JP2003158922A - Lighting device and lighting control method - Google Patents

Lighting device and lighting control method

Info

Publication number
JP2003158922A
JP2003158922A JP2001363153A JP2001363153A JP2003158922A JP 2003158922 A JP2003158922 A JP 2003158922A JP 2001363153 A JP2001363153 A JP 2001363153A JP 2001363153 A JP2001363153 A JP 2001363153A JP 2003158922 A JP2003158922 A JP 2003158922A
Authority
JP
Japan
Prior art keywords
wavelength
photon flux
flowering
period
vegetative growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001363153A
Other languages
Japanese (ja)
Other versions
JP4081648B2 (en
Inventor
Iwatomo Moriyama
厳與 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2001363153A priority Critical patent/JP4081648B2/en
Publication of JP2003158922A publication Critical patent/JP2003158922A/en
Application granted granted Critical
Publication of JP4081648B2 publication Critical patent/JP4081648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting device properly controlling the forcing cultivation and flower quality of plants. <P>SOLUTION: The lighting control method is such that photon flux of wavelength of 700-800 nm radiates light greater than that of wavelength of 600-700 nm from the transplant of long day plants to the vegetative growth period of calyx formation, and the photon flux of wavelength of 600-700 nm radiates light greater than that of wavelength of 700-800 nm in a flowering period from calyx formation to flowering. The cultivation of the long day plants improved in flower quality becomes possible through elongating internode by growing plant height through taking enough time in the vegetative growth period and promptly flowering in the flowering period so as to increase flower weight. The photon flux of wavelength of 600-700 nm radiates light greater than that of wavelength of 700-800 nm in the vegetative growth period. The photon flux of wavelength of 700-800 nm radiates light greater than that of wavelength of 600-700 nm in the flowering period. The internode is shortened in the vegetative growth period to increase the number of leaves in a short period and flowers are appropriately flowered in the flowering period so as to cultivate them in a short period. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、植物の光形態形成
を制御する電照装置および電照制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination device and an illumination control method for controlling photomorphogenesis of plants.

【0002】[0002]

【従来の技術】従来、この種の電照装置としてはたとえ
ば特開平10−178899号公報に記載の構成が知ら
れている。この特開平10−178899号公報には、
波長400nmないし波長500nmの青色の内の波長
450nmの光量子束を0%ないし50%、波長600
nmないし波長700nmの赤色の内の波長660nm
の光量子束を40%ないし100%、波長700nmな
いし波長800nmの遠赤色の内の波長730nmの光
量子束を0%ないし10%で、合計100%とした光を
発光する発光ダイオードを有している。
2. Description of the Related Art Heretofore, as a lighting device of this type, a structure disclosed in, for example, Japanese Patent Laid-Open No. 10-178899 has been known. In this Japanese Patent Laid-Open No. 10-178899,
0% to 50% of the photon flux of wavelength 450 nm among blue of wavelength 400 nm to wavelength 500 nm, wavelength 600
nm or wavelength of 660 nm in the red wavelength of 700 nm
Has a photon flux of 40% to 100% and a photon flux of 730 nm of far-red light having a wavelength of 700 nm to 800 nm of 0% to 10%, and has a total of 100%. .

【0003】そして、定植から花房形成の栄養成長期お
よび花房形成から開花までの開花期まで一定の光質で照
射し、長日植物の開花促進効果および徒長促進効果を図
り、栽培期間を短くしている。
Irradiation with a constant light quality is carried out from the planting period to the vegetative growth period of flower cluster formation and from the flower formation period of flower cluster formation to flowering, with the aim of promoting the flowering promotion effect and the flower growth promotion effect of long-day plants and shortening the cultivation period. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
特開平10−178899号公報に記載の電照装置の場
合、定植から花房形成の栄養成長期および花房形成から
開花までの開花期まで一定の光質で照射しているため、
花卉の場合には草丈の促成栽培は可能であるが、花の重
量を得ることができず、切花にした際の切花の草丈の長
さに対する切花の重量で表される花品質が、太陽光のも
とで栽培した花卉より低くなることがある。
However, in the case of the illumination device described in the above-mentioned Japanese Patent Laid-Open No. 10-178899, a constant light is applied from the planting to the vegetative growth period of flower cluster formation and from the flower formation period of flower cluster formation to flowering. Because the quality is irradiating,
In the case of flowers, forcing cultivation of plant height is possible, but the flower weight cannot be obtained, and the flower quality expressed by the weight of cut flowers relative to the length of cut flowers when cut flowers is It may be lower than the flowers grown under.

【0005】本発明は、上記問題点に鑑みなされたもの
で、植物の促成栽培と花品質を適切に制御する電照装置
および電照制御方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an illuminating device and an illuminating control method for appropriately controlling forcing cultivation of plants and flower quality.

【0006】[0006]

【課題を解決するための手段】請求項1記載の電照装置
は、波長600nmないし波長700nmの光量子束の
積分値が波長700nmないし波長800nmの光量子
束の積分値より大きく長日植物に照射する第1の照射手
段と;波長700nmないし波長800nmの光量子束
の積分値が波長600nmないし波長700nmの光量
子束の積分値より大きく長日植物に照射する第2の照射
手段と;第1の照射手段および第2の照射手段のいずれ
かの照射量が多くなるように切り換える切換手段とを具
備したもので、長日植物の定植から花房形成の栄養成長
期および花房形成から開花までの開花期で切換手段によ
り第1の照射手段および第2の照射手段のいずれか一方
に切り換えることにより、促成栽培および花品質の向上
を制御できる。
According to a first aspect of the present invention, an illumination device irradiates a long-day plant with an integral value of photon flux of wavelength 600 nm to 700 nm larger than an integral value of photon flux of wavelength 700 nm to 800 nm. A first irradiating means; a second irradiating means for irradiating a long-day plant with an integrated value of a photon flux having a wavelength of 700 nm to 800 nm larger than an integrated value of a photon flux having a wavelength of 600 nm to 700 nm; and a first irradiating means. And a switching means for switching one of the second irradiation means so that the irradiation amount is increased, and switching is performed during the vegetative growth period from planting of a long-day plant to inflorescence formation and from inflorescence formation to flowering. By switching to either one of the first irradiation means and the second irradiation means by means, it is possible to control the forced cultivation and the improvement of flower quality.

【0007】請求項2記載の電照装置は、請求項1記載
の電照装置において、切換手段は、定植から花房形成の
栄養成長期には第2の照射手段に切り換え、花房形成か
ら開花までの開花期には第1の照射手段に切り換え、お
よび、定植から花房形成の栄養成長期には第1の照射手
段に切り換え、花房形成から開花までの開花期には第2
の照射手段に切り換えが可能で、この切換手段をいずれ
か一方を選択的に設定する設定手段を具備したもので、
栄養成長期には波長700nmないし波長800nmの
光量子束の積分値が波長600nmないし波長700n
mの光量子束の積分値より大きくし、十分な時間をかけ
て草丈を成長させることにより節間を長くして、開花期
には波長600nmないし波長700nmの光量子束の
積分値が波長700nmないし波長800nmの光量子
束の積分値より大きくし、速やかに開花させて花重量を
増加させて花品質が向上した長日植物の栽培を可能にし
たり、栄養成長期には波長600nmないし波長700
nmの光量子束の積分値が波長700nmないし波長8
00nmの光量子束の積分値より大きくし、節間を短く
して短期間に葉数を増加させ、開花期には波長700n
mないし波長800nmの光量子束の積分値が波長60
0nmないし波長700nmの光量子束の積分値より大
きくし、適切に開花させて短期間に栽培が可能になる。
The illumination device according to a second aspect is the illumination device according to the first aspect, wherein the switching means is switched from the fixed planting to the second irradiation means during the vegetative growth period of inflorescence formation, from inflorescence formation to flowering. To the first irradiation means during the flowering period of, and to the first irradiation means during the vegetative growth period from planting to inflorescence formation, and the second irradiation means during the flowering period from inflorescence formation to flowering.
It is possible to switch to the irradiating means, and the setting means for selectively setting one of these switching means is provided,
In the vegetative growth period, the integrated value of the photon flux of wavelength 700nm to wavelength 800nm is wavelength 600nm to wavelength 700n.
It is larger than the integral value of photon flux of m, and the internodes are lengthened by growing the plant height over a sufficient time, and the integral value of the photon flux of wavelength 600nm to wavelength 700nm is wavelength 700nm to wavelength It is made larger than the integrated value of the photon flux of 800 nm, and the flower weight is increased promptly to increase the flower weight to enable the cultivation of long-day plants with improved flower quality, and the wavelength of 600 nm to 700 nm during the vegetative growth period.
The integrated value of the photon flux of nm is wavelength 700 nm to wavelength 8
It is larger than the integral value of the photon flux of 00 nm, and the internodes are shortened to increase the number of leaves in a short time.
m or the wavelength of 800 nm, the integrated value of the photon flux is 60
It can be cultivated in a short period of time by setting the value larger than the integral value of the photon flux of 0 nm to 700 nm to appropriately bloom.

【0008】請求項3記載の電照装置は、請求項2記載
の電照装置において、栄養成長期と開花期とを計時によ
り設定するタイマ手段を具備し、切換手段は、タイマ手
段の計時に基づいて切り換えるもので、栄養成長期の時
間を予めタイマ手段により設定することにより、栄養成
長期から開花期への切り換えを容易にする。
An illumination device according to a third aspect is the illumination device according to the second aspect, further comprising timer means for setting a vegetative growth period and a flowering period according to timing, and the switching means includes timing for the timer means. Since the vegetative growth time is set in advance by the timer means, the vegetative growth time can be easily switched to the flowering time.

【0009】請求項4記載の電照装置は、請求項2また
は3記載の電照装置において、長日植物の高さを検出す
る検出手段を備え、この検出手段で検出された高さに基
づいて切り換えるもので、長日植物の高さを検出手段で
検出して、この高さに基づき栄養成長期から開花期に切
り換えることにより、適切な草丈で開花できる。
An illumination device according to a fourth aspect is the illumination device according to the second or third aspect, further comprising detection means for detecting the height of the long-day plant, and based on the height detected by this detection means. By detecting the height of the long-day plant by the detection means and switching from the vegetative growth stage to the flowering stage based on this height, it is possible to flower at an appropriate plant height.

【0010】請求項5記載の電照装置は、請求項1ない
し4いずれか一記載の電照装置において、切換手段は、
栄養成長期より開花期の光量子束を大きくするもので、
光量子束をより多く必要とする開花期に光量子束を大き
くすることにより、開花期の光量子束を大きくすること
により、効率良く開花しエネルギー効率が向上する。
An illumination device according to a fifth aspect is the illumination device according to any one of the first to fourth aspects, wherein the switching means is
It makes the photon flux at the flowering stage larger than at the vegetative growth stage,
By increasing the photon flux during the flowering period when more photon flux is required, the photon flux during the flowering period can be increased to efficiently flower and improve energy efficiency.

【0011】請求項6記載の電照装置は、請求項1ない
し5いずれか一記載の電照装置において、第2の照射手
段は、波長400nmないし波長700nmの光量子束
も放射するもので、波長700nmないし波長800n
mの光量子束は目視できないが、波長400nmないし
波長700nmの光量子束を放射することにより、波長
400nmないし波長700nmの光量子束は可視領域
で目視可能なため、この波長400nmないし波長70
0nmの光量子束を目視することにより、第2の照射手
段の点灯を目視確認できる。
According to a sixth aspect of the present invention, in the electric illumination device according to any one of the first to fifth aspects, the second irradiating means also emits a photon flux having a wavelength of 400 nm to 700 nm. 700nm to 800n wavelength
Although the photon flux of m is not visible, the photon flux of 400 nm to 700 nm is visible in the visible region by emitting the photon flux of 400 nm to 700 nm.
By visually observing the photon flux of 0 nm, the lighting of the second irradiation means can be visually confirmed.

【0012】請求項7記載の電照制御方法は、長日植物
の定植から花房形成の栄養成長期には波長600nmな
いし波長700nmの光量子束の積分値より波長700
nmないし波長800nmの光量子束の積分値の方が大
きい光を放射させ、花房形成から開花までの開花期には
波長700nmないし波長800nmの光量子束の積分
値より波長600nmないし波長700nmの光量子束
の積分値の方が大きい光を放射させるもので、栄養成長
期には十分な時間をかけて草丈を成長させることにより
節間を長くして、開花期には速やかに開花させて花重量
を増加させて花品質が向上した長日植物の栽培が可能に
なる。
According to a seventh aspect of the present invention, there is provided a method for controlling lightning, wherein a wavelength of 700 nm is calculated from an integrated value of photon flux of wavelength 600 nm to 700 nm during a vegetative growth period from planting of long-day plants to flower cluster formation.
light having a larger integral value of the photon flux of nm to 800 nm is emitted, and the photon flux of wavelength 600 nm to 700 nm is more than the integral value of the photon flux of 700 nm to 800 nm during the flowering period from inflorescence formation to flowering. Light with a larger integrated value emits light, and the internodes are lengthened by allowing plant height to grow for a sufficient amount of time during the vegetative growth period, and in the flowering period they are quickly flowered to increase the flower weight. By doing so, it becomes possible to grow long-day plants with improved flower quality.

【0013】請求項8記載の電照制御方法は、長日植物
の定植から花房形成の栄養成長期には波長700nmな
いし波長800nmの光量子束の積分値より波長600
nmないし波長700nmの光量子束の積分値の方が大
きい光を放射させ、花房形成から開花までの開花期には
波長600nmないし波長700nmの光量子束の積分
値より波長700nmないし波長800nmの光量子束
の積分値の方が大きい光を放射させるもので、栄養成長
期には節間を短くして短期間に葉数を増加させ、開花期
には適切に開花させて短期間に栽培が可能になる。
According to the eighth aspect of the present invention, there is provided a method for controlling lightning, wherein a wavelength of 600 nm is calculated from an integrated value of photon flux having a wavelength of 700 nm to 800 nm during a vegetative growth period from planting of long-day plants to flower cluster formation.
light having a larger integral value of the photon flux of nm to 700 nm is emitted, and from the integral value of the photon flux of 600 nm to 700 nm during the flowering period from inflorescence formation to flowering, the photon flux of 700 nm to 800 nm Light with a larger integrated value emits light, which shortens the internodes during the vegetative growth period to increase the number of leaves in the short term, and allows proper flowering during the flowering period for short-term cultivation. .

【0014】請求項9記載の電照制御方法は、請求項7
または8記載の電照制御方法において、予め栄養成長期
の時間を設定しておき、設定した時間の経過後に開花期
とするもので、栄養成長期の時間を予め設定することに
より、栄養成長期から開花期への切り換えを容易にす
る。
An illumination control method according to a ninth aspect is the seventh aspect.
Alternatively, in the illumination control method according to 8, the vegetative growth period time is set in advance, and the flowering period is set after the set time has elapsed. By setting the vegetative growth period time in advance, To switch from flowering to flowering.

【0015】請求項10記載の電照制御方法は、請求項
7ないし9いずれか一記載の電照制御方法において、栄
養成長期より開花期の光量子束を大きくするもので、光
量子束を多く必要とする開花期に光量子束を大きくする
ことにより、効率良く栽培可能になる。
A light control method according to a tenth aspect of the present invention is the light control method according to any one of the seventh to ninth aspects, wherein the photon flux at the flowering stage is made larger than that at the vegetative growth stage, and a large photon flux is required. By increasing the photon flux during the flowering period, it becomes possible to grow efficiently.

【0016】[0016]

【発明の実施の形態】以下、本発明の電照装置の一実施
の形態を図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an illumination device of the present invention will be described below with reference to the drawings.

【0017】図1は一実施の形態の電照装置を示す側面
図、図2は電照装置を示す断面図で、これら図1および
図2に示すように、1は電照装置で、この電照装置1は
透光性を有するガラスまたはプラスティックの筒状の管
体2を有し、この管体2の両端には口金3が取り付けら
れ、これら口金3,3にはそれぞれ接続手段としての一
対のピン4,4,5,5が取り付けられている。
FIG. 1 is a side view showing an illuminating device according to one embodiment, FIG. 2 is a sectional view showing the illuminating device, and as shown in FIGS. 1 and 2, reference numeral 1 is the illuminating device. The illuminating device 1 has a glass or plastic cylindrical tube body 2 having a light-transmitting property, and a base 3 is attached to both ends of the tube 2, and these bases 3 and 3 serve as connecting means. A pair of pins 4, 4, 5, 5 are attached.

【0018】また、管体2内には、管体2の長手方向に
沿って長手方向を有する細長矩形状の回路基板6が収納
されている。そして、この回路基板6には、長手方向の
一端側に沿ってIII−V族化合物半導体であるGa、A
lおよびAs、同様にIII−V族化合物半導体であるG
a、AlおよびP、または、同様にIII−V族化合物I
n、Ga、AlおよびPを含み波長600nmないし波
長700nmの赤色で光量子束にピークを有する第1の
照射手段としての第1の発光ダイオード7が等間隔で直
線状に配設され、他端側に沿ってGaおよびPを含み波
長700nmないし波長800nmの遠赤外線で光量子
束にピークを有する第2の照射手段としての第2の発光
ダイオード8が第1の発光ダイオード7の位置する部分
の間に対応して第1の発光ダイオード7と平行に等間隔
で直線状に配設されている。また、第2の発光ダイオー
ド8と並んで50個以上の光量子を有する1以上の波長
400nmないし700nmの可視光を照射する第2の
照射手段としての第2の発光ダイオード9が配設されて
いる。なお、第1の発光ダイオード7または第2の発光
ダイオード8のいずれかに、Nを含む窒化物を用いても
よい。また、第1の発光ダイオード7としては、GaA
lAs/GaP系、GaAsP:N/GaP系、およ
び、In(GaAl)P/GaAs系などがあり、第2
の発光ダイオード8としては、GaP:ZnO/GaP
系などがある。
Further, in the tube body 2, an elongated rectangular circuit board 6 having a longitudinal direction along the longitudinal direction of the tube body 2 is accommodated. Then, on the circuit board 6, Ga, A, which are III-V group compound semiconductors, are arranged along one end side in the longitudinal direction.
l and As, G which is also a III-V compound semiconductor
a, Al and P, or also a III-V group compound I
First light emitting diodes 7 as first irradiating means which include n, Ga, Al and P and have a peak in the photon flux in the wavelength range of 600 nm to 700 nm are arranged linearly at equal intervals and the other end side. A second light emitting diode 8 as a second irradiation means having Ga and P and having a peak in the photon flux with far infrared rays having a wavelength of 700 nm to a wavelength of 800 nm is located between the portions where the first light emitting diode 7 is located. Correspondingly, they are linearly arranged at equal intervals in parallel with the first light emitting diode 7. In addition to the second light emitting diode 8, a second light emitting diode 9 is disposed as a second irradiating means for irradiating one or more visible light having a wavelength of 400 nm to 700 nm having 50 or more photons. . A nitride containing N may be used for either the first light emitting diode 7 or the second light emitting diode 8. Further, as the first light emitting diode 7, GaA
1As / GaP system, GaAsP: N / GaP system, In (GaAl) P / GaAs system, etc.
As the light emitting diode 8 of, GaP: ZnO / GaP
There is a system.

【0019】さらに、回路基板6の背面側には、ピン
4,5から電力の供給を受け、第1の発光ダイオード7
および第2の発光ダイオード8を発光させる点灯回路10
が取り付けられている。
Further, power is supplied from the pins 4 and 5 to the back side of the circuit board 6, and the first light emitting diode 7 is supplied.
And a lighting circuit 10 for causing the second light emitting diode 8 to emit light.
Is attached.

【0020】図3は点灯回路を示す回路図で、この点灯
回路10は商用交流電源eに切換手段としての点灯モジュ
ール11の交流入力端子を接続し、この点灯モジュール11
の直流出力端子に、第1の発光ダイオード7および第2
の発光ダイオード8,9をそれぞれ交互に直列に接続し
それぞれ独立して出力調整可能に並列に接続したもので
ある。また、点灯モジュール11には、波長600nmな
いし波長700nmの光量子束の積分値が波長700n
mないし波長800nmの光量子束の積分値より大きく
させたり、波長600nmないし波長700nmの光量
子束の積分値が波長700nmないし波長800nmの
光量子束の積分値より大きくさせたり設定する設定手段
12が接続されている。なお、いずれの場合にも第1の発
光ダイオード7および第2の発光ダイオード8のいずれ
か一方のみ点灯させて所定の光量子束にしてもよく、ま
た第1の発光ダイオード7および第2の発光ダイオード
8の双方を調光点灯させて所定の光量子束に調整しても
よい。
FIG. 3 is a circuit diagram showing a lighting circuit. In this lighting circuit 10, an AC input terminal of a lighting module 11 as a switching means is connected to a commercial AC power source e, and the lighting module 11 is connected.
To the DC output terminal of the first light-emitting diode 7 and the second
The light emitting diodes 8 and 9 are alternately connected in series and independently connected in parallel so that their outputs can be adjusted. Further, in the lighting module 11, the integrated value of the photon flux having a wavelength of 600 nm to 700 nm is 700 nm.
Setting means for making the value larger than the integral value of the photon flux of m to 800 nm, or the integral value of the photon flux of wavelength 600 nm to 700 nm larger than the integral value of the photon flux of wavelength 700 nm to 800 nm.
12 are connected. In any case, only one of the first light emitting diode 7 and the second light emitting diode 8 may be turned on to have a predetermined photon flux, and the first light emitting diode 7 and the second light emitting diode 8 may be used. Both 8 may be dimmed to adjust to a predetermined photon flux.

【0021】そして、たとえば植物が植えられている長
手方向に沿って、電照装置1の長手方向を合わせて第1
の発光ダイオード7および第2の発光ダイオード8,9
を発光させることにより、効率良く植物に第1の発光ダ
イオード7および第2の発光ダイオード8,9の光を照
射できる。
Then, for example, along the longitudinal direction in which the plant is planted, the longitudinal direction of the illumination device 1 is adjusted to be the first.
Light emitting diode 7 and second light emitting diodes 8, 9
By emitting light, the plants can be efficiently irradiated with the light from the first light emitting diode 7 and the second light emitting diodes 8 and 9.

【0022】また、設定手段12により点灯モジュール11
を制御して、第1の照射手段による点灯状態とし、図4
に示すように、第1の発光ダイオード7および第2の発
光ダイオード8の光量子束と合わせた波長600nmな
いし波長700nmの光量子束の積分値を0.4μmo
l/m・sより大きくし、波長700nmないし波長
800nmの光量子束の積分値を0.4μmol/m
・sより小さくするとともに、波長600nmないし波
長700nmの光量子束の積分値と波長700nmない
し波長800nmの光量子束の積分値との比を1.0よ
り大きくする。
Further, the lighting module 11 is set by the setting means 12.
4 to control the lighting state by the first irradiation means, and
As shown in, the integrated value of the photon flux of wavelengths 600 nm to 700 nm combined with the photon fluxes of the first light emitting diode 7 and the second light emitting diode 8 is 0.4 μmo.
1 μm / m 2 · s and the integrated value of the photon flux at a wavelength of 700 nm to 800 nm is 0.4 μmol / m 2
The ratio between the integrated value of the photon flux having a wavelength of 600 nm to 700 nm and the integrated value of the photon flux having a wavelength of 700 nm to 800 nm is set to be larger than 1.0 while being smaller than s.

【0023】さらに、同様に設定手段12により点灯モジ
ュール11を制御して、第2の照射手段による点灯状態と
し、第1の発光ダイオード7および第2の発光ダイオー
ド8を発光させることにより、第1の発光ダイオード7
および第2の発光ダイオード8の光量子束と合わせた電
照装置1の全体の放射光は波長600nmないし波長7
00nmの光量子束の積分値を0.1μmol/m
sより小さくし、波長700nmないし波長800nm
の光量子束の積分値を0.1μmol/m・sより大
きくし、波長600nmないし波長700nmの光量子
束の積分値と波長700nmないし波長800nmの光
量子束の積分値との比を1.0より小さくする。
Further, similarly, the lighting module 11 is controlled by the setting means 12 to be turned on by the second irradiating means, and the first light emitting diode 7 and the second light emitting diode 8 are caused to emit light, whereby Light emitting diode 7
And the total emitted light of the illumination device 1 combined with the photon flux of the second light emitting diode 8 has a wavelength of 600 nm to 7 nm.
The integrated value of the photon flux of 00 nm is 0.1 μmol / m 2 ·
smaller than s, wavelength 700nm or wavelength 800nm
Is larger than 0.1 μmol / m 2 · s, and the ratio between the integral value of the photon flux at wavelengths of 600 nm to 700 nm and the integral value of the photon flux at wavelengths of 700 nm to 800 nm is 1.0 or less. Make it smaller.

【0024】[0024]

【表1】 [Table 1]

【0025】そして、表1に示すように、たとえば定植
から花房形成の栄養成長期には波長600nmないし波
長700nmの光量子束の積分値より波長700nmな
いし波長800nmの光量子束の積分値の方が大きい光
を放射させ、開花して欲しい時期に設定手段12により点
灯モジュール11を切り換え、花房形成から開花までの開
花期には波長700nmないし波長800nmの光量子
束の積分値より波長600nmないし波長700nmの
光量子束の積分値の方が大きい光を放射させ、図5
(a)に示すように、太陽光で育成した場合に比べて育
成時間は長くかかるものの、栄養成長期には十分な時間
をかけて草丈を成長させることにより節間を長くして、
開花期には速やかに開花させて花重量を増加させて花品
質が向上した長日植物の栽培が可能になる。また、栄養
育成期から開花期に変化させることにより開花期を任意
に制御できるため、開花時期を任意に設定可能である。
As shown in Table 1, for example, during the vegetative growth period from planting to inflorescence formation, the integrated value of the photon flux of wavelength 700 nm to 800 nm is larger than the integrated value of the photon flux of wavelength 600 nm to 700 nm. Light is emitted and the lighting module 11 is switched by the setting means 12 at the time when the flower is desired to bloom, and in the flowering period from inflorescence formation to flowering, the photon of wavelength 600 nm to 700 nm is calculated from the integrated value of the photon flux of wavelength 700 nm to 800 nm. The light whose integrated value of the bundle is larger is emitted, and
As shown in (a), although the growing time is longer than that in the case of growing in the sunlight, the internodes are lengthened by growing the plant height over a sufficient period during the vegetative growth period,
During the flowering period, it is possible to cultivate a long-day plant in which flower quality is improved by rapidly flowering to increase the flower weight. In addition, since the flowering period can be arbitrarily controlled by changing from the vegetative growth period to the flowering period, the flowering period can be set arbitrarily.

【0026】また、定植から花房形成の栄養成長期には
波長700nmないし波長800nmの光量子束の積分
値より波長600nmないし波長700nmの光量子束
の積分値の方が大きい光を放射させ、開花して欲しい時
期に設定手段12により点灯モジュール11を切り換え、花
房形成から開花までの開花期には波長600nmないし
波長700nmの光量子束の積分値より波長700nm
ないし波長800nmの光量子束の積分値の方が大きい
光を放射させ、図5(b)に示すように、栄養成長期に
は節間を短くして短期間に葉数を増加させ、開花期には
適切に開花させて太陽光で栽培した場合に比べて短期間
に栽培が可能になる。
In addition, during the vegetative growth period from planting to inflorescence formation, light having a larger integral value of photon flux of wavelength 600 nm to 700 nm than the integral value of photon flux of wavelength 700 nm to 800 nm is emitted to flower. The lighting module 11 is switched by the setting means 12 at a desired time, and the wavelength of 700 nm is calculated from the integrated value of the photon flux of wavelength 600 nm or wavelength 700 nm during the flowering period from the formation of the inflorescence to the flowering.
Or, light having a larger integrated value of photon flux of wavelength 800 nm is emitted, and as shown in FIG. 5 (b), the internodes are shortened during the vegetative growth period to increase the number of leaves in a short period of time, and the flowering period is increased. Can be cultivated in a short period of time as compared with the case where it is properly flowered and cultivated with sunlight.

【0027】なお、設定手段12で設定するものに代え
て、予め栄養成長期の時間を設定しておき、所定の時間
が経過した後には、成長期から開花期に自動的に切り換
えるようにしてもよい。このように設定すれば、開花時
期を予め設定することができ、計画的に栽培できる。
Instead of the one set by the setting means 12, the time of the vegetative growth period is set in advance, and after the predetermined time has passed, the growth period is automatically switched to the flowering period. Good. If set in this way, the flowering time can be set in advance and the cultivation can be carried out systematically.

【0028】また、長日植物の草丈を検出する検出手段
を設け、この検出手段で予め設定されている高さに草丈
が達したことを検出すると、成長期から開花期に自動的
に切り換えるようにしてもよい。このように設定すれ
ば、長日植物の草丈をそろえることができ品質の一定化
を図りやすい。
Further, a detecting means for detecting the plant height of the long-day plant is provided, and when it detects that the plant height reaches a preset height, the detecting means automatically switches from the growing stage to the flowering stage. You may With this setting, the plant height of long-day plants can be made uniform, and the quality can be easily stabilized.

【0029】さらに、栄養成長期に比べ開花期の光量子
束を大きくしてもよい。光量子束をより多く必要とする
開花期に光量子束を大きくすることにより、常に大きな
光量子束が必要なくなり、開花期のみ光量子束を大きく
して効率良く開花し電照のための電気代を節約できると
ともにエネルギー効率が向上する。
Further, the photon flux at the flowering stage may be made larger than that at the vegetative growth stage. By increasing the photon flux during the flowering period when more photon flux is needed, a large photon flux is not always required, and the photon flux can be increased only during the flowering period to efficiently bloom and save the electricity bill for illumination. With that, energy efficiency is improved.

【0030】また、第2の発光ダイオード8に加え第2
の発光ダイオード9を点灯させ、第2の発光ダイオード
8のみでは目視できないため第2の発光ダイオード9を
点灯させて可視光を照射して第2の発光ダイオード8の
点灯を擬似的に確認しているが、第2の発光ダイオード
9をつけなくても花卉の栽培には影響はない。
In addition to the second light emitting diode 8,
The second light emitting diode 9 is turned on, and since the second light emitting diode 8 cannot be visually observed only, the second light emitting diode 9 is turned on and visible light is emitted to artificially confirm the second light emitting diode 8 is turned on. However, even if the second light-emitting diode 9 is not attached, there is no effect on the cultivation of flowers.

【0031】なお、第1の発光ダイオード7および第2
の発光ダイオード8,9は、それぞれ直線状で回路基板
6に配設しているが、マトリクス状あるいはランダムに
配設してもよい。
The first light emitting diode 7 and the second light emitting diode 7
The light emitting diodes 8 and 9 are linearly arranged on the circuit board 6, but may be arranged in a matrix or randomly.

【0032】また、第1の発光ダイオード7および第2
の発光ダイオード8,9を保護するために、第1の発光
ダイオード7および第2の発光ダイオード8,9のそれ
ぞれに対して、保護用のコンデンサあるいは保護用のコ
ンデンサおよび抵抗の直列回路を並列に接続したり、保
護用のダイオードあるいは保護用のダイオードおよび抵
抗の直列回路を逆並列に接続することにより、第1の発
光ダイオード7および第2の発光ダイオード8,9を静
電破壊から保護するようにしてもよい。
The first light emitting diode 7 and the second light emitting diode 7
In order to protect the light-emitting diodes 8 and 9 of FIG. 1, a series of protection capacitors or series circuits of protection capacitors and resistors are connected in parallel to the first light-emitting diode 7 and the second light-emitting diodes 8 and 9, respectively. In order to protect the first light-emitting diode 7 and the second light-emitting diodes 8 and 9 from electrostatic breakdown by connecting or connecting the protective diode or the series circuit of the protective diode and the resistor in anti-parallel. You may

【0033】さらに、電照装置1に光ファイバあるいは
アクリル導光板などの導光手段を設け、このような導光
手段により所望の場所に第1の発光ダイオード7および
第2の発光ダイオード8,9からの光を導光して照射す
るようにしてもよい。
Further, the lighting device 1 is provided with a light guide means such as an optical fiber or an acrylic light guide plate, and the first light emitting diode 7 and the second light emitting diodes 8 and 9 are provided at desired places by such light guide means. The light from the above may be guided and irradiated.

【0034】また、点灯モジュール11により第1の発光
ダイオード7および第2の発光ダイオード8を50Hz
以上で点灯させ、第2の発光ダイオード9を50個以上
の光量子で5Hzないし20Hz程度で点灯させるよう
にしてもよい。このように第2の発光ダイオード9を5
Hzないし20Hz程度で点滅させることにより、人間
がフリッカを感じやすく、第2の発光ダイオード8を目
視することができなくても、第2の発光ダイオード8の
点灯を知ることができる。
Further, the lighting module 11 turns the first light emitting diode 7 and the second light emitting diode 8 at 50 Hz.
The second light emitting diode 9 may be turned on as described above, and may be turned on at about 5 Hz to 20 Hz with 50 or more photons. In this way, the second light emitting diode 9
By blinking at about 20 Hz to 20 Hz, it is possible for a person to easily feel the flicker and know the lighting of the second light emitting diode 8 even if the second light emitting diode 8 cannot be visually observed.

【0035】図6は他の実施の形態の電照装置を示す断
面図で、図2に示す電照装置1において、回路基板6の
幅方向の中央を長手方向に沿って第1の発光ダイオード
7および第2の発光ダイオード8,9がそれぞれの別個
の面に位置するように突出して折り曲げたものである。
FIG. 6 is a cross-sectional view showing an illumination device of another embodiment. In the illumination device 1 shown in FIG. 2, a first light emitting diode is provided along the longitudinal direction at the center of the circuit board 6 in the width direction. 7 and the second light emitting diodes 8 and 9 are projected and bent so that they are located on the respective separate surfaces.

【0036】図7はまた他の実施の形態の電照装置を示
す断面図で、図2に示す電照装置1において、回路基板
6を管体2より径小の円筒状とし管体2内に管体2と同
軸に配設されている。また、回路基板6の外周面には第
1の発光ダイオード7および第2の発光ダイオード8,
9が周方向に交互にそれぞれ軸方向に沿って直線状に配
設され、回路基板6の内方に点灯回路10が収納されてい
る。
FIG. 7 is a sectional view showing an illumination device according to another embodiment. In the illumination device 1 shown in FIG. 2, the circuit board 6 has a cylindrical shape with a diameter smaller than that of the tube 2, and Is disposed coaxially with the tubular body 2. Further, on the outer peripheral surface of the circuit board 6, the first light emitting diode 7 and the second light emitting diode 8,
9 are arranged in a straight line alternately along the axial direction in the circumferential direction, and the lighting circuit 10 is housed inside the circuit board 6.

【0037】図8はさらに他の実施の形態の電照装置を
示す断面図で、図7に示す電照装置1において、回路基
板6を長手方向を軸として湾曲させたもので、回路基板
6の長手方向両側を管体2に当接させたものである。そ
して、回路基板6の表面に第1の発光ダイオード7およ
び第2の発光ダイオード8,9が周方向に交互にそれぞ
れ軸方向に沿って直線状に配設され、回路基板6の背面
に点灯回路10が収納されている。
FIG. 8 is a sectional view showing an illumination device according to still another embodiment. In the illumination device 1 shown in FIG. 7, the circuit board 6 is curved with the longitudinal direction as an axis. The both sides in the longitudinal direction of the above are brought into contact with the tube body 2. The first light emitting diodes 7 and the second light emitting diodes 8 and 9 are alternately arranged in the circumferential direction on the surface of the circuit board 6 in a straight line along the axial direction, and the lighting circuit is provided on the back surface of the circuit board 6. 10 are stored.

【0038】図9はまた他の実施の形態の電照装置を示
す斜視図で、親水性を有する高分子材料または表面にた
とえば酸化チタンにシリコーン系材料を組み合わせた親
水性を有する金属酸化膜を備えた高分子材料のカバー体
16を有し、このカバー体16の基端側にはたとえばシリコ
ーン系樹脂、フッ素樹脂、フッ素シリコーン樹脂の少な
くともいずれかを含む図示しない撥水層を介してエジソ
ンベースの口金17が嵌合されて装着されている。また、
カバー体16の先端側には同様にたとえばシリコーン系樹
脂、フッ素樹脂、フッ素シリコーン樹脂の少なくともい
ずれかを含む図示しない撥水層を介して親水性を有する
たとえば酸化チタンにシリコーン系材料を組み合わせた
金属酸化膜を備えた透光性高分子材料の保持体18が接合
されて取り付けられ、カバー体16および保持体18でほぼ
電球形状になっている。また、カバー体16および保持体
18内には回路基板6が収納され、この回路基板6は装着
されている第1の発光ダイオード7および第2の発光ダ
イオード8,9なども含めて透光性撥水性樹脂によりモ
ールドされ、この回路基板6の背面側には点灯回路10が
取り付けられ、この点灯回路10はリード線19にて口金17
に電気的に接続されている。
FIG. 9 is a perspective view showing an illumination device according to another embodiment of the present invention, in which a hydrophilic polymer material or a hydrophilic metal oxide film obtained by combining, for example, titanium oxide with a silicone material is provided on the surface. Provided polymeric cover
The base 16 of the cover body 16 is fitted with an Edison-based mouthpiece 17 via a water-repellent layer (not shown) containing, for example, at least one of silicone resin, fluororesin, and fluorosilicone resin. It is installed. Also,
Similarly, on the front end side of the cover body 16, a metal having a hydrophilicity, for example, titanium oxide combined with a silicone material through a water repellent layer (not shown) containing at least one of a silicone resin, a fluororesin, and a fluorosilicone resin is used. A holder 18 made of a translucent polymer material having an oxide film is bonded and attached, and the cover 16 and the holder 18 have a substantially bulb shape. In addition, the cover body 16 and the holding body
The circuit board 6 is accommodated in the inside 18, and the circuit board 6 including the mounted first light emitting diode 7 and the second light emitting diodes 8 and 9 is molded with a light-transmitting water-repellent resin. A lighting circuit 10 is attached to the back side of the circuit board 6, and the lighting circuit 10 is connected to a lead wire 19 with a base 17
Electrically connected to.

【0039】このように、カバー体16および保持体18の
接合部分、カバー体16および口金17の嵌合部分に撥水層
を設けることで、内部への水の浸入を防止する。
As described above, the water repellent layer is provided at the joint portion of the cover body 16 and the holding body 18 and the fitting portion of the cover body 16 and the base 17 to prevent water from entering the inside.

【0040】また、カバー体16および保持体18の表面を
親水性とすることにより、付着した水を重力により落下
させ散水などによる水滴の付着を防ぐとともに、表面に
付着した汚れも雨水により洗い流すことができる。
Further, by making the surfaces of the cover body 16 and the holding body 18 hydrophilic, the attached water is dropped by gravity to prevent water droplets from being attached due to water sprinkling and the dirt attached to the surface is washed away with rainwater. You can

【0041】さらに、回路基板6を第1の発光ダイオー
ド7および第2の発光ダイオード8,9などとともに透
光性撥水性樹脂によりモールドすることにより、回路基
板6を水の付着による短絡を防止するとともに、回路基
板6の温度の低下を図れる。
Furthermore, by molding the circuit board 6 together with the first light emitting diode 7, the second light emitting diodes 8 and 9 and the like with a light-transmitting water-repellent resin, the circuit board 6 is prevented from being short-circuited due to adhesion of water. At the same time, the temperature of the circuit board 6 can be reduced.

【0042】なお、高い防水性が不要の場合には、カバ
ー体16を通常のガラスあるいはプラスティックで形成
し、保持体18をフロストあるいは透明な透光性を有する
ガラスあるいは透光性プラスティックで形成してもよ
い。
If high waterproofness is not required, the cover body 16 is made of ordinary glass or plastic, and the holder 18 is made of frost or transparent glass or translucent plastic. May be.

【0043】また、回路基板6は、いずれの場合にも平
板状または湾曲したものに限らず、球面状あるいは非球
面状など任意の形態でそれぞれ同様の効果を得ることが
できる。
The circuit board 6 is not limited to a flat plate or a curved plate in any case, and the same effect can be obtained in any shape such as a spherical shape or an aspherical shape.

【0044】図10は電照装置の一部を切り欠いて示す
平面図、図11は電照装置の一部を切り欠いて示す正面
図、図12は電照装置の一部を切り欠いて示す側面図で
ある。図10ないし図12に示すように、電照装置1は
防湿型で、上面に照射開口21を有する箱状の基体22を有
しており、この基体22には回路基板6がねじ23により取
り付けられている。また、基体22の照射開口21には照射
開口21を閉塞するカバー体24が取り付けられており、照
射開口21とカバー体24とが接続される部分にはたとえば
酸化チタンを含有する親水性被膜が形成されて水および
水蒸気の浸入を防止し、この親水性被膜の表面の部分に
はたとえばシリコーン系樹脂あるいはフッ素系樹脂の少
なくともいずれかを含む撥水性被膜が形成されて防水お
よび防湿になっている。
FIG. 10 is a plan view showing a part of the illumination device cut out, FIG. 11 is a front view showing a part of the illumination device cut away, and FIG. 12 is a part of the illumination device cut out. It is a side view shown. As shown in FIGS. 10 to 12, the illumination device 1 is a moisture-proof type, and has a box-shaped base 22 having an irradiation opening 21 on the upper surface, and the circuit board 6 is attached to the base 22 with screws 23. Has been. In addition, a cover body 24 that closes the irradiation opening 21 is attached to the irradiation opening 21 of the base 22, and a hydrophilic coating containing titanium oxide, for example, is provided in a portion where the irradiation opening 21 and the cover body 24 are connected. It is formed to prevent the infiltration of water and water vapor, and a water-repellent coating containing, for example, at least one of a silicone-based resin and a fluorine-based resin is formed on the surface of the hydrophilic coating to be waterproof and moisture-proof. .

【0045】上記実施の形態では、発光ダイオードを用
いて説明したが、第1の発光ダイオード7および第2の
発光ダイオード8,9に代えて、直管形あるいは電球形
蛍光ランプを用いても同様の効果を得ることができる。
In the above-described embodiment, the light emitting diode is used for description, but the first light emitting diode 7 and the second light emitting diodes 8, 9 may be replaced by a straight tube type or a bulb type fluorescent lamp. The effect of can be obtained.

【0046】この場合、発光スペクトルが波長700n
mないし波長800nmで発光ピークを有するクロム付
活酸化ガリウムガドリニウム(GdGa12:C
r)蛍光体、発光スペクトルが波長600nmないし波
長620nmで発光ピークを有するユーロピウム付活酸
希土類蛍光体であるユーロピウム付活アルミン酸化イッ
トリウム(YAl12:Eu)蛍光体、および、
波長660nmないし波長670nmで発光ピークを有
するマンガン付活フロロゲルマン酸マグネシウム蛍光体
などを用いればよい。また、YGa12:Cr蛍
光体を用いてもよい。
In this case, the emission spectrum has a wavelength of 700n.
Chromium-activated gallium gadolinium oxide (Gd 3 Ga 5 O 12 : C) having an emission peak at a wavelength of m to 800 nm
r) a phosphor, a europium-activated yttrium aluminate (Y 3 Al 5 O 12 : Eu) phosphor, which is a europium-activated rare earth phosphor having an emission spectrum having an emission peak at a wavelength of 600 nm to 620 nm, and
A manganese-activated magnesium fluorogermanate phosphor having an emission peak at a wavelength of 660 nm to 670 nm may be used. Alternatively, a Y 3 Ga 5 O 12 : Cr phosphor may be used.

【0047】[0047]

【発明の効果】請求項1記載の電照装置によれば、長日
植物の定植から花房形成の栄養成長期および花房形成か
ら開花までの開花期で切換手段により第1の照射手段お
よび第2の照射手段のいずれか一方に切り換えることに
より、促成栽培および花品質の向上を制御できる。
According to the illumination device of the first aspect, the first irradiation means and the second irradiation means are provided by the switching means in the vegetative growth period from planting of a long-day plant to inflorescence formation and in the flowering period from inflorescence formation to flowering. By switching to any one of the irradiation means, it is possible to control the forced cultivation and the improvement of flower quality.

【0048】請求項2記載の電照装置によれば、請求項
1記載の電照装置に加え、栄養成長期には波長700n
mないし波長800nmの光量子束の積分値が波長60
0nmないし波長700nmの光量子束の積分値より大
きくし、十分な時間をかけて草丈を成長させることによ
り節間を長くして、開花期には波長600nmないし波
長700nmの光量子束の積分値が波長700nmない
し波長800nmの光量子束の積分値より大きくし、速
やかに開花させて花重量を増加させて花品質が向上した
長日植物の栽培を可能にしたり、栄養成長期には波長6
00nmないし波長700nmの光量子束の積分値が波
長700nmないし波長800nmの光量子束の積分値
より大きくし、節間を短くして短期間に葉数を増加さ
せ、開花期には波長700nmないし波長800nmの
光量子束の積分値が波長600nmないし波長700n
mの光量子束の積分値より大きくし、適切に開花させて
短期間に栽培を可能にできる。
According to the illuminating device of the second aspect, in addition to the illuminating device of the first aspect, in the vegetative growth period, the wavelength is 700n.
m or the wavelength of 800 nm, the integrated value of the photon flux is 60
It is larger than the integral value of photon flux of 0 nm to 700 nm, and the internodes are lengthened by growing the plant height for a sufficient time, and the integral value of photon flux of wavelength 600 nm to 700 nm is the wavelength at the flowering stage. It is made larger than the integral value of the photon flux of 700 nm to 800 nm to promptly flower and increase the flower weight to enable cultivation of long-day plants with improved flower quality.
The integration value of photon flux of 00nm to wavelength 700nm is larger than the integration value of photon flux of wavelength 700nm to 800nm to shorten the internode and increase the number of leaves in a short period of time. The integrated value of the photon flux is from 600nm to 700n
It is possible to make cultivation in a short period of time by making it larger than the integral value of the photon flux of m and making it bloom properly.

【0049】請求項3記載の電照装置によれば、請求項
2記載の電照装置に加え、栄養成長期の時間を予めタイ
マ手段により設定することにより、栄養成長期から開花
期への切り換えを容易にできる。
According to the lighting device of the third aspect, in addition to the lighting device of the second aspect, the time of the vegetative growth period is set by the timer means in advance, so that the vegetative growth period is switched to the flowering period. Can be done easily.

【0050】請求項4記載の電照装置によれば、請求項
2または3記載の電照装置に加え、長日植物の高さを検
出手段で検出して、この高さに基づき栄養成長期から開
花期に切り換えることにより、適切な草丈で開花でき
る。
According to the illuminating device of claim 4, in addition to the illuminating device of claim 2 or 3, the height of the long-day plant is detected by the detecting means, and the vegetative growth period is based on this height. By switching from to flowering period, it is possible to flower at an appropriate plant height.

【0051】請求項5記載の電照装置によれば、請求項
1ないし4いずれか一記載の電照装置に加え、光量子束
をより多く必要とする開花期の光量子束を大きくするこ
とにより、効率良く開花しエネルギー効率を向上でき
る。
According to the illumination device of claim 5, in addition to the illumination device according to any one of claims 1 to 4, by increasing the photon flux at the flowering stage, which requires more photon flux, It can flower efficiently and improve energy efficiency.

【0052】請求項6記載の電照装置によれば、請求項
1ないし5いずれか一記載の電照装置に加え、波長70
0nmないし波長800nmの光量子束は目視できない
が、波長400nmないし波長700nmの光量子束を
放射することにより、波長400nmないし波長700
nmの光量子束は可視領域で目視可能なため、この波長
400nmないし波長700nmの光量子束を目視する
ことにより、第2の照射手段の点灯を目視確認できる。
According to the sixth aspect of the present invention, in addition to the electric illumination device according to any one of the first to fifth aspects, a wavelength 70
Although the photon flux of 0 nm to 800 nm cannot be visually observed, the photon flux of 400 nm to 700 nm is emitted to emit the photon flux of 400 nm to 700 nm.
Since the photon flux of nm is visible in the visible region, by visually observing the photon flux of 400 nm to 700 nm, it is possible to visually confirm the lighting of the second irradiation unit.

【0053】請求項7記載の電照制御方法によれば、栄
養成長期には十分な時間をかけて草丈を成長させること
により節間を長くして、開花期には速やかに開花させて
花重量を増加させて花品質が向上した長日植物の栽培が
可能にできる。
According to the illumination control method of claim 7, the internodes are lengthened by allowing the plant height to grow for a sufficient period during the vegetative growth period, and the flowers are quickly flowered during the flowering period. It is possible to grow long-day plants with increased weight and improved flower quality.

【0054】請求項8記載の電照制御方法によれば、栄
養成長期には節間を短くして短期間に葉数を増加させ、
開花期には適切に開花させて短期間に栽培が可能にでき
る。
According to the eighth aspect of the illumination control method, the internodes are shortened during the vegetative growth period to increase the number of leaves in a short period of time.
It can be cultivated in a short period of time by appropriately flowering during the flowering period.

【0055】請求項9記載の電照制御方法によれば、請
求項7または8記載の電照制御方法に加え、栄養成長期
の時間を予め設定することにより、栄養成長期から開花
期への切り換えを容易にできる。
According to the illumination control method of claim 9, in addition to the illumination control method of claim 7 or 8, by presetting the time of the vegetative growth period, the vegetative growth period changes to the flowering period. Switching can be done easily.

【0056】請求項10記載の電照制御方法によれば、
請求項7ないし9いずれか一記載の電照制御方法に加
え、光量子束を多く必要とする開花期に光量子束を大き
くすることにより、効率良く栽培可能にできる。
According to the illumination control method of the tenth aspect,
In addition to the method for controlling illumination according to any one of claims 7 to 9, by increasing the photon flux during the flowering period when a large number of photon fluxes are required, efficient cultivation can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態の電照装置を示す側面図
である。
FIG. 1 is a side view showing an illumination device according to an embodiment of the present invention.

【図2】同上断面図である。FIG. 2 is a sectional view of the same.

【図3】同上点灯回路を示す回路図である。FIG. 3 is a circuit diagram showing a lighting circuit of the same.

【図4】同上電照装置の波長と相対発光強度を示すグラ
フである。
FIG. 4 is a graph showing a wavelength and a relative light emission intensity of the above illumination device.

【図5】同上長日植物の栽培状態を示す説明図である。 (a) 花品質重視 (b) 促成栽培FIG. 5 is an explanatory view showing a cultivation state of the long day plant. (A) Emphasis on flower quality (B) Forced cultivation

【図6】同上他の実施の形態の電照装置を示す断面図で
ある。
FIG. 6 is a sectional view showing an illumination device of another embodiment of the above.

【図7】同上また他の実施の形態の電照装置を示す断面
図である。
FIG. 7 is a cross-sectional view showing an illumination device of another embodiment of the above.

【図8】同上さらに他の実施の形態の電照装置を示す断
面図である。
FIG. 8 is a sectional view showing an illumination device of still another embodiment of the same.

【図9】同上また他の実施の形態の電照装置を示す斜視
図である。
FIG. 9 is a perspective view showing an illumination device of another embodiment of the above.

【図10】同上照明装置の一部を切り欠いて示す平面図
である。
FIG. 10 is a plan view showing a part of the above illumination device by cutting away.

【図11】同上照明装置の一部を切り欠いて示す正面図
である。
FIG. 11 is a front view showing a part of the illumination device cut out.

【図12】同上照明装置の一部を切り欠いて示す側面図
である。
FIG. 12 is a side view showing a part of the above illumination device by cutting away.

【符号の説明】[Explanation of symbols]

1 電照装置 7 第1の照射手段としての第1の発光ダイオード 8 第2の照射手段としての第2の発光ダイオード 11 切換手段としての点灯モジュール 12 設定手段 1 Lighting device 7 First light emitting diode as first irradiation means 8 Second light emitting diode as second irradiation means 11 Lighting module as switching means 12 Setting method

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 波長600nmないし波長700nmの
光量子束の積分値が波長700nmないし波長800n
mの光量子束の積分値より大きく長日植物に照射する第
1の照射手段と;波長700nmないし波長800nm
の光量子束の積分値が波長600nmないし波長700
nmの光量子束の積分値より大きく長日植物に照射する
第2の照射手段と;第1の照射手段および第2の照射手
段のいずれかの照射量が多くなるように切り換える切換
手段と;を具備したことを特徴とする電照装置。
1. An integrated value of a photon flux having a wavelength of 600 nm to 700 nm has a wavelength of 700 nm to 800 n.
First irradiation means for irradiating long-day plants with a value larger than the integrated value of photon flux of m; wavelength 700 nm to wavelength 800 nm
The integrated value of the photon flux is 600 nm to 700 nm
second irradiation means for irradiating a long-day plant with a value larger than the integrated value of the photon flux of nm; switching means for switching so that the irradiation amount of either the first irradiation means or the second irradiation means increases. An illumination device characterized by being provided.
【請求項2】 切換手段は、定植から花房形成の栄養成
長期には第2の照射手段に切り換え、花房形成から開花
までの開花期には第1の照射手段に切り換え、および、
定植から花房形成の栄養成長期には第1の照射手段に切
り換え、花房形成から開花までの開花期には第2の照射
手段に切り換えが可能で、 この切換手段をいずれか一方を選択的に設定する設定手
段を具備したことを特徴とする請求項1記載の電照装
置。
2. The switching means is switched to the second irradiation means during the vegetative growth period from planting to inflorescence formation, and to the first irradiation means during the flowering period from inflorescence formation to flowering, and
It is possible to switch to the first irradiation means during the vegetative growth period from planting to inflorescence formation and to the second irradiation means during the flowering period from inflorescence formation to flowering. Either of these switching means can be selectively The illumination device according to claim 1, further comprising setting means for setting.
【請求項3】 栄養成長期と開花期とを計時により設定
するタイマ手段を具備し、 切換手段は、タイマ手段の計時に基づいて切り換えるこ
とを特徴とする請求項2記載の電照装置。
3. The illuminating device according to claim 2, further comprising timer means for setting a vegetative growth period and a flowering period by timekeeping, and the switching means is switched based on the timekeeping of the timer means.
【請求項4】 長日植物の高さを検出する検出手段を備
え、 この検出手段で検出された高さに基づいて切り換えるこ
とを特徴とする請求項2または3記載の電照装置。
4. The illumination device according to claim 2, further comprising a detection means for detecting the height of the long-day plant, and switching based on the height detected by the detection means.
【請求項5】 切換手段は、栄養成長期より開花期の光
量子束を大きくすることを特徴とする請求項1ないし4
いずれか一記載の電照装置。
5. The switching means increases the photon flux during the flowering period rather than during the vegetative growth period.
The illumination device according to any one of claims.
【請求項6】 第2の照射手段は、波長400nmない
し波長700nmの光量子束も放射することを特徴とす
る請求項1ないし5いずれか一記載の電照装置。
6. The illumination device according to claim 1, wherein the second irradiation means also emits a photon flux having a wavelength of 400 nm to 700 nm.
【請求項7】 長日植物の定植から花房形成の栄養成長
期には波長600nmないし波長700nmの光量子束
の積分値より波長700nmないし波長800nmの光
量子束の積分値の方が大きい光を放射させ、花房形成か
ら開花までの開花期には波長700nmないし波長80
0nmの光量子束の積分値より波長600nmないし波
長700nmの光量子束の積分値の方が大きい光を放射
させることを特徴とする電照制御方法。
7. Light is emitted from a plant of a long-day plant to a vegetative growth stage of flower cluster formation, in which the integral value of the photon flux at a wavelength of 700 nm to 800 nm is larger than the integral value of the photon flux at a wavelength of 600 nm to 700 nm. , Wavelength 700nm to wavelength 80 from flower formation to flowering
A lighting control method characterized in that light having an integral value of a photon flux having a wavelength of 600 nm to 700 nm is larger than an integral value of a photon flux of 0 nm is emitted.
【請求項8】 長日植物の定植から花房形成の栄養成長
期には波長700nmないし波長800nmの光量子束
の積分値より波長600nmないし波長700nmの光
量子束の積分値の方が大きい光を放射させ、花房形成か
ら開花までの開花期には波長600nmないし波長70
0nmの光量子束の積分値より波長700nmないし波
長800nmの光量子束の積分値の方が大きい光を放射
させることを特徴とする電照制御方法。
8. In the vegetative growth period from planting of a long-day plant to inflorescence formation, light having a larger integral value of photon flux of wavelength 600 nm to 700 nm than that of photon flux of wavelength 700 nm to 800 nm is emitted. , Wavelength 600nm to wavelength 70 during flowering period from flower cluster formation to flowering
A lighting control method characterized in that light having a larger integral value of a photon flux having a wavelength of 700 nm to 800 nm than that of a photon flux of 0 nm is emitted.
【請求項9】 予め栄養成長期の時間を設定しておき、
設定した時間の経過後に開花期とすることを特徴とする
請求項7または8記載の電照制御方法。
9. The vegetative growth period time is set in advance,
9. The lighting control method according to claim 7, wherein the flowering period is reached after the set time has elapsed.
【請求項10】 栄養成長期より開花期の光量子束を大
きくすることを特徴とする請求項7ないし9いずれか一
記載の電照制御方法。
10. The illumination control method according to claim 7, wherein the photon flux at the flowering stage is made larger than that at the vegetative growth stage.
JP2001363153A 2001-11-28 2001-11-28 Lighting device Expired - Fee Related JP4081648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363153A JP4081648B2 (en) 2001-11-28 2001-11-28 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363153A JP4081648B2 (en) 2001-11-28 2001-11-28 Lighting device

Publications (2)

Publication Number Publication Date
JP2003158922A true JP2003158922A (en) 2003-06-03
JP4081648B2 JP4081648B2 (en) 2008-04-30

Family

ID=19173548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363153A Expired - Fee Related JP4081648B2 (en) 2001-11-28 2001-11-28 Lighting device

Country Status (1)

Country Link
JP (1) JP4081648B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046989A1 (en) 2011-09-30 2013-04-04 シャープ株式会社 Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
JP2013521824A (en) * 2010-03-22 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system with cooling device
JP2013201903A (en) * 2012-03-27 2013-10-07 Showa Denko Kk Led lamp for plant cultivation
JP2014166179A (en) * 2013-02-04 2014-09-11 Showa Denko Kk Plant cultivation lamp, and plant cultivation method using the same
JP2016504044A (en) * 2013-01-11 2016-02-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Horticulture lighting device and method for stimulating plant growth and plant biorhythm
JP2021052671A (en) * 2019-09-30 2021-04-08 シャープ株式会社 Lighting device, light irradiation equipment for plants, and light irradiation method for plants

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521824A (en) * 2010-03-22 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system with cooling device
WO2013046989A1 (en) 2011-09-30 2013-04-04 シャープ株式会社 Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
CN103841818A (en) * 2011-09-30 2014-06-04 夏普株式会社 Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
EP2761997A1 (en) * 2011-09-30 2014-08-06 Sharp Kabushiki Kaisha Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
EP2761997A4 (en) * 2011-09-30 2015-04-29 Sharp Kk Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
CN103841818B (en) * 2011-09-30 2016-10-19 夏普株式会社 Plant culture illuminator, plant cultivation system and plant cultivation method
JP2013201903A (en) * 2012-03-27 2013-10-07 Showa Denko Kk Led lamp for plant cultivation
CN103355110A (en) * 2012-03-27 2013-10-23 昭和电工株式会社 LED lamp for plant cultivation
JP2016504044A (en) * 2013-01-11 2016-02-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Horticulture lighting device and method for stimulating plant growth and plant biorhythm
JP2014166179A (en) * 2013-02-04 2014-09-11 Showa Denko Kk Plant cultivation lamp, and plant cultivation method using the same
JP2021052671A (en) * 2019-09-30 2021-04-08 シャープ株式会社 Lighting device, light irradiation equipment for plants, and light irradiation method for plants
JP7397612B2 (en) 2019-09-30 2023-12-13 シャープ株式会社 Lighting equipment, plant light irradiation equipment, and plant light irradiation method

Also Published As

Publication number Publication date
JP4081648B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP2004000093A (en) Light emitter and lighting equipment
CN101808500B (en) Lighting device for control of plant disease
US20150128489A1 (en) Plant growing system
US20190191634A1 (en) Arrangement and device for improving plant productivity through enhancing insect pollination success in plant cultivation
US8579465B2 (en) Plant growing system
ES2707148T3 (en) LED horticultural lighting set
US8568009B2 (en) Compact high brightness LED aquarium light apparatus, using an extended point source LED array with light emitting diodes
JP4670108B2 (en) Photosynthesis suppression light source and illumination device using the same
US6921182B2 (en) Efficient LED lamp for enhancing commercial and home plant growth
US10098289B2 (en) Illumination system, illumination control method, and plant cultivation device
WO2010032788A1 (en) Plant illumination and cultivation method that provides insect-screening effects and illumination device for plant cultivation
TW201238473A (en) Plant growth lighting device and method
TW200807753A (en) Light emitting device and lighting system having the same
AU2012266214A1 (en) Method and means for improving plant productivity through enhancing insect pollination success in plant cultivation
JP2002199837A (en) Lighting device
JP2002199816A (en) Luminous apparatus and lighting equipment
JP2002027831A (en) Led light source for raising plant
KR101389929B1 (en) Led lamp for plant
JP2003158922A (en) Lighting device and lighting control method
JP2005095132A (en) Culture method for long-day plant and facility therefor
JP2012019715A (en) Lighting device for plant
CN112425403A (en) Plant growth illumination device for preventing and killing pests based on biological recognition and control method thereof
US10609871B1 (en) Lighting device for horticultural facility
KR101277053B1 (en) LED type lighting apparatus for samll scale plant cultivantions
KR102604933B1 (en) Lighting device for plant growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees