JP2002027831A - Led light source for raising plant - Google Patents

Led light source for raising plant

Info

Publication number
JP2002027831A
JP2002027831A JP2000232081A JP2000232081A JP2002027831A JP 2002027831 A JP2002027831 A JP 2002027831A JP 2000232081 A JP2000232081 A JP 2000232081A JP 2000232081 A JP2000232081 A JP 2000232081A JP 2002027831 A JP2002027831 A JP 2002027831A
Authority
JP
Japan
Prior art keywords
light
led
substrate
light source
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000232081A
Other languages
Japanese (ja)
Inventor
Yoichi Kawakami
養一 川上
Shigeo Fujita
茂夫 藤田
Junichi Shimada
順一 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2000232081A priority Critical patent/JP2002027831A/en
Publication of JP2002027831A publication Critical patent/JP2002027831A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Cultivation Of Plants (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a light source for raising plants, having high efficiency and high reliability by covering both absorption peaks of chlorophyll with one LED. SOLUTION: Firstly, a first luminous layer forming light rays at 400-480 nm wavelength and a second luminous layer for forming light rays at 650-700 nm wavelength in one LED. Secondly, a leak at a short wavelength side (400-480 nm) is formed by a LED main body and a peak at a long-wavelength side (650-700 nm) is formed by a substrate placing the LED. A fluorescent substance for absorbing light rays (400-480 nm) formed by the LED main body and forming light rays at 650-700 nm is used as the substrate. For example, such a fluorescent substrate can be obtained by adding chromium or titanium to sapphire which has been conventionally used as a substrate for a semiconductor light emitting diode. Thirdly, similarly a peak at a short wavelength side is formed by the LED main body and a peak at a long-wavelength side is produced by a fluorescent substance covering the LED main body. Sapphire to which chromium or titanium added is similarly used as the fluorescent substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、栽培農場やいわゆ
る植物工場等に使用することができる、高効率且つ高信
頼性の植物育成用光源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly efficient and highly reliable light source for growing plants, which can be used in cultivation farms and so-called plant factories.

【0002】[0002]

【従来の技術】食糧問題が深刻になりつつある現在、環
境に左右されることなく安定的に植物を育成するための
人工栽培技術の開発は世界的に重要な課題となってい
る。人工栽培技術の中で重要なものの一つに、植物育成
用の人工光源がある。天候に左右されずに安定した植物
育成を行うために、自然光(太陽光)に対して補助的に
用いる、或いは自然光に完全に代替する人工光源は、特
に植物工場等の技術において重要な位置を占める。人工
光源によると、その照射タイミング、時間、強度等を植
物の種類に応じて適切に制御することにより、安定的に
且つ高効率に植物を生長させ、収穫を得ることができ
る。
2. Description of the Related Art As the food problem is becoming more serious, the development of an artificial cultivation technique for stably growing plants without being affected by the environment has become an important issue worldwide. One of the important artificial cultivation techniques is an artificial light source for growing plants. In order to stably grow plants without being affected by the weather, artificial light sources that are supplementarily used for natural light (sunlight) or completely substitute for natural light are particularly important in technologies such as plant factories. Occupy. According to the artificial light source, by appropriately controlling the irradiation timing, time, intensity, and the like according to the type of the plant, the plant can be stably and efficiently grown, and the harvest can be obtained.

【0003】[0003]

【発明が解決しようとする課題】図1はクロロフィル
(葉緑素)の光吸収特性を示すグラフである。クロロフ
ィルa、b(高等植物中C3植物の葉緑体にはクロロフ
ィルa及びbがほぼ3対1の割合で存在する)とも400
〜480nmの紫・青色域と650〜700nm付近の赤色域に光吸
収ピークを有することがわかる。香川大学工学部の岡本
研正は、これらの光吸収ピークがGaAlAs系の超高輝度赤
色発光ダイオード(LED)の発光ピーク及び新たに開
発された超高輝度青色域LEDの発光ピークとほぼ一致
していることに着目し、これらのLEDを基板上に配置
して栽培装置を試作し、植物の育成に成功している
(「高輝度LEDのバイオ・メディカル分野における新
応用」岡本研正,日本学術振興会光電相互変換第125委員
会本委員会第168回研究会資料,2000年5月25日)。
FIG. 1 is a graph showing the light absorption characteristics of chlorophyll (chlorophyll). Chlorophyll a and b (chlorophylls a and b are present in the chloroplasts of C 3 plants in higher plants at a ratio of approximately 3 to 1) are both 400.
It can be seen that there are light absorption peaks in the violet / blue region of 480480 nm and the red region near 650-700 nm. Kenmasa Okamoto of the Faculty of Engineering, Kagawa University found that these light absorption peaks almost coincided with the emission peaks of GaAlAs-based ultra-bright red light-emitting diodes (LEDs) and the newly developed ultra-bright blue LEDs. We have succeeded in cultivating plants by arranging these LEDs on a substrate and prototyping a cultivation device ("New applications of high-brightness LEDs in the biomedical field" Kenmasa Okamoto, Japanese Academy of Sciences) (Proceedings of the 168th workshop of the 125th Committee of the Japan Society for the Promotion of Photovoltaic Conversion, May 25, 2000).

【0004】岡本の試作した装置は、クロロフィルの2
つの吸光ピークに対応してそれぞれ赤色LEDと青色L
EDという別個のLEDを用いたものであるが、本発明
は、1個のLEDでクロロフィルの両吸光ピーク(青色
域、赤色域)をカバーし、高効率で且つ信頼性の高い植
物育成用光源を提供するものである。
[0004] Okamoto's prototype device is a chlorophyll 2
Red LED and Blue L corresponding to two absorption peaks
Although the present invention uses a separate LED called ED, the present invention covers both absorption peaks (blue range and red range) of chlorophyll with one LED, and is a highly efficient and reliable light source for growing plants. Is provided.

【0005】[0005]

【課題を解決するための手段及び効果】上記のとおり、
本発明は基本的に1個のLEDでクロロフィルが必要と
する両吸光ピークの光を同時に供給するものであるが、
その具体的手段は3種に分かれる。
Means and Effects for Solving the Problems As described above,
Although the present invention basically supplies light of both absorption peaks required by chlorophyll with one LED at the same time,
The specific means are divided into three types.

【0006】第1の手段は、それら両吸収ピークの光
を、1個のLED内に設けた2個(或いはそれ以上)の
発光層により供給しようとするものである。すなわち、
1個のLED内に、波長400〜480nmの光を生成する第1
発光層と650〜700nmの光を生成する第2発光層とを形成
する。
The first means is to supply the light having both absorption peaks through two (or more) light emitting layers provided in one LED. That is,
The first to generate light with a wavelength of 400 to 480 nm in one LED
A light-emitting layer and a second light-emitting layer that generates light of 650 to 700 nm are formed.

【0007】第2の手段は、短波長側(400〜480nm)の
ピークをLED本体で生成させ、長波長側(650〜700n
m)のピークは、そのLEDを載置する基板で生成させ
るようにしたものである。この基板には、LED本体が
生成する光(400〜480nm)を吸収して、650〜700nmの光
を生成する蛍光体を用いる。なお、ここで言う「載置」
には、基板上にLEDの各層を順次積層した場合の他、
別途形成したLEDを基板上に置く場合を含む。
The second means is to generate a peak on the short wavelength side (400 to 480 nm) by the LED main body and to generate a peak on the long wavelength side (650 to 700 nm).
The peak of m) is generated on the substrate on which the LED is mounted. For this substrate, a phosphor that absorbs light (400 to 480 nm) generated by the LED body and generates light of 650 to 700 nm is used. In addition, "placement" here
In addition to the case where each layer of the LED is sequentially laminated on the substrate,
This includes the case where an LED formed separately is placed on a substrate.

【0008】例えば、従来より半導体発光ダイオードの
基板として用いられているサファイアにクロム又はチタ
ンを添加することにより、そのような蛍光基板とするこ
とができる。
For example, such a fluorescent substrate can be obtained by adding chromium or titanium to sapphire conventionally used as a substrate of a semiconductor light emitting diode.

【0009】第3の手段は、同様に短波長側(400〜480
nm)のピークをLED本体で生成させ、長波長側(650
〜700nm)のピークを、それを覆う蛍光体で発生させる
というものである。蛍光体としては、上記のクロム又は
チタンを添加したサファイアを用いることができる。
[0009] The third means is likewise on the short wavelength side (400 to 480).
(nm) peak is generated by the LED body, and the longer wavelength side (650
〜700 nm) is generated by the phosphor covering it. As the phosphor, sapphire to which chromium or titanium is added can be used.

【0010】以上、3種のいずれの態様によっても、植
物育成に必要な青色及び赤色の両ピークを1個のLED
で一挙に供給することができることになる。このように
1個のLEDとすることにより、光源のスペース効率及
び信頼性が高まり、特に無人で長期間の自動運転を行う
ような植物工場等での使用に適した光源となる。
[0010] In any of the above three embodiments, both the blue and red peaks required for plant growth are assigned to one LED.
Can be supplied all at once. By using one LED as described above, the space efficiency and reliability of the light source are improved, and the light source is particularly suitable for use in a plant factory or the like in which unattended long-term automatic operation is performed.

【0011】[0011]

【発明の実施の形態】第1の手段の実施形態である植物
育成用光源10の一例を図2に示す。この例はInGaN系
半導体発光ダイオードを用いたものであり、1個のLE
Dの中にInxGa 1-xN発光層を2層11、12設けたもの
である。これら2つの発光層11、12はn-GaN負極層
とp-GaN正極層の間に挟まれ、活性層12とp-GaN層の間
には、n-GaN層からの電子のオーバーフローを抑えるた
めのp-AlzGa1-zN層(zは通常0.2程度)が、サファイア
(Al2O3)基板とn-GaN負極層の間には結晶整合のための
GaNバッファ層を設ける。
BEST MODE FOR CARRYING OUT THE INVENTION A plant which is an embodiment of the first means
FIG. 2 shows an example of the growth light source 10. This example is based on InGaN
A semiconductor light emitting diode is used, and one LE
In in DxGa 1-xTwo N-emitting layers 11 and 12 provided
It is. These two light emitting layers 11 and 12 are n-GaN negative electrode layers
Between the active layer 12 and the p-GaN layer.
Reduces the overflow of electrons from the n-GaN layer.
P-AlzGa1-zN layer (z is usually about 0.2) is sapphire
(AlTwoOThree) Between the substrate and the n-GaN negative electrode layer
A GaN buffer layer is provided.

【0012】第1発光層11は、その発光ピークが400
〜480nm内となるようにIn:Ga混晶比xを調整する(0.1〜
0.3程度)。望ましくは、成長させる目的の植物が有す
るクロロフィル(a又はb)に合わせて、その発光ピー
クを図1のクロロフィルa又はbのいずれかの吸光ピー
クに合わせるように調整する。第2発光層12は、その
発光ピークが650〜700nm内となるようにIn:Ga混晶比xを
調整する(0.4〜0.8程度)。同じく、クロロフィルa又
はbの吸光ピークに合わせて調整することが望ましい。
The first light emitting layer 11 has an emission peak of 400
Adjust the In: Ga mixed crystal ratio x to be within 480 nm (0.1 to
0.3). Desirably, the emission peak is adjusted so as to match the chlorophyll (a or b) of the plant to be grown, and the emission peak of the chlorophyll a or b in FIG. In the second light emitting layer 12, the In: Ga mixed crystal ratio x is adjusted (about 0.4 to 0.8) so that the light emission peak is within 650 to 700 nm. Similarly, it is desirable to adjust according to the absorption peak of chlorophyll a or b.

【0013】なお、InGaN系半導体では長波長側(650〜
700nm)の発光に未だ困難な点が残されている。そこ
で、InxGa1-xNに、そのN原子に置き換わるべき等電子ト
ラップ形成元素としてP(燐)、As(砒素)、Sb(アン
チモン)、Bi(ビスマス)等の他のV族原子をドープし
たものを第2発光層12として用いるとよい。すなわ
ち、長波長側の発光層12として一般式InxGa1-xN1-yXy
(0<x<1;X=P,As,Sb,Bi;0<y<0.01、望ましくは0<y
<0.005)で表されるものを用いる。その理由について
は、特願2000-231572において詳細に説明した。
In the case of InGaN-based semiconductors, the long wavelength side (650 to
(700 nm) emission still has some difficulties. Therefore, another group V atom such as P (phosphorus), As (arsenic), Sb (antimony), or Bi (bismuth) is used as an isoelectronic trap forming element to be replaced with the N atom in In x Ga 1-x N. The doped layer may be used as the second light emitting layer 12. That is, as the light emitting layer 12 on the long wavelength side, the general formula In x Ga 1-x N 1-y X y
(0 <x <1; X = P, As, Sb, Bi; 0 <y <0.01, preferably 0 <y
<0.005) is used. The reason is described in detail in Japanese Patent Application No. 2000-231572.

【0014】ただし、最近では種々の組成の半導体発光
ダイオードにおいて発光波長を調整する技術が進んでい
るため、上記InGaN系半導体以外にも種々のものを用い
ることも可能である。
However, since techniques for adjusting the emission wavelength of semiconductor light emitting diodes of various compositions have recently been developed, various types of semiconductor light emitting diodes other than the above InGaN-based semiconductors can be used.

【0015】本発明の第2の手段の第1の実施形態であ
る光源の構成を図3に示す。本実施形態において、光源
20は基板21と、その上に載置したLED22から構
成される。
FIG. 3 shows the structure of a light source according to a first embodiment of the second means of the present invention. In this embodiment, the light source 20 includes a substrate 21 and an LED 22 mounted thereon.

【0016】基板21は、チタンを添加したサファイア
(Al2O3:Ti)を使用する。このような基板は、サファイ
ア(Al2O3)に酸化チタン(Ti2O3)を混合し、溶融・結
晶化を行うことにより容易に得ることができる。チタン
添加サファイアは赤色透明結晶であり、そのTi3+イオン
により、図4に示すように、500nm付近に吸収ピークを
持ち、700〜850nmの赤色〜赤外線域に広い発光ピークを
有する蛍光体となっている。基板21の裏面には、光反
射用の金属膜23を蒸着する。
As the substrate 21, sapphire (Al 2 O 3 : Ti) to which titanium is added is used. Such a substrate can be easily obtained by mixing sapphire (Al 2 O 3 ) with titanium oxide (Ti 2 O 3 ) and performing melting and crystallization. Titanium-doped sapphire is a red transparent crystal, and due to its Ti 3+ ions, as shown in FIG. 4, becomes a phosphor having an absorption peak near 500 nm and a broad emission peak in the red to infrared region from 700 to 850 nm. ing. On the back surface of the substrate 21, a metal film 23 for light reflection is deposited.

【0017】この基板21上に載置されるLED22
は、InxGa1-xN活性層(発光層)24を挟んでn-GaN負極
層とp-GaN正極層を積層した構造とする。なお、活性層
24とp-GaN層の間に、n-GaN層からの電子のオーバーフ
ローを抑えるため、p-AlzGa1-zN層(zは通常0.2程度)
を設ける。また、基板21とn-GaN負極層の間には、結
晶整合のためのGaNバッファ層を設ける。
The LED 22 mounted on the substrate 21
Has a structure in which an n-GaN negative electrode layer and a p-GaN positive electrode layer are stacked with an In x Ga 1-x N active layer (light emitting layer) 24 interposed therebetween. Between the active layer 24 and the p-GaN layer in order to suppress the overflow of electrons from the n-GaN layer, p-Al z Ga 1- z N layer (z is usually about 0.2)
Is provided. A GaN buffer layer for crystal matching is provided between the substrate 21 and the n-GaN negative electrode layer.

【0018】LED22のInxGa1-xN活性層(発光層)
24は、480nm付近をピークとした青色光を発光するよ
うに、その混晶比xを設定する(具体的には約20%)。
In x Ga 1 -x N active layer (light emitting layer) of LED 22
In No. 24, the mixed crystal ratio x is set so as to emit blue light having a peak near 480 nm (specifically, about 20%).

【0019】図5に模式的に示すように、LED22の
活性層24で発生した光は、一部はそのまま上部から放
出されるが、一部は下方に進んで基板21に入る。その
中の更に一部は基板21を通過する(基板21の裏面で
反射した後、通過する場合も含む)が、残りは基板21
により吸収され、基板21を励起する。励起された基板
21は、そのエネルギの一部を蛍光として放出する。従
って、この蛍光の波長は吸収された光(すなわち、LE
D22の光)の波長よりも長い。また、一般的に波長方
向に広がりを持つ。
As schematically shown in FIG. 5, a part of the light generated in the active layer 24 of the LED 22 is emitted from the upper part, but a part proceeds downward and enters the substrate 21. A part of the light passes through the substrate 21 (including the case where the light passes through after being reflected on the back surface of the substrate 21), and the rest of the light passes through the substrate 21.
To excite the substrate 21. The excited substrate 21 emits part of its energy as fluorescence. Therefore, the wavelength of this fluorescence is equal to the absorbed light (ie, LE
D22). In addition, it generally has a spread in the wavelength direction.

【0020】前述の通り、チタン添加サファイアは図4
に示すような吸光/発光特性を有し、上記LED22の
発生する480nmの青色光を高い効率で吸収する。そのた
め、LED22により生成された光はこのチタン添加サ
ファイア基板21を励起し、基板21からは650nm付近
から急速に立ち上がる赤色〜赤外線域の光が生成され
る。従って、本実施形態の光源20からは、LED22
から直接発光される480nm付近の青色光と650〜700nmを
含む赤色域の光の混合光が発生される。これらは図1に
示すように植物の育成に必要な光であり、本実施形態の
光源はこれらを非常に効率よく生成することができる。
As described above, titanium-added sapphire is shown in FIG.
And absorbs blue light of 480 nm generated by the LED 22 with high efficiency. Therefore, the light generated by the LED 22 excites the titanium-added sapphire substrate 21, and the substrate 21 generates red-to-infrared light that rises rapidly from around 650 nm. Therefore, from the light source 20 of the present embodiment, the LED 22
A mixed light of blue light near 480 nm and light in a red region including 650 to 700 nm, which is directly emitted from the light source, is generated. These are lights necessary for growing plants, as shown in FIG. 1, and the light source of the present embodiment can generate them very efficiently.

【0021】こうしてLEDから生成される光と、それ
により励起され生成される基板からの蛍光は、それぞれ
前記クロロフィルの短波長側吸光ピーク(400〜480nm)と
長波長側吸光ピーク(650〜700nm)に近い波長を有する。
The light thus generated from the LED and the fluorescence from the substrate excited and generated by the light are the short-wavelength absorption peak (400-480 nm) and the long-wavelength absorption peak (650-700 nm) of the chlorophyll, respectively. Has a wavelength close to

【0022】次に、上記第2の手段の第2の実施形態を
説明する。この実施形態は、基板にクロム添加サファイ
ア(ルビー)を用いる他は、上記第1の実施形態と同様
の構造(図3、図5)を有する。クロム添加サファイア
(Al2O3:Cr)は、図6(a)に示すように、410nm付近(紫
色)及び550nm付近(緑色)に吸収ピークを持ち、同図
(b)に示すように693nm及び694nm(赤色)に鋭い発光ピ
ークを有する蛍光体である。なお、クロム添加サファイ
アはチタン添加サファイアと同様、赤色透明結晶であ
り、そのCr3+イオンにより蛍光を発する。
Next, a second embodiment of the second means will be described. This embodiment has the same structure (FIGS. 3 and 5) as the first embodiment except that chromium-added sapphire (ruby) is used for the substrate. Chrome-added sapphire
(Al 2 O 3 : Cr) has absorption peaks around 410 nm (purple) and around 550 nm (green) as shown in FIG. 6A, and 693 nm and 694 nm (green) as shown in FIG. It is a phosphor having a sharp emission peak in (red). Note that chromium-added sapphire is a red transparent crystal, similar to titanium-added sapphire, and emits fluorescence by its Cr 3+ ions.

【0023】上記同様、LED22のInxGa1-xN活性層
(発光層)のInGa混晶比xを適切に設定して410nm付近の
光を発光させることにより、LED22からはクロロフ
ィルaの短波長側吸収ピークに近い波長の光が、基板2
1からはクロロフィルの長波長側吸収ピークに近い波長
の蛍光が放出される。本実施形態の光源20も上記同
様、植物の育成に必要な光を効率よく生成することがで
きる。
As described above, by appropriately setting the InGa mixed crystal ratio x of the In x Ga 1 -xN active layer (light emitting layer) of the LED 22 to emit light near 410 nm, the LED 22 has a short chlorophyll a. Light having a wavelength close to the absorption peak on the wavelength side
1 emits fluorescence having a wavelength close to the long-wavelength absorption peak of chlorophyll. Similarly to the above, the light source 20 of the present embodiment can efficiently generate light necessary for growing plants.

【0024】なお、第1及び第2の実施形態(図3、図
5)ではLED22の上面の発光側に電極及びリード線
を設ける必要があるため、電極パッド26、27の面積
はできる限り小さくしておくことが望ましい。
In the first and second embodiments (FIGS. 3 and 5), it is necessary to provide an electrode and a lead wire on the light emitting side of the upper surface of the LED 22, so that the area of the electrode pads 26 and 27 is as small as possible. It is desirable to keep.

【0025】本発明の第2の手段の第3の実施形態を説
明する。この形態は図7に示すように、基板31を発光
側とするものである。基板31には、上記第1及び第2
の実施形態で用いたチタン添加サファイア又はクロム添
加サファイアのいずれをも用いることができる。LED
32の裏面側は金属の蒸着等により電極兼反射面36、
37としておく。
A third embodiment of the second means of the present invention will be described. In this embodiment, as shown in FIG. 7, the substrate 31 is on the light emitting side. The first and second substrates are provided on the substrate 31.
Any of the titanium-added sapphire and the chromium-added sapphire used in the embodiment can be used. LED
The back surface side of 32 is an electrode / reflection surface 36 by metal deposition or the like,
Set it to 37.

【0026】このような構造とすることにより、LED
32から発する光の殆どが発光側の基板31に入ること
になる。基板31に添加するチタン又はクロムの濃度及
び基板31の厚さを適切に設定することにより、LED
32からの光の一部が基板31を透過し、一部が基板3
1に吸収されて上記の通り蛍光を発するようにすること
ができる。従って、本光源30から放出される光がそれ
らの混合光となること、及びその発光色を適宜調整する
ことができることについては第1及び第2の実施形態と
同じであるが、本実施形態の光源では発光面側(図7に
おいて上側)において電極パッド等により光が遮られる
ことがないため、高効率の発光を行うことができるとい
う特長を有する。
By adopting such a structure, the LED
Most of the light emitted from 32 enters the light emitting side substrate 31. By appropriately setting the concentration of titanium or chromium added to the substrate 31 and the thickness of the substrate 31,
Part of the light from the substrate 32 passes through the substrate 31 and part of the light from the substrate 3
1 and emit fluorescence as described above. Therefore, it is the same as the first and second embodiments that the light emitted from the present light source 30 is a mixed light thereof and that the emission color can be appropriately adjusted. The light source has a feature that light can be emitted with high efficiency because light is not blocked by an electrode pad or the like on the light emitting surface side (upper side in FIG. 7).

【0027】本発明の第3の手段の実施形態を図8に示
す。この実施形態の光源40は、基板41を通常のサフ
ァイアとし、そのLED42の上面を上記チタン/クロ
ム添加サファイア蛍光体43で覆ったものである。その
作用及び効果は、上記第2手段の第3実施形態(図7)
と同様となる。
FIG. 8 shows an embodiment of the third means of the present invention. The light source 40 of this embodiment is one in which a substrate 41 is made of normal sapphire, and the upper surface of an LED 42 is covered with the titanium / chromium-added sapphire phosphor 43. The operation and the effect are described in the third embodiment of the second means (FIG. 7).
Is the same as

【図面の簡単な説明】[Brief description of the drawings]

【図1】 クロロフィル(葉緑素)の光吸収特性を示す
グラフ。
FIG. 1 is a graph showing light absorption characteristics of chlorophyll (chlorophyll).

【図2】 本発明の第1の手段の実施形態である植物育
成用光源の一例を示す断面図。
FIG. 2 is a cross-sectional view showing an example of a plant growing light source which is an embodiment of the first means of the present invention.

【図3】 本発明の第2の手段の第1の実施形態である
植物育成用光源の構成を示す断面図。
FIG. 3 is a cross-sectional view showing a configuration of a plant growing light source according to a first embodiment of the second means of the present invention.

【図4】 チタン添加サファイア(Al2O3:Ti)の吸収/発
光特性グラフ。
FIG. 4 is a graph showing absorption / emission characteristics of titanium-added sapphire (Al 2 O 3 : Ti).

【図5】 図3の光源の発光状況を示す模式図。FIG. 5 is a schematic diagram showing a light emitting state of the light source in FIG. 3;

【図6】 クロム添加サファイア(Al2O3:Cr)の吸収
(a)及び発光(b)特性グラフ。
FIG. 6 is a graph showing absorption (a) and emission (b) characteristics of chromium-doped sapphire (Al 2 O 3 : Cr).

【図7】 本発明の第2の手段の第3の実施形態である
植物育成用光源の構成を示す断面図。
FIG. 7 is a cross-sectional view showing a configuration of a plant growing light source according to a third embodiment of the second means of the present invention.

【図8】 本発明の第3の手段の実施形態である植物育
成用光源の構成を示す断面図。
FIG. 8 is a sectional view showing a configuration of a light source for growing a plant, which is an embodiment of the third means of the present invention.

【符号の説明】[Explanation of symbols]

10、20、30、40…植物育成用光源 11、21、31、41…基板 12、22、32、42…InGaN系窒化物半導体発光ダ
イオード23…反射膜 14、24、34…活性層 16、17、26、27…電極パッド 36、37…電極兼反射面
10, 20, 30, 40 ... light source for plant growth 11, 21, 31, 41 ... substrate 12, 22, 32, 42 ... InGaN-based nitride semiconductor light emitting diode 23 ... reflection film 14, 24, 34 ... active layer 16, 17, 26, 27 ... electrode pad 36, 37 ... electrode and reflection surface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 33/00 H01L 33/00 C L Fターム(参考) 2B022 DA08 4H001 CA02 CA04 CC14 XA07 XA15 XA31 XA33 XA49 XA51 XA83 5F041 AA11 AA12 CA34 CA40 EE25 FF16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01L 33/00 H01L 33/00 CLF term (Reference) 2B022 DA08 4H001 CA02 CA04 CC14 XA07 XA15 XA31 XA33 XA49 XA51 XA83 5F041 AA11 AA12 CA34 CA40 EE25 FF16

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 1個のLED内に、波長400〜480nmの光
を生成する第1発光層と650〜700nmの光を生成する第2
発光層とを形成したことを特徴とする植物育成用LED
光源。
1. A first light emitting layer that generates light having a wavelength of 400 to 480 nm and a second light emitting layer that generates light having a wavelength of 650 to 700 nm in one LED.
LED for growing plants characterized by forming a light emitting layer
light source.
【請求項2】 上記第1発光層がInxGa1-xN(0.1<x<0.
3)であり、第2発光層がInxGa1-xN1-yXy(0<x<1;X=P,
As,Sb,Bi;0<y<0.01)である請求項1記載の植物育成
用LED光源。
2. The method according to claim 1, wherein the first light emitting layer is formed of In x Ga 1 -xN (0.1 <x <0.
3) wherein the second light-emitting layer is In x Ga 1-x N 1-y X y (0 <x <1; X = P,
2. The LED light source for growing plants according to claim 1, wherein As, Sb, Bi; 0 <y <0.01).
【請求項3】 波長400〜480nmの光を生成する発光層を
含むLEDを、該発光層からの光を吸収して波長650〜7
00nmの蛍光を生成する基板上に載置したことを特徴とす
る植物育成用LED光源。
3. An LED including a light emitting layer that generates light having a wavelength of 400 to 480 nm is formed by absorbing light from the light emitting layer to emit light having a wavelength of 650 to 7 nm.
An LED light source for growing plants, which is mounted on a substrate that generates 00 nm fluorescence.
【請求項4】 上記発光層がInxGa1-xN(0.1<x<0.3)で
あり、上記基板がクロム又はチタンを添加したサファイ
アである請求項3記載の植物育成用LED光源。
4. The LED light source for growing plants according to claim 3, wherein the light emitting layer is In x Ga 1 -xN (0.1 <x <0.3), and the substrate is sapphire to which chromium or titanium is added.
【請求項5】 波長400〜480nmの光を生成する発光層を
含むLEDを、該発光層からの光を吸収して波長650〜7
00nmの蛍光を生成する蛍光体で覆ったことを特徴とする
植物育成用LED光源。
5. An LED including a light-emitting layer that generates light having a wavelength of 400 to 480 nm, the light having a wavelength of 650 to 7 that absorbs light from the light-emitting layer.
An LED light source for growing plants, which is covered with a phosphor that generates fluorescence of 00 nm.
【請求項6】 上記発光層がInxGa1-xN(0.1<x<0.3)で
あり、上記蛍光体がクロム又はチタンを添加したサファ
イアである請求項5記載の植物育成用LED光源。
6. The LED light source for growing plants according to claim 5, wherein the light emitting layer is In x Ga 1 -xN (0.1 <x <0.3), and the phosphor is sapphire to which chromium or titanium is added.
JP2000232081A 2000-05-11 2000-07-31 Led light source for raising plant Pending JP2002027831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000232081A JP2002027831A (en) 2000-05-11 2000-07-31 Led light source for raising plant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-138853 2000-05-11
JP2000138853 2000-05-11
JP2000232081A JP2002027831A (en) 2000-05-11 2000-07-31 Led light source for raising plant

Publications (1)

Publication Number Publication Date
JP2002027831A true JP2002027831A (en) 2002-01-29

Family

ID=26591702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232081A Pending JP2002027831A (en) 2000-05-11 2000-07-31 Led light source for raising plant

Country Status (1)

Country Link
JP (1) JP2002027831A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752158B1 (en) 2006-07-04 2007-08-24 주식회사 앤드 Culture method of photosynthetic bacteria include bacteriochlorophyll using infrared led as luminous source
US7538360B2 (en) 2002-04-17 2009-05-26 Sharp Kabushiki Kaisha Nitride-based semiconductor light-emitting device and manufacturing method thereof
JP2010193824A (en) * 2009-02-26 2010-09-09 Fine Rubber Kenkyusho:Kk Light source for plant cultivation
WO2010103737A1 (en) 2009-03-10 2010-09-16 昭和電工株式会社 Epitaxial wafer for light emitting diode
WO2010103752A1 (en) 2009-03-10 2010-09-16 昭和電工株式会社 Light emitting diode, light emitting diode lamp and illuminating device
WO2011016521A1 (en) 2009-08-07 2011-02-10 昭和電工株式会社 Multicolour light emitting diode lamp for use in plant cultivation, lighting device and plant cultivation method
DE102010004042A1 (en) * 2010-01-05 2011-07-07 Sommer, Andreas, 63500 LED lamp i.e. plant light, for promoting growth of biological system i.e. aquarium, has light sources i.e. LEDs, with predetermined characteristics of emitted wavelengths, which lie at spectral range between specific ranges
WO2012005215A1 (en) 2010-07-06 2012-01-12 昭和電工株式会社 Epitaxial wafer for light-emitting diodes
WO2012008379A1 (en) 2010-07-13 2012-01-19 昭和電工株式会社 Light emitting diode and light emitting diode lamp
WO2012023558A1 (en) 2010-08-18 2012-02-23 昭和電工株式会社 Light-emitting diode and light-emitting diode lamp
JP2012120477A (en) * 2010-12-08 2012-06-28 Showa Denko Kk Lighting system for plant cultivation, and plant cultivation apparatus
JP2013505009A (en) * 2009-09-18 2013-02-14 ヴァロヤ・オーイュー Lighting assembly
JP2013106550A (en) * 2011-11-18 2013-06-06 Sharp Corp Lighting device for growing plant
US8643023B2 (en) 2009-05-22 2014-02-04 Showa Denko K.K. Light emitting diode, light emitting diode lamp, and lighting apparatus
KR20140020954A (en) * 2011-03-17 2014-02-19 발로야 오와이 Plant illumination device and method for dark growth chambers
JP2014061004A (en) * 2010-11-25 2014-04-10 Sharp Corp Germination rack, nursery rack, cultivation rack, and plant factory provided with led light sources for plant cultivation
JP2015000036A (en) * 2013-06-17 2015-01-05 交和電気産業株式会社 Illumination device
KR20150022278A (en) * 2013-08-22 2015-03-04 오차민 Led package for growing plants
US9163804B2 (en) 2012-05-11 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Lighting device
JP2016207869A (en) * 2015-04-23 2016-12-08 信越半導体株式会社 Epitaxial wafer, and light emitting diode
US9666769B2 (en) 2010-11-25 2017-05-30 Sharp Kabushiki Kaisha Light emitting device, LED light source for plant cultivation, and plant factory
US11700795B2 (en) 2021-05-04 2023-07-18 Samsung Electronics Co., Ltd. Light emitting device and light apparatus for plant growth

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538360B2 (en) 2002-04-17 2009-05-26 Sharp Kabushiki Kaisha Nitride-based semiconductor light-emitting device and manufacturing method thereof
US8569776B2 (en) 2002-04-17 2013-10-29 Sharp Kabushiki Kaisha Nitride-based semiconductor light-emitting device and manufacturing method thereof
KR100752158B1 (en) 2006-07-04 2007-08-24 주식회사 앤드 Culture method of photosynthetic bacteria include bacteriochlorophyll using infrared led as luminous source
JP2010193824A (en) * 2009-02-26 2010-09-09 Fine Rubber Kenkyusho:Kk Light source for plant cultivation
WO2010103737A1 (en) 2009-03-10 2010-09-16 昭和電工株式会社 Epitaxial wafer for light emitting diode
US8901584B2 (en) 2009-03-10 2014-12-02 Showa Denko K.K. Light emitting diode, light emitting diode lamp and illuminating device
WO2010103752A1 (en) 2009-03-10 2010-09-16 昭和電工株式会社 Light emitting diode, light emitting diode lamp and illuminating device
KR101419105B1 (en) * 2009-03-10 2014-07-11 쇼와 덴코 가부시키가이샤 Light emitting diode, light emitting diode lamp and illuminating device
US8482027B2 (en) 2009-03-10 2013-07-09 Showa Denko K.K. Epitaxial wafer for light emitting diode
US8643023B2 (en) 2009-05-22 2014-02-04 Showa Denko K.K. Light emitting diode, light emitting diode lamp, and lighting apparatus
WO2011016521A1 (en) 2009-08-07 2011-02-10 昭和電工株式会社 Multicolour light emitting diode lamp for use in plant cultivation, lighting device and plant cultivation method
US9485919B2 (en) 2009-08-07 2016-11-08 Showa Denko K.K. Multicolor light emitting diode lamp for plant growth, illumination apparatus, and plant growth method
TWI487139B (en) * 2009-08-07 2015-06-01 Showa Denko Kk Multicolor light emitting diode lamp for plant growth, lighting equipment and method of growing plant
JP5393790B2 (en) * 2009-08-07 2014-01-22 昭和電工株式会社 Multicolor light emitting diode lamp for plant growth, lighting device and plant growth method
US8850743B2 (en) 2009-09-18 2014-10-07 Valoya Oy Lighting assembly
JP2017123872A (en) * 2009-09-18 2017-07-20 ヴァロヤ・オーイュー Lighting assembly
US9516818B2 (en) 2009-09-18 2016-12-13 Valoya Oy Lighting assembly
JP2013505009A (en) * 2009-09-18 2013-02-14 ヴァロヤ・オーイュー Lighting assembly
US11089737B2 (en) 2009-09-18 2021-08-17 Valoya Oy Light emission source LED component, horticultural light, and horticultural lighting fixture
US10485183B2 (en) 2009-09-18 2019-11-26 Valoya Oy Lighting assembly
KR101783368B1 (en) * 2009-09-18 2017-10-10 발로야 오와이 Horticultural led lighting assembly
JP2015109870A (en) * 2009-09-18 2015-06-18 ヴァロヤ・オーイュー Lighting assembly
DE102010004042A1 (en) * 2010-01-05 2011-07-07 Sommer, Andreas, 63500 LED lamp i.e. plant light, for promoting growth of biological system i.e. aquarium, has light sources i.e. LEDs, with predetermined characteristics of emitted wavelengths, which lie at spectral range between specific ranges
US9627578B2 (en) 2010-07-06 2017-04-18 Showa Denko K.K. Epitaxial wafer for light-emitting diodes
WO2012005215A1 (en) 2010-07-06 2012-01-12 昭和電工株式会社 Epitaxial wafer for light-emitting diodes
WO2012008379A1 (en) 2010-07-13 2012-01-19 昭和電工株式会社 Light emitting diode and light emitting diode lamp
KR20130041093A (en) 2010-07-13 2013-04-24 쇼와 덴코 가부시키가이샤 Light emitting diode and light emitting diode lamp
US9184345B2 (en) 2010-07-13 2015-11-10 Showa Denko K.K Light emitting diode and light emitting diode lamp
WO2012023558A1 (en) 2010-08-18 2012-02-23 昭和電工株式会社 Light-emitting diode and light-emitting diode lamp
US9318673B2 (en) 2010-08-18 2016-04-19 Showa Denko K.K. Light-emitting diode and light-emitting diode lamp
US9666769B2 (en) 2010-11-25 2017-05-30 Sharp Kabushiki Kaisha Light emitting device, LED light source for plant cultivation, and plant factory
JP2014061004A (en) * 2010-11-25 2014-04-10 Sharp Corp Germination rack, nursery rack, cultivation rack, and plant factory provided with led light sources for plant cultivation
JP2015154783A (en) * 2010-11-25 2015-08-27 シャープ株式会社 Luminescent device, led source for plant cultivation, and plant factory
JP2014075607A (en) * 2010-11-25 2014-04-24 Sharp Corp Light-emitting device and led light source for plant cultivation
JP2012120477A (en) * 2010-12-08 2012-06-28 Showa Denko Kk Lighting system for plant cultivation, and plant cultivation apparatus
KR101940828B1 (en) 2011-03-17 2019-01-21 발로야 오와이 Plant illumination device and method for dark growth chambers
KR20140020954A (en) * 2011-03-17 2014-02-19 발로야 오와이 Plant illumination device and method for dark growth chambers
JP2013106550A (en) * 2011-11-18 2013-06-06 Sharp Corp Lighting device for growing plant
US9030089B2 (en) 2011-11-18 2015-05-12 Sharp Kabushiki Kaisha Lighting device for growing plant
US9163804B2 (en) 2012-05-11 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Lighting device
JP2015000036A (en) * 2013-06-17 2015-01-05 交和電気産業株式会社 Illumination device
KR20150022278A (en) * 2013-08-22 2015-03-04 오차민 Led package for growing plants
KR101578142B1 (en) * 2013-08-22 2015-12-16 오차민 Led package for growing plants
JP2016207869A (en) * 2015-04-23 2016-12-08 信越半導体株式会社 Epitaxial wafer, and light emitting diode
US11700795B2 (en) 2021-05-04 2023-07-18 Samsung Electronics Co., Ltd. Light emitting device and light apparatus for plant growth

Similar Documents

Publication Publication Date Title
JP2002027831A (en) Led light source for raising plant
US6630691B1 (en) Light emitting diode device comprising a luminescent substrate that performs phosphor conversion
US7985964B2 (en) Light-emitting semiconductor device
US7781793B2 (en) White light emitting element and white light source
US8772757B2 (en) Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices
KR101296959B1 (en) Light emitting diode, light emitting diode lamp, and lighting apparatus
US20080277670A1 (en) SiC crystal and semiconductor device
JP2015008278A (en) Wavelength conversion element, light-emitting device having wavelength conversion element, vehicle having light-emitting device and manufacturing method of wavelength conversion element
KR20110120360A (en) Light emitting diode, light emitting diode lamp and illuminating device
CN103155181A (en) Light-emitting diode and light-emitting diode lamp
JP2004153271A (en) White light-emitting device and manufacturing method therefor
TW201212283A (en) Light-emitting diode, light-emitting diode lamp, and lighting equipment
EP2479805A1 (en) Light emitting diode, light emitting diode lamp, and illuminating apparatus
JP6616126B2 (en) Nitride semiconductor light emitting device
JP2013098298A (en) Group iii nitride semiconductor light-emitting element manufacturing method
JP5236847B2 (en) II-VI group compound semiconductor crystal and photoelectric conversion functional device
JP5330880B2 (en) Light emitting diode element and method for manufacturing the same
JP5521242B1 (en) SiC material manufacturing method and SiC material laminate
JP2016225568A (en) Nitride semiconductor light-emitting element
KR101560952B1 (en) Epitaxial wafer for light-emitting diodes
JP2010153496A (en) Light emitting element
US8952399B2 (en) Light emitting device comprising a wavelength conversion layer having indirect bandgap energy and made of an N-type doped AlInGaP material
JPH09172197A (en) Semiconductor light emitting device
JP2004095649A (en) Oxide semiconductor light emitting device
JP4286983B2 (en) AlGaInP light emitting diode