixed, and paraffin wax, polystyrene, Cylinder by a molding method such as press molding, extrusion molding or cast molding by adding an organic binder such as polyethylene, ethylene-ethyl acrylate, ethylene-vinyl acetate, polybutyl methacrylate, polyethylene glycol or dibutyl phthalate and kneading. A shaped core material molding 4'is molded (step (a)).

【0019】一方、平均粒径0.02〜10μmの硬質
粒子または硬質粒子形成成分を70〜95重量%と平均
粒径10μm以下の鉄族金属粉末を5〜30重量%との
割合で混合し、これに前述のバインダ等を添加して混錬
して、プレス成形、押出成形または鋳込成形等の成形方
法により半割円筒形状の2本の表皮部材用成形体8'を
作製し、該表皮部材用成形体8'を前記芯材用成形体4'
の外周を覆うように配置した複合成形体を作製する(工
程(a))。
On the other hand, 70 to 95% by weight of hard particles or components for forming hard particles having an average particle diameter of 0.02 to 10 μm and 5 to 30% by weight of iron group metal powder having an average particle diameter of 10 μm or less are mixed. , The above-mentioned binder and the like are added thereto and kneaded to produce two half-cylindrical shaped molded bodies 8 ′ for skin members by a molding method such as press molding, extrusion molding or cast molding. Formed body 8'for skin member is formed body 4'for core material
A composite molded body arranged so as to cover the outer periphery of is manufactured (step (a)).

【0020】そして、上記複合成形体を共押出成形する
ことにより芯材4'の周囲に表皮部材8'が被覆された細
い径に伸延された複合成形体1'を作製する(工程
(b))。また、マルチフィラメント構造の構造体を作
製するには、上記共押出しした長尺状の成形体を複数本
収束して再度共押出し成形すれば良い(工程(c))。
Then, the composite molded body is co-extruded to produce a composite molded body 1'in which a core member 4'is covered with a skin member 8'and stretched to have a small diameter (step (b)). ). Further, in order to produce a structure having a multifilament structure, a plurality of the above-mentioned co-extruded elongated shaped bodies may be converged and co-extruded and molded again (step (c)).

【0021】さらに、上記伸延された長尺状の成形体を
所望により円柱や三角柱、四角柱、六角柱等の多角形に
成形することもできる。また、長尺状の成形体を整列さ
せてシートとなし、該シートの長尺状の成形体同士が平
行、直交または45°等の所定の角度をなすように積層
させた積層体とすることもできる。また、公知のラピッ
ドプロトダイビング法等の成形方法によって任意の形状
に成形することも可能である。さらには、上記整列した
シートまたは該シートを断面方向にスライスした複合構
造体シートを従来の超硬合金等の硬質合金焼結体(塊状
体)の表面に貼り合わせ、または接合することも可能で
ある。
Furthermore, the elongated elongated shaped body can be shaped into a polygon such as a cylinder, a triangular prism, a quadrangular prism, or a hexagonal prism, if desired. In addition, the long shaped bodies are aligned to form a sheet, and the long shaped bodies of the sheets are stacked so as to form a predetermined angle such as parallel, orthogonal or 45 °. You can also Further, it is also possible to mold it into an arbitrary shape by a known molding method such as a rapid protodiving method. Furthermore, it is also possible to attach or join the above-mentioned aligned sheets or a composite structure sheet obtained by slicing the sheets in the cross-sectional direction to the surface of a conventional hard alloy sintered body (lump) such as cemented carbide. is there.

【0022】その後、前記成形体を脱バインダ処理した
後、超高圧焼成することにより本発明の複合構造体を作
製することができる。本発明によれば、芯材4と表皮部
材8との鉄族金属量を所定の範囲内に制御するために、
前記焼成条件として、圧力4GPa以上、温度1300
℃以上で5分〜1時間とすることが望ましい。特に、ダ
イヤモンド粒子2の平均粒径d1と、硬質粒子6の平均
粒径d2との比(d1/d2)が0.01〜1.0である
場合には1400℃〜1800℃であることが望まし
く、1.0より大きい場合、1400℃未満であること
が望ましい。
After that, the composite body of the present invention can be manufactured by subjecting the molded body to binder removal processing and then firing at ultrahigh pressure. According to the present invention, in order to control the iron group metal amount of the core material 4 and the skin member 8 within a predetermined range,
As the firing conditions, a pressure of 4 GPa or more and a temperature of 1300
It is desirable that the temperature is 5 ° C. or higher and 5 minutes to 1 hour. In particular, the average particle diameter d 1 of the diamond particles 2, 1400 ° C. if the ratio between the average particle size d 2 of the hard particles 6 (d 1 / d 2) is 0.01 to 1.0 to 1800 ° C. If it is more than 1.0, it is preferably less than 1400 ° C.

【0023】[0023]

【実施例】(実施例)表1に示す平均粒径のダイヤモン
ド粒子85〜100重量%に対し、平均粒径2μmのコ
バルト粉末を0〜15重量%添加し、これにバインダと
滑剤を添加して混錬した後、プレス成形により直径20
mmの芯材用成形体を作製した。
EXAMPLES (Example) 0 to 15% by weight of cobalt powder having an average particle size of 2 μm was added to 85 to 100% by weight of diamond particles having an average particle size shown in Table 1, and a binder and a lubricant were added thereto. After kneading by kneading, the diameter is 20 by press molding.
A mm core material was produced.

【0024】一方、表1に示す硬質粒子粉末80〜95
重量%に対し、平均粒径2μmのコバルト粉末を5〜1
5重量%添加し、これにバインダ、滑剤を添加、混錬し
た後、プレス成形により肉厚1mmで半割円筒状の表皮
部材用成形体を2本作製し、前記芯材用成形体の周囲に
被覆した複合成形体を作製した。
On the other hand, hard particle powders 80 to 95 shown in Table 1
5 to 1% by weight of cobalt powder having an average particle diameter of 2 μm
After adding 5% by weight, adding a binder and a lubricant thereto, and kneading the mixture, two half-cylindrical molded bodies for skin members having a wall thickness of 1 mm were prepared by press molding, and the periphery of the molded body for core material was prepared. A composite molded body covered with the above was prepared.

【0025】そして、前記複合成形体を共押出した伸延
された成形体を作製した後、該伸延された成形体100
本を収束して再度共押出し成形し、マルチフィラメント
タイプの成形体を作製した。その後、該成形体に対して
脱バインダ処理を行い、続いて超高圧装置内にセットし
て圧力5GPaにて、表1の温度条件で焼成して複合構
造体を作製した。
After forming a stretched molded body by coextruding the composite molded body, the stretched molded body 100 is obtained.
The book was converged and coextruded again to produce a multifilament type molded body. Then, the molded body was subjected to binder removal treatment, subsequently set in an ultrahigh pressure apparatus and fired at a pressure of 5 GPa under the temperature conditions shown in Table 1 to produce a composite structure.

【0026】得られた複合構造体に対して、ヴィッカー
ス硬度(JISR1601に準じる)およびIF法にて
試料の靭性を測定した。さらに、試料の研磨断面につい
て波長分散型X線マイクロアナリシス分析(EPMA)
を行い、鉄族金属のピーク強度の合計量を芯材と表皮部
材のそれぞれの平均値について大小を比較した。EPM
Aの条件は、加速電圧15kV、プローブ電流3×10
-7A、スポットサイズ2μmである。その結果を表1に
示す。
With respect to the obtained composite structure, the toughness of the sample was measured by Vickers hardness (according to JISR1601) and IF method. Furthermore, wavelength-dispersive X-ray microanalysis analysis (EPMA) was performed on the polished cross section of the sample.
Then, the total amount of the peak strength of the iron group metal was compared with the average value of the core material and the average value of the skin member. EPM
Conditions A are acceleration voltage 15 kV, probe current 3 × 10
-7 A, spot size 2 μm. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果より、芯材と表皮部材における
鉄族金属の含有量が同じで、Co総量の少ない試料N
o.1、2では、ダイヤモンド粒子径の大きいNo.1
は、硬度は58GPaと高いものの破壊靭性が12MP
a√mと低く、ダイヤモンド粒子径の小さいNo.2
は、圧痕の剥離により測定不能であった。また、芯材と
表皮部材における鉄族金属の含有量が同じで、Co総量
の多い試料No.3では、破壊靭性が16MPa√mと
高いものの硬度は40GPaと低いものであった。
From the results of Table 1, sample N having the same iron group metal content in the core material and the skin member and a small total Co content
o. In Nos. 1 and 2, No. 1 having a large diamond particle diameter. 1
Has a high hardness of 58 GPa but a fracture toughness of 12 MP
No. 1 having a small diamond particle diameter, which is as low as a√m. Two
Was not measurable due to peeling of the indentation. In addition, in the sample No. 3 having the same iron group metal content in the core material and the skin member, and having a large total Co content. In No. 3, although the fracture toughness was as high as 16 MPa√m, the hardness was as low as 40 GPa.

【0029】これに対して、本発明に従い、芯材の鉄族
金属量が表皮部材の鉄族金属量よりも多い試料No.4
〜12では、いずれも硬度50GPa以上、靭性18M
Pa√m以上の優れた特性を有するものであった。
On the other hand, according to the present invention, in the sample No. 1 in which the amount of iron group metal in the core material is larger than that in the skin member. Four
12 to 12, hardness is 50 GPa or more, toughness 18M
It had excellent characteristics of Pa√m or more.

【0030】なお、試料No.4〜12の構造体におけ
る寸法を顕微鏡で測定したところ、平均で芯材の直径1
40〜160μm、表皮部材の平均厚み8〜12μmで
あった。なお、焼結体中のCo量は、Coの移動後の結
果として、不等号で記載してある。
Sample No. When the dimensions of the structures 4 to 12 were measured with a microscope, the average diameter of the core material was 1
The average thickness of the skin member was 40 to 160 μm and 8 to 12 μm. The amount of Co in the sintered body is indicated by an inequality sign as a result after the movement of Co.

【0031】[0031]

【発明の効果】以上詳述したとおり、本発明の複合構造
体によれば、芯材であるダイヤモンド焼結体中の鉄族金
属量を表皮部材である焼結合金中のそれよりも多くする
ことによって、両者間の熱膨張係数差を小さくでき、高
硬度と高靭性を両立できる複合構造体となる。
As described in detail above, according to the composite structure of the present invention, the amount of the iron group metal in the diamond sintered body as the core material is made larger than that in the sintered alloy as the skin member. As a result, the difference in the coefficient of thermal expansion between the two can be reduced, and a composite structure can be obtained that has both high hardness and high toughness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合構造体の一例を示す概略図であ
る。
FIG. 1 is a schematic view showing an example of a composite structure of the present invention.

【図2】図1の複合構造体の要部拡大図である。FIG. 2 is an enlarged view of a main part of the composite structure shown in FIG.

【図3】本発明の複合構造体の他の一例を示す概略斜視
図である。
FIG. 3 is a schematic perspective view showing another example of the composite structure of the present invention.

【図4】本発明の複合構造体の製造方法を説明するため
の概念図である。
FIG. 4 is a conceptual diagram for explaining a method for manufacturing a composite structure of the present invention.

【符号の説明】[Explanation of symbols]

1 複合構造体 2 ダイヤモンド粒子 3 鉄族金属 4 芯材(ダイヤモンド焼結体) 6 硬質粒子 7 鉄族金属 8 表皮部材(焼結合金) 1 composite structure 2 diamond particles 3 Iron group metal 4 Core material (diamond sintered body) 6 hard particles 7 Iron group metal 8 Skin material (sintered alloy)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンド粒子間を鉄属金属にて結合
したダイヤモンド焼結体からなる長尺状の芯材の外周
を、周期律表4a、5a、6a族金属の群から選ばれる
少なくとも1種以上の金属元素(M)の炭化物、窒化物
および炭窒化物の群から選ばれる少なくとも1種以上の
硬質粒子を鉄属金属にて結合した焼結合金からなる表皮
部材にて被覆してなる複合構造体であって、前記芯材中
の鉄属金属量が前記表皮部材中の鉄属金属量よりも多い
ことを特徴とする複合構造体。
1. An outer periphery of a long core made of a diamond sintered body in which diamond particles are bonded by an iron-group metal, at least one kind selected from the group of metals of groups 4a, 5a and 6a of the periodic table. A composite obtained by coating at least one hard particle selected from the group consisting of carbides, nitrides and carbonitrides of the above metal elements (M) with a skin member made of a sintered alloy in which an iron-group metal is bonded. A composite structure, wherein the amount of iron group metal in the core material is larger than the amount of iron group metal in the skin member.
【請求項2】 前記ダイヤモンド粒子の平均粒径d1
3.5μm以下であることを特徴とする請求項1記載の
複合構造体。
2. The composite structure according to claim 1, wherein the average particle diameter d 1 of the diamond particles is 3.5 μm or less.
【請求項3】 前記ダイヤモンド粒子の平均粒径d
1と、前記硬質粒子の平均粒径d2との比(d1/d2)が
0.001〜1.0であることを特徴とする請求項1ま
たは2記載の複合構造体。
3. The average particle diameter d of the diamond particles
3. The composite structure according to claim 1 , wherein the ratio (d 1 / d 2 ) of 1 to the average particle diameter d 2 of the hard particles is 0.001 to 1.0.
【請求項4】 前記鉄属金属の含有量が芯材から表皮部
材に向かって次第に減少することを特徴とする請求項1
乃至3のいずれか記載の複合構造体。
4. The content of the iron-group metal gradually decreases from the core material to the skin member.
4. The composite structure according to any one of 3 to 3.
【請求項5】 前記芯材の平均直径D1と前記表皮部材
の平均厚みD2との比D 2/D1が0.01〜0.5であ
ることを特徴とする請求項1乃至4のいずれか記載の複
合構造体。
5. The average diameter D of the core material1And the skin member
Average thickness D2Ratio D 2/ D1Is 0.01 to 0.5
The duplicate according to any one of claims 1 to 4, characterized in that
Composite structure.
JP2001358397A 2001-11-22 2001-11-22 Multi-core composite structure Expired - Fee Related JP4095286B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001358397A JP4095286B2 (en) 2001-11-22 2001-11-22 Multi-core composite structure
US10/302,772 US6777074B2 (en) 2001-11-22 2002-11-21 Composite construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358397A JP4095286B2 (en) 2001-11-22 2001-11-22 Multi-core composite structure

Publications (2)

Publication Number Publication Date
JP2003160388A true JP2003160388A (en) 2003-06-03
JP4095286B2 JP4095286B2 (en) 2008-06-04

Family

ID=19169582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358397A Expired - Fee Related JP4095286B2 (en) 2001-11-22 2001-11-22 Multi-core composite structure

Country Status (1)

Country Link
JP (1) JP4095286B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1484484A1 (en) 2003-06-05 2004-12-08 O-DEN Corporation Metal filter, black smoke minute particle removing apparatus having metal filter, and diesel engine automobile
JP2005008462A (en) * 2003-06-17 2005-01-13 Kyocera Corp Compound sintered compact, compound structure and method of manufacturing them
GB2432599A (en) * 2005-02-25 2007-05-30 Smith International Ultrahard composite constructions with a shell and core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1484484A1 (en) 2003-06-05 2004-12-08 O-DEN Corporation Metal filter, black smoke minute particle removing apparatus having metal filter, and diesel engine automobile
JP2005008462A (en) * 2003-06-17 2005-01-13 Kyocera Corp Compound sintered compact, compound structure and method of manufacturing them
JP4574129B2 (en) * 2003-06-17 2010-11-04 京セラ株式会社 Method for manufacturing composite structure
GB2432599A (en) * 2005-02-25 2007-05-30 Smith International Ultrahard composite constructions with a shell and core
GB2432599B (en) * 2005-02-25 2010-03-10 Smith International Ultrahard composite constructions

Also Published As

Publication number Publication date
JP4095286B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US5645781A (en) Process for preparing textured ceramic composites
US20050147851A1 (en) Composite construction and manufacturing method thereof
EP2380686A2 (en) A functionally graded material shape and method for producing such a shape
US6777074B2 (en) Composite construction
Yasrebi et al. Biomimetic processing of ceramics and ceramic-metal composites
JP2007136656A (en) Cermet-made insert and cutting tool
KR100683105B1 (en) Composite Material Containing Ultra-Hard Particle
JP2003160388A (en) Composite structural body
JP2009108338A (en) Cermet and manufacturing method thereof
JP4095287B2 (en) Multi-core composite structure
JP4220801B2 (en) Composite structure
JP4109471B2 (en) Method for producing composite structure
JP3825347B2 (en) Composite structure
JP4400850B2 (en) Composite member and cutting tool using the same
JP4126449B2 (en) Multi-core composite structure
JP4889226B2 (en) Composite sintered body and cutting tool
JP4195797B2 (en) Composite hard sintered body and cutting tool using the same
JP2003238275A (en) Composite structure
JP2003267775A (en) Composite structure
JP4328118B2 (en) Method for producing composite structure
JP4309777B2 (en) Cutting tools
JP4109507B2 (en) Method for producing composite structure
JP2008121119A (en) Composite structure
JP2004218048A (en) Composite hard sintered compact and composite member and cutting tool using the same
JP2004043255A (en) Composite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees