JP2003156643A5 - - Google Patents

Download PDF

Info

Publication number
JP2003156643A5
JP2003156643A5 JP2001354114A JP2001354114A JP2003156643A5 JP 2003156643 A5 JP2003156643 A5 JP 2003156643A5 JP 2001354114 A JP2001354114 A JP 2001354114A JP 2001354114 A JP2001354114 A JP 2001354114A JP 2003156643 A5 JP2003156643 A5 JP 2003156643A5
Authority
JP
Japan
Prior art keywords
waveguide
optical
light
support substrate
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001354114A
Other languages
Japanese (ja)
Other versions
JP2003156643A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2001354114A priority Critical patent/JP2003156643A/en
Priority claimed from JP2001354114A external-priority patent/JP2003156643A/en
Publication of JP2003156643A publication Critical patent/JP2003156643A/en
Publication of JP2003156643A5 publication Critical patent/JP2003156643A5/ja
Pending legal-status Critical Current

Links

Claims (14)

支持基板に受光素子を設ける工程1と、前記の支持基板に発光素子を設ける工程2と、かつ前記の支持基板に前記の発光素子及び受光素子を結ぶように、光照射により屈折率の制御ができる材料を成膜させる工程3と、前記の膜に対して光照射を行い導波路を形成する工程4とからなる、ことを特徴とする光学素子の製作方法。The refractive index is controlled by light irradiation so that the light receiving element is provided on the support substrate, the light emitting element is provided on the support substrate, and the light emitting element and the light receiving element are connected to the support substrate. A method for manufacturing an optical element, comprising: a step 3 for forming a material that can be formed; and a step 4 for forming a waveguide by irradiating the film with light. 支持基板に受光素子を設ける工程1と、前記支持基板に発光素子を設ける工程2と、かつ前記支持基板に屈折率が支持基板より低い基板を設ける工程3と、前記屈折率の低い基板上に光照射により屈折率の制御ができる材料を成膜させる工程4と、前記の膜に対して光照射を行い導波路を形成する工程5とからなる、ことを特徴とする光学素子の製作方法。Step 1 of providing a light receiving element on the support substrate, Step 2 of providing a light emitting element on the support substrate, Step 3 of providing a substrate having a refractive index lower than that of the support substrate on the support substrate, and on the substrate having a low refractive index. An optical element manufacturing method comprising: a step 4 for forming a material whose refractive index can be controlled by light irradiation; and a step 5 for forming a waveguide by irradiating the film with light. 支持基板に受光素子を設ける工程1と、前記の支持基板に発光素子を設ける工程2と、かつ前記支持基板に前記の発光素子及び受光素子を結ぶように弾性体を設ける工程3と、前記の弾性体に光照射により屈折率の制御ができる材料を成膜させる工程4と、前記の膜に対して光照射を行い導波路を形成する工程5とからなる、ことを特徴とする光学素子の製作方法。Step 1 of providing a light receiving element on the support substrate, Step 2 of providing a light emitting element on the support substrate, Step 3 of providing an elastic body so as to connect the light emitting element and the light receiving element to the support substrate, An optical element comprising: a step 4 for forming a material capable of controlling a refractive index by light irradiation on an elastic body; and a step 5 for forming a waveguide by irradiating the film with light. Production method. 請求項1乃至請求項3に記載した導波路に対し、更に光照射を施すことによりブラッググレーディング(以下BGと称する)を形成する工程を加えた、ことを特徴とする光学素子の製造方法。4. A method for manufacturing an optical element, comprising: adding a step of forming Bragg grading (hereinafter referred to as BG) by further irradiating the waveguide according to claim 1 with light. 前記のいずれかの製造法による光学素子において、導波路をなす材料に、一種高分子主材料の他に少なくとも一種類以上の、光照射により屈折率の変化を誘起し得る高分子、オリゴマー或いは低分子化合物若しくは無機微粒子を含有する、ことを特徴とする光学素子。In the optical element according to any one of the above-described manufacturing methods, the material constituting the waveguide includes at least one kind of polymer main material, at least one kind of polymer, oligomer, or low substance that can induce a change in refractive index by light irradiation. An optical element comprising a molecular compound or inorganic fine particles. 前記記のいずれかの製造法による光学素子において、用いた発光素子は電界発光素子とし、この電界発光素子は導波路の入射端にあり、かつ導波路の一部とする、ことを特徴とする光学素子。In the optical element according to any one of the manufacturing methods described above, the light emitting element used is an electroluminescent element, and the electroluminescent element is at an incident end of the waveguide and is a part of the waveguide. Optical element. 請求項1乃至請求項6に記載のいずれかの光学素子の製造法に、少なくとも導波路の一部に有機及び無機ガス、液体若しくはそれらの混合物と物理的及び/或いは化学的反応を起こし得る反応性薄膜を製膜させる工程Aと、補償用導波路に更に被検物質から曝されないように被覆材を設ける工程Bとを加えた、ことを特徴とするオプティク化学センサの製作法。7. The method for producing an optical element according to claim 1, wherein a reaction capable of causing a physical and / or chemical reaction with an organic and inorganic gas, a liquid or a mixture thereof at least in a part of the waveguide. A process for producing an optical chemical sensor, comprising: a step A for forming a conductive thin film; and a step B for providing a coating material so that the compensation waveguide is not exposed to a test substance. 請求項1乃至請求項7に記載のいずれかの製造法によるオプティクセンサであって、少なくとも検知用導波路と、補償用導波路と、前記導波路の入射端に設けた発光素子と、及び導波路の表面にある有機及び無機ガス、液体、若しくはそれらの混合体と物理的及び/或いは化学的反応を起こし得る反応性薄膜と、前記補償用導波路に更に被検物質から曝されないように設けた被覆材と、かつ前記の導波路の光射出端に、受光素子とを備える、ことを特徴とするオプティク化学センサ。An optical sensor according to any one of claims 1 to 7, wherein at least a detection waveguide, a compensation waveguide, a light emitting element provided at an incident end of the waveguide, and A reactive thin film capable of causing a physical and / or chemical reaction with organic and inorganic gases, liquids, or mixtures thereof on the surface of the waveguide, and further avoiding exposure to the compensation waveguide from the test substance. An optical chemical sensor, comprising: a covering material provided; and a light receiving element at a light exit end of the waveguide. 請求項1乃至請求項8に記載のいずれかの製造法によるオプティクセンサであって、少なくても導波路の入射端に設けた発光素子と、検知用導波路及びその一部に書き込んだ検知用ブラッググレーディングBGと、補償用導波路及びその一部に書き込んだ補償用BGと、前記導波路の表面にある有機及び無機ガス、液体若しくは混合体と物理的及び/或いは化学的反応を起こし得る反応性薄膜と、前記補償用導波路に更に被検物質から曝されないように設けた被覆材と、かつ前記の導波路の光射出端に受光素子とを備える、ことを特徴とするオプティク化学センサ。9. An optical sensor according to any one of claims 1 to 8, wherein at least a light emitting element provided at an incident end of a waveguide, a detection waveguide, and a detection written in a part thereof Bragg grading BG, compensation BG written in the compensation waveguide and a part thereof, and organic and inorganic gas, liquid or mixture on the surface of the waveguide may cause physical and / or chemical reaction. An optical chemical sensor comprising: a reactive thin film; a coating material provided on the compensation waveguide so as not to be exposed from a test substance; and a light receiving element at a light exit end of the waveguide. . 前記のいずれかの製造法によるオプティク化学センサにおいて、検知用導波路に塗布された反応性薄膜に含まれる少なくとも一種類以上の高分子は、ポリ弗化ビニリデン、フェノル樹脂、ノボラク樹脂、エポキシ樹脂、複数環を主鎖及び/或いは側鎖に有する高分子などから選ばれ、かつ当該高分子に鉄、アルミニュウム、ルテニュウム、コバルト、ニッケル、白金、金、銀等の遷移金属をドーピングした、ことを特徴とするオプティクアルコールセンサ。In the optical chemical sensor according to any one of the manufacturing methods described above, at least one kind of polymer contained in the reactive thin film applied to the detection waveguide is polyvinylidene fluoride, phenol resin, novolak resin, epoxy resin, It is selected from polymers having a plurality of rings in the main chain and / or side chain, and the polymer is doped with a transition metal such as iron, aluminum, ruthenium, cobalt, nickel, platinum, gold, silver, etc. An optical alcohol sensor. 前記のいずれかの製造法による化学オプティクセンサにおいて、検知用導波路に塗布された反応性薄膜に含まれる少なくとも一種類以上の高分子は、ポリアクリル酸、ポリメチルメタクリレート、アクリル酸とメチルメタクリレートとの共重合体などから選ばれた、ことを特徴とするオプティク湿度センサ。In the chemical optical sensor according to any one of the above manufacturing methods, at least one kind of the polymer contained in the reactive thin film applied to the detection waveguide is polyacrylic acid, polymethyl methacrylate, acrylic acid and methyl methacrylate. An optical humidity sensor characterized by being selected from a copolymer of 前記のいずれかの製造法による化学オプティクセンサにおいて、検知用導波路に塗布された反応性薄膜に含まれる少なくとも一種類の高分子は、ポリフッ化ビニリデンなどのようなハイライド系ポリマーから選ばれ、ポリカッボゾールと適切な割合でブレンドし、かつ当該ブレンド物の屈折率が導波路コアの屈折率より高い、ことを特徴とするオプティク炭酸ガスセンサ。In the chemical optic sensor according to any one of the above manufacturing methods, at least one kind of polymer contained in the reactive thin film applied to the detection waveguide is selected from a halide-based polymer such as polyvinylidene fluoride, An optical carbon dioxide sensor, which is blended with polycabozole at an appropriate ratio, and the refractive index of the blend is higher than the refractive index of the waveguide core. 請求項1乃至請求項6に記載のいずれかの製造法によるオプティクセンサであって、少なくても力を受け変位するセンシング部と、このセンシング部に設けられる導波路と、かつ前記導波路の一部に形成されたBGと、補償用BGのブラッグ波長を測定して変位検出用BGの波長特性を補償する、前記変位検出用導波路の近傍に形成されるBGを有する補償用導波路と、前記した二つの導波路の入射端に設けた発光素子と、他端に設けた受光素子とを備える、ことを特徴とするオプティク力センサ。7. An optical sensor according to any one of claims 1 to 6, wherein at least a sensing unit that receives and displaces a force, a waveguide provided in the sensing unit, and the waveguide A partially formed BG, and a compensation waveguide having a BG formed in the vicinity of the displacement detection waveguide for measuring the Bragg wavelength of the compensation BG and compensating for the wavelength characteristics of the displacement detection BG; An optical force sensor comprising: a light emitting element provided at an incident end of the two waveguides described above; and a light receiving element provided at the other end. 任意に選ばれた請求項8乃至請求項13に記載したオプティクセンサの一つと、駆動回路と接続されている光ファイバーと、前記の支持基板に取り付けたフォトダイオード(PD)により前記の光ファイバーから伝搬される光信号を受信し、なおかつこれにより生じた光電流を適切に増幅して、駆動電圧とする、ことを特徴とするオプティクセンサモジュール。Propagation from the optical fiber by one of the optical sensors of any one of claims 8 to 13, arbitrarily selected, an optical fiber connected to a drive circuit, and a photodiode (PD) attached to the support substrate. An optical sensor module that receives a received optical signal and appropriately amplifies a photocurrent generated thereby to obtain a drive voltage.
JP2001354114A 2001-11-20 2001-11-20 Optical element and measuring device using the same Pending JP2003156643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354114A JP2003156643A (en) 2001-11-20 2001-11-20 Optical element and measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354114A JP2003156643A (en) 2001-11-20 2001-11-20 Optical element and measuring device using the same

Publications (2)

Publication Number Publication Date
JP2003156643A JP2003156643A (en) 2003-05-30
JP2003156643A5 true JP2003156643A5 (en) 2005-07-14

Family

ID=19166014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354114A Pending JP2003156643A (en) 2001-11-20 2001-11-20 Optical element and measuring device using the same

Country Status (1)

Country Link
JP (1) JP2003156643A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156178A (en) * 2003-11-20 2005-06-16 Kri Inc Pressure evaluation method and optical waveguide type pressure sensor
JP4742336B2 (en) * 2004-04-12 2011-08-10 一正 佐々木 Optical fiber strain sensor and measuring instrument using it
US8597871B2 (en) * 2005-06-18 2013-12-03 The Regents Of The University Of Colorado Three-dimensional direct-write lithography
JP4830415B2 (en) * 2005-09-12 2011-12-07 株式会社デンソー Optical device and manufacturing method thereof
US7228017B2 (en) * 2005-09-30 2007-06-05 General Electric Company Fiber optic sensing device and method of making and operating the same
JP2008122265A (en) * 2006-11-14 2008-05-29 Toshiba Corp Color development reaction detection device and its manufacturing method
US7336862B1 (en) * 2007-03-22 2008-02-26 General Electric Company Fiber optic sensor for detecting multiple parameters in a harsh environment
JP2009216638A (en) * 2008-03-12 2009-09-24 Nec Corp Minute displacement measuring device and measuring method therefor
KR101018198B1 (en) 2008-11-15 2011-02-28 부산대학교 산학협력단 Optical pressure sensors using directional optical coupling and the method for preparing the same
JP5375856B2 (en) * 2011-02-25 2013-12-25 株式会社デンソー Optical device and manufacturing method thereof
KR101308270B1 (en) 2011-12-30 2013-09-13 한양대학교 산학협력단 Dosimeter to manufacture optical fiber for filling high molecular compound
KR101851427B1 (en) 2012-02-03 2018-04-23 메카레스 시스템스 게엠베하 Compensation of an optical sensor via printed circuit board
GB2502313A (en) * 2012-05-24 2013-11-27 Ibm Manufacturing three dimensional photonic device by two photon absorption polymerization
DE102012214440B3 (en) * 2012-08-14 2013-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Planar optical element, sensor element and method for its production
JP6051253B2 (en) * 2015-03-30 2016-12-27 沖電気工業株式会社 Optical two-way communication module
JP2017181442A (en) * 2016-03-31 2017-10-05 京セラ株式会社 Stress sensor
CN107843367A (en) * 2017-09-29 2018-03-27 上海理工大学 Optical pressure sensor

Similar Documents

Publication Publication Date Title
JP2003156643A5 (en)
Peng et al. Flexible and stretchable photonic sensors based on modulation of light transmission
Janting et al. Small and robust all-polymer fiber Bragg grating based pH sensor
US20080233008A1 (en) Chemical sensor with an indicator dye
US5910661A (en) Flourescence sensing device
Kim et al. Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode
TW200809285A (en) Waveguide materials for optical touch screens
EP1203220A2 (en) Biosensors with polymeric optical waveguides
Airoudj et al. Design and sensing properties of an integrated optical gas sensor based on a multilayer structure
JP2008046093A (en) Waveguide mode sensor with pores
Giusto et al. Colorimetric detection of perfluorinated compounds by all-polymer photonic transducers
Jung et al. Precisely tunable humidity color indicator based on photonic polymer films
Jiang et al. Optical response of fiber-optic Fabry-Perot refractive-index tip sensor coated with polyelectrolyte multilayer ultra-thin films
WO2011158660A1 (en) Spr sensor cell and spr sensor
JP2003156643A (en) Optical element and measuring device using the same
JP2006208359A5 (en)
CN101946172A (en) Coated waveguide for optical detection
AU2004290129A1 (en) Lamellar structure and optical waveguide sensor based on photoaddressable polymers
Liang et al. Bimodal waveguide interferometer RI sensor fabricated on low-cost polymer platform
Heidemann et al. Plasmonic optical fiber sensors: enhanced sensitivity in water-based environments
Wei et al. Micro-3D printed Concanavalin A hydrogel based photonic devices for high-sensitivity glucose sensing
Wen et al. Comparison of the sensing mechanisms and capabilities of three functional materials surface-modified TFBG sensors
Bonefacino et al. Recent progress in polymer optical fiber light sources and fiber bragg gratings
KR101114188B1 (en) Polymeric waveguide biosensors and method of manufacturing the same
US7616844B2 (en) Fabrication of fiber optic probes