JP2003155594A - Method and equipment for manufacturing zinc oxide film - Google Patents

Method and equipment for manufacturing zinc oxide film

Info

Publication number
JP2003155594A
JP2003155594A JP2001350952A JP2001350952A JP2003155594A JP 2003155594 A JP2003155594 A JP 2003155594A JP 2001350952 A JP2001350952 A JP 2001350952A JP 2001350952 A JP2001350952 A JP 2001350952A JP 2003155594 A JP2003155594 A JP 2003155594A
Authority
JP
Japan
Prior art keywords
electrolytic deposition
zinc oxide
oxide film
zinc
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001350952A
Other languages
Japanese (ja)
Other versions
JP4072331B2 (en
Inventor
Masaya Hisamatsu
雅哉 久松
Yasuhiro Aichi
靖浩 愛知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001350952A priority Critical patent/JP4072331B2/en
Publication of JP2003155594A publication Critical patent/JP2003155594A/en
Application granted granted Critical
Publication of JP4072331B2 publication Critical patent/JP4072331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a zinc oxide film by which the fine zinc oxide particles and nitrite ions formed at electrodeposition reaction can be efficiently remove and a high-quality zinc oxide film can be efficiently deposited at a low cost. SOLUTION: Electricity is turned on between a conductive substrate as a cathode and a zinc electrode as an anode which are immersed in an electrodeposition solution containing at least nitrate ions and zinc ions to deposit the zinc oxide film on the conductive substrate. In this procedure, acid 2005 is put into a part of the electrodeposition solution during the electrodeposition to lower pH, by which the fine zinc oxide particles in the electrodeposition solution can be dissolved and the nitrite ions can be decomposed/removed. Then, by using neutralization reaction by alkali or metal dissolution reaction by metal zinc 2006, the electrodeposition solution can be returned to the prescribed pH and recycled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、亜鉛イオンと硝酸
イオンを含有する水溶液から基板上に電析法により酸化
亜鉛膜を形成する方法及び装置に係り、特に電解析出反
応において発生する酸化亜鉛の微粒子及び亜硝酸イオン
の除去技術に関する。
TECHNICAL FIELD The present invention relates to a method and an apparatus for forming a zinc oxide film on a substrate by an electrodeposition method from an aqueous solution containing zinc ions and nitrate ions, and more particularly to zinc oxide generated in an electrolytic deposition reaction. Technology for removing fine particles and nitrite ions.

【0002】[0002]

【従来の技術】近年、光起電力素子の製造において、真
空プロセスに代わり、水溶液の電気化学的反応を利用し
て基板上に酸化物を作成する技術が注目されている。例
えば、特開平9−92861号公報には「光起電力素子
の製造方法」に係る発明が提案されており、電解析出法
により長尺基板上に酸化亜鉛等の酸化物を作成する方
法、および装置が開示されている。
2. Description of the Related Art In recent years, attention has been paid to a technique for producing an oxide on a substrate by utilizing an electrochemical reaction of an aqueous solution instead of a vacuum process in manufacturing a photovoltaic element. For example, Japanese Patent Application Laid-Open No. 9-92861 proposes an invention relating to “a method for manufacturing a photovoltaic element”, which is a method for producing an oxide such as zinc oxide on a long substrate by an electrolytic deposition method, And a device is disclosed.

【0003】図1は、同公報に基づいて、電解析出法に
より酸化物を作成する装置の一例を示す概略図であり、
電解析出法により酸化亜鉛膜を作成するだけの機能に単
純化したものである。
FIG. 1 is a schematic view showing an example of an apparatus for producing an oxide by the electrolytic deposition method based on the publication.
This is a simplified function of only forming a zinc oxide film by electrolytic deposition.

【0004】図1において、1000は基板、1001
は基板繰り出し部、1002は電源、1003は電解析
出槽、1004は電析液循環槽、1005は基板洗浄
部、1006は基板乾燥部、1007は基板巻き上げ部
である。
In FIG. 1, reference numeral 1000 denotes a substrate, 1001
Is a substrate feeding unit, 1002 is a power source, 1003 is an electrolytic deposition tank, 1004 is an electrodeposition solution circulating tank, 1005 is a substrate cleaning unit, 1006 is a substrate drying unit, and 1007 is a substrate winding unit.

【0005】基板繰り出し部1001より基板1000
が繰り出され、電解析出槽1003で電源1002から
電気を供給し基板1000上に酸化亜鉛膜を析出させ
る。次に酸化亜鉛膜が析出した基板を基板洗浄部100
5で洗浄、基板乾燥部1006で乾燥し、基板巻き上げ
部1007で巻き取るようになっている。
From the substrate feeding unit 1001 to the substrate 1000
Is supplied, and electricity is supplied from the power supply 1002 in the electrolytic deposition tank 1003 to deposit a zinc oxide film on the substrate 1000. Next, the substrate having the zinc oxide film deposited thereon is washed with the substrate cleaning unit 100.
5, the substrate is dried by the substrate drying unit 1006, and wound by the substrate winding unit 1007.

【0006】また、電解析出槽1003に高温の浴液を
補給するには、電析液循環槽1004を設け、この中に
ヒーター1008を設置して浴を加温し、かかる浴液を
浴循環ポンプ1009にて電解析出槽1003に供給す
る。電解析出槽1003から溢れた浴液や、一部積極的
に帰還させる浴液は、不図示の帰還路を経て、電析液循
環槽1004に戻して再び加温する。
To replenish the electrolytic deposition tank 1003 with a high temperature bath solution, an electrodeposition solution circulation tank 1004 is provided, and a heater 1008 is installed therein to heat the bath solution. It is supplied to the electrolytic deposition tank 1003 by a circulation pump 1009. The bath liquid overflowing from the electrolytic deposition tank 1003 or the bath liquid to be partially positively returned is returned to the electrodeposition liquid circulation tank 1004 via a return path (not shown) and heated again.

【0007】電析液循環槽1004には、循環ポンプ1
010とフィルター1011とからなるフィルター循環
系が備えられており、電析液循環槽1004中の粒子を
除去できる構成となっている。電析液循環槽1004と
電解析出槽1003との間での浴液の供給・帰還が充分
に多い場合には、このように電析液循環槽1004にの
みフィルターを設置した形で、充分な粒子除去効果を得
ることができる。
A circulation pump 1 is provided in the electrodeposition liquid circulation tank 1004.
A filter circulation system composed of 010 and a filter 1011 is provided so that particles in the electrodeposition liquid circulation tank 1004 can be removed. When the supply / return of the bath liquid between the electrodeposition liquid circulation tank 1004 and the electrolytic deposition tank 1003 is sufficiently large, it is sufficient to install a filter only in the electrodeposition liquid circulation tank 1004 as described above. It is possible to obtain various particle removal effects.

【0008】図1に示すような電解析出装置を用いるこ
とにより、次のような利点がある。
The use of the electrolytic deposition apparatus as shown in FIG. 1 has the following advantages.

【0009】まず、スパッタリング装置などの真空装置
と異なり、高価な真空ポンプを必要とせず、プラズマを
使用するための電源や電極周りの設計に気を遣うことも
なく、膜作成が極めて簡便なことである。
First, unlike a vacuum apparatus such as a sputtering apparatus, an expensive vacuum pump is not required, there is no need to pay attention to the power supply for using plasma and the design around the electrodes, and film formation is extremely simple. Is.

【0010】次に、殆どの場合、ランニングコストが低
いことである。例えばスパッタリング装置では、ターゲ
ットの作製に人手と装置を要し、また、装置のスループ
ットが上がったり、膜厚の大きい場合には、ターゲット
交換を頻繁に行う必要があり、費用がかかる上に、ター
ゲットの利用効率も2割程度以下と低い。
Next, in most cases, the running cost is low. For example, in the case of a sputtering apparatus, it requires manpower and an apparatus for producing the target, and when the throughput of the apparatus is high or the film thickness is large, it is necessary to replace the target frequently, which is expensive and the target Usage efficiency is also low at about 20% or less.

【0011】また、スパッタリング以外の、CVD法や
真空蒸着法に対しても装置やランニングコストの点で優
位に立つ。
In addition to the sputtering, it is also superior in terms of equipment and running cost to the CVD method and the vacuum deposition method.

【0012】また、膜が多くの場合、多結晶の微粒子で
あり、真空法で作成するのと遜色ない導電特性・光学特
性を示し、ゾルゲル法や有機物を用いたコーティング
法、さらにはスプレー・パイロリシス法などに比べて優
位に立つ。
In many cases, the film is made of polycrystalline fine particles and exhibits conductive and optical characteristics comparable to those produced by the vacuum method, and a sol-gel method, a coating method using an organic substance, and a spray pyrolysis method. It has an advantage over the law.

【0013】さらに、酸化物を形成する場合でもこれら
のことが成り立つ上、廃液を簡単に処理することがで
き、環境に及ぼす影響も小さく、環境汚染を防止するた
めのコストも低い。
Further, even when the oxide is formed, the above is established, the waste liquid can be easily treated, the influence on the environment is small, and the cost for preventing environmental pollution is low.

【0014】[0014]

【発明が解決しようとする課題】ところが、上記の電解
析出装置によって連続成膜を行ってみると、陽極材料の
金属亜鉛より生成する酸化亜鉛の微粒子が液中に多く浮
遊し、電解析出膜に共析したり、フィルターが目詰まり
して頻繁な交換が必要であるという問題が生ずる。
However, when continuous film formation is carried out by the above-mentioned electrolytic deposition apparatus, a large amount of zinc oxide fine particles produced from metallic zinc as the anode material floats in the liquid, and electrolytic deposition is performed. There are problems that eutectoid occurs on the membrane or the filter is clogged and frequent replacement is required.

【0015】また、電解析出を長時間行うと陰極側で生
成する電解析出膜に異常な析出が発生し、一定期間使用
すると液交換の必要性があることがわかった。この液を
分析してみると、電解析出反応中に初期には存在しない
亜硝酸イオンの増加が見られ、この亜硝酸イオンの増加
が液の劣化原因の一つとわかった。
Further, it has been found that when electrolytic deposition is carried out for a long period of time, abnormal deposition occurs on the electrolytic deposition film formed on the cathode side, and it is necessary to replace the liquid when used for a certain period. When this solution was analyzed, an increase in nitrite ions that did not initially exist during the electrolytic deposition reaction was found, and it was found that this increase in nitrite ions was one of the causes of deterioration of the solution.

【0016】本発明は、上記従来の問題を解決するもの
であり、電解析出反応において発生する酸化亜鉛の微粒
子及び亜硝酸イオンの除去を効率良く行い、良質な酸化
亜鉛膜を効率良く低コストで成膜できるようにすること
目的とする。
The present invention solves the above-mentioned conventional problems, and efficiently removes zinc oxide fine particles and nitrite ions generated in the electrolytic deposition reaction to efficiently produce a high-quality zinc oxide film at low cost. The purpose is to be able to form a film.

【0017】[0017]

【課題を解決するための手段】本発明の酸化亜鉛膜の製
造方法は、少なくとも硝酸イオンと亜鉛イオンを含有し
てなる電解析出液に浸漬された陰極としての導電性基板
と陽極としての亜鉛電極との間に通電することにより、
前記導電性基板上に酸化亜鉛膜を形成する酸化亜鉛膜の
製造方法において、電解析出中に電解析出液の一部に酸
を投入してpHを下げ、該電解析出液中の酸化亜鉛の微
粒子を溶解すると共に、亜硝酸イオンを分解・除去した
後、該電解析出液を所定のpHに戻して再利用すること
を特徴とする。
The method for producing a zinc oxide film according to the present invention comprises a conductive substrate as a cathode and zinc as an anode immersed in an electrolytic deposition solution containing at least nitrate ions and zinc ions. By energizing between the electrodes,
In the method for producing a zinc oxide film for forming a zinc oxide film on a conductive substrate, an acid is added to a part of the electrolytic deposition solution during electrolytic deposition to lower the pH, and oxidation in the electrolytic deposition solution is performed. The method is characterized in that the zinc fine particles are dissolved and the nitrite ion is decomposed and removed, and then the electrolytic deposition solution is returned to a predetermined pH and reused.

【0018】上記本発明の酸化亜鉛膜の製造方法では、
「前記酸を投入することにより、前記電解析出液のpH
を25℃でpH5未満とすること」、「前記所定のpH
は、25℃でpH5乃至7であること」、「電解析出液
を入れた電解析出槽に電解析出液循環系を設け、該循環
系の途中で電解析出液に酸を投入した後、該循環系の途
中で電解析出液を所定のpHに戻して電解析出槽に還流
させること」、「前記所定のpHに戻すために、アルカ
リによる中和反応もしくは金属亜鉛による金属溶解反応
を用いること」、などが好ましい態様として挙げられ
る。
In the method for producing a zinc oxide film of the present invention described above,
"By adding the acid, the pH of the electrolytic deposition solution
PH less than 5 at 25 ° C. ”,“ the predetermined pH
Is pH 5 to 7 at 25 ° C. ”,“ An electrolytic deposition solution circulation system was provided in an electrolytic deposition tank containing an electrolytic deposition solution, and an acid was added to the electrolytic deposition solution in the middle of the circulation system. After that, in the middle of the circulation system, the electrolytic deposition solution is returned to a predetermined pH and refluxed in the electrolytic deposition tank. "" In order to return to the predetermined pH, neutralization reaction with alkali or metal dissolution with metallic zinc A preferred embodiment is "using a reaction".

【0019】また本発明の酸化亜鉛膜の製造装置は、少
なくとも硝酸イオンと亜鉛イオンを含有してなる電解析
出液を入れた電解析出槽を具備し、該電解析出液に浸漬
された陰極としての導電性基板と陽極としての亜鉛電極
との間に通電することにより、前記導電性基板上に酸化
亜鉛膜を形成する酸化亜鉛膜の製造装置において、電解
析出中に電解析出液の一部に酸を投入してpHを下げる
手段と、該電解析出液を所定のpHに戻す手段とを備え
ることを特徴とする。
The apparatus for producing a zinc oxide film of the present invention is equipped with an electrolytic deposition tank containing an electrolytic deposition solution containing at least nitrate ions and zinc ions, and immersed in the electrolytic deposition solution. In a zinc oxide film manufacturing apparatus for forming a zinc oxide film on the conductive substrate by energizing between a conductive substrate as a cathode and a zinc electrode as an anode, an electrolytic deposition solution during electrolytic deposition. And a means for lowering the pH by adding an acid to a part of the solution, and a means for returning the electrolytic deposition solution to a predetermined pH.

【0020】上記本発明の酸化亜鉛膜の製造装置では、
「前記pHを下げる手段により、前記電解析出液のpH
を25℃でpH5未満とすること」、「前記所定のpH
に戻す手段により、前記電解析出液のpHを25℃でp
H5乃至7とすること」、「前記pHを下げる手段及び
前記所定のpHに戻す手段は、前記電解析出槽中の電解
析出液を循環させる循環系の途中に設けられているこ
と」、「前記所定のpHに戻す手段は、アルカリによる
中和反応もしくは金属亜鉛による金属溶解反応を用いる
ものであること」、などが好ましい態様として挙げられ
る。
In the above zinc oxide film production apparatus of the present invention,
“By the means for lowering the pH, the pH of the electrolytic deposition solution is
PH less than 5 at 25 ° C. ”,“ the predetermined pH
The pH of the electrolytic deposition solution at 25 ° C.
H5 to 7 "," the means for lowering the pH and the means for returning to the predetermined pH are provided in the middle of the circulation system for circulating the electrolytic deposition solution in the electrolytic deposition tank ", "The means for returning to the predetermined pH is to use a neutralization reaction with an alkali or a metal dissolution reaction with metallic zinc," and the like are mentioned as preferred embodiments.

【0021】本発明によれば、電解析出中に電析液の一
部に酸を投入しpHを下げることで、電析液中の酸化亜
鉛の微粒子を溶解し、且つ、亜硝酸イオンを硝酸イオン
と窒素酸化物のガスとして除去すると共に、pHの下が
った電析液を例えばアルカリによる中和反応や、金属亜
鉛による金属溶解反応で電解析出に適した所定のpHに
戻すことにより、フィルターの交換を無くし、かつ、電
析反応によって発生する酸化亜鉛の微粒子と、電析液の
劣化原因の亜硝酸イオンを、電析反応を止めることなく
除去することができる。
According to the present invention, during the electrolytic deposition, by adding an acid to a part of the electrodeposition solution to lower the pH, the fine particles of zinc oxide in the electrodeposition solution are dissolved and nitrite ions are removed. By removing nitrate ions and nitrogen oxides as gas, the pH of the electrodeposited solution is returned to a predetermined pH suitable for electrolytic deposition by, for example, a neutralization reaction with alkali or a metal dissolution reaction with metallic zinc. It is possible to eliminate the exchange of the filter and remove the zinc oxide fine particles generated by the electrodeposition reaction and the nitrite ion that causes the deterioration of the electrodeposition solution without stopping the electrodeposition reaction.

【0022】[0022]

【発明の実施の形態】先ず、酸化亜鉛膜の電析反応に伴
い発生する酸化亜鉛の微粒子及び亜硝酸イオンについて
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION First, fine particles of zinc oxide and nitrite ions generated by the electrodeposition reaction of a zinc oxide film will be described.

【0023】図1に示したような装置において、陽極に
亜鉛板、陰極に被析出板(導電性基板1000)を配
し、硝酸亜鉛溶液を用いて電解析出を行うと、導電性基
板1000に酸化亜鉛の膜が析出する。このとき陽極で
は亜鉛の表面に酸化亜鉛が発生し、また同時に亜鉛から
酸化亜鉛の微粒子が発生する。これは亜鉛が液中の硝酸
イオンによる酸化反応により酸化亜鉛と亜硝酸イオンが
発生する反応によるものである。
In the apparatus as shown in FIG. 1, a zinc plate is placed on the anode and a plate to be deposited (conductive substrate 1000) is placed on the cathode, and electrolytic deposition is performed using a zinc nitrate solution. A zinc oxide film is deposited on the surface. At this time, zinc oxide is generated on the surface of zinc at the anode, and zinc oxide fine particles are simultaneously generated from zinc. This is due to a reaction in which zinc oxide and nitrite ion are generated by the oxidation reaction of zinc with nitrate ion in the liquid.

【0024】この発生した酸化亜鉛は、液温25℃時の
pHで5未満で速やかに溶解し、pH5以上で溶解しず
らくなりpH6以上では溶解しなくなる性質を持ってい
る。
The generated zinc oxide has a property that it rapidly dissolves at a pH of less than 5 at a liquid temperature of 25 ° C., becomes difficult to dissolve at a pH of 5 or more, and does not dissolve at a pH of 6 or more.

【0025】このpHの低い溶液中での酸化亜鉛の溶解
反応により亜鉛イオンと水ができ、この反応でできる亜
鉛イオンは、再度電解析出液としてリサイクルが可能で
ある。
The dissolution reaction of zinc oxide in this low pH solution forms zinc ions and water, and the zinc ions formed by this reaction can be recycled again as an electrolytic deposition solution.

【0026】また、酸化亜鉛ができる反応において、電
解析出液中の亜鉛と硝酸イオンが1mol減少するのに
対し、酸化亜鉛1molと亜硝酸イオン1molの発生
があり、電解析出反応を長時間行うと、この亜硝酸イオ
ンが多量に電解析出液中に蓄積される。
In addition, in the reaction for forming zinc oxide, zinc and nitrate ions in the electrolytic deposition solution are reduced by 1 mol, whereas zinc oxide and nitrite ion are generated in an amount of 1 mol. When this is done, a large amount of this nitrite ion is accumulated in the electrolytic deposition liquid.

【0027】この亜硝酸イオンは、液のpHが下がると
分解をおこす性質あり、図7に示すようにpHが低いほ
ど分解が進む。
This nitrite ion has a property of decomposing when the pH of the liquid decreases, and as shown in FIG. 7, the decomposition progresses as the pH decreases.

【0028】この分解反応では、亜硝酸イオンが硝酸イ
オンと窒素酸化物のガスになり、このとき生成する硝酸
イオンは電解析出液としてリサイクルが可能であり、窒
素酸化物のガスは大気中に放出される。
In this decomposition reaction, nitrite ions become nitric acid ions and nitrogen oxide gas, and the nitric acid ions generated at this time can be recycled as an electrolytic deposition liquid, and the nitrogen oxide gas is released into the atmosphere. Is released.

【0029】以上の点から、液を酸性にすること、すな
わちpHを下げることで、酸化亜鉛の微粒子は亜鉛イオ
ンとして溶解し、亜硝酸イオンは分解し除去が可能であ
る。
From the above points, by making the liquid acidic, that is, by lowering the pH, the zinc oxide fine particles are dissolved as zinc ions and the nitrite ions are decomposed and can be removed.

【0030】図2は本発明の一実施形態を示す電析液循
環槽廻りの概略図である。図2において、2001は電
析液循環槽(図1における電析液循環槽1004に相
当)、2002は循環ポンプ(図1における循環ポンプ
1010に相当)、2003は酸化亜鉛・亜硝酸イオン
除去槽、2004はpH調整槽、2005はpHを下げ
るための酸の入っている槽、2006はpHを戻すため
の金属亜鉛、2007は排気ダクト、2008は電析槽
液供給管、2009は電解析出槽への液送りポンプ(図
1における液送りポンプ1009に相当)、2010は
酸を酸化亜鉛・亜硝酸イオン除去槽2003へ送る定量
ポンプである。
FIG. 2 is a schematic view around the electrodeposition liquid circulation tank showing one embodiment of the present invention. In FIG. 2, reference numeral 2001 is an electrodeposition solution circulation tank (corresponding to the electrodeposition solution circulation tank 1004 in FIG. 1), 2002 is a circulation pump (corresponding to the circulation pump 1010 in FIG. 1), and 2003 is a zinc oxide / nitrite ion removal tank. , 2004 is a pH adjusting tank, 2005 is a tank containing acid for lowering pH, 2006 is metallic zinc for returning pH, 2007 is an exhaust duct, 2008 is an electrodeposition tank liquid supply pipe, and 2009 is electrolytic deposition. A liquid feed pump for the tank (corresponding to the liquid feed pump 1009 in FIG. 1), 2010 is a metering pump for sending the acid to the zinc oxide / nitrite ion removing tank 2003.

【0031】まず、電析液循環槽2001より酸化亜鉛
の微粒子及び亜硝酸イオンを含む電解析出液がポンプ2
002で酸化亜鉛・亜硝酸イオン除去槽2003に送ら
れ、それと同時に槽2005よりポンプ2010で酸を
添加しpHを下げる。この時、添加する酸は電解析出反
応に影響を与えない陰イオンもつ酸で有れば何でも良い
が、電解析出液と同じ陰イオンを持つ硝酸が好ましい。
またpHが高いと反応は遅くpHは低いほうが良い。こ
のため、本発明においては酸を投入することにより電解
析出液のpHを25℃でpH5未満とすることが好まし
く、特に好ましくはpH3未満である。また液温は高い
ほど反応は早く進むが、基本的には電解析出反応時の温
度でよい。
First, the electrolytic deposition solution containing fine particles of zinc oxide and nitrite ions is pumped from the electrodeposition solution circulation tank 2001 by the pump 2.
In 002, it is sent to a zinc oxide / nitrite ion removing tank 2003, and at the same time, an acid is added from a tank 2005 by a pump 2010 to lower the pH. At this time, the acid to be added may be any acid as long as it has an anion that does not affect the electrolytic deposition reaction, but nitric acid having the same anion as the electrolytic deposition solution is preferable.
If the pH is high, the reaction is slow and the pH is preferably low. Therefore, in the present invention, it is preferable that the pH of the electrolytic deposition liquid is set to less than pH 5 at 25 ° C. by adding an acid, and particularly preferably to less than pH 3. Further, the higher the liquid temperature, the faster the reaction proceeds, but basically the temperature at the time of the electrolytic deposition reaction is sufficient.

【0032】電析液循環槽2001、酸化亜鉛・亜硝酸
イオン除去槽2003、及び槽2005の大きさは、そ
れぞれの電解析出反応の温度条件や反応条件によって、
酸化亜鉛の微粒子や亜硝酸イオンの発生量が異なるこ
と、また、循環量によっても変わるため、その都度最適
化が必要である。
The sizes of the electrodeposition solution circulating tank 2001, the zinc oxide / nitrite ion removing tank 2003, and the tank 2005 depend on the temperature conditions and reaction conditions of the respective electrolytic deposition reactions.
The amount of fine particles of zinc oxide and the amount of nitrite ions generated are different, and also change depending on the amount of circulation, so optimization is required each time.

【0033】次にpHの低下した電解析出液がpH調整
槽2004に運ばれ、ここで電解析出反応に適したpH
へと戻す。pHを戻す方法としては、アルカリの添加に
よる中和反応があり、添加するアルカリは、陽イオンと
なるイオンが電解析出膜に悪影響を与えないものであれ
ば何でも良いが、反応に寄与されると考えられるアンモ
ニウムイオンを持つアンモニアを用いることが、電解析
出反応を制御する上で好ましい。この方法においてはp
HメーターなどでpHを検知し、反応に適したpHにす
るために、アルカリの添加量を制御しながら行う。
Next, the electrolytic deposition solution having a lowered pH is conveyed to the pH adjusting tank 2004, where the pH suitable for the electrolytic deposition reaction is obtained.
Return to. As a method for returning the pH, there is a neutralization reaction by addition of alkali, and the alkali to be added may be any as long as the ions serving as cations do not adversely affect the electrolytic deposition film, but they contribute to the reaction. It is preferable to use ammonia having an ammonium ion which is considered to control the electrolytic deposition reaction. In this method p
The pH is detected with an H meter or the like, and the amount of alkali added is controlled in order to obtain a pH suitable for the reaction.

【0034】また、より好ましい方法としては、図示の
ように金属亜鉛2006をpHの低下した液に浸漬さ
せ、亜鉛の溶解反応を利用しpHを調整する方法であ
る。この方法では反応に多少時間がかかるが、pH調整
槽の大きさ、液の流量を決めれば、硝酸亜鉛としての本
来のpH以上にはなることが無い。pHの調整を細かく
行うには、液と亜鉛の接する時間、使用する亜鉛の形
状、酸化亜鉛・亜硝酸イオン除去槽2003から入って
くる液のpHで変化するため、最適化が必要である。
A more preferable method is to immerse metallic zinc 2006 in a liquid having a lowered pH as shown in the figure and adjust the pH by utilizing the dissolution reaction of zinc. In this method, the reaction takes some time, but if the size of the pH adjusting tank and the flow rate of the liquid are determined, the pH will not exceed the original pH of zinc nitrate. In order to finely adjust the pH, it is necessary to optimize the pH because it varies depending on the contact time of the liquid with zinc, the shape of zinc used, and the pH of the liquid coming from the zinc oxide / nitrite ion removing tank 2003.

【0035】酸化亜鉛・亜硝酸イオン除去槽2003の
構造の一例を図3に示す。
An example of the structure of the zinc oxide / nitrite ion removing tank 2003 is shown in FIG.

【0036】図3において、3001は給液口、300
2は酸投入口、3003は液排出口、3004は酸化亜
鉛・亜硝酸イオン除去槽内の液のpHを下げるために酸
を一定量送るポンプ(図2におけるポンプ2010に相
当)、3005は発生した窒素酸化物ガス除去用の排気
ダクト、3006は電解析出液である。
In FIG. 3, reference numeral 3001 denotes a liquid supply port, and 300
2 is an acid inlet, 3003 is a liquid outlet, 3004 is a pump (corresponding to pump 2010 in FIG. 2) for feeding a certain amount of acid to lower the pH of the liquid in the zinc oxide / nitrite ion removal tank, and 3005 is generated. The exhaust duct for removing the nitrogen oxide gas, and 3006, are electrolytic deposition solutions.

【0037】アルカリ添加によるpH調整槽2004の
構造の一例を図4に示す。図4において、4001は給
液口、4002はアルカリ投入口、4003はpH調整
をした電解析出液の排出口、4004はpHメーター、
4005は定量ポンプ、4006はpH調整用制御ボッ
クス、4007はpHの信号入力部、4008は定量ポ
ンプの制御用出力部、4009は電解析出液、4010
は排気ダクトである。
FIG. 4 shows an example of the structure of the pH adjusting tank 2004 by adding an alkali. In FIG. 4, 4001 is a liquid supply port, 4002 is an alkali input port, 4003 is a pH-adjusted electrolytic deposition solution discharge port, 4004 is a pH meter,
4005 is a metering pump, 4006 is a pH adjusting control box, 4007 is a pH signal input section, 4008 is a metering pump control output section, 4009 is an electrolytic deposition solution, 4010.
Is an exhaust duct.

【0038】また、亜鉛によるpH調整槽2004の構
造の一例を図5に示す。図5において、5001は給液
口、5002は亜鉛、5003はpH調整をした電解析
出液の排出口、5004は排気ダクト、5005は電解
析出液である。
FIG. 5 shows an example of the structure of the pH adjusting tank 2004 using zinc. In FIG. 5, 5001 is a liquid supply port, 5002 is zinc, 5003 is an outlet for pH-adjusted electrolytic deposition solution, 5004 is an exhaust duct, and 5005 is electrolytic deposition solution.

【0039】上記のようなpH調整槽でpHが調整され
た電解析出液は、電解析出槽に戻して再利用することが
できる。この場合、電解析出液のpHは、具体的には液
温25℃におけるpHが5〜7になるように調整するの
が好ましい。このように電解析出液のpHを酸化亜鉛膜
の電解析出に適したpHにコントロールすることで、酸
化亜鉛膜の析出を連続して行えるようになる。
The electrolytic deposition solution whose pH is adjusted in the pH adjusting tank as described above can be returned to the electrolytic deposition tank for reuse. In this case, it is preferable that the pH of the electrolytic deposition liquid is specifically adjusted so that the pH at the liquid temperature of 25 ° C. is 5 to 7. By thus controlling the pH of the electrolytic deposition solution to a pH suitable for electrolytic deposition of the zinc oxide film, the zinc oxide film can be deposited continuously.

【0040】尚、本発明は以上説明した実施形態例に限
定されるものではなく、電解析出槽そのもので酸化亜鉛
及び亜硝酸イオンの除去を行なっても良い。図9は電解
析出槽そのもので酸化亜鉛及び亜硝酸イオンの除去を行
う方法の一構成を示すものであり、図中の9001は被
析出物である基板、9002は亜鉛電極、9003はp
Hを低下させるための酸導入口、9004はpH調整用
のアルカリ導入口、9005は液循環用配管、9006
は排気口、9007は洗浄槽である。酸、アルカリ導入
口にはそれぞれ逆止弁9008があり逆流を防ぐ構成に
なっている。まず酸導入口9003より酸を入れpHを
低下させ、酸化亜鉛の粉及び、亜硝酸イオンを溶解、分
解する。その際pHの上昇があるが上がりきれないpH
を電極である亜鉛と触れることにより電解析出に適した
pHにする。その際はアルカリの導入は不要である。ま
た、電極である亜鉛でpH調整ができない場合はアルカ
リをアルカリ導入口9004より添加し、電解析出に適
したpHとして酸化亜鉛、亜硝酸イオンの除去を行え
る。。また循環系の途中に、酸化亜鉛及び亜硝酸イオン
の除去を行うための酸の注入口、及びpH調整機構を設
けてもよい。
The present invention is not limited to the embodiment described above, but zinc oxide and nitrite ions may be removed in the electrolytic deposition tank itself. FIG. 9 shows one configuration of a method for removing zinc oxide and nitrite ions in the electrolytic deposition tank itself. In the figure, 9001 is a substrate to be deposited, 9002 is a zinc electrode, and 9003 is p.
Acid inlet for lowering H, 9004 for alkali inlet for pH adjustment, 9005 for liquid circulation pipe, 9006
Is an exhaust port, and 9007 is a cleaning tank. A check valve 9008 is provided at each of the acid and alkali inlets to prevent backflow. First, an acid is introduced through the acid inlet 9003 to lower the pH, and the zinc oxide powder and nitrite ion are dissolved and decomposed. At that time, there is a rise in pH, but the pH cannot rise
Is brought into contact with zinc, which is an electrode, to adjust the pH to a level suitable for electrolytic deposition. In that case, introduction of alkali is unnecessary. When the pH of the electrode zinc cannot be adjusted, alkali can be added through the alkali inlet 9004 to remove zinc oxide and nitrite ions at a pH suitable for electrolytic deposition. . In addition, an acid inlet for removing zinc oxide and nitrite ions and a pH adjusting mechanism may be provided in the middle of the circulation system.

【0041】[0041]

【実施例】以下に、本発明に基づく実施例を添付図面に
基づいて説明するが、本発明はこれらの実施例に限定さ
れるものではない。
Embodiments of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited to these embodiments.

【0042】(実施例1)図1に示す電解析出装置の電
析液循環槽1004の循環系に有るフィルターの上流側
に、図3に示したような酸化亜鉛・亜硝酸イオン除去
槽、及び図5に示したようなpH調整槽を組み込んだ装
置を用いて電解析出を行い、長尺基板上に酸化亜鉛膜を
形成した。
(Example 1) A zinc oxide / nitrite ion removing tank as shown in FIG. 3 is provided on the upstream side of the filter in the circulation system of the electrodeposition solution circulating tank 1004 of the electrolytic deposition apparatus shown in FIG. Further, electrolytic deposition was performed using an apparatus incorporating a pH adjusting tank as shown in FIG. 5 to form a zinc oxide film on the long substrate.

【0043】本実施例で用いた装置の電析液循環槽廻り
の概略構成を図6に示す。図6において、6001は電
析液循環槽(図1における電析液循環槽1004に相
当)、6002は循環ポンプ(図1における循環ポンプ
1010に相当)、6003は酸化亜鉛・亜硝酸イオン
除去槽、6004はpH調整槽、6005はpHを下げ
るための硝酸の入った槽、6006はpHを戻すための
金属亜鉛、6007は排気ダクト、6008は電析槽液
供給管、6009は電解析出槽への液送りポンプ(図1
における液送りポンプ1009に相当)、6010は酸
を酸化亜鉛・亜硝酸イオン除去槽6003へ送る定量ポ
ンプ、6011は10μmのフィルターである。尚、フ
ィルター6011は、電析液中の酸化亜鉛の微粒子の量
を計測する目的で設置しているものである。
FIG. 6 shows a schematic structure around the electrodeposition liquid circulating tank of the apparatus used in this example. In FIG. 6, 6001 is an electrodeposition solution circulating tank (corresponding to the electrodeposition solution circulating tank 1004 in FIG. 1), 6002 is a circulation pump (corresponding to the circulation pump 1010 in FIG. 1), and 6003 is a zinc oxide / nitrite ion removing tank. , 6004 is a pH adjusting tank, 6005 is a tank containing nitric acid for lowering the pH, 6006 is metallic zinc for returning the pH, 6007 is an exhaust duct, 6008 is an electrodeposition tank liquid supply pipe, and 6009 is an electrolytic deposition tank. Liquid feed pump (Fig. 1
6010 is a metering pump for sending acid to the zinc oxide / nitrite ion removing tank 6003, and 6011 is a filter of 10 μm. The filter 6011 is installed for the purpose of measuring the amount of zinc oxide fine particles in the electrodeposition liquid.

【0044】陰極となる長尺基板は、基板幅120m
m、1ロール長さ350mとし、予めスパッタリングに
よりAlとZnO膜を下引き層として200nm積層し
たものを用いた。この長尺基板の搬送速度は、500m
m/minとした。
The long substrate serving as the cathode has a substrate width of 120 m.
m, one roll length was 350 m, and an Al and ZnO film having a thickness of 200 nm was previously laminated as an undercoat layer by sputtering. The transport speed of this long substrate is 500 m
It was set to m / min.

【0045】陽極には140mm×300mmの亜鉛板
を使用し、陽極と長尺基板との距離は50mmとした。
このような陽極を9枚用いて、図1の電解析出槽100
3内に等間隔で配置し、別々の電源からそれぞれ2Aの
電流を流した。
A 140 mm × 300 mm zinc plate was used as the anode, and the distance between the anode and the long substrate was 50 mm.
Using 9 such anodes, the electrolytic deposition tank 100 of FIG.
3 were arranged at equal intervals, and a current of 2 A was supplied from each of different power supplies.

【0046】電解析出液としては、0.2mol/Lの
硝酸亜鉛と0.07g/Lのデキストリン濃度で、液温
85℃のものを用いた。
As the electrolytic deposition solution, one having a zinc nitrate concentration of 0.2 mol / L and a dextrin concentration of 0.07 g / L and a liquid temperature of 85 ° C. was used.

【0047】本実施例では、電析液循環系の流量は30
L/minとした。また、酸化亜鉛・亜硝酸イオン除去
槽6003へ添加する酸は硝酸とし、添加する硝酸濃度
を2mol/Lとし、添加量は1L/minとした。ま
た、pH調整槽6004は亜鉛による溶解反応を利用し
た方法をとり、亜鉛の表面積を多くするため粒状のもの
を用いた。
In this example, the flow rate of the electrodeposition solution circulation system was 30.
L / min. The acid added to the zinc oxide / nitrite ion removing tank 6003 was nitric acid, the nitric acid concentration to be added was 2 mol / L, and the addition amount was 1 L / min. Further, the pH adjusting tank 6004 was formed by a method utilizing a dissolution reaction with zinc, and a granular one was used in order to increase the surface area of zinc.

【0048】前記条件にて、18ロール約207時間電
析し、酸化亜鉛の微粒子の除去ができているかどうか
を、電解析出前後のフィルター6011の重量で比較し
た。また電解析出液中の亜硝酸イオン濃度は、2ロール
おきにキャピラリー電気泳動分析機によって分析をし
た。
Under the above conditions, 18 rolls were electrodeposited for about 207 hours, and whether the fine particles of zinc oxide were removed was compared by the weight of the filter 6011 before and after electrolytic deposition. The concentration of nitrite ions in the electrolytic deposit was analyzed every two rolls by a capillary electrophoresis analyzer.

【0049】その結果、フィルター6011の重量は、
電解析出前の乾燥重量が383.7g、電解析出後の乾
燥重量が385.2gであり、電解析出の開始から最後
まで殆ど変化がなく、電解析出液中の酸化亜鉛の微粒子
を除去できたことが確認された。
As a result, the weight of the filter 6011 is
The dry weight before electrolytic deposition was 383.7 g, and the dry weight after electrolytic deposition was 385.2 g, and there was almost no change from the start to the end of electrolytic deposition, and fine particles of zinc oxide in the electrolytic deposition solution were removed. It was confirmed that it was possible.

【0050】電解析出液中の亜硝酸イオンの濃度測定結
果は、図8に示すように0.002mol/L以下で増
加が見られず、低い濃度で抑えられていた。
As shown in FIG. 8, the result of measuring the concentration of nitrite ion in the electrolytic deposit was 0.002 mol / L or less, and no increase was observed, and it was suppressed at a low concentration.

【0051】また、長尺基板上に形成された酸化亜鉛膜
には異常な析出が見られず、表面状態が良好なものであ
った。
No abnormal precipitation was observed in the zinc oxide film formed on the long substrate, and the surface condition was good.

【0052】(実施例2)実施例1で用いた亜鉛による
pH調整槽を図4に示したようなアルカリによるpH調
整槽に代えたこと以外は、実施例1と同様の装置及び条
件で電解析出を行い、長尺基板上に酸化亜鉛膜を形成し
た。
(Example 2) The same apparatus and conditions as in Example 1 were used except that the zinc pH adjusting tank used in Example 1 was replaced with an alkali pH adjusting tank as shown in FIG. Analysis was performed to form a zinc oxide film on the long substrate.

【0053】pH調整槽のアルカリにはアンモニアを用
い、中和反応によりpH5になるようにアンモニアの添
加量を調整した。
Ammonia was used as the alkali in the pH adjusting tank, and the amount of ammonia added was adjusted so that the pH became 5 by the neutralization reaction.

【0054】電解析出時間は、約207時間(18ロー
ル分)とし、実施例1と同様、酸化亜鉛の微粒子の除去
ができているかどうかを電解析出前後のフィルターの重
量で比較した。また電解析出液中の亜硝酸イオン濃度
は、2ロールおきにキャピラリー電気泳動分析機によっ
て分析をした。
The electrolytic deposition time was set to about 207 hours (18 rolls), and similarly to Example 1, whether or not the zinc oxide fine particles were removed was compared by the weight of the filter before and after electrolytic deposition. The concentration of nitrite ions in the electrolytic deposit was analyzed every two rolls by a capillary electrophoresis analyzer.

【0055】その結果、フィルターの重量は、電解析出
前の乾燥重量が396.4g、電解析出後の乾燥重量が
398.2gであり、電解析出の開始から最後まで殆ど
変化がなく、電解析出液中の酸化亜鉛の微粒子を除去で
きたことが確認された。
As a result, the dry weight of the filter was 396.4 g before the electrolytic deposition and 398.2 g after the electrolytic deposition, showing almost no change from the start to the end of the electrolytic deposition and the electric charge. It was confirmed that fine particles of zinc oxide in the analysis liquid could be removed.

【0056】電解析出液中の亜硝酸イオンの濃度測定結
果は、図8に示すように実施例1と同様0.002mo
l/L以下で増加が見られず、低い濃度で抑えられてい
た。
As shown in FIG. 8, the result of measurement of the concentration of nitrite ion in the electrolytic deposit was 0.002 mo as in Example 1.
No increase was observed below 1 / L, and it was suppressed at a low concentration.

【0057】また、長尺基板上に形成された酸化亜鉛膜
には異常な析出が見られず、表面状態が良好なものであ
った。
No abnormal precipitation was observed in the zinc oxide film formed on the long substrate, and the surface condition was good.

【0058】(比較例1)酸化亜鉛・亜硝酸イオン除去
槽、及びpH調整槽を組み込まず、図1に示した電解析
出装置をそのまま用いた以外は、実施例1と同様の条件
で電解析出を行い、長尺基板上に酸化亜鉛膜を形成し
た。
(Comparative Example 1) Electrolysis was carried out under the same conditions as in Example 1 except that the zinc oxide / nitrite ion removing tank and the pH adjusting tank were not incorporated and the electrolytic deposition apparatus shown in FIG. 1 was used as it was. Analysis was performed to form a zinc oxide film on the long substrate.

【0059】電解析出時間は、約207時間(18ロー
ル分)とし、途中、フィルターの目詰まり防止のため1
ロール毎にフィルター交換を行った。また電解析出液中
の亜硝酸イオン濃度は、2ロールおきにキャピラリー電
気泳動分析機によって分析をした。
The electrolytic deposition time was set to about 207 hours (18 rolls), and 1 was used to prevent the filter from clogging during the process.
The filter was replaced for each roll. The concentration of nitrite ions in the electrolytic deposit was analyzed every two rolls by a capillary electrophoresis analyzer.

【0060】電解析出液中の亜硝酸イオンの濃度測定結
果は、図8に示すように0.018mol/L程度まで
増加が見られ、それ以上の増加は見られなかったが、1
5〜18ロールの酸化亜鉛膜の表面に異常析出を確認し
た。
As shown in FIG. 8, the measurement result of the concentration of nitrite ion in the electrolytic deposit showed an increase up to about 0.018 mol / L, and no further increase was observed.
Abnormal precipitation was confirmed on the surface of the zinc oxide film of 5 to 18 rolls.

【0061】[0061]

【発明の効果】以上説明したように、本発明によれば、
電解析出中に電析液の一部に酸を投入しpHを下げるこ
とで、電析液中の酸化亜鉛の微粒子を溶解し、且つ、亜
硝酸イオンを硝酸イオンと窒素酸化物のガスとして除去
すると共に、pHの下がった電析液を例えばアルカリに
よる中和反応や、金属亜鉛による金属溶解反応で電解析
出に適した所定のpHに戻すことにより、電解析出液の
劣化を抑え、液交換の頻度を少なくできると共に、フィ
ルターのような交換品も不要であり、ランニングコスト
を低減できる。
As described above, according to the present invention,
By adding an acid to a part of the electrodeposition solution during electrolytic deposition to lower the pH, the zinc oxide fine particles in the electrodeposition solution are dissolved, and nitrite ions are used as nitrate ion and nitrogen oxide gases. Along with the removal, the pH of the electrodeposited solution is returned to a predetermined pH suitable for electrolytic deposition by a neutralization reaction with alkali, for example, or a metal dissolution reaction with metallic zinc, thereby suppressing deterioration of the electrolytic deposition solution. The frequency of liquid exchange can be reduced, and a replacement product such as a filter is not required, and running costs can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】電解析出法により酸化物を形成する装置の一般
的な構成を示す模式図である。
FIG. 1 is a schematic diagram showing a general configuration of an apparatus for forming an oxide by an electrolytic deposition method.

【図2】本発明の一実施形態を示す電析液循環槽廻りの
模式図である。
FIG. 2 is a schematic diagram around an electrodeposition liquid circulation tank showing an embodiment of the present invention.

【図3】本発明に用いられる酸化亜鉛・亜硝酸イオン除
去槽の一構成例を示す模式図である。
FIG. 3 is a schematic diagram showing a configuration example of a zinc oxide / nitrite ion removing tank used in the present invention.

【図4】本発明に用いられるアルカリ添加によるpH調
整槽の一構成例を示す模式図である。
FIG. 4 is a schematic diagram showing one configuration example of a pH adjusting tank by adding an alkali used in the present invention.

【図5】本発明に用いられる金属亜鉛によるpH調整槽
の一構成例を示す模式図である。
FIG. 5 is a schematic view showing one structural example of a pH adjusting tank using metallic zinc used in the present invention.

【図6】本発明の実施例における電析液循環槽廻りの模
式図である。
FIG. 6 is a schematic diagram around the electrodeposition liquid circulation tank in the example of the present invention.

【図7】pHと亜硝酸イオンの分解時間の関係を示した
図である。
FIG. 7 is a diagram showing the relationship between pH and the decomposition time of nitrite ions.

【図8】実施例及び比較例における亜硝酸イオンの濃度
増加比較を行った図である。
FIG. 8 is a diagram comparing the nitrite ion concentration increase in Examples and Comparative Examples.

【図9】電解析出槽そのものでの酸化亜鉛・亜硝酸イオ
ンの除去を行う装置構成例を示す模式図である。
FIG. 9 is a schematic diagram showing a structural example of an apparatus for removing zinc oxide / nitrite ions in the electrolytic deposition tank itself.

【符号の説明】[Explanation of symbols]

1000 基板 1001 基板繰り出し部 1002 電源 1003 電解析出槽 1004 電析液循環槽 1005 基板洗浄部 1006 基板乾燥部 1007 基板巻上げ部 1008 ヒーター 1009、1010 循環ポンプ 1011 フィルター 2001 電析液循環槽 2002 循環ポンプ 2003 酸化亜鉛・亜硝酸イオン除去槽 2004 pH調整槽 2005 pHを下げるための酸の入っている槽 2006 亜鉛 2007 排気ダクト 2008 電解析出槽供給管 2009 電解析出槽への液送りポンプ 2010 定量ポンプ 3001 給液口 3002 酸投入口 3003 液排出口 3004 酸を一定量送るポンプ 3005 排気ダクト 3006 電解析出液 4001 給液口 4002 アルカリ投入口 4003 液排出口 4004 pHメーター 4005 定量ポンプ 4006 pH調整用制御ボックス 4007 信号入力部 4008 信号出力部 4009 電解析出液 4010 排気ダクト 5001 給液口 5002 亜鉛 5003 液排出口 5004 排気ダクト 5005 電解析出液 6001 電解析出液循環槽 6002 循環ポンプ 6003 酸化亜鉛・亜硝酸イオン除去槽 6004 pH調整槽 6005 硝酸の入った槽 6006 亜鉛 6007 排気ダクト 6008 電解析出槽供給管 6009 電解析出槽への液送りポンプ 6010 定量ポンプ 6011 フィルター 9001 基板 9002 亜鉛電極 9003 酸導入口 9004 アルカリ導入口 9005 液循環用配管 9006 排気口 9007 洗浄槽 9008 逆止弁 1000 substrates 1001 Board feeding part 1002 power supply 1003 Electrolytic deposition tank 1004 Electrodeposition liquid circulation tank 1005 Substrate cleaning section 1006 Substrate drying section 1007 Board winding section 1008 heater 1009, 1010 Circulation pump 1011 Filter 2001 Electrodepositing solution circulation tank 2002 Circulation pump 2003 Zinc oxide / nitrite ion removal tank 2004 pH adjustment tank 2005 Acid-containing bath for lowering pH 2006 Zinc 2007 exhaust duct 2008 Electrolytic deposition tank supply pipe 2009 Liquid feed pump to electrolytic deposition tank 2010 metering pump 3001 Liquid supply port 3002 Acid input port 3003 liquid outlet 3004 A pump that sends a fixed amount of acid 3005 exhaust duct 3006 Electrolytic deposit 4001 Liquid supply port 4002 Alkali input port 4003 Liquid outlet 4004 pH meter 4005 metering pump 4006 Control box for pH adjustment 4007 Signal input section 4008 signal output section 4009 Electrolytic deposition liquid 4010 exhaust duct 5001 Liquid supply port 5002 zinc 5003 Liquid outlet 5004 exhaust duct 5005 Electrolytic deposit 6001 Electrolytic deposition solution circulation tank 6002 Circulation pump 6003 Zinc oxide / nitrite ion removal tank 6004 pH adjustment tank 6005 Nitric acid tank 6006 Zinc 6007 Exhaust duct 6008 Electrolytic deposition tank supply pipe 6009 Liquid feed pump to electrolytic deposition tank 6010 metering pump 6011 filter 9001 substrate 9002 Zinc electrode 9003 Acid inlet 9004 Alkali inlet 9005 Liquid circulation piping 9006 exhaust port 9007 cleaning tank 9008 check valve

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも硝酸イオンと亜鉛イオンを含
有してなる電解析出液に浸漬された陰極としての導電性
基板と陽極としての亜鉛電極との間に通電することによ
り、前記導電性基板上に酸化亜鉛膜を形成する酸化亜鉛
膜の製造方法において、 電解析出中に電解析出液の一部に酸を投入してpHを下
げ、該電解析出液中の酸化亜鉛の微粒子を溶解すると共
に、亜硝酸イオンを分解・除去した後、該電解析出液を
所定のpHに戻して再利用することを特徴とする酸化亜
鉛膜の製造方法。
1. A conductive substrate as a cathode and a zinc electrode as an anode, which are immersed in an electrolytic depositing liquid containing at least nitrate ions and zinc ions, are energized to form a conductive film on the conductive substrate. In the method for producing a zinc oxide film, in which a zinc oxide film is formed on, a pH is lowered by adding an acid to a part of the electrolytic deposition solution during the electrolytic deposition to dissolve the zinc oxide fine particles in the electrolytic deposition solution. In addition, the method for producing a zinc oxide film is characterized in that after the nitrite ion is decomposed and removed, the electrolytic deposition solution is returned to a predetermined pH and reused.
【請求項2】 前記酸を投入することにより、前記電解
析出液のpHを25℃でpH5未満とすることを特徴と
する請求項1に記載の酸化亜鉛膜の製造方法。
2. The method for producing a zinc oxide film according to claim 1, wherein the pH of the electrolytic deposition solution is adjusted to less than pH 5 at 25 ° C. by adding the acid.
【請求項3】 前記所定のpHは、25℃でpH5乃至
7であることを特徴とする請求項1又は2に記載の酸化
亜鉛膜の製造方法。
3. The method for producing a zinc oxide film according to claim 1, wherein the predetermined pH is 5 to 7 at 25 ° C.
【請求項4】 電解析出液を入れた電解析出槽に電解析
出液循環系を設け、該循環系の途中で電解析出液に酸を
投入した後、該循環系の途中で電解析出液を所定のpH
に戻して電解析出槽に還流させることを特徴とする請求
項1乃至3のいずれか一項に記載の酸化亜鉛膜の製造方
法。
4. An electrolytic deposition solution circulation system is provided in an electrolytic deposition tank containing an electrolytic deposition solution, an acid is added to the electrolytic deposition solution in the middle of the circulation system, and then an electrolysis is performed in the middle of the circulation system. PH of analysis solution
4. The method for producing a zinc oxide film according to claim 1, wherein the zinc oxide film is returned to the electrolytic solution and refluxed in the electrolytic deposition tank.
【請求項5】 前記所定のpHに戻すためにアルカリに
よる中和反応もしくは金属亜鉛による金属溶解反応を用
いることを特徴とする請求項1乃至4のいずれか一項に
記載の酸化亜鉛膜の製造方法。
5. The zinc oxide film according to claim 1, wherein a neutralization reaction with an alkali or a metal dissolution reaction with zinc metal is used to restore the predetermined pH. Method.
【請求項6】 少なくとも硝酸イオンと亜鉛イオンを含
有してなる電解析出液を入れた電解析出槽を具備し、該
電解析出液に浸漬された陰極としての導電性基板と陽極
としての亜鉛電極との間に通電することにより、前記導
電性基板上に酸化亜鉛膜を形成する酸化亜鉛膜の製造装
置において、 電解析出中に電解析出液の一部に酸を投入してpHを下
げる手段と、該電解析出液を所定のpHに戻す手段とを
備えることを特徴とする酸化亜鉛膜の製造装置。
6. An electrolytic deposition tank containing an electrolytic deposition solution containing at least nitrate ions and zinc ions is provided, and a conductive substrate as a cathode immersed in the electrolytic deposition solution and as an anode are provided. In a zinc oxide film manufacturing apparatus for forming a zinc oxide film on the conductive substrate by applying an electric current between the zinc electrode and the zinc electrode, an acid is added to a part of the electrolytic deposition solution during electrolytic deposition to adjust the pH. And a means for returning the electrolytic deposition solution to a predetermined pH, the apparatus for producing a zinc oxide film.
【請求項7】 前記pHを下げる手段により、前記電解
析出液のpHを25℃でpH5未満とすることを特徴と
する請求項7に記載の酸化亜鉛膜の製造装置。
7. The apparatus for manufacturing a zinc oxide film according to claim 7, wherein the pH of the electrolytic deposition liquid is set to be less than pH 5 at 25 ° C. by the means for lowering the pH.
【請求項8】 前記所定のpHに戻す手段により、前記
電解析出液のpHを25℃でpH5乃至7とすることを
特徴とする請求項6又は7に記載の酸化亜鉛膜の製造装
置。
8. The apparatus for producing a zinc oxide film according to claim 6, wherein the pH of the electrolytic deposition solution is adjusted to pH 5 to 7 at 25 ° C. by the means for returning to the predetermined pH.
【請求項9】 前記pHを下げる手段及び前記所定のp
Hに戻す手段は、前記電解析出槽中の電解析出液を循環
させる循環系の途中に設けられていることを特徴とする
請求項6乃至8のいずれか一項に記載の酸化亜鉛膜の製
造装置。
9. The means for lowering the pH and the predetermined p
The zinc oxide film according to any one of claims 6 to 8, wherein the means for returning to H is provided in the middle of a circulation system for circulating the electrolytic deposition solution in the electrolytic deposition tank. Manufacturing equipment.
【請求項10】 前記所定のpHに戻す手段は、アルカ
リによる中和反応もしくは金属亜鉛による金属溶解反応
を用いるものであることを特徴とする請求項6乃至9の
いずれか一項に記載の酸化亜鉛膜の製造装置。
10. The oxidation according to claim 6, wherein the means for returning to the predetermined pH uses a neutralization reaction with alkali or a metal dissolution reaction with zinc metal. Zinc film manufacturing equipment.
JP2001350952A 2001-11-16 2001-11-16 Method and apparatus for producing zinc oxide film Expired - Fee Related JP4072331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350952A JP4072331B2 (en) 2001-11-16 2001-11-16 Method and apparatus for producing zinc oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350952A JP4072331B2 (en) 2001-11-16 2001-11-16 Method and apparatus for producing zinc oxide film

Publications (2)

Publication Number Publication Date
JP2003155594A true JP2003155594A (en) 2003-05-30
JP4072331B2 JP4072331B2 (en) 2008-04-09

Family

ID=19163344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350952A Expired - Fee Related JP4072331B2 (en) 2001-11-16 2001-11-16 Method and apparatus for producing zinc oxide film

Country Status (1)

Country Link
JP (1) JP4072331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964923A (en) * 2019-12-24 2020-04-07 中南大学 Device and method for deep replacement copper extraction under multi-field coupling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964923A (en) * 2019-12-24 2020-04-07 中南大学 Device and method for deep replacement copper extraction under multi-field coupling
CN110964923B (en) * 2019-12-24 2023-09-19 中南大学 Device and method for extracting copper by deep replacement under multi-field coupling

Also Published As

Publication number Publication date
JP4072331B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
EP0874068B1 (en) Method for producing an aluminum support for a lithographic printing plate
US20100200408A1 (en) Method and apparatus for the solution deposition of high quality oxide material
US3461046A (en) Method and apparatus for producing copper foil by electrodeposition
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JPS61119699A (en) System and method for producing foil of metal or metal alloy
RU2375506C2 (en) Method and device for etching of metals
CN104733181B (en) Mesohigh anode deposits the method and device of disperse tin, zinc nucleus with high-purity aluminum foil surface spray
US20100200067A1 (en) Substrate for semiconductor device and method for its manufacture
JP2003155594A (en) Method and equipment for manufacturing zinc oxide film
US20100200060A1 (en) Solution based non-vacuum method and apparatus for preparing oxide materials
US6471848B1 (en) Electrodeposition method of forming an oxide film
KR910007161B1 (en) Systeme for producing electroplated and treated metal foil
US20100200411A1 (en) Method and apparatus for the solution deposition of oxide
US20100200413A1 (en) Solution deposition method and apparatus with partiphobic substrate orientation
JP3445161B2 (en) Electrodeposition method and apparatus for zinc oxide film
JPH0831834A (en) Semiconductor wafer plating method
JPH0125396B2 (en)
JP2003147586A (en) Electrolytic deposition equipment for zinc oxide film
JP5711063B2 (en) Method for producing indium hydroxide
KR102005521B1 (en) Multi-track system for electolytic phosphate coating treatment and how to use
KR100925618B1 (en) Electolyric tin plating process using insolulble anode
CA2329553A1 (en) An electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
NL7905674A (en) METHOD AND APPARATUS FOR ELECTROLYTIC COATING OF STEEL WITH MANGANESE.
JP3420495B2 (en) Electrodeposition equipment for long substrates
JP3423607B2 (en) Electrodeposition equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees