JP2003152749A - Remote monitor/control system - Google Patents

Remote monitor/control system

Info

Publication number
JP2003152749A
JP2003152749A JP2002244628A JP2002244628A JP2003152749A JP 2003152749 A JP2003152749 A JP 2003152749A JP 2002244628 A JP2002244628 A JP 2002244628A JP 2002244628 A JP2002244628 A JP 2002244628A JP 2003152749 A JP2003152749 A JP 2003152749A
Authority
JP
Japan
Prior art keywords
fault
failure
line
station
slave station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002244628A
Other languages
Japanese (ja)
Other versions
JP3656622B2 (en
Inventor
Matsuo Tomita
松夫 冨田
Toshiya Senoo
利哉 妹尾
Tetsuo Fujita
哲生 藤田
Koichi Kawabe
公一 河辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002244628A priority Critical patent/JP3656622B2/en
Publication of JP2003152749A publication Critical patent/JP2003152749A/en
Application granted granted Critical
Publication of JP3656622B2 publication Critical patent/JP3656622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a remote monitor/control system that can reduce a contact interrupt time on the occurrence of a line fault. SOLUTION: On the occurrence of the fault, a master station ML interrupts a usual contact. The master station ML repeats the usual contact to discriminate whether the interruption results from an instantaneous fault or a consecutive fault, slave stations receiving no contact repetitively inject a fault searching signal on the condition of 'no received signal for a prescribed time or over'. The master station ML repeats the usual contact. On the other hand, the slave stations other than the 1 system of the slave station S3 receives the fault searching signal and stop the injection of the fault searching signal when the fault searching signal injection condition is lost. The master station ML receives the fault searching signal injected from the 1 system of the slave station S3. In this state, the occurrence of the consecutive fault and the position of the consecutive fault are detected when the master station ML receives the fault searching signal of only the 1 system of the slave station S3 for the number of specified times.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、伝送回線がルー
プ状の遠方監視制御方式において、SDLC (Synchr
onous Data Link Control)方式を使用した遠方監視制
御方式に関する。 【0002】 【従来の技術】伝送回線がループ状の遠方監視制御方式
には、現在ポーリング方式とトークンリング方式の2つ
の伝送制御方式が使用されている。ポーリング方式は親
局から順番に子局を呼んで(ポーリングして)データを
収集するもので、トークンリング方式は発言許可信号
(トークン)をループ内に巡回させ、連絡信号発生局は
そのトークン到着時発信するものである。 【0003】上記ポーリング方式とトークンリング方式
にはそれぞれ特徴がある。ここで、両方式の相違点を図
により述べるに、図16、図17は親局が3組すなわち
3組のループ回線3群の場合の回線構成と信号の流れ示
すポーリング方式とトークンリング方式の概略構成図で
ある。M1,M2,M3は親局、S11〜Sn3は子局
で、図16のポーリング方式の場合には親局M1,M
2,M3において、主系M1S,M2S,M3Sから図示
矢印方向に子局S11〜Sn3を、順番にポーリングして
状態変化のある子局は自分がポーリングされたとき、親
局に連絡する。なお、M1J,M2J,M3Jは、主系M
S,M2S,M3Sの障害時に代行する従系である。こ
のため、ポーリング方式の場合には、1群8子局であれ
ばポーリング信号がループ回線を最大8巡する時間が連
絡開始待ち時間になる。すなわち、1子局しか状態変化
がない場合は最大7回無駄なポーリングを行う。 【0004】図17のトークンリング方式の場合にはル
ープ回線毎に親局と子局にトークンを巡回させるように
したもので、トークン信号がループ回線を巡回している
とき、状態変化のある子局はトークン信号到着時に親局
へ連絡する。従って、連絡開始待ち時間は最大でもルー
プ1巡時間で良い。 【0005】上記のことから、連絡開始待ち時間の点で
はトークンリング方式の方が良い。しかし、多数の子局
で状態変化が生じた場合は無駄なポーリングが少なくな
り差は少なくなる。回線障害時の対応には図18、図2
0および図19,図21A,Bに示すようにしている。
図18、図19は2群の子局S12とS22間で障害(図
示×印)が発生したときの回線構成をポーリング方式と
トークンリング方式についてそれぞれ示し、図20、図
21は親局M1,M3に障害が発生したときの回線構成
をポーリング方式とトークンリング方式についてそれぞ
れ示したものである。 【0006】図16、図17、図21に示すように、こ
こでは便宜上“トークンリング方式”と称しているが、
一般のトークンリング方式とは2点の共通点と1点の相
異点がある。 【0007】第1の共通点は前述の発言許可信号(トー
クン)を巡回させること、第2の共通点は回線障害に隣
接する局(親局、子局双方)が回線構成を変化させ、障
害部を除去する(図17→図19の子局S12,S22
図21のS11,Sn3)。これをループバックと呼ぶ。 【0008】相異点は子局の所属移動である。図17→
図19において、子局S12は親局M2→親局M1へ、
図17→図21において、子局S11〜Sn1とS13
Sn3が全て親局M2に所属移動している。 【0009】両方式における回線障害時の連絡中断時間
においては、ポーリング方式では回線構成の変更は不要
であり、連絡中断は発生しない。しかし、トークンリン
グ方式では回線構成の変更が必要であり、この変更期間
中に連絡中断が発生する。この結果、回線障害時の連絡
中断時間の点ではポーリング方式の方が良い。しかし、
回線障害の発生頻度は少ない。なお、近年、ポーリング
方式には、伝送効率の良いHDLC(High Level Data
Link Control)方式が採用されるようになって来てい
る。 【0010】 【発明が解決しようとする課題】ループ状の遠方監視制
御方式では、ポーリング方式とトークンリング方式の2
つの伝送制御方式が使用されている。これら両方式には
一長一短があるが、トークンリング方式では回線障害時
連絡中断時間が長くなり、かつ回線障害時の対処が複雑
となる欠点がある。また、ポーリング方式には、親局に
おける回線入出力部が多くなるとともに、非該当局への
無駄なポーリングがあるため、伝送効率が悪くなる問題
がある。 【0011】ループ回線において更に伝送効率の良い方
式に、公知の“SDLC方式”がある。SDLC方式
は、親局からの情報要求信号を受信した各子局は、送信
情報があればそれぞれ順に送信できる。従って、ループ
内の全子局の情報を、ループ1巡で親局に連絡できる。
前述のポーリング方式やトークン方式は、1子局毎に連
絡情報を巡回するのに比較すれば大差がある。しかし、
SDLC方式は回線が正常の場合は良いが、回線障害が
発生した場合、信号の巡回機能が失われるため、回線障
害対策が複雑になり、遠方監視制御装置として適用困難
であった。 【0012】この発明は上記の事情に鑑みてなされたも
ので、伝送効率を最良とするとともに、回線障害時の対
処を容易とし、しかも回線障害時連絡中断時間の短縮化
を図った遠方監視制御方式を提供することを課題とす
る。 【0013】 【課題を解決するための手段】この発明は、上記の課題
を達成するために、複数の親局と多数の子局間が親局毎
のループ回線で結合され、ループ回線の障害で各ループ
回線の対する子局の所属を変えることにより、通信機能
を維持させる遠方監視制御方式において、一定時間以上
信号を受信しない子局は当該回線の障害探索信号を送信
し、上流からの障害探索信号を受信した子局は、障害探
索信号の送信を停止し、前記障害探索信号が親局に着信
した回数が予め定めた回数に達したときに、回線に継続
障害が発生していると認識することを特徴とするもので
ある。 【0014】 【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明するに当たり、まず、SDLC方式を採
用した遠方監視制御における障害部検出方式について述
べる。図1は正常時の回線構成図で、図1において、M
Lは第1親局(図示左側の親局)、MRは第2親局(図
示右側の親局)、S1,S2,〜,S3,S10は子局
である。第1、第2親局ML,MRと各子局S1,〜,
S10は伝送回線に接続されていて、これら伝送回線は
1系回線L1,L3および2系回線L2,L4から構成
され、各回線は図示しないがそれぞれ一対の伝送回線か
ら構成されている。 【0015】各子局の白丸部は、中継機能(受信信号を
そのまま送信する)を主とする。;従系 各子局の黒丸部は、中継機能と親局との連絡機能を主と
する。;主系 なお、子1〜4、子6〜10を中継局、子5を端末局と
称する。 【0016】図1のように構成された回線構成図におい
て、次の図2に示すような4つの回線障害(図中×印で
示した箇所が障害)パタンを対象障害とする。図2
(1)ケース1は、下り1系回線L1の単一障害の場合
における対象障害であり、図2(2)ケース2は、上り
2系回線の単一障害の場合における対象障害であり、図
2(3)ケース3は、上下同一回線区間の障害の場合に
おける対象障害であり、図2(4)ケース4は、上下異
区間回線障害の場合における対象障害である。 【0017】図2の各回線障害が発生すると親局からの
情報要求信号が障害部(×印部)で絶たれるため、図3
のようになる(太線部は信号到達範囲を示す)。すなわ
ち、親子間の連絡機能は失われる。親子間の連絡機能を
回復するには、各回線障害に応じて図4のようにし、回
線障害が回復するまで“暫定運用”を行う。なお、図4
の点線部は回線障害の回復を検出するための信号であ
る。この回線構成の切替においては以下の条件を充足し
なければならない。 【0018】第1の条件は、ケース1、2、3の場合
は、図4のように、全子局の監視制御(親局との連絡機
能)が可能であること、第2の条件は、回線障害発生
時、図3→図4の移行時間(親子の連絡機能中断時間)
を短縮すること、第3の条件は、回線障害回復時、図4
→図1の移行時間(親子の連絡機能中断時間)を短縮す
ること、第4の条件は、回線障害の回復を早く知るこ
と、(暫定運用は図4の右側のように子局数が多く連絡
所要時間が長くなるため、しかし連絡中断ではない。)
第5の条件は、子局を極力単純化すること、(子局は無
人のため、障害発生時修復時間大)である。 【0019】第2の条件である“図3→図4”の内訳は
両図から以下である。まず、障害が瞬時障害でなく、継
続性のものであることを検出する。(瞬時障害は自然回
復)次に、その障害部位を検出する。その次に、障害部
位をループ回線から除外すること。(障害部の隣接左右
子局を端末局に移行させること)最後に、その結果親局
から孤立した子局を新しい親局へ移動させること。(従
来の端末局を中継局に移行させること)中心は障害部位
の検出である。 【0020】上記障害を探索して障害部を検出する時間
を極力早くする点では、子局探索方式が良く、回線障害
回復検出時間の点でも、子局探索方式が良い。 【0021】図3a〜dのままでは障害部を判定できな
いから図3a〜dの障害発生時から図4a〜dの暫定運
用中になるまでの移行時間を早くして、障害部の検出時
間を早めるため、この発明の実施の形態では、幾つかの
障害部検出方式を以下説明する。この障害部検出方式に
は、中継←→端末移行時間、探索回数、探索の単純性、
子局の単純性、SDLC方式との整合性、連絡中断時間
などを考慮して親局探索方式か子局探索方式かを決定す
る。 【0022】以下この発明の実施の形態である子局探索
方式(テスト(障害探索)信号注入方式)について述べ
る。図5(A)〜(C)は図3aのケース1の場合にお
けるもので、図5(A)において、障害発生時には、親
局MLから通常連絡は中断する。この中断は図5(B)
において、瞬時障害か継続障害かの判定のため、親局M
Lから通常連絡を繰り返し、子局の受信無し側は“一定
時間以上受信信号無し”でテスト(障害探索)信号を繰
り返し注入する。この障害探索信号の注入方式もSDL
C方式では無い(SDLC方式は受信信号の後尾に付加
送信信号を付加する)。図5(C)で更に親局MLから
は通常連絡の繰り返しを行う。一方、子局S3の1系以
外は上記からの障害探索信号を受信し障害探索信号注入
条件の消滅により、障害探索信号注入を停止する。子局
S3の1系注入障害探索信号が親局MLに着信する。こ
の状態で子局S3の1系のみの障害探索信号が規定回数
着信で、継続障害の発生と継続障害部位とを検出する。 【0023】図5(D)〜(F)は図3b〜dのケース
2〜4の場合におけるもので、上記図5(A)〜(C)
はケース1と同様に処理された結果で、障害部検出時の
状態を以下に述べる。 【0024】図5(D)はケース2(上り2系回線単一
障害)の場合で、この場合には、子局S2の2系のテス
ト信号の着信から障害部を検出する。 【0025】図5(E)はケース3(上下同一区間障
害)の場合で、この場合も子局S2の2系のテスト信号
の着信から障害部を検出する。 【0026】図5(F)はケース4(上下異区間障害)
の場合で、この場合は子局S3の2系のテスト信号の着
信から障害部を検出する。なお、子局S3の2系のテス
ト信号には子局S2の1系受信異常(子局S2の1系の
テスト信号より)を含む。 【0027】図5(C),(D),(E)の場合、“テ
スト信号発信子局番号”とその1系か2系により継続障
害部位を検出できる。しかし、図5(F)の場合はその
方法では“子局S3←→子局S4”と判定されてしま
す。図4dからも継続障害部位は“子局S1←→子局S
4間”と判定しなければならない。子局S3は、1系で
子局S2の1系発信のテストを受信しているから、2系
のテスト信号に“子局S2の1系受信異常”を付加でき
る。これにより親左MLは子局S1を端末に移行させれ
ば良い。 【0028】次に図5の回線構成図における子局探索方
式の動作を図6に示すSDLC方式のタイムチャートに
基づいて述べる。なお、図6のタイムチャートにおい
て、符号1、2は1系回線、2系回線を、親左は第1親
局を、親右は第2親局を、子1〜5は子局を意味し、子
局数は5個とした。 【0029】図6は回線瞬時障害におけるタイムチャー
トにより子局探索方式について述べるに、平常時、状変
時および制御時の動作は図6で述べた親局探索方式と同
じ処理であるからそのタイムチャートと説明を省略し、
瞬時障害のタイムチャートから述べる。 【0030】図6において、ケース1は親局探索方式と
動作は同じであるからここでは説明を省略し、ケース2
の場合における子局探索方式を述べる。ケース2の場合
において、情報要求A1を全子局に送信すると、親左と
子1の間の1系回線で情報要求フレームに障害があるた
め、全子局の応答がない。このとき、図中四角形で囲ん
だ部分の処理を行って次回の情報要求が正常なら瞬時障
害は回復したとして平常復帰する。 【0031】図7〜図9までは継続障害の場合における
タイムチャートで、このタイムチャートは障害部位検出
から分割部が移動し、平常動作までのもので、図7の
(1)は情報要求A1を送信しているとき、継続障害が
子1と子2との1系回線で発生したときには、応答は正
常である。次の情報要求A1は図7(2)のように子1
→子2の1系回線障害で中断される。以後、親左から繰
り返し情報要求A1を送信する。すると子2の1系、子
3の1系、子2の2系、子1の2系、親左は受信信号無
し状態となる。“受信信号無し状態が一定時間以上続い
たこと”を条件に、子局は当該系の回線に障害探索信号
を送信する。 【0032】図中、子2は1系回線に、子3は1系回線
に、子2は2系回線におよび子1は2系回線にそれぞれ
障害探索信号の送信を開始する。子2の1系回線以外は
上流からの探索信号受信により、障害探索信号の送信を
停止する。そして、障害部直近下流部のみ障害探索信号
を送信する。障害探索信号に“子2の1系回線発信”の
情報を含めれば、親左はこの信号のみが一定回数以上受
信したことにより(1回のみでは最初は子1の2系送信
信号である)障害部位を含めて継続障害を検出する。 【0033】図8の(1)で上記図7の(2)より子2
の1系回線に障害探索信号を送信し、子1と子2の間の
障害を検出する。次に図8の(2)の分割部移動処理の
ため、親左側から子1端末移行指令を出し、子1の確認
応答C3を見る。子1の端末局移行により、障害探索信
号は図示のように折り返す。その後、モード報告要求B
4を送信し、その応答D1を確認する。確認後、親左側
は平常時動作になり、親左側は親右側に連絡する。以後
は親右側の分割部移動図9の動作になる。 【0034】図9は、分割部移動親右側のタイムチャー
トで、子2の1系回線からの障害探索信号が子3に向け
て送信されるとともに、親右側から子3中継移行指令B
3が送信される。この指令で子3の確認応答C3が親右
側に返送されてくる。一方、子3の中継移行により子2
の1系回線から障害探索信号が親右に向けて送信され
る。 【0035】また、親右から子2の端末移行指令B3が
送信され、その子2の確認応答C3が親右に伝送されて
くる。子2の端末移行により、子1の1系回線障害探索
信号は子1へ伝送される。上記の端末移行が終了すれ
ば、親右からモード報告要求B4を送信し、各子局から
モード報告応答D1があることにより、以後は親右側も
平常時動作になる。 【0036】図10、図11は、継続障害回復における
タイムチャートで、暫定運用から継続障害回復検出し、
分割部正常化までのもので、図10の(1)は暫定運用
のタイムチャートである。親左から情報要求A1を送信
し、子1からの無し応答C2を受けている。一方、親右
からも情報要求A1を送信し、その応答を受けている。
なお、子1と子2間には子2、1系回線の障害探索信号
が出されている。子1の2系でこの探索信号を受信し、
端末局状態なので受信信号を折り返し子2の1系回線へ
中継している。しかし、子1→子2回線の障害が継続中
は子2へは戻らない。この信号が出されている途中で継
続障害が回復すると、子2、1系回線の障害探索信号1
巡で継続障害回復を子2が検出する。(図10の(2)
継続障害回復)この障害回復を親右に、子2は情報要求
A1の応答に付して伝送する。 【0037】図11のタイムチャートは親右がこのこと
を親左に連絡し、分割部正常化を行うもので、親左では
子1の中継移行指令B3を送信し、親右では子3端末移
行指令B3を送信する。親左では子1の確認応答C3を
受信し、親右では子3の確認応答C3を受信する。この
間に子1は端末から中継になり、子3は中継から端末に
なる。 【0038】なお、子2は端末のまま、モード報告要求
B4を親左と親右から送信し、その応答D1を受信する
と、以後は親右側は平常時動作になり、親右から親左に
連絡がなされる。一方、親左では子2の中継移行指令B
3が送信され、子2の確認応答C3がある。この間に子
2は端末から中継になり、親左からモード報告要求B4
が送信され、各子局から応答D1を得ることにより、親
左側も平常時動作になる。 【0039】上記タイムチャートのように子局探索方式
は処理されるが、そのときの処理フローチャートを次に
示す。 【0040】図12は障害回復処理フローチャートで、
ステップS81で前回送信内容を再送信し、フレームが
受信されたかを判定(S82)する。判定の結果、
(Y)ならフレーム内容が一致しているからを判定(S
83)し、(Y)なら瞬時障害検出中を「0」とし(S
84)瞬時障害対策処理を終了する(障害回復成功)。
前記ステップS82で(N)なら再送回数制限が超過し
ているかを判定(S85)し、(Y)なら継続障害検出
中を「1」とし(S87)を行って処理を終了し、ステ
ップS85で(N)の判定なら再送回数処理を「+1」
にしてステップS81から処理を再び始める。 【0041】前記ステップS83で(N)なら子局から
の障害検出信号があるかを判定(S88)し、(N)な
らステップS81へ、(Y)なら同一内容で規定回数で
あるかを判定(S89)し、(N)ならステップS81
へ、(Y)ならステップS87へ進む。 【0042】図中符号※1で親局と直近上流子局間が障
害部と判明、また符号※2で子局からの障害検出信号の
内容から継続障害の発生と障害部位が判明する。このよ
うに子局探索方式では親局探索方式と異なり、上記符号
※1、2の部分で障害部が判明する。 【0043】図13は、継続障害対策処理フローチャー
トで、ステップS91は分割部移動処理で、この分割部
移動処理の詳細は、図22に示すように、ステップS7
1で親左より障害部隣接左子局へ端末移行指令処理を行
なった後、親左回線正常化をモード報告要求で確認処理
(S72)をする。確認が取れたなら親左は親右に連絡
する(S73)。 【0044】次に、親右より端末子局へ端末移行指令処
理をする(S74)。また、親右より障害部隣接右子局
へ端末移行指令処理を行なう(S75)。この処理の
後、親右回線の正常化をモード報告要求で確認する(S
76)。そして、継続障害検出処理および暫定運用処理
を行なって(S77)処理を終了する。この処理の結
果、図13に示すステップS92で継続障害検出中を
「0」とし、暫定運用中を「1」とする。 【0045】図14は、子局における親局探索方式のフ
ローチャートで、ステップS101は受信フレームが自
局宛であるかを判定し、(Y)なら受信フレームが障害
探索用であるかを判定(S102)し、(N)なら端末
/中継、端末時主系指定かを判定(S103)する。こ
の判定の結果(N)なら端末時代行送信要求かを判定
(S104)し、(N)なら情報要求受信したかを判定
(S105)し、この判定で(N)なら子局連絡受信を
したかを判定(S106)した後、(N)なら確認連絡
受信したかを判定(S107)して、その他の処理(S
108)を行ってステップS101に戻る。 【0046】なお、ステップS102からS107まで
の各判定部で(Y)と判定されたなら、それぞれステッ
プS109〜S114までの処理を行ってステップS1
01に処理が戻る。また、ステップS101〜S104
までとステップS109〜S111までは主系と従系の
両系処理で、その他は主系である親局連絡担当側処理で
ある。 【0047】図15は、子局における子局探索方式のフ
ローチャートで、ステップS121はフレーム受信した
かを判定し、(Y)ならステップS122で当該フレー
ム自局宛かを判定する。ステップS122の判定結果が
(Y)ならステップS123で当該フレームは障害検出
用かを判定する。この判定で(N)なら端末/中継、端
末時主系指定であるかを判定(S124)し、以下図1
4のステップS105〜S108までと同様な処理を行
う。 【0048】ステップS129はステップS121で
(N)と判定されたときに一定時間経過したかを判定
し、(N)ならステップS121に戻り、(Y)ならス
テップS132の障害探索送信を行ってステップS12
1に処理が戻る。前記ステップS122で判定が(N)
ならステップS130の判定を行って、(N)ならステ
ップS121に戻り、(Y)ならステップS132の処
理を行う。 【0049】ステップS123の判定で(Y)なら障害
情報更新処理(S131)を行い、ステップS124の
判定で(Y)なら端末/中継指定受信か、端末時主系指
定受信処理(S133)を行って処理がステップS12
1に戻る。なお、ステップS125〜S127の処理は
図14と同様に処理される。 【0050】 【発明の効果】以上述べたように、この発明によれば、
SDLC方式を使用した遠方監視制御において、回線障
害時の対処を簡易化し、障害部の検出時間を早め、回線
障害時連絡中断時間を短縮できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote monitoring and control system in which a transmission line has a loop shape, and an SDLC (Synchr.
The present invention relates to a remote monitoring control method using an onous data link control method. 2. Description of the Related Art Two remote control systems, a polling system and a token ring system, are currently used in a remote monitoring control system in which a transmission line is looped. The polling method collects data by calling (polling) the slave stations in order from the master station. The token ring method circulates a speech permission signal (token) in a loop, and the communication signal generation station arrives at the token. It is something to send when. The polling method and the token ring method each have characteristics. Here, the difference between the two systems will be described with reference to the drawings. FIGS. 16 and 17 show the line configuration and signal flow of the polling system and the token ring system when the master station has three sets, that is, three sets of three loop lines. It is a schematic block diagram. M1, M2, M3 is the master station, in S1 1 to Sn 3 is the slave station, the master station M1 in the case of the polling method of Fig. 16, M
2, the M3, when the main system M1 S, M2 S, M3 slave station S1 1 to Sn 3 in a direction indicated by an arrow from S, slave station with a status change poll in turn that he polled, master station Contact Note that M1 J , M2 J , and M3 J are the main system M
It is a slave to act in the event of a failure of the 1 S, M2 S, M3 S . For this reason, in the case of the polling method, the time required for the polling signal to make a maximum of eight rounds of the loop line is the communication start waiting time for a group of eight slave stations. That is, when there is only a change in the state of one slave station, useless polling is performed up to seven times. In the case of the token ring system shown in FIG. 17, a token is circulated between the master station and the slave station for each loop line. The station contacts the master station when the token signal arrives. Therefore, the communication start waiting time may be at most one loop time. [0005] From the above, the token ring system is better in terms of the communication start waiting time. However, when a state change occurs in many slave stations, useless polling is reduced and the difference is reduced. Fig. 18 and Fig. 2
0 and FIGS. 19, 21A and 21B.
18 and 19 respectively for polling scheme and token ring method the line configuration when a fault (illustrated × mark) is generated between the slave station S1 2 and S2 2 of 2 groups, 20, 21 a master station The line configuration when a failure occurs in M1 and M3 is shown for the polling method and the token ring method, respectively. As shown in FIGS. 16, 17, and 21, the "token ring system" is referred to here for convenience.
There are two common points and one point different from the general token ring system. The first common point is that the above-mentioned talk permission signal (token) is circulated, and the second common point is that the stations adjacent to the line failure (both the master station and the slave station) change the line configuration and the failure occurs. part is removed (slave station S1 2 of FIG. 17 → FIG 19, S2 2,
S1 1, Sn 3 in FIG. 21). This is called loopback. [0008] The difference is the belonging movement of the slave station. Figure 17 →
19, the slave station S1 2 is to the master station M2 → master station M1,
In Figure 17 → 21, the slave station S1 1 to Sn 1 and S1 3 ~
All Sn 3 belong to the parent station M2. [0009] In the communication interruption time in the case of a line failure in both systems, no change in the line configuration is required in the polling method, and no communication interruption occurs. However, the line configuration needs to be changed in the token ring system, and communication is interrupted during this change period. As a result, the polling method is better in terms of the communication interruption time in the event of a line failure. But,
The frequency of line failures is low. In recent years, the polling method includes HDLC (High Level Data) with high transmission efficiency.
Link Control) is being adopted. [0010] In the loop-like remote monitoring control system, there are two systems, a polling system and a token ring system.
Two transmission control methods are used. Both of these methods have their advantages and disadvantages, but the token ring method has the disadvantage that the communication interruption time in the event of a line failure becomes longer and the handling of the line failure becomes complicated. In addition, the polling method has a problem that transmission efficiency is deteriorated because the number of line input / output units in the master station increases and unnecessary polling is performed for non-corresponding stations. [0011] There is a known "SDLC system" as a system having higher transmission efficiency in a loop line. In the SDLC method, each slave station that has received the information request signal from the master station can sequentially transmit the information if there is transmission information. Therefore, information of all slave stations in the loop can be communicated to the master station in one loop.
The polling method and the token method described above have a great difference as compared with circulating the contact information for each slave station. But,
The SDLC method is good when the line is normal, but when a line failure occurs, the signal circulating function is lost, so that the measures against the line failure are complicated, and it has been difficult to apply it as a remote monitoring control device. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and provides a remote monitoring control system which achieves the best transmission efficiency, makes it easy to cope with a line failure, and shortens the communication interruption time when a line failure occurs. It is an object to provide a method. According to the present invention, in order to achieve the above object, a plurality of master stations and a number of slave stations are connected by a loop line for each master station. In the remote monitoring control system that maintains the communication function by changing the assignment of the slave station to each loop line, the slave station that does not receive a signal for a certain period of time transmits a fault search signal for the line and searches for a fault from the upstream. The slave station that has received the signal stops transmitting the failure search signal, and recognizes that a continuous failure has occurred in the line when the number of times that the failure search signal arrives at the master station reaches a predetermined number. It is characterized by doing. DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following, embodiments of the present invention will be described with reference to the drawings, first of all, a fault detection method in a remote monitoring control employing the SDLC method will be described. FIG. 1 is a diagram of a circuit configuration in a normal state.
L is a first master station (master station on the left side in the figure), MR is a second master station (master station on the right side in the figure), and S1, S2 to S3, and S10 are slave stations. The first and second master stations ML, MR and each slave station S1,.
S10 is connected to transmission lines, and these transmission lines are composed of system lines L1 and L3 and system lines L2 and L4. Each line is composed of a pair of transmission lines (not shown). The white circle of each slave station mainly has a relay function (transmits a received signal as it is). The black circle of each slave station mainly has a relay function and a communication function with the master station. Main system; children 1 to 4, children 6 to 10 are called relay stations, and child 5 is called a terminal station. In the circuit configuration diagram constructed as shown in FIG. 1, four line failure patterns (faults indicated by crosses in the figure) as shown in FIG. 2 are taken as target failures. FIG.
(1) Case 1 is a target failure in the case of a single failure of the downlink 1 system line L1, and FIG. 2 (2) Case 2 is a target failure in the case of a single failure of the uplink 2 system line. 2 (3) Case 3 is a target failure in the case of a failure in the same upper and lower line section, and FIG. 2 (4) Case 4 is a target failure in the case of a different upper and lower section line failure. When each line failure in FIG. 2 occurs, the information request signal from the master station is cut off at the failure part (marked by x).
(The thick line indicates the signal reaching range). That is, the communication function between parent and child is lost. In order to restore the communication function between the parent and the child, as shown in FIG. 4 according to each line failure, "temporary operation" is performed until the line failure is recovered. FIG.
A dotted line indicates a signal for detecting recovery from a line failure. In switching the line configuration, the following conditions must be satisfied. The first condition is that, in cases 1, 2, and 3, as shown in FIG. 4, monitoring and control of all slave stations (communication function with the master station) are possible, and the second condition is that When a line failure occurs, the transition time from Fig. 3 to Fig. 4 (interruption time between parent and child communication functions)
The third condition is that when the line failure is recovered,
→ Shortening the transition time (interruption time between parent and child communication functions) in FIG. 1, the fourth condition is to know the recovery of the line failure quickly, (for provisional operation, the number of slave stations is large as shown on the right side of FIG. 4). The contact time will be longer, but not interrupted.)
The fifth condition is to simplify the slave station as much as possible (because the slave station is unmanned, the repair time is long when a failure occurs). The details of the second condition “FIG. 3 → FIG. 4” are as follows from both figures. First, it is detected that the fault is not an instantaneous fault but a continuity fault. (Instantaneous failure recovers spontaneously) Next, the failure site is detected. Next, remove the faulty part from the loop line. (Move the right and left slave stations adjacent to the faulty part to the terminal station.) Finally, move the slave station isolated from the master station to the new master station. (Migrating a conventional terminal station to a relay station) The focus is on detecting a failure site. The slave station search method is preferable in that the time for searching for the fault and detecting the fault part is shortened as much as possible, and the slave station search method is also preferable in terms of the line fault recovery detection time. 3A to 3D, the faulty part cannot be determined, so that the transition time from the occurrence of the fault in FIGS. 3A to 3D to the temporary operation in FIGS. In order to expedite the description, in the embodiment of the present invention, several failure detection methods will be described below. This faulty part detection method includes relay ← → terminal transition time, number of searches, simplicity of search,
In consideration of the simplicity of the slave station, the consistency with the SDLC scheme, the communication suspension time, and the like, it is determined whether the master station search method or the slave station search method is used. A slave station search method (test (failure search) signal injection method) according to an embodiment of the present invention will be described below. FIGS. 5A to 5C show the case 1 in FIG. 3A. In FIG. 5A, when a failure occurs, the normal communication from the master station ML is interrupted. This interruption is shown in FIG.
At the master station M
The normal communication is repeated from L, and the non-reception side of the slave station repeatedly injects a test (failure search) signal with "no reception signal for a certain period of time". This failure search signal injection method is also SDL
It is not the C system (the SDLC system adds an additional transmission signal to the end of the reception signal). In FIG. 5C, the normal communication is further repeated from the master station ML. On the other hand, other than the sub-system S3 of the slave station S3 receives the fault search signal from the above and stops the fault search signal injection when the fault search signal injection condition disappears. The primary system injection failure search signal of the slave station S3 arrives at the master station ML. In this state, the failure search signal of only one system of the slave station S3 is received a prescribed number of times, and the occurrence of the continuous failure and the continuous failure part are detected. FIGS. 5D to 5F show cases 2 to 4 shown in FIGS. 3B to 3D, and FIGS.
Is the result of the same processing as in case 1, and the state at the time of detection of the faulty part is described below. FIG. 5D shows the case 2 (single failure of the upstream system 2 line). In this case, the failure unit is detected from the arrival of the test signal of the secondary system of the slave station S2. FIG. 5E shows a case 3 (a failure in the same section in the upper and lower sections). In this case as well, the failure part is detected from the arrival of the test signal of the secondary system of the slave station S2. FIG. 5F shows case 4 (upper and lower section failure).
In this case, the faulty part is detected from the arrival of the test signal of the secondary system of the slave station S3. Note that the test signal of the secondary system of the slave station S3 includes a reception error of the primary system of the slave station S2 (from the test signal of the primary system of the slave station S2). In the case of FIGS. 5C, 5D, and 5E, the continuous failure site can be detected by the "test signal transmission slave station number" and its one or two systems. However, in the case of FIG. 5 (F), it is determined that “slave station S3 ← → slave station S4” by the method. From FIG. 4d, the continuous failure site is “slave station S1 ← → slave station S”.
Since the slave station S3 receives the test of the slave station S2 originating from the system 1 in the system 1, the slave station S3 receives the "system 1 reception error in the slave station S2" in the test signal of the system 2. This allows the parent left ML to transfer the slave station S1 to the terminal.Next, the operation of the slave station search system in the circuit configuration diagram of FIG. In the time chart of Fig. 6, reference numerals 1 and 2 denote the first system line, the second system line, the parent left shows the first master station, the parent right shows the second master station, and the children 1 to 5 Means a slave station, and the number of slave stations is 5. Fig. 6 describes a slave station search method based on a time chart for instantaneous line failure. Since it is the same process as the master station search method described in 6 above, its time chart and explanation Omitted,
The momentary failure time chart will be described. In FIG. 6, the operation of Case 1 is the same as that of the parent station search method, and therefore the description is omitted here.
In the following, the slave station search method will be described. In case 2, when the information request A1 is transmitted to all slave stations, there is no response from all slave stations because the information request frame on the system line between the parent left and the child 1 has a failure. At this time, if the processing of the portion enclosed by the rectangle in the figure is performed and the next information request is normal, it is assumed that the instantaneous failure has been recovered and the operation returns to normal. FIGS. 7 to 9 are time charts in the case of a continuous fault. These time charts are from the detection of a faulty part to the movement of the dividing unit to the normal operation. FIG. 7 (1) shows the information request A1. Is transmitted, when a continuation failure occurs in the 1-system line of the child 1 and the child 2, the response is normal. The next information request A1 is child 1 as shown in FIG.
→ Interruption due to failure of 1-system line of child 2. Thereafter, the information request A1 is repeatedly transmitted from the parent left. Then, the 1st system of the child 2, the 1st system of the child 3, the 2nd system of the child 2, the 2nd system of the child 1, and the parent left are in a state where there is no received signal. The slave station transmits a failure search signal to the line of the relevant system on the condition that “the absence of the received signal has continued for a predetermined time or more”. In the figure, child 2 starts transmission of a failure search signal to the system 1 line, child 3 to the system 1 line, child 2 to the system 2 line, and child 1 to the system 2 line. The transmission of the fault search signal is stopped by receiving the search signal from the upstream except for the system 1 line of the child 2. Then, a failure search signal is transmitted only in the immediate downstream part of the failure part. If the information of "child 2 line 1 transmission" is included in the fault search signal, the parent left receives this signal only a certain number of times or more (only once, it is initially the child 1 line 2 transmission signal). Detects a continuous failure including the failure part. In FIG. 8A, the child 2 is obtained from FIG. 7B.
A failure search signal is transmitted to the first system line to detect a failure between the child 1 and the child 2. Next, for the dividing part moving process of FIG. 8 (2), a child 1 terminal transfer command is issued from the left side of the parent, and the acknowledgment C3 of the child 1 is viewed. Due to the transition of the child 1 to the terminal station, the failure search signal is looped back as shown. Then, the mode report request B
4 is transmitted, and the response D1 is confirmed. After confirmation, the parent left side operates normally, and the parent left side contacts the parent right side. After that, the operation of the parent right-side divided section is as shown in FIG. FIG. 9 is a time chart on the right side of the parent of the moving part. The failure search signal from the primary line of the child 2 is transmitted to the child 3, and the child 3 relay shift command B is sent from the right side of the parent.
3 is transmitted. With this command, the confirmation response C3 of the child 3 is returned to the right side of the parent. On the other hand, the child 2
A failure search signal is transmitted from the first line to the parent right. Further, the terminal shift command B3 of the child 2 is transmitted from the parent right, and the acknowledgment C3 of the child 2 is transmitted to the parent right. By the transfer of the terminal of the child 2, the system 1 line failure search signal of the child 1 is transmitted to the child 1. When the above terminal transfer is completed, a mode report request B4 is transmitted from the parent right, and since there is a mode report response D1 from each slave station, the parent right also thereafter operates normally. FIG. 10 and FIG. 11 are time charts for continuous failure recovery, in which continuous failure recovery is detected from provisional operation.
FIG. 10A is a time chart of provisional operation until the division unit is normalized. The information request A1 is transmitted from the parent left side, and the absence response C2 from the child 1 is received. On the other hand, the information request A1 is also transmitted from the parent right, and the response is received.
Note that a failure search signal for the child 2 and system 1 lines is output between the child 1 and the child 2. This search signal is received by the two systems of the child 1,
Since the terminal is in the terminal station state, the received signal is relayed to the first system line of the loopback unit 2. However, it does not return to child 2 while the failure of the child 1 → child 2 line continues. If the continuous fault is recovered while this signal is being output, the fault search signal 1
The child 2 detects continuous failure recovery in the round. ((2) in FIG. 10)
(Continuous fault recovery) This fault recovery is transmitted to the parent right and the child 2 in response to the information request A1. In the time chart of FIG. 11, the parent right informs the parent left of this fact and performs normalization of the division part. The parent left transmits the relay transfer command B3 of the child 1, and the parent right transmits the child 3 terminal. A transfer command B3 is transmitted. The parent left receives the acknowledgment C3 of the child 1, and the parent right receives the acknowledgment C3 of the child 3. During this time, the child 1 becomes a relay from the terminal, and the child 3 becomes a terminal from the relay. Note that, while the child 2 remains a terminal, the mode report request B4 is transmitted from the parent left and the parent right, and when the response D1 is received, thereafter, the parent right operates normally and the parent right changes from the parent right to the parent left. Contact will be made. On the other hand, on the parent left, the relay shift command B of the child 2
3 is sent and there is an acknowledgment C3 of child 2. During this time, the child 2 becomes a relay from the terminal, and requests the mode report B4 from the parent left.
Is transmitted, and a response D1 is obtained from each slave station, so that the parent left side also operates normally. The slave station search method is processed as shown in the time chart, and a processing flowchart at that time is shown below. FIG. 12 is a flowchart of a failure recovery process.
In step S81, the previous transmission content is retransmitted, and it is determined whether a frame has been received (S82). As a result of the judgment,
If (Y), it is determined that the frame contents match (S
83), and if (Y), instantaneous failure detection is set to “0” (S
84) Terminate the instantaneous failure countermeasure processing (failure recovery succeeded).
If (N) in step S82, it is determined whether the limit on the number of retransmissions has been exceeded (S85). If (Y), continuous failure detection is set to "1" (S87), and the process is terminated. If the determination is (N), the retransmission count process is set to "+1"
Then, the processing is restarted from step S81. In step S83, if (N), it is determined whether there is a fault detection signal from the slave station (S88). If (N), the process proceeds to step S81. (S89), and if (N), step S81
If (Y), the process proceeds to step S87. In the figure, reference numeral * 1 indicates that a failure has occurred between the master station and the nearest upstream child station, and reference numeral * 2 indicates the occurrence of a continuous failure and the location of the failure from the content of the failure detection signal from the child station. In this way, in the slave station search method, unlike the master station search method, a faulty part is identified at the portions indicated by the above-mentioned codes * 1, 2. FIG. 13 is a flowchart of a continuation failure countermeasure process. Step S91 is a division moving process. The details of the division moving process are as shown in FIG.
After performing the terminal transfer command processing from the parent left to the left child station adjacent to the faulty part in 1, the parent left line normalization is confirmed by a mode report request (S72). If the confirmation is obtained, the parent left contacts the parent right (S73). Next, a terminal transfer instruction process is performed from the parent right to the terminal slave station (S74). Also, a terminal transfer instruction process is performed from the parent right to the right child station adjacent to the failed part (S75). After this processing, the normalization of the parent right line is confirmed by the mode report request (S
76). Then, the continuation failure detection process and the provisional operation process are performed (S77), and the process ends. As a result of this processing, in step S92 shown in FIG. 13, “0” is set during continuous failure detection, and “1” is set during temporary operation. FIG. 14 is a flowchart of the master station search method in the slave station. In step S101, it is determined whether the received frame is addressed to the own station. If (Y), it is determined whether the received frame is for failure search ( S102), and if (N), it is determined whether the terminal / relay or terminal-time main system is designated (S103). If the result of this determination is (N), it is determined whether it is a terminal age line transmission request (S104). If (N), it is determined whether an information request has been received (S105). After determining (S106), if (N), it is determined whether a confirmation message has been received (S107), and the other processing (S107)
108), and returns to step S101. If each of the determination units in steps S102 to S107 determines (Y), the processing in steps S109 to S114 is performed, and the processing in step S1 is performed.
The process returns to 01. Steps S101 to S104
Steps S109 to S111 are processing of both the main system and the slave system, and the others are processing of the master station contact person in charge, which is the main system. FIG. 15 is a flowchart of the slave station search method in the slave station. In step S121, it is determined whether a frame has been received. If (Y), in step S122, it is determined whether the frame is addressed to the own station. If the determination result in step S122 is (Y), it is determined in step S123 whether the frame is for failure detection. If the result of this determination is (N), it is determined whether the terminal / relay or terminal-time main system is designated (S124).
The same processing as Steps S105 to S108 of Step 4 is performed. In step S129, it is determined whether a predetermined time has elapsed when it is determined (N) in step S121. If (N), the process returns to step S121. If (Y), the failure search and transmission in step S132 are performed. S12
The process returns to 1. The determination in step S122 is (N)
If so, the determination in step S130 is performed. If (N), the process returns to step S121. If (Y), the process in step S132 is performed. If the determination in step S123 is (Y), failure information update processing (S131) is performed. If the determination in step S124 is (Y), terminal / relay designation reception processing or terminal-time main system designation reception processing (S133) is performed. Processing is step S12
Return to 1. The processing in steps S125 to S127 is performed in the same manner as in FIG. As described above, according to the present invention,
In the remote monitoring control using the SDLC method, it is possible to simplify the handling at the time of a line failure, to shorten the detection time of a failed part, and to shorten the communication interruption time at the time of a line failure.

【図面の簡単な説明】 【図1】正常時の回線構成図。 【図2】検討対象障害パタン説明図。 【図3】回線障害発生時の状態を示す説明図。 【図4】暫定運用中の状態を示す説明図。 【図5】この発明の実施の形態を示す回線構成図。 【図6】子局探索方式の瞬時障害の動作を説明するSD
LC方式のタイムチャート。 【図7】子局探索方式の継続障害の動作を説明するSD
LC方式のタイムチャート。 【図8】子局探索方式の親左側の動作を説明するSDL
C方式のタイムチャート。 【図9】子局探索方式の親右側の動作を説明するSDL
C方式のタイムチャート。 【図10】子局探索方式の継続障害回復の動作を説明す
るSDLC方式のタイムチャート。 【図11】子局探索方式の分割部正常化の動作を説明す
るSDLC方式のタイムチャート。 【図12】子局探索方式の障害回復処理フローチャー
ト。 【図13】子局探索方式の継続障害対策処理フローチャ
ート。 【図14】子局における親局探索方式のフローチャー
ト。 【図15】子局における子局探索方式のフローチャー
ト。 【図16】ポーリング方式における3群構成の概略構成
図。 【図17】トークンリング方式における3群構成の概略
構成図。 【図18】ポーリング方式における回線障害対応の概略
構成図。 【図19】トークンリング方式における回線障害対応の
概略構成図。 【図20】ポーリング方式における回線障害対応の概略
構成図。 【図21】トークンリング方式における回線障害対応の
概略構成図。 【図22】親局探索方式の分割部移動処理フローチャー
ト。 【符号の説明】 ML…親局左 MR…親局右 S1,S2,S3……子局
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit configuration diagram in a normal state. FIG. 2 is an explanatory diagram of a failure pattern to be examined. FIG. 3 is an explanatory diagram showing a state when a line failure occurs. FIG. 4 is an explanatory diagram showing a state during provisional operation. FIG. 5 is a circuit diagram showing an embodiment of the present invention. FIG. 6 is an SD illustrating an operation of an instantaneous failure in the slave station search method.
LC time chart. FIG. 7 is an SD explaining an operation of a continuous failure in the slave station search method.
LC time chart. FIG. 8 is an SDL for explaining the operation on the left side of the parent station in the slave station search method.
Time chart of the C system. FIG. 9 is an SDL for explaining the operation on the right side of the parent in the slave station search method.
Time chart of the C system. FIG. 10 is a time chart of the SDLC system for explaining the operation of continuous fault recovery in the slave station search system. FIG. 11 is a time chart of the SDLC method for explaining the operation of normalizing the division unit in the slave station search method. FIG. 12 is a flowchart of a failure recovery process of the slave station search method. FIG. 13 is a flowchart of a continuation failure countermeasure processing in the slave station search method. FIG. 14 is a flowchart of a master station search method in a slave station. FIG. 15 is a flowchart of a slave station search method in a slave station. FIG. 16 is a schematic configuration diagram of a three-group configuration in a polling method. FIG. 17 is a schematic configuration diagram of a three-group configuration in the token ring system. FIG. 18 is a schematic configuration diagram of a polling method corresponding to a line failure. FIG. 19 is a schematic configuration diagram of a line failure response in the token ring system. FIG. 20 is a schematic configuration diagram of a polling method for dealing with a line failure. FIG. 21 is a schematic configuration diagram of a line failure response in the token ring system. FIG. 22 is a flowchart of a division unit moving process in the master station search method. [Description of Signs] ML: Master station left MR: Master station right S1, S2, S3: Child station

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 哲生 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 河辺 公一 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 Fターム(参考) 5K031 AA08 AA09 BA03 CA01 CA05 DA03 DA06 EA04 EB04 5K048 AA09 BA31 CA02 DA03 DA06 DC03 EB03 EB08 FA04 FA07 GA12 GA14 GB05 HA01 HA02   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Tetsuo Fujita             Stock Exchange, 2-1-1-17 Osaki, Shinagawa-ku, Tokyo             Inside Shameidensha (72) Inventor Koichi Kawabe             Stock Exchange, 2-1-1-17 Osaki, Shinagawa-ku, Tokyo             Inside Shameidensha F term (reference) 5K031 AA08 AA09 BA03 CA01 CA05                       DA03 DA06 EA04 EB04                 5K048 AA09 BA31 CA02 DA03 DA06                       DC03 EB03 EB08 FA04 FA07                       GA12 GA14 GB05 HA01 HA02

Claims (1)

【特許請求の範囲】 【請求項1】 複数の親局と多数の子局間が親局毎のル
ープ回線で結合され、ループ回線の障害で各ループ回線
の対する子局の所属を変えることにより、通信機能を維
持させる遠方監視制御方式において、 一定時間以上信号を受信しない子局は当該回線の障害探
索信号を送信し、上流からの障害探索信号を受信した子
局は、障害探索信号の送信を停止し、前記障害探索信号
が親局に着信した回数が予め定めた回数に達したとき
に、回線に継続障害が発生していると認識することを特
徴とする遠方監視制御方式。
Claims 1. A plurality of master stations and a number of slave stations are connected by a loop line for each master station, and by changing the assignment of the slave station to each loop line due to a failure in the loop line. In the remote monitoring control system that maintains the communication function, a slave station that has not received a signal for a certain period of time transmits a fault search signal for the relevant line, and a slave station that has received a fault search signal from upstream transmits a fault search signal. A remote monitoring control method for recognizing that a continuous fault has occurred in a line when the fault is stopped and the number of times the fault search signal arrives at the master station reaches a predetermined number.
JP2002244628A 2002-08-26 2002-08-26 Remote monitoring control system Expired - Fee Related JP3656622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244628A JP3656622B2 (en) 2002-08-26 2002-08-26 Remote monitoring control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244628A JP3656622B2 (en) 2002-08-26 2002-08-26 Remote monitoring control system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8343712A Division JPH10190711A (en) 1996-12-24 1996-12-24 Remotely monitoring and controlling system

Publications (2)

Publication Number Publication Date
JP2003152749A true JP2003152749A (en) 2003-05-23
JP3656622B2 JP3656622B2 (en) 2005-06-08

Family

ID=19196511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244628A Expired - Fee Related JP3656622B2 (en) 2002-08-26 2002-08-26 Remote monitoring control system

Country Status (1)

Country Link
JP (1) JP3656622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022920A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Plant monitoring system, plant monitoring device, data aggregating device thereof, and terminal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022920A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Plant monitoring system, plant monitoring device, data aggregating device thereof, and terminal device

Also Published As

Publication number Publication date
JP3656622B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
US5666484A (en) Control method for distributed processing system
JPH05300163A (en) Method and device for generating topological information on serial communication network
JP2003152749A (en) Remote monitor/control system
JPH0697445B2 (en) Recovery device for switching error that may occur in computer I / O system
JPH10190711A (en) Remotely monitoring and controlling system
KR0136507B1 (en) Communication error detection method between signal exchange and management system of common line (No.7) signal network
JP2501335B2 (en) Gateway backup method
US6556827B1 (en) Method of managing a plurality of radio links in wireless local loop
CN100518179C (en) Method for realizing instructure self circulation in No.7 signalling system
JP3571135B2 (en) Disaster prevention monitoring system
JPS60223249A (en) Control system of signal transmission line
JP2000224210A (en) Monitor control system
JP2967702B2 (en) Centralized monitoring method of centralized monitoring system
JP2645134B2 (en) Message transmission control method to restoration signal link
JP2000295142A (en) Self-diagnostic device
JPH0286244A (en) Signal link controller
JPH01126056A (en) Restoration system at faulty main line
JPS612447A (en) Method for constituting by-pass of loop transmission system
JPH06350492A (en) Abnormality detecting system for distribution line carrier communications system
JPH10143453A (en) Plural-path selection control system for terminal
JPH0348705B2 (en)
JPH02294134A (en) Loop network intermittent fault recovery system
JPH066942A (en) Method and apparatus for inputting power system information
JPS60186154A (en) Interface circuit
JPH02161840A (en) Message communication equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees