JPH10190711A - Remotely monitoring and controlling system - Google Patents

Remotely monitoring and controlling system

Info

Publication number
JPH10190711A
JPH10190711A JP8343712A JP34371296A JPH10190711A JP H10190711 A JPH10190711 A JP H10190711A JP 8343712 A JP8343712 A JP 8343712A JP 34371296 A JP34371296 A JP 34371296A JP H10190711 A JPH10190711 A JP H10190711A
Authority
JP
Japan
Prior art keywords
station
failure
slave
master station
child
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8343712A
Other languages
Japanese (ja)
Inventor
Matsuo Tomita
松夫 冨田
Toshiya Senoo
利哉 妹尾
Tetsuo Fujita
哲生 藤田
Koichi Kawabe
公一 河辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP8343712A priority Critical patent/JPH10190711A/en
Publication of JPH10190711A publication Critical patent/JPH10190711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate coping with when a line has been in failure and to shorten communication interruption time in the line failure. SOLUTION: When a slave station S3 does not make a response to regular communication from a master station ML when the failure occurs in a circuit block diagram showing a master station search system, it is necessary to judge the failure to be instantaneous or continuous. Thus, trial communication for the prescribed number of times is executed from the master station ML to the slave stations S1, S2.... Then, a search signal is transmitted from the master station ML to the slave station S1. A response call (both systems responses to search signal) is given from the slave station S1 by the search signal and the master station ML and the slave station S1 are judged to be normal. In the case of a sequential search system, the station S2 is normal, the slave station S3 is abnormal and a failure part is judged to exist between the slave station S2 and the slave station S3. In the case of an intermediate search system, the slave station S3 is abnormal and the slave station S2 is normal and the failure part is judged to exist between the slave station S2 and the slave station 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、伝送回線がルー
プ状の遠方監視制御方式において、SDLC (Synchr
onous Data Link Control)方式を使用した遠方監視制
御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote monitoring and control system in which a transmission line is loop-shaped, and is used for SDLC (Synchr.
The present invention relates to a remote monitoring control method using an onous data link control method.

【0002】[0002]

【従来の技術】伝送回線がループ状の遠方監視制御方式
には、現在ポーリング方式とトークンリング方式の2つ
の伝送制御方式が使用されている。ポーリング方式は親
局から順番に子局を呼んで(ポーリングして)データを
収集するもので、トークンリング方式は発言許可信号
(トークン)をループ内に巡回させ、連絡信号発生局は
そのトークン到着時発信するものである。
2. Description of the Related Art Two remote transmission control systems, a polling system and a token ring system, are currently used in a remote monitoring and control system in which a transmission line has a loop shape. The polling method collects data by calling (polling) the slave stations in order from the master station, and the token ring method circulates a speech permission signal (token) in a loop, and the contact signal generation station arrives at the token. It is something to send when.

【0003】上記ポーリング方式とトークンリング方式
にはそれぞれ特徴がある。ここで、両方式の相違点を図
により述べるに、図36、図37は親局が3組すなわち
3組のループ回線3群の場合の回線構成と信号の流れ示
すポーリング方式とトークンリング方式の概略構成図で
ある。M1,M2,M3は親局、S11〜Sn3は子局
で、図36のポーリング方式の場合には親局M1,M
2,M3において、主系M1S,M2S,M3Sから図示
矢印方向に子局S11〜Sn3を、順番にポーリングして
状態変化のある子局は自分がポーリングされたとき、親
局に連絡する。なお、M1J,M2J,M3Jは、主系M
S,M2S,M3Sの障害時に代行する従系である。こ
のため、ポーリング方式の場合には、1群8子局であれ
ばポーリング信号がループ回線を最大8巡する時間が連
絡開始待ち時間になる。すなわち、1子局しか状態変化
がない場合は最大7回無駄なポーリングを行う。
The polling method and the token ring method each have characteristics. Here, the difference between the two systems will be described with reference to the drawings. FIGS. 36 and 37 show the line configuration and signal flow of the polling system and the token ring system when the master station has three sets, ie, three groups of three loop lines. It is a schematic block diagram. M1, M2, M3 is the master station, in S1 1 to Sn 3 is the slave station, the master station M1 in the case of the polling method of Fig. 36, M
2, the M3, when the main system M1 S, M2 S, M3 slave station S1 1 to Sn 3 in a direction indicated by an arrow from S, slave station with a status change poll in turn that he polled, master station Contact Note that M1 J , M2 J , and M3 J are the master M
It is a slave to act in the event of a failure of the 1 S, M2 S, M3 S . Therefore, in the case of the polling method, the communication start waiting time is a period in which the polling signal makes a maximum of eight rounds of the loop line in a group of eight slave stations. That is, when there is only a status change in one slave station, useless polling is performed up to seven times.

【0004】図37のトークンリング方式の場合にはル
ープ回線毎に親局と子局にトークンを巡回させるように
したもので、トークン信号がループ回線を巡回している
とき、状態変化のある子局はトークン信号到着時に親局
へ連絡する。従って、連絡開始待ち時間は最大でもルー
プ1巡時間で良い。
In the case of the token ring system shown in FIG. 37, a token is circulated between a master station and a slave station for each loop line. The station contacts the master station when the token signal arrives. Therefore, the communication start waiting time may be at most one loop time.

【0005】上記のことから、連絡開始待ち時間の点で
はトークンリング方式の方が良い。しかし、多数の子局
で状態変化が生じた場合は無駄なポーリングが少なくな
り差は少なくなる。回線障害時の対応には図38、図4
0および図39,図41A,Bに示すようにしている。
図38、図39は2群の子局S12とS22間で障害(図
示×印)が発生したときの回線構成をポーリング方式と
トークンリング方式についてそれぞれ示し、図40、図
41は親局M1,M3に障害が発生したときの回線構成
をポーリング方式とトークンリング方式についてそれぞ
れ示したものである。
[0005] In view of the above, the token ring method is better in terms of the waiting time for starting communication. However, when a state change occurs in many slave stations, useless polling is reduced and the difference is reduced. Fig. 38 and Fig. 4
0 and FIGS. 39, 41A and 41B.
Figure 38, Figure 39 respectively for polling scheme and token ring method the line configuration when a fault (illustrated × mark) is generated between the slave station S1 2 and S2 2 of 2 groups, 40, 41 is the master station The line configuration when a failure occurs in M1 and M3 is shown for the polling method and the token ring method, respectively.

【0006】図37、図36、図41に示すように、こ
こでは便宜上“トークンリング方式”と称しているが、
一般のトークンリング方式とは2点の共通点と1点の相
異点がある。
As shown in FIGS. 37, 36 and 41, the term "token ring system" is used here for convenience.
There are two common points and one difference from the general token ring system.

【0007】第1の共通点は前述の発言許可信号(トー
クン)を巡回させること、第2の共通点は回線障害に隣
接する局(親局、子局双方)が回線構成を変化させ、障
害部を除去する(図37→図39の子局S12,S22
図41のS11,Sn3)。これをループバックと呼ぶ。
The first common point is that the above-mentioned speech permission signal (token) is circulated, and the second common point is that the stations adjacent to the line fault (both the master station and the slave station) change the line configuration and the fault occurs. (Slave stations S1 2 , S2 2 ,
S1 1, Sn 3 in FIG. 41). This is called loopback.

【0008】相異点は子局の所属移動である。図37→
図39において、子局S12は親局M2→親局M1へ、
図37→図41において、子局S11〜Sn1とS13
Sn3が全て親局M2に所属移動している。
[0008] The difference is the belonging movement of the slave station. Figure 37 →
In Figure 39, the slave station S1 2 is to the master station M2 → master station M1,
In Figure 37 → 41, the slave station S1 1 to Sn 1 and S1 3 ~
All Sn 3 belong to the parent station M2.

【0009】両方式における回線障害時の連絡中断時間
においては、ポーリング方式では回線構成の変更は不要
であり、連絡中断は発生しない。しかし、トークンリン
グ方式では回線構成の変更が必要であり、この変更期間
中に連絡中断が発生する。この結果、回線障害時の連絡
中断時間の点ではポーリング方式の方が良い。しかし、
回線障害の発生頻度は少ない。なお、近年、ポーリング
方式には、伝送効率の良いHDLC(High Level Data L
ink Control)方式が採用されるようになって来ている。
In the communication interruption time in the case of a line failure in both systems, no change in the line configuration is required in the polling method, and the communication interruption does not occur. However, the line configuration needs to be changed in the token ring system, and communication is interrupted during this change period. As a result, the polling method is better in terms of the communication interruption time in the event of a line failure. But,
The frequency of line failures is low. In recent years, the polling method includes HDLC (High Level Data L
ink control) method has been adopted.

【0010】[0010]

【発明が解決しようとする課題】ループ状の遠方監視制
御方式では、ポーリング方式とトークンリング方式の2
つの伝送制御方式が使用されている。これら両方式には
一長一短があるが、トークンリング方式では回線障害時
連絡中断時間が長くなり、かつ回線障害時の対処が複雑
となる欠点がある。また、ポーリング方式には、親局に
おける回線入出力部が多くなるとともに、非該当局への
無駄なポーリングがあるため、伝送効率が悪くなる問題
がある。
The loop-based remote monitoring and control system has two types: a polling system and a token ring system.
Two transmission control methods are used. Both of these methods have advantages and disadvantages. However, the token ring method has disadvantages that the communication interruption time at the time of a line failure becomes long and the handling at the time of the line failure becomes complicated. In addition, the polling method has a problem that transmission efficiency is deteriorated because the number of line input / output units in the master station increases and unnecessary polling is performed for non-corresponding stations.

【0011】ループ回線において更に伝送効率の良い方
式に、公知の“SDLC方式”がある。SDLC方式
は、親局からの情報要求信号を受信した各子局は、送信
情報があればそれぞれ順に送信できる。従って、ループ
内の全子局の情報を、ループ1巡で親局に連絡できる。
前述のポーリング方式やトークン方式は、1子局毎に連
絡情報を巡回するのに比較すれば大差がある。しかし、
SDLC方式は回線が正常の場合は良いが、回線障害が
発生した場合、信号の巡回機能が失われるため、回線障
害対策が複雑になり、遠方監視制御装置として適用困難
であった。
[0011] There is a well-known "SDLC system" as a system having higher transmission efficiency in a loop line. In the SDLC method, each slave station that has received the information request signal from the master station can sequentially transmit the information if there is transmission information. Therefore, information on all the slave stations in the loop can be communicated to the master station in one loop.
The polling method and the token method described above have a great difference as compared with circulating contact information for each slave station. But,
The SDLC method is good when the line is normal, but when a line failure occurs, the signal circulating function is lost, so that measures against the line failure become complicated, and it has been difficult to apply as a remote monitoring control device.

【0012】この発明は上記の事情に鑑みてなされたも
ので、伝送効率を最良とするとともに、回線障害時の対
処を容易とし、しかも回線障害時連絡中断時間の短縮化
を図った遠方監視制御方式を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has the best transmission efficiency, makes it easy to deal with a line failure, and further reduces the communication interruption time when a line failure occurs. It is an object to provide a method.

【0013】[0013]

【課題を解決するための手段】この発明は、上記の課題
を達成するために、第1発明は、複数の親局と多数の子
局間が親局毎のループ回線で結合され、ループ回線の障
害で各ループ回線の対する子局の所属を変えることによ
り、通信機能を維持させる遠方監視制御方式において、
親局から情報要求を子局に送信したとき、その情報要求
を受信した子局から応答が無かったなら、親局から巡回
連絡確認信号を送信し、この確認信号が巡回不能と検出
されたなら回線に継続障害が発生している認識したこと
を特徴とするものである。
According to the present invention, in order to achieve the above object, according to a first aspect of the present invention, a plurality of master stations and a number of slave stations are connected by a loop line for each master station. In the remote monitoring control system that maintains the communication function by changing the belonging of the slave station to each loop line due to failure,
When the master station sends an information request to the slave station, if there is no response from the slave station that received the information request, the master station sends a cyclic contact confirmation signal, and if this confirmation signal is detected as being impossible to traverse, It is characterized by the fact that a continuous fault has occurred in the line.

【0014】第2発明は、前記継続障害が発生している
と認識した際、親局と隣接する子局間で連絡が不成立な
ら親局と隣接子局間に障害部位があると検出し、前記連
絡が成立なら親局と1/2中間子局間の連絡が成立する
のを見て、成立なら次に親局と3/4中間子局間の連絡
を判定し、判定が不成立なら親局と1/4中間子局間の
連絡の判定を以下順次細分化して障害部位を検出するこ
とを特徴とするものである。
According to a second aspect of the present invention, when it is recognized that the continuous fault has occurred, if communication between the master station and the adjacent slave station is not established, it is detected that a fault site exists between the master station and the adjacent slave station. If the communication is established, the communication between the master station and the 1/2 intermediate station is established. If the communication is established, the communication between the parent station and the 3/4 intermediate station is determined. It is characterized in that the determination of communication between the quarter meson stations is sequentially subdivided in order to detect a faulty part.

【0015】第3発明は、前記継続障害が発生している
と認識した際、親局と隣接する子局間で連絡が不成立な
ら親局と隣接子局間に障害部位があると検出し、成立な
ら親局と2番目子局間の連絡が成立か、不成立かを見
て、不成立なら最初の子局と2番目の子局間に障害部位
があると検出し、以下順次親局とn番目の子局間の連絡
が成立か、不成立かを判断するようにしたことを特徴す
るものである。
According to a third aspect of the present invention, when it is recognized that the continuous fault has occurred, if communication between the master station and the adjacent slave station is not established, it is detected that there is a fault site between the master station and the adjacent slave station, If it is established, it checks whether the communication between the master station and the second slave station is established or not. If it is not established, it detects that there is a faulty part between the first and second slave stations. It is characterized in that it is determined whether the communication between the second slave stations is established or not.

【0016】第4発明は、前記継続障害が発生している
と認識した際、継続障害を検出した第1親局より障害部
位第1親局側隣接子局へ端末移行指令を送信して、第1
親局の回線の正常化を行ったことを確認した後、第1親
局から第2親局に連絡を行って第2親局より端末子局へ
中継移行指令を送信し、第2親局より障害部位第2親局
側隣接子局へ端末移行指令を送信し、第2親局の回線の
正常化を行ったことを特徴とするものである。
According to a fourth aspect of the present invention, when it is recognized that the continuation failure has occurred, a terminal transfer command is transmitted from the first master station which has detected the continuation failure to the adjacent slave station on the side of the failure site first master station, First
After confirming that the line of the master station has been normalized, the first master station contacts the second master station, and the second master station transmits a relay shift command to the terminal slave station, and the second master station. Further, a terminal transfer command is transmitted to an adjacent slave station on the side of the second master station on the failure site, and the line of the second master station is normalized.

【0017】第5発明は、複数の親局と多数の子局間が
親局毎のループ回線で結合され、ループ回線の障害で各
ループ回線の対する子局の所属を変えることにより、通
信機能を維持させる遠方監視制御方式において、一定時
間以上信号を受信しない子局は当該回線の障害探索信号
を送信し、上流からの障害探索信号を受信した子局は、
障害探索信号の送信を停止し、前記障害探索信号が親局
に着信した回数が予め定めた回数に達したときに、回線
に継続障害が発生していると認識することを特徴とする
ものである。
According to a fifth aspect of the present invention, a plurality of master stations and a number of slave stations are connected by a loop line for each master station, and the communication function is changed by changing the assignment of the slave station to each loop line due to a failure in the loop line. In the remote monitoring control system to be maintained, a slave station that does not receive a signal for a fixed time or more transmits a fault search signal of the line, and a slave station that receives a fault search signal from upstream is
The transmission of the failure search signal is stopped, and when the number of times the failure search signal arrives at the master station reaches a predetermined number, it is recognized that a continuous failure has occurred in the line. is there.

【0018】[0018]

【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明するに当たり、まず、SDLC方式を採
用した遠方監視制御における障害部検出方式について述
べる。図1は正常時の回線構成図で、図1において、M
Lは第1親局(図示左側の親局)、MRは第2親局(図
示右側の親局)、S1,S2,〜,S3,S10は子局
である。第1、第2親局ML,MRと各子局S1,〜,
S10は伝送回線に接続されていて、これら伝送回線は
1系回線L1,L3および2系回線L2,L4から構成
され、各回線は図示しないがそれぞれ一対の伝送回線か
ら構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following, embodiments of the present invention will be described with reference to the drawings, first of all, a fault detection method in a remote monitoring control employing the SDLC method will be described. FIG. 1 is a circuit configuration diagram at the time of normal operation.
L is a first master station (master station on the left side in the figure), MR is a second master station (master station on the right side in the figure), and S1, S2 to S3, and S10 are slave stations. The first and second master stations ML, MR and each slave station S1,.
S10 is connected to transmission lines, and these transmission lines are composed of system lines L1 and L3 and system lines L2 and L4. Each line is composed of a pair of transmission lines (not shown).

【0019】各子局の白丸部は、中継機能(受信信号を
そのまま送信する)を主とする。;従系 各子局の黒丸部は、中継機能と親局との連絡機能を主と
する。;主系 なお、子1〜4、子6〜10を中継局、子5を端末局と
称する。
The white circle of each slave station mainly has a relay function (transmits a received signal as it is). The black circle of each slave station mainly has a relay function and a communication function with the master station. Main system Note that children 1 to 4 and children 6 to 10 are called relay stations, and child 5 is called a terminal station.

【0020】図1のように構成された回線構成図におい
て、次の図2に示すような4つの回線障害(図中×印で
示した箇所が障害)パタンを対象障害とする。図2
(1)ケース1は、下り1系回線L1の単一障害の場合
における対象障害であり、図2(2)ケース2は、上り
2系回線の単一障害の場合における対象障害であり、図
2(3)ケース3は、上下同一回線区間の障害の場合に
おける対象障害であり、図2(4)ケース4は、上下異
区間回線障害の場合における対象障害である。
In the circuit configuration diagram configured as shown in FIG. 1, four line failure patterns (faults indicated by crosses in the figure) as shown in FIG. 2 are taken as target failures. FIG.
(1) Case 1 is a target failure in the case of a single failure of the downlink 1 system line L1, and FIG. 2 (2) Case 2 is a target failure in the case of a single failure of the uplink 2 system line. 2 (3) Case 3 is a target failure in the case of a fault in the same upper and lower circuit section, and FIG. 2 (4) Case 4 is a target fault in the case of a different upper and lower section line fault.

【0021】図2の各回線障害が発生すると親局からの
情報要求信号が障害部(×印部)で絶たれるため、図3
のようになる(太線部は信号到達範囲を示す)。すなわ
ち、親子間の連絡機能は失われる。親子間の連絡機能を
回復するには、各回線障害に応じて図4のようにし、回
線障害が回復するまで“暫定運用”を行う。なお、図4
の点線部は回線障害の回復を検出するための信号であ
る。この回線構成の切替においては以下の条件を充足し
なければならない。
When each line failure in FIG. 2 occurs, the information request signal from the master station is cut off at the failure part (marked by x).
(The thick line indicates the signal reaching range). That is, the communication function between parent and child is lost. In order to restore the communication function between the parent and child, as shown in FIG. 4 according to each line failure, "temporary operation" is performed until the line failure is recovered. FIG.
A dotted line indicates a signal for detecting recovery from a line failure. In this switching of the line configuration, the following conditions must be satisfied.

【0022】第1の条件は、ケース1、2、3の場合
は、図4のように、全子局の監視制御(親局との連絡機
能)が可能であること、第2の条件は、回線障害発生
時、図3→図4の移行時間(親子の連絡機能中断時間)
を短縮すること、第3の条件は、回線障害回復時、図4
→図1の移行時間(親子の連絡機能中断時間)を短縮す
ること、第4の条件は、回線障害の回復を早く知るこ
と、(暫定運用は図4の右側のように子局数が多く連絡
所要時間が長くなるため、しかし連絡中断ではない。) 第5の条件は、子局を極力単純化すること、(子局は無
人のため、障害発生時修復時間大)である。
The first condition is that, in cases 1, 2, and 3, as shown in FIG. 4, monitoring and control of all the slave stations (communication function with the master station) are possible, and the second condition is that When a line failure occurs, the transition time from Fig. 3 to Fig. 4 (interruption time between parent and child communication functions)
The third condition is that when the line failure is recovered,
→ Shortening the transition time (interruption time between parent and child communication functions) in FIG. 1, the fourth condition is to know the recovery of the line failure quickly, (provisional operation has a large number of slave stations as shown on the right side of FIG. 4). The fifth condition is to simplify the slave station as much as possible (the slave station is unmanned and the repair time is large when a fault occurs because the slave station is unmanned).

【0023】第2の条件である“図3→図4”の内訳は
両図から以下である。まず、障害が瞬時障害でなく、継
続性のものであることを検出する。(瞬時障害は自然回
復)次に、その障害部位を検出する。その次に、障害部
位をループ回線から除外すること。(障害部の隣接左右
子局を端末局に移行させること)最後に、その結果親局
から孤立した子局を新しい親局へ移動させること。(従
来の端末局を中継局に移行させること)中心は障害部位
の検出である。
The details of the second condition “FIG. 3 → FIG. 4” are as follows from both figures. First, it is detected that the fault is not an instantaneous fault but a continuity fault. (Instantaneous failure recovers spontaneously) Next, the failure site is detected. Next, remove the faulty part from the loop line. (Move the right and left slave stations adjacent to the faulty part to the terminal station.) Finally, move the slave station isolated from the master station to the new master station. (Migrating a conventional terminal station to a relay station) The focus is on detecting a failure site.

【0024】上記障害を探索して障害部を検出する時間
を極力早くする点では、第5発明の子局探索方式が良
く、回線障害回復検出時間の点でも、子局探索方式が良
い。また、子局の単純化の点では第1発明〜第3発明の
親局探索方式が良い。
In order to make the time for searching for the fault and detecting the faulty part as short as possible, the slave station search method of the fifth invention is good, and also in terms of the line fault recovery detection time, the slave station search method is good. Further, in terms of simplification of the slave station, the master station search method according to the first to third inventions is preferable.

【0025】図3a〜dのままでは障害部を判定できな
いから図3a〜dの障害発生時から図4a〜dの暫定運
用中になるまでの移行時間を早くして、障害部の検出時
間を早めるため、この発明の実施の形態では、幾つかの
障害部検出方式を以下説明する。この障害部検出方式に
は、中継←→端末移行時間、探索回数、探索の単純性、
子局の単純性、SDLC方式との整合性、連絡中断時間
などを考慮して親局探索方式か子局探索方式かを決定す
る。
3A to 3D, the faulty part cannot be determined. Therefore, the transition time from the occurrence of the fault in FIGS. 3A to 3D to the temporary operation in FIGS. In order to expedite the description, in the embodiment of the present invention, several faulty part detection methods will be described below. This faulty part detection method includes relay ← → terminal transition time, number of searches, simplicity of search,
In consideration of the simplicity of the slave station, the consistency with the SDLC scheme, the communication suspension time, etc., it is determined whether the search method is the master station search method or the slave station search method.

【0026】以下この発明の実施の第1形態として親局
探索方式について述べる。図5は親局探索方式を示す回
線構成図で、この図5A〜Dは図3aにおけるケース1
に相当する障害発生時の場合のもので、親局MLからの
通常連絡に子局S3が応答しなかったとき、瞬時障害か
継続障害かを判定するために、親局MLから子局S1,
S2…に向かって一定回数試行連絡を行う。この連絡の
ために親局MLから子局S1へ探索信号(アドレスを子
局S1、データに探索信号)を送信する。
Hereinafter, a master station search method will be described as a first embodiment of the present invention. FIG. 5 is a circuit diagram showing a master station search method. FIGS. 5A to 5D show case 1 in FIG.
When the slave station S3 does not respond to the normal communication from the master station ML, the slave station S1, the slave station S1 determines whether an instantaneous failure or a continuous failure has occurred.
A fixed number of trial contacts are made toward S2. For this communication, a search signal (address is the slave station S1 and a search signal is data) is transmitted from the master station ML to the slave station S1.

【0027】この探索信号により子局S1より応答発信
(探索信号には両系応答)があり、親局MLと子局S1
間は正常であると判定される。以下順次探索方式なら
ば、子局S2で正常、子局S3で異常となり、障害部は
子局S2と子局S3との間であると判明する。また、中
間探索方式ならば、子局S3は異常、子局S2は正常と
なり、障害部は同じく子局S2と子局S3との間である
と判明する。両探索方式とも探索回数は同じである。な
お、図3b〜dのケース2〜4も同様に探索できる。
According to the search signal, a response is transmitted from the slave station S1 (the search signal responds to both systems), and the master station ML and the slave station S1 respond.
The interval is determined to be normal. Hereinafter, in the case of the sequential search method, the slave station S2 becomes normal, the slave station S3 becomes abnormal, and it is determined that the faulty part is between the slave station S2 and the slave station S3. Also, in the case of the intermediate search method, the slave station S3 becomes abnormal, the slave station S2 becomes normal, and it is determined that the faulty part is also between the slave station S2 and the slave station S3. The number of searches is the same in both search methods. Note that cases 2 to 4 in FIGS.

【0028】次に図5の回線構成図における親局探索方
式の動作を図6に示すSDLC方式のタイムチャートに
基づいて述べる。なお、図6〜図14のタイムチャート
において、符号1、2は1系回線、2系回線を、親左は
第1親局を、親右は第2親局を、子1〜5は子局を意味
し、子局数は5個とした。
Next, the operation of the master station search system in the circuit configuration diagram of FIG. 5 will be described with reference to the time chart of the SDLC system shown in FIG. In the time charts of FIGS. 6 to 14, reference numerals 1 and 2 denote the first system line and the second system line, the parent left is the first parent station, the parent right is the second parent station, and the children 1 to 5 are the children Station, and the number of slave stations is 5.

【0029】図6は、平常時の動作におけるタイムチャ
ートで、子3が端末局で、平常時においては、親局から
子局に向けて情報要求A1が送信されると、子1、子
2、子3に情報要求A1が伝送される。子3はその要求
を受信すると、状変無しを示す無し応答である確認応答
C2を親局に向けて伝送する。そのとき、子2において
も無し応答なら確認応答C2を付けて子1へ受け渡し、
子1で同様に確認応答を付して親局へ伝送する。このよ
うに回線に異常がなければ、その応答が得られる。
FIG. 6 is a time chart in the normal operation. In the normal operation, when the information request A1 is transmitted from the master station to the child station, the child 1 and the child 2 are transmitted. , Child 3 the information request A1 is transmitted. When receiving the request, the child 3 transmits an acknowledgment C2, which is a no-response indicating no change, to the master station. At this time, if the child 2 does not have a response, the child 2 is transferred to the child 1 with an acknowledgment C2.
The child 1 similarly sends an acknowledgment to the master station. If there is no abnormality in the line, a response is obtained.

【0030】図7は、子1、子3、子5に状変があった
ときのタイムチャートで、親左から情報要求A1を送信
すると、前述の場合と同様に子3にその要求が伝送され
る。子1、子3に状変があるので、子1、子3からは状
変有りを示す有り応答C1を付して親左に伝送してく
る。すると親左は子3と子1の確認応答A10を付して
伝送し、その確認を行う。そこで何も無ければ、再び情
報要求A1を送信し、子1〜子3の無し応答を確認す
る。このようにSDLC方式では全子局の状変連絡も親
局発信の確認応答時間も1巡で済む。
FIG. 7 is a time chart when the child 1, child 3, and child 5 change state. When the information request A1 is transmitted from the parent left, the request is transmitted to the child 3 in the same manner as described above. Is done. Since the child 1 and the child 3 have a state change, the child 1 and the child 3 transmit the presence response C1 indicating the state change to the parent left. Then, the parent left transmits with the acknowledgment A10 of the child 3 and the child 1, and confirms it. Therefore, if there is nothing, the information request A1 is transmitted again, and the response without the child 1 to the child 3 is confirmed. As described above, in the SDLC system, the state change notification of all the slave stations and the confirmation response time of the master station transmission can be completed only once.

【0031】図8は、子1と子3の機器を制御するとき
の制御信号伝送時のタイムチャートで、親左から子1と
子3の制御信号A2を送信すると、子3と子1から確認
応答C3を付して親左に伝送してくる。次いで、親左か
らは情報要求A1を繰り返し送信し、子3と子1の機器
が応動していることを確認する。その後、子3と子1へ
は確認応答A10を伝送する。この制御時も親局発信の
制御時間は1巡で済む。
FIG. 8 is a time chart at the time of control signal transmission when controlling the child 1 and child 3 devices. When the control signal A2 of the child 1 and child 3 is transmitted from the parent left, the child 3 and child 1 A confirmation response C3 is attached and transmitted to the parent left. Next, the information request A1 is repeatedly transmitted from the parent left, and it is confirmed that the child 3 and the child 1 are operating. Thereafter, an acknowledgment A10 is transmitted to the child 3 and the child 1. In this control, the control time for transmitting the master station is one cycle.

【0032】図9は、回線瞬時障害時におけるタイムチ
ャートで、図3bのケース2の場合に相当し、まず、情
報要求A1を送信したとき、子2の応答無しフレームに
瞬時障害(子1と子2との間で2系回線に瞬時障害が発
生する)があるとき、再び情報要求A1を送信する。こ
のときの情報要求と応答が正常なら障害は回復したもの
とし平常復帰する。次に図3aのケース1の場合には、
親左と子1の1系回線の故障で情報要求フレームに障害
が発生し、全子局の応答が無くなる。このようなとき、
1巡回連絡確認B1を親左から全子局に送信し、その確
認が取れれば正常とし、以後、平常動作に移る。
FIG. 9 is a time chart at the time of an instantaneous line failure, which corresponds to the case 2 in FIG. 3B. First, when the information request A1 is transmitted, the instantaneous failure (child 1 When an instantaneous failure occurs in the system 2 line with the slave 2), the information request A1 is transmitted again. If the information request and response at this time are normal, it is assumed that the failure has been recovered and the operation returns to normal. Next, in case 1 of FIG.
A failure occurs in the information request frame due to the failure of the system line of the parent left and child 1, and the response of all child stations is lost. In such a case,
One round communication confirmation B1 is transmitted from the parent left to all the slave stations, and if the confirmation is obtained, it is determined to be normal, and thereafter, the operation shifts to the normal operation.

【0033】図10〜図12は、回線継続障害の場合に
おけるタイムチャートで、このタイムチャートは障害部
位検出から分割部(両親局が監視している子局で端末中
継局の部位)が移動し、平常動作までのもので、図10
の(1)は継続障害が子1と子2との2系回線で発生し
たとき、図9の場合のように、再び情報要求A1を送信
する。この状態は図9のケース2の前半状態と同様にな
って、巡回連絡確認B1を2回程(図中四角形で囲んだ
部分)親左から全子局に送信する。この連絡確認B1が
2回共巡回不能検出されたなら図10の(2)で継続障
害が発生したと検出する。説明の都合で図9では省略し
たが“巡回連絡確認”の場合は、“情報要求”と異な
り、子局からの応答をさせない情報を付加する。SDL
C方式は、通常子局は受信情報の後に情報を付加してし
まう。すると、親局は次の“巡回連絡確認”を発信する
には、全子局の付加情報分回線を占有してしまうので、
その時間またねばならない。子局からの応答をさせない
ようにすれば、全子局付加情報分を待つ必要が無く、瞬
時障害と継続障害の区別が速まり、継続障害をその分早
く検出できる。この発生を検出したとき、図11の
(1)の処理を行う。まず、子1に対向連絡確認B2を
送信すると、子1から確認応答C3が親左に伝送されて
きて、子1の対向連絡が成立する。この対向連絡確認B
2とその応答C3もSDLC方式ではない。相違点は次
の2点である。
FIGS. 10 to 12 are time charts in the case of a line continuation failure. In this time chart, the division unit (the part of the terminal relay station in the slave station monitored by the parent station) moves from the detection of the failure part. , Up to normal operation, FIG.
In (1), when a continuation failure occurs in the secondary system line of child 1 and child 2, the information request A1 is transmitted again as in the case of FIG. This state is the same as the first half state of case 2 in FIG. 9, and the tour communication confirmation B1 is transmitted from the parent left about twice (the part surrounded by a rectangle in the figure) to all the child stations. If this communication confirmation B1 is detected twice as being unable to go round, it is detected that a continuous failure has occurred in (2) of FIG. Although omitted in FIG. 9 for the sake of explanation, in the case of “tour confirmation”, unlike the “information request”, information that does not allow a response from the slave station is added. SDL
In the C system, a slave station normally adds information after received information. Then, the master station occupies the additional information line of all slave stations in order to transmit the next “tour confirmation”.
I have to do that time again. If no response from the slave station is made not necessary, it is not necessary to wait for the additional information of all slave stations, the instantaneous fault and the continuous fault can be distinguished quickly, and the continuous fault can be detected earlier by that amount. When this occurrence is detected, the processing of (1) in FIG. 11 is performed. First, when the contact confirmation B2 is transmitted to the child 1, an acknowledgment C3 is transmitted from the child 1 to the parent left, and the contact of the child 1 is established. This oncoming contact confirmation B
2 and its response C3 are not SDLC. The difference is the following two points.

【0034】第1点は当該子局(この場合子1)のみ応
答する。(SDLC方式は受信した子局全部)この場合
の他子局の応答も“巡回連絡確認”と同様、回線占有時
間を長引かせ、以下の動作を遅らせてしまう。第2点は
応答方向が親局からの受信信号の流れに対応していない
ことである。SDLC方式では、親局発信信号が巡回し
て親局に戻らなければ成立しない。障害継続中はこの巡
回機能が失われているので、SDLC方式は成立しない
ためである。従って、“対向連絡確認信号”には上記2
点を行わせる情報を付加する。
The first point is that only the child station (child 1 in this case) responds. (In the case of the SDLC system, all the received slave stations) In this case, the response of the other slave stations also prolongs the line occupation time and delays the following operation, as in the case of "circular communication confirmation". The second point is that the response direction does not correspond to the flow of the received signal from the master station. In the SDLC system, this is not established unless the master station transmission signal circulates and returns to the master station. This is because the SDLC method is not established because the traveling function is lost while the failure continues. Therefore, the above-mentioned 2
Add information to make points.

【0035】次に子2の対向連絡確認B2を前述と同様
に送信するが、子2からの確認応答C3が親左に伝送さ
れて来ないため、子2対向連絡不成立となる。これによ
り、子1と子2間に障害があることが検出される。
Next, the on-line contact confirmation B2 of the child 2 is transmitted in the same manner as described above, but since the confirmation response C3 from the child 2 is not transmitted to the parent left, the on-line communication of the child 2 is not established. Thereby, it is detected that there is a failure between the child 1 and the child 2.

【0036】検出されたなら、図11の(2)で分割部
移動(親左側)を行うために、子1の端末移行指令を出
す。この端末移行指令も対向連絡確認と同様である。す
ると、子1から確認応答C3が親左に伝送されてきたな
ら、親左から子局の状態報告を行わせる“モード報告要
求”を送信する。受信した子局は状変連絡で無く子局の
状態(中継局か端末局か、回線障害の有無)のみを“モ
ード報告応答D1”として親局に連絡する。これによ
り、親左側は所属する子局を知ることができ、以後情報
要求A1を送信する“平常時動作”になり、親左は親右
に連絡する。この後は、子2は親右側から監視されるよ
うになる。
If it is detected, a terminal transfer command for the child 1 is issued in order to move the division (left side of the parent) in (2) of FIG. This terminal transfer command is the same as the on-coming communication confirmation. Then, when the acknowledgment C3 is transmitted from the child 1 to the parent left, a "mode report request" for causing the status of the child station to be reported from the parent left is transmitted. The received slave station informs the master station only of the status of the slave station (relay station or terminal station, presence / absence of a line failure) as "mode report response D1" without a state change notification. As a result, the parent left side can know the child station to which it belongs, and then becomes “normal operation” in which the information request A1 is transmitted, and the parent left contacts the parent right. Thereafter, the child 2 is monitored from the right side of the parent.

【0037】図12の分割部移動の親右側の処理にな
る。親右側はまず子3に中継移行指令B3を送信する
と、子3から確認応答C3が返送されてくる。次に子2
に端末移行指令B3を送信すると、子2から確認応答C
3が返送されてくる。その後、モード報告要求B4を親
右側から送信すると、各子局からモード報告応答D1が
伝送されてくる。以後、親右側は平常時動作になる。S
DLC方式のままで障害部を検出するには、複数の中間
子局に対し“端末←→中継”のモード移行を行わせ、巡
回ルートの成立の有無を順次検証しなければならない。
この図10〜図12のように処理すると、図11の
(1)で示したように、複数の中間子局のモード移行が
不要となり、その分だけ時間が短縮される。
The process on the right side of the parent of the movement of the divided portion in FIG. On the right side of the parent, when the relay shift command B3 is first transmitted to the child 3, an acknowledgment C3 is returned from the child 3. Next child 2
Sends the terminal transfer command B3 to the child 2, the acknowledgment C
3 is returned. Thereafter, when the mode report request B4 is transmitted from the right side of the parent, a mode report response D1 is transmitted from each slave station. Thereafter, the parent right side operates normally. S
In order to detect a faulty part in the DLC system, it is necessary to cause a plurality of intermediate stations to perform a mode transition of “terminal ← → relay” and to sequentially verify whether or not a cyclic route has been established.
When the processing is performed as shown in FIGS. 10 to 12, the mode transition of a plurality of intermediate stations becomes unnecessary as shown in FIG. 11A, and the time is shortened accordingly.

【0038】図13は、回線継続障害回復のタイムチャ
ートで、このタイムチャートは暫定運用から継続障害回
復を検出し、分割部正常化までの処理で、まず(1)で
暫定運用として、親左側から情報要求A1を子1に送信
すると、子1からは無し応答C2が送られてくる。その
後、親左側から子1に代行送信要求B5を送信すると、
確認応答C3が子1から親左側に伝送されてくる。一
方、子1の2系回線からは親左側に代行して図11
(1)と同様、子2に向けて対向連絡確認代行が伝送さ
れるが、子2から子1への応答は未着になり、障害は回
復していないことが判明する。
FIG. 13 is a time chart of line continuation failure recovery. This time chart shows a process from the provisional operation to the detection of continuation failure recovery and normalization of the division unit. Sends an information request A1 to the child 1, the child 1 sends a no response C2. Then, when the proxy transmission request B5 is transmitted from the parent left side to the child 1,
An acknowledgment C3 is transmitted from child 1 to the parent left side. On the other hand, from the secondary line of child 1, the parent left
As in the case of (1), the opposite contact confirmation proxy is transmitted to the child 2, but the response from the child 2 to the child 1 has not arrived, and it is determined that the failure has not been recovered.

【0039】図13の(2)継続障害回復検出には、ま
ず、子1の代行送信要求B5を親左から送信すると、子
1から確認応答C3が伝送されるとともに、対向連絡確
認代行が子1の2系回線から子2に伝送される。継続障
害が回復していれば、この応答が子2から子1に着信す
る。これにより子1は障害回復を検出する(図中符号Z
で示す点)。すると、子1の状態は2系回線障害有りか
ら無しに状態変化する。次ぎに親左から情報要求A1が
子1に送信され、子1から有り応答C1があることによ
り障害が回復したことを親左が検出する。そこで、子1
に確認応答A10を親左から送信し、返送されてくるこ
とにより、分割部正常化処理(図14)に移る。このた
めに、親左が親右に連絡する。その後、図14におい
て、親左から子1に中継移行指令B3を送信するととも
に、親右から子3に端末移行指令B3を送信する。子1
は確認応答C3を親左に伝送し、子3は確認応答を親右
に伝送する。すると、両親左と親右からはモード報告要
求B4が送信され、各子局からの応答D1を両親左、右
が受信するようになる。親右側は、以後平常時動作とな
ると親右から親左に連絡する。その後、親左から子2に
中継移行指令B3が送信されると、子2から確認応答C
3が送られてくる。この間に子2は端末から中継にな
る。確認応答C3が親左で着信されたなら、モード報告
要求B4が送信され、各子局からモード報告応答D1が
送られてくることで、親左側も平常時動作へ移行する。
In (2) of FIG. 13, the continuous failure recovery is detected by first transmitting the substitute transmission request B5 of the child 1 from the left of the parent, transmitting the acknowledgment C3 from the child 1 and the subordinate confirming the substitute. 1 is transmitted to the child 2 from the second system line. If the continuation failure has been recovered, this response is received from child 2 to child 1. Thus, the child 1 detects the failure recovery (reference numeral Z in the figure).
Point). Then, the state of the child 1 changes from the presence of the system 2 line failure to the absence thereof. Next, an information request A1 is transmitted from the parent left to the child 1, and the parent left detects that the failure has been recovered due to the presence response C1 from the child 1. So child 1
Then, an acknowledgment A10 is transmitted from the parent left side and returned, so that the process proceeds to the division unit normalization process (FIG. 14). For this, the parent left contacts the parent right. Thereafter, in FIG. 14, a relay transfer command B3 is transmitted from the parent left to the child 1, and a terminal transfer command B3 is transmitted from the parent right to the child 3. Child 1
Transmits an acknowledgment C3 to the parent left, and child 3 transmits an acknowledgment to the parent right. Then, a mode report request B4 is transmitted from the parents left and the parents right, and the parents D and L receive the response D1 from each child station. When the parent right side operates normally thereafter, the parent right side contacts the parent left side. Thereafter, when the relay shift command B3 is transmitted from the parent left to the child 2, the acknowledgment C
3 is sent. During this time, the child 2 becomes a relay from the terminal. If the acknowledgment response C3 is received on the parent left, a mode report request B4 is transmitted, and the mode report response D1 is transmitted from each slave station, so that the parent left also shifts to the normal operation.

【0040】上記タイムチャートのように親局探索方式
は処理されるが、そのときの処理フローチャートを次に
示す。図15は親局探索方式のマクロフローチャート
で、ステップS1で障害対策が必要であるかの判定を行
い、(Y)なら障害対策処理を後述の図16ように行
い、(N)ならステップS2で子局連絡が必要であるか
の判定を行う。ステップS2で(Y)なら後述の図17
のように子局連絡処理し、(N)なら後述の図18のよ
うに情報要求処理を行う。
The master station search method is processed as shown in the time chart, and a processing flowchart at that time is shown below. FIG. 15 is a macro flowchart of the master station search method. In step S1, it is determined whether a countermeasure is necessary. If (Y), a countermeasure process is performed as shown in FIG. It is determined whether slave station communication is necessary. If (Y) in step S2, FIG.
, And if (N), an information requesting process is performed as shown in FIG.

【0041】図16は障害対策処理のフローチャート
で、ステップS11で継続障害検出中であるかを判定
し、(N)ならステップS12で瞬時障害を検出中であ
るかを判定する。ステップS12で(Y)なら詳細を図
19で示す障害回復処理(S13)を行い、回復処理が
成功(S14)かどうかを判定し、(Y)なら瞬時障害
検出中(S15)を「0」とする。また、ステップS1
4で(N)なら継続障害検出中(S16)を「1」とす
る。なお、ステップS11で(Y)なら図20に示す継
続障害対策処理(S17)を行って継続障害検出中を
「0」、暫定運用中を「1」とする。
FIG. 16 is a flowchart of the fault remedy process. In step S11, it is determined whether a continuous fault is being detected, and if (N), it is determined in step S12 whether an instantaneous fault is being detected. If (Y) in step S12, the failure recovery processing (S13) shown in FIG. 19 is performed in detail, and it is determined whether the recovery processing is successful (S14). If (Y), instantaneous failure detection (S15) is set to "0". And Step S1
If (N) in 4, the continuous failure detection (S16) is set to “1”. Note that if (Y) in step S11, the continuous failure countermeasure process (S17) shown in FIG. 20 is performed to set “0” during continuous failure detection and “1” during temporary operation.

【0042】図17は子局連絡処理のフローチャート
で、ステップS21で監視局である伝送HOSTより送
信要求があるかを判定し、この判定で(Y)ならステッ
プS22の前回子局連絡を発信したかのを判定処理をす
る。この処理で、(N)なら子局連絡要求処理(複数子
局同時)(S23)を行った後、フレーム受信があるか
を判定(S24)し、(Y)なら当該子局確認応答があ
るかを判定処理する。この処理の結果、(Y)なら伝送
HOSTに送信が完了したことを連絡する(S26)。
この連絡の後、ステップS27で前回子局連絡を
「1」、再送回数を「0」とする。前記ステップS25
で(N)なら再送回数制限が超過しているかを判定(S
28A)し、(Y)なら伝送HOSTに当該子局連絡が
渋滞(28B)であるとしてステップS27の処理を行
い、(N)なら再送回数を「+1」としてステップS2
3から再び処理を行う。前記ステップS24で(N)な
ら瞬時障害検出中処理(S30)として「1」にして処
理を終了する。なお、ステップS21の判定処理で
(N)、ステップS22の判定処理で(Y)のときは、
図18の処理を行う。
FIG. 17 is a flowchart of a slave station communication process. In step S21, it is determined whether there is a transmission request from the transmission HOST serving as a monitoring station. If this determination is (Y), the previous slave station communication in step S22 is transmitted. A judgment process is performed. In this process, if (N), a slave station communication request process (simultaneous multiple slave stations) is performed (S23), then it is determined whether or not a frame has been received (S24). If (Y), the slave station acknowledgment is received. Is determined. If the result of this processing is (Y), the transmission HOST is notified that the transmission has been completed (S26).
After this notification, in step S27, the previous slave station communication is set to "1" and the number of retransmissions is set to "0". Step S25
If (N), it is determined whether the retransmission count limit has been exceeded (S
28A), if (Y), the process of step S27 is performed on the transmission HOST assuming that the slave station communication is congested (28B), and if (N), the number of retransmissions is set to "+1", and step S2 is performed.
The processing is performed again from 3. If (N) in step S24, the process is terminated by setting "1" as the instantaneous failure detection process (S30). When (N) in the determination process of step S21 and (Y) in the determination process of step S22,
The processing of FIG. 18 is performed.

【0043】図18は、情報要求処理のフローチャート
で、ステップS31で情報要求送信を行い、その送信で
フレーム受信が有るかを判定(S32)し、(Y)なら
次子局フレームを受信したかを判定(S33)して、
(Y)なら状変連絡があるかどうかを判定処理(S3
4)する。このステップS34の判定処理で(Y)なら
該当子局へ確認応答を送信する(S35)。ステップS
35の送信は、最終子局であるかをステップS36で判
定処理し、この処理で(Y)なら前回子局連絡を「0」
(S37)とする。ステップS34で、(N)なら該当
子局回線状態を連絡して回線状態を更新(S38)して
ステップS36の判定処理を行う。なお、ステップS3
2で(N)なら瞬時障害検出中処理(S39)を行う。
FIG. 18 is a flow chart of the information request processing. In step S31, an information request is transmitted, and it is determined whether or not a frame has been received in the transmission (S32). Is determined (S33),
If (Y), it is determined whether or not there is a status change notification (S3
4) Yes. If (Y) in the determination processing of step S34, an acknowledgment is transmitted to the corresponding slave station (S35). Step S
In the transmission of No. 35, it is determined in step S36 whether or not it is the last slave station. If this processing is (Y), the previous slave station communication is set to "0".
(S37). In step S34, if (N), the line status of the relevant slave station is notified to update the line status (S38), and the determination process of step S36 is performed. Step S3
If it is (N) in 2, the processing during the instantaneous failure detection (S39) is performed.

【0044】図19は、障害回復処理のフローチャート
で、ステップS41で巡回連絡確認の送信処理を行い、
フレームが受信されたかを判定(S42)する。判定の
結果、(Y)ならフレーム内容が一致しているかをステ
ップS43で判定処理し、(Y)なら瞬時障害検出中の
処理(S44)を行い(障害回復成功)で処理を終了す
る。前記ステップS42で(N)なら再送回数制限が超
過しているかを判定(S45)し、(Y)なら継続障害
検出中を「1」(S47)として処理を終了し、ステッ
プS45で(N)の判定なら再送回数処理を「+1」に
してステップS41から処理を再び始める。
FIG. 19 is a flow chart of the failure recovery processing.
It is determined whether a frame has been received (S42). If the result of the determination is (Y), a determination is made in step S43 as to whether or not the frame contents match. If the determination is (Y), a process during instantaneous failure detection (S44) is performed (failure recovery successful), and the process ends. If (N) in step S42, it is determined whether the retransmission count limit has been exceeded (S45). If (Y), the continuous failure detection is set to "1" (S47), and the process ends, and (N) in step S45. If the judgment is made, the retransmission count process is set to "+1" and the process is restarted from step S41.

【0045】図20は、継続障害対策処理のフローチャ
ートで、ステップS51は詳細を図21〜図23に示す
処理を行う障害部検出処理で、この処理で検出されたな
ら分割部移動処理(S52)を行う。この分割部移動処
理の詳細は図24に示すように処理が行われる。この処
理の結果、ステップS53で継続障害検出中を「0」と
し、暫定運用中を「1」とする。
FIG. 20 is a flowchart of the continuous failure countermeasure processing. Step S51 is a failure part detection processing for performing the processing shown in FIGS. 21 to 23 in detail. I do. The details of the dividing part moving process are performed as shown in FIG. As a result of this processing, in step S53, the continuous failure detection is set to "0", and the provisional operation is set to "1".

【0046】図21は、障害部検出処理のフローチャー
トにおける中間探索方式で、まず、ステップS54で親
局と隣接子局の連絡が成立したかを判定し、(Y)なら
親局と1/2中間子局の連絡が成立したかを判定処理
(S55)する。この処理で(N)なら次に、親局と1
/4中間子局の連絡が成立したを判定処理(S56)す
る。また、ステップS55の処理で(Y)なら親局と3
/4中間子局の連絡が成立したかを判定(S57)す
る。以下順次同様に細分化して障害部位を検出する。
FIG. 21 shows an intermediate search method in the flowchart of the faulty part detection processing. First, in step S54, it is determined whether or not communication between the master station and the adjacent slave station has been established. A determination process (S55) is performed to determine whether the communication of the meson station has been established. If (N) in this process, then the master station and 1
A determination process (S56) is performed to determine that the communication of the / 4 meson station has been established. Also, if (Y) in the processing of step S55, the master station and 3
It is determined whether the communication of the / 4 meson station has been established (S57). Thereafter, similarly, segmentation is performed in the same manner, and a failure site is detected.

【0047】図22は、障害部検出処理のフローチャー
トにおける順次探索方式で、ステップS58で親局と隣
接子局の連絡が成立したかを判定し、(N)なら親局と
隣接子局間の障害とし、(Y)なら親局と2番目子局の
連絡が成立したかを判定(S59)する。この判定の結
果、(N)なら子局1、2間の障害とし、(Y)なら親
局と3番目子局の連絡が成立したかを判定(S60)
し、(N)なら子局2、3間の障害とするように、以下
順次同様に障害部位を検出して行く。
FIG. 22 shows a sequential search method in the flowchart of the faulty part detection processing. In step S58, it is determined whether or not communication between the master station and the adjacent slave station has been established. It is determined as a failure, and if (Y), it is determined whether communication between the master station and the second slave station has been established (S59). As a result of this determination, if (N), it is determined that a failure has occurred between the slave stations 1 and 2, and if (Y), it is determined whether communication between the master station and the third slave station has been established (S60).
Then, in the case of (N), a failure site is sequentially detected in the same manner so that a failure occurs between the slave stations 2 and 3.

【0048】図23は、親局と子局間連絡成立判定処理
(図21、図22)の内訳を示すフローチャートで、ス
テップS61は当該子局へ対向連絡確認指令を行う処理
で、この指令で当該子局から応答が有るかを判定(S6
2)し、(Y)なら連絡成立とし、(N)なら連絡不成
立とする。
FIG. 23 is a flow chart showing the details of the processing for judging the establishment of communication between the master station and the slave stations (FIGS. 21 and 22). Step S61 is a processing for issuing an on-line communication confirmation instruction to the slave station. It is determined whether there is a response from the slave station (S6).
2) Then, if (Y), communication is established, and if (N), communication is not established.

【0049】図24は、分割部移動処理のフローチャー
トで、ステップS71で親左より障害部隣接左子局へ端
末移行指令処理を行った後、親左回線正常化をモード報
告要求で確認処理(S72)をする。確認が取れたなら
親左は親右に連絡する(S73)。次に親右より端末子
局へ中継移行指令処理をする(S74)。また、親右よ
り障害部隣接右子局へ端末移行指令処理を行う(S7
5)。この処理の後、親右回線の正常化をモード報告要
求で確認する(S76)。そして、継続障害検出中処理
および暫定運用中処理を行って(S77)処理を終了す
る。
FIG. 24 is a flow chart of the dividing unit moving process. In step S71, after performing a terminal transfer instruction process from the parent left to the left side child station adjacent to the failed unit, the parent left line normalization is confirmed by a mode report request ( S72) is performed. When the confirmation is obtained, the parent left contacts the parent right (S73). Next, the relay right command processing is performed from the parent right to the terminal slave station (S74). Also, a terminal transfer instruction process is performed from the parent right to the right child station adjacent to the failed part (S7).
5). After this processing, the normalization of the parent right line is confirmed by a mode report request (S76). Then, the continuous failure detection process and the provisional operation process are performed (S77), and the process ends.

【0050】次にこの発明の実施の第2形態である子局
探索方式(テスト(障害探索)信号注入方式)について
述べる。図25(A)〜(C)は図3aのケース1の場
合におけるもので、図25(A)において、障害発生時
には、親局MLから通常連絡は中断する。この中断は図
25(B)において、瞬時障害か継続障害かの判定のた
め、親局MLから通常連絡を繰り返し、子局の受信無し
側は“一定時間以上受信信号無し”でテスト(障害探
索)信号を繰り返し注入する。この障害探索信号の注入
方式もSDLC方式では無い(SDLC方式は受信信号
の後尾に付加送信信号を付加する)。図25(C)で更
に親局MLからは通常連絡の繰り返しを行う。一方、子
局S3の1系以外は上記からの障害探索信号を受信し障
害探索信号注入条件の消滅により、障害探索信号注入を
停止する。子局S3の1系注入障害探索信号が親局ML
に着信する。この状態で子局S3の1系のみの障害探索
信号が規定回数着信で、継続障害の発生と継続障害部位
とを検出する。
Next, a description will be given of a slave station search system (test (failure search) signal injection system) according to a second embodiment of the present invention. FIGS. 25A to 25C show the case 1 in FIG. 3A. In FIG. 25A, when a failure occurs, the normal communication from the master station ML is interrupted. In FIG. 25 (B), the normal communication is repeated from the master station ML to determine whether it is an instantaneous failure or a continuous failure in FIG. 25 (B). ) Inject the signal repeatedly. The method of injecting the failure search signal is not the SDLC method (the SDLC method adds an additional transmission signal to the end of the received signal). In FIG. 25 (C), the normal communication is further repeated from the master station ML. On the other hand, the stations other than the slave station S3 receive the fault search signal from the above and stop the fault search signal injection when the fault search signal injection condition disappears. The primary system injection failure search signal of the slave station S3 is
Incoming call. In this state, the failure search signal of only one system of the slave station S3 is received a predetermined number of times, and the occurrence of the continuous failure and the continuous failure part are detected.

【0051】図25(D)〜(F)は図3b〜dのケー
ス2〜4の場合におけるもので、上記図25(A)〜
(C)はケース1と同様に処理された結果で、障害部検
出時の状態を以下に述べる。図25(D)はケース2
(上り2系回線単一障害)の場合で、この場合には、子
局S2の2系のテスト信号の着信から障害部を検出す
る。
FIGS. 25D to 25F show cases 2 to 4 shown in FIGS. 3B to 3D.
(C) is the result of the processing performed in the same manner as in Case 1, and the state at the time of detection of the failed part will be described below. FIG. 25D shows case 2.
In the case of (single failure of the upstream 2 system line), in this case, the failure unit is detected from the incoming test signal of the 2 system of the slave station S2.

【0052】図25(E)はケース3(上下同一区間障
害)の場合で、この場合も子局S2の2系のテスト信号
の着信から障害部を検出する。
FIG. 25 (E) shows the case of Case 3 (failure in the same section in the upper and lower parts). In this case as well, the failure part is detected from the arrival of the test signal of the secondary system of the slave station S2.

【0053】図25(F)はケース4(上下異区間障
害)の場合で、この場合は子局S3の2系のテスト信号
の着信から障害部を検出する。なお、子局S3の2系の
テスト信号には子局S2の1系受信異常(子局S2の1
系のテスト信号より)を含む。図25(C),(D),
(E)の場合、“テスト信号発信子局番号”とその1系
か2系により継続障害部位を検出できる。しかし、図2
5(F)の場合はその方法では“子局S3←→子局S
4”と判定されてします。図4dからも継続障害部位は
“子局S1←→子局S4間”と判定しなければならな
い。子局S3は、1系で子局S2の1系発信のテストを
受信しているから、2系のテスト信号に“子局S2の1
系受信異常”を付加できる。これにより親左MLは子局
S1を端末に移行させれば良い。
FIG. 25F shows Case 4 (upper / lower section failure). In this case, a failure section is detected from the incoming test signal of the secondary system of the slave station S3. It should be noted that the test signal of the secondary system of the slave station S3 includes a reception error of the primary system of the slave station S2 (1
System test signal). FIG. 25 (C), (D),
In the case of (E), the continuous failure site can be detected by the "test signal transmission slave station number" and its one or two systems. However, FIG.
In the case of 5 (F), the method uses “slave station S3 ← → slave station S
4d. From FIG. 4d, the continuous failure site must be determined to be "between slave station S1 and slave station S4." Slave station S3 is system 1 and system 1 of slave station S2 is transmitted. Of the slave station S1
In this case, the parent-left ML may transfer the slave station S1 to the terminal.

【0054】次に図25の回線構成図における子局探索
方式の動作を図26に示すSDLC方式のタイムチャー
トに基づいて述べる。なお、図26のタイムチャートに
おいて、符号1、2は1系回線、2系回線を、親左は第
1親局を、親右は第2親局を、子1〜5は子局を意味
し、子局数は5個とした。
Next, the operation of the slave station search system in the circuit configuration diagram of FIG. 25 will be described with reference to the time chart of the SDLC system shown in FIG. In the time chart of FIG. 26, reference numerals 1 and 2 denote the first system line and the second system line, the parent left represents the first parent station, the parent right represents the second parent station, and the children 1 to 5 represent the child stations. The number of slave stations was set to five.

【0055】図26は回線瞬時障害におけるタイムチャ
ートにより子局探索方式について述べるに、平常時、状
変時および制御時の動作は図6で述べた親局探索方式と
同じ処理であるからそのタイムチャートと説明を省略
し、瞬時障害のタイムチャートから述べる。図26にお
いて、ケース1は親局探索方式と動作は同じであるから
ここでは説明を省略し、ケース2の場合における子局探
索方式を述べる。ケース2の場合において、情報要求A
1を全子局に送信すると、親左と子1の間の1系回線で
情報要求フレームに障害があるため、全子局の応答がな
い。このとき、図中四角形で囲んだ部分の処理を行って
次回の情報要求が正常なら瞬時障害は回復したとして平
常復帰する。
FIG. 26 shows the slave station search method based on the time chart of the instantaneous line failure. Since the operations during normal times, state changes, and control are the same as those in the master station search method described with reference to FIG. The chart and the description are omitted, and a description will be given from the time chart of the instantaneous failure. In FIG. 26, the operation in case 1 is the same as that of the parent station search method, so that the description is omitted here, and the child station search method in case 2 will be described. In case 2, information request A
When 1 is transmitted to all slave stations, there is no response from all slave stations because there is a failure in the information request frame on the system 1 line between parent left and child 1. At this time, if the processing of the portion surrounded by the rectangle in the figure is performed and the next information request is normal, it is assumed that the instantaneous failure has been recovered and the operation returns to normal.

【0056】図27〜図29までは継続障害の場合にお
けるタイムチャートで、このタイムチャートは障害部位
検出から分割部が移動し、平常動作までのもので、図2
7の(1)は情報要求A1を送信しているとき、継続障
害が子1と子2との1系回線で発生したときには、応答
は正常である。次の情報要求A1は図27(2)のよう
に子1→子2の1系回線障害で中断される。以後、親左
から繰り返し情報要求A1を送信する。すると子2の1
系、子3の1系、子2の2系、子1の2系、親左は受信
信号無し状態となる。“受信信号無し状態が一定時間以
上続いたこと”を条件に、子局は当該系の回線に障害探
索信号を送信する。図中、子2は1系回線に、子3は1
系回線に、子2は2系回線におよび子1は2系回線にそ
れぞれ障害探索信号の送信を開始する。子2の1系回線
以外は上流からの探索信号受信により、障害探索信号の
送信を停止する。そして、障害部直近下流部のみ障害探
索信号を送信する。障害探索信号に“子2の1系回線発
信”の情報を含めれば、親左はこの信号のみが一定回数
以上受信したことにより(1回のみでは最初は子1の2
系送信信号である)障害部位を含めて継続障害を検出す
る。
FIG. 27 to FIG. 29 are time charts in the case of a continuous fault. These time charts are from the detection of a faulty part to the movement of the dividing unit to the normal operation.
In (1) of 7, when the information request A1 is transmitted, when a continuation failure occurs in the 1-system line of the child 1 and the child 2, the response is normal. The next information request A1 is interrupted due to the failure of the 1-system line from child 1 to child 2 as shown in FIG. Thereafter, the information request A1 is repeatedly transmitted from the parent left. Then 1 of child 2
The system, the first system of the child 3, the second system of the child 2, the two systems of the child 1, and the parent left are in a state where there is no received signal. The slave station transmits a failure search signal to the line of the relevant system on the condition that “the absence of the received signal has continued for a predetermined time or more”. In the figure, child 2 is on the system 1 line, child 3 is 1
The child 2 starts transmitting a failure search signal to the secondary line, and the child 1 starts transmitting a failure search signal to the secondary line. The transmission of the fault search signal is stopped for the lines other than the 1-system line of the child 2 by receiving the search signal from the upstream. Then, a failure search signal is transmitted only in the immediate downstream part of the failure part. If the information of "child 2 system 1 transmission" is included in the failure search signal, the parent left receives only this signal a certain number of times or more (only once, the child 1
A continuous fault is detected including the fault part (which is a system transmission signal).

【0057】図28の(1)で上記図27の(2)より
子2の1系回線に障害探索信号を送信し、子1と子2の
間の障害を検出する。次に図28の(2)の分割部移動
処理のため、親左側から子1端末移行指令を出し、子1
の確認応答C3を見る。子1の端末局移行により、障害
探索信号は図示のように折り返す。その後、モード報告
要求B4を送信し、その応答D1を確認する。確認後、
親左側は平常時動作になり、親左側は親右側に連絡す
る。以後は親右側の分割部移動図29の動作になる。
In (1) of FIG. 28, a failure search signal is transmitted to the 1-system line of child 2 from (2) of FIG. 27, and a failure between child 1 and child 2 is detected. Next, a child 1 terminal transfer command is issued from the left side of the parent for the dividing unit movement processing of (2) in FIG.
See the confirmation response C3. When the child 1 transitions to the terminal station, the failure search signal is looped back as shown in the figure. Thereafter, a mode report request B4 is transmitted, and the response D1 is confirmed. After confirmation,
The parent left side operates normally, and the parent left side contacts the parent right side. Thereafter, the operation of the parent right-side divided section movement is as shown in FIG.

【0058】図29は、分割部移動親右側のタイムチャ
ートで、子2の1系回線からの障害探索信号が子3に向
けて送信されるとともに、親右側から子3中継移行指令
B3が送信される。この指令で子3の確認応答C3が親
右側に返送されてくる。一方、子3の中継移行により子
2の1系回線から障害探索信号が親右に向けて送信され
る。また、親右から子2の端末移行指令B3が送信さ
れ、その子2の確認応答C3が親右に伝送されてくる。
子2の端末移行により、子1の1系回線障害探索信号は
子1へ伝送される。上記の端末移行が終了すれば、親右
からモード報告要求B4を送信し、各子局からモード報
告応答D1があることにより、以後は親右側も平常時動
作になる。
FIG. 29 is a time chart on the right side of the parent of the moving part. In FIG. 29, a failure search signal from the system 1 line of the child 2 is transmitted to the child 3, and a child 3 relay shift command B3 is transmitted from the right of the parent. Is done. With this command, the confirmation response C3 of the child 3 is returned to the right side of the parent. On the other hand, a failure search signal is transmitted to the parent right from the 1-system line of the child 2 due to the relay shift of the child 3. Further, the terminal shift command B3 of the child 2 is transmitted from the parent right, and the confirmation response C3 of the child 2 is transmitted to the parent right.
By the transfer of the terminal of the child 2, the system 1 line failure search signal of the child 1 is transmitted to the child 1. When the above-mentioned terminal transfer is completed, a mode report request B4 is transmitted from the parent right, and a mode report response D1 is received from each slave station. Thereafter, the parent right also operates normally.

【0059】図30、図31は、継続障害回復における
タイムチャートで、暫定運用から継続障害回復検出し、
分割部正常化までのもので、図30の(1)は暫定運用
のタイムチャートである。親左から情報要求A1を送信
し、子1からの無し応答C2を受けている。一方、親右
からも情報要求A1を送信し、その応答を受けている。
なお、子1と子2間には子2、1系回線の障害探索信号
が出されている。子1の2系でこの探索信号を受信し、
端末局状態なので受信信号を折り返し子2の1系回線へ
中継している。しかし、子1→子2回線の障害が継続中
は子2へは戻らない。
FIG. 30 and FIG. 31 are time charts for continuous fault recovery, in which continuous fault recovery is detected from provisional operation.
FIG. 30 (1) is a time chart of provisional operation up to normalization of the division unit. The information request A1 is transmitted from the parent left, and the absence response C2 from the child 1 is received. On the other hand, the information request A1 is also transmitted from the parent right, and the response is received.
Note that a failure search signal for the child 2 and system 1 lines is output between the child 1 and the child 2. This search signal is received by the two systems of the child 1,
Since the terminal is in the terminal station state, the received signal is relayed to the first system line of the loopback 2. However, it does not return to child 2 while the failure of the child 1 → child 2 line continues.

【0060】この信号が出されている途中で継続障害が
回復すると、子2、1系回線の障害探索信号1巡で継続
障害回復を子2が検出する。(図30の(2)継続障害
回復)この障害回復を親右に、子2は情報要求A1の応
答に付して伝送する。
If the continuation fault is recovered while this signal is being output, the child 2 detects the continuation fault recovery by one round of the fault search signal for the child 2 and the 1-system line. ((2) Continuous failure recovery in FIG. 30) This failure recovery is transmitted to the parent right and the child 2 in response to the information request A1.

【0061】図31のタイムチャートは親右がこのこと
を親左に連絡し、分割部正常化を行うもので、親左では
子1の中継移行指令B3を送信し、親右では子3端末移
行指令B3を送信する。親左では子1の確認応答C3を
受信し、親右では子3の確認応答C3を受信する。この
間に子1は端末から中継になり、子3は中継から端末に
なる。なお、子2は端末のまま、モード報告要求B4を
親左と親右から送信し、その応答D1を受信すると、以
後は親右側は平常時動作になり、親右から親左に連絡が
なされる。一方、親左では子2の中継移行指令B3が送
信され、子2の確認応答C3がある。この間に子2は端
末から中継になり、親左からモード報告要求B4が送信
され、各子局から応答D1を得ることにより、親左側も
平常時動作になる。
In the time chart of FIG. 31, the parent right informs the parent left of this fact and performs normalization of the division part. The parent left transmits the relay shift command B3 of the child 1, and the parent right transmits the child 3 terminal. The shift command B3 is transmitted. The parent left receives the acknowledgment C3 of the child 1, and the parent right receives the acknowledgment C3 of the child 3. During this time, child 1 becomes a relay from the terminal, and child 3 becomes a terminal from the relay. The child 2 sends the mode report request B4 from the parent left and the parent right while the terminal remains as it is, and when the response D1 is received, thereafter the parent right operates normally and the parent right contacts the parent left. You. On the other hand, on the parent left, the relay transfer command B3 of the child 2 is transmitted, and there is an acknowledgment C3 of the child 2. During this time, the child 2 becomes a relay from the terminal, a mode report request B4 is transmitted from the parent left, and a response D1 is obtained from each child station, so that the parent left also operates normally.

【0062】上記タイムチャートのように子局探索方式
は処理されるが、そのときの処理フローチャートを次に
示す。なお、親局探索方式で示したフローチャートの
内、図15から図18および図24は処理フローチャー
トが同じであるから障害回復処理フローチャートと継続
障害対策処理フローチャートについて述べる。図32は
障害回復処理フローチャートで、ステップS81で前回
送信内容を再送信し、フレームが受信されたかを判定
(S82)する。判定の結果、(Y)ならフレーム内容
が一致しているからを判定(S83)し、(Y)なら瞬
時障害検出中を「0」とし(S84)瞬時障害対策処理
を終了する(障害回復成功)。前記ステップS82で
(N)なら再送回数制限が超過しているかを判定(S8
5)し、(Y)なら継続障害検出中を「1」とし(S8
7)を行って処理を終了し、ステップS85で(N)の
判定なら再送回数処理を「+1」にしてステップS81
から処理を再び始める。前記ステップS83で(N)な
ら子局からの障害検出信号があるかを判定(S88)
し、(N)ならステップS81へ、(Y)なら同一内容
で規定回数であるかを判定(S89)し、(N)ならス
テップS81へ、(Y)ならステップS87へ進む。図
中符号※1で親局と直近上流子局間が障害部と判明、ま
た符号※2で子局からの障害検出信号の内容から継続障
害の発生と障害部位が判明する。このように子局探索方
式では親局探索方式と異なり、上記符号※1、2の部分
で障害部が判明する。
The slave station search method is processed as shown in the above time chart. A processing flowchart at that time is shown below. Since the processing flowcharts of FIGS. 15 to 18 and FIG. 24 are the same among the flowcharts shown in the master station search method, only the failure recovery processing flowchart and the continuous failure countermeasure processing flowchart will be described. FIG. 32 is a flowchart of the failure recovery process. In step S81, the previous transmission content is retransmitted, and it is determined whether a frame has been received (S82). If the result of the determination is (Y), it is determined that the frame contents match (S83). If (Y), the instantaneous failure detection is set to "0" (S84). ). If (N) in step S82, it is determined whether the retransmission count limit has been exceeded (S8).
5) Then, if (Y), the continuous failure detection is set to "1" (S8).
7) is performed, and the process is terminated. If the determination in step S85 is (N), the retransmission count process is set to “+1”, and step S81 is performed.
Starts the process again. If (N) in step S83, it is determined whether there is a failure detection signal from the slave station (S88).
Then, if (N), the process proceeds to step S81, if (Y), it is determined whether the content is the specified number of times (S89), if (N), the process proceeds to step S81, and if (Y), the process proceeds to step S87. In the figure, reference numeral * 1 indicates that a failure occurs between the master station and the nearest upstream child station, and reference numeral * 2 indicates the occurrence of a continuous failure and the failure site from the content of the failure detection signal from the child station. In this way, in the slave station search method, unlike the master station search method, a faulty part is identified at the portions indicated by the codes * 1 and 2.

【0063】図33は、継続障害対策処理フローチャー
トで、ステップS91は分割部移動処理で、この分割部
移動処理の詳細は、前述した図24に示すような処理が
行われる。この処理の結果、ステップS92で継続障害
検出中を「0」とし、暫定運用中を「1」とする。
FIG. 33 is a flowchart of a continuation failure countermeasure process. Step S91 is a dividing portion moving process. The details of the dividing portion moving process are the same as those shown in FIG. 24 described above. As a result of this processing, it is set to “0” during continuous failure detection and “1” during provisional operation in step S92.

【0064】図34は、子局における親局探索方式のフ
ローチャートで、ステップS101は受信フレームが自
局宛であるかを判定し、(Y)なら受信フレームが障害
探索用であるかを判定(S102)し、(N)なら端末
/中継、端末時主系指定かを判定(S103)する。こ
の判定の結果(N)なら端末時代行送信要求かを判定
(S104)し、(N)なら情報要求受信したかを判定
(S105)し、この判定で(N)なら子局連絡受信を
したかを判定(S106)した後、(N)なら確認連絡
受信したかを判定(S107)して、その他の処理(S
108)を行ってステップS101に戻る。なお、ステ
ップS102からS107までの各判定部で(Y)と判
定されたなら、それぞれステップS109〜S114ま
での処理を行ってステップS101に処理が戻る。ま
た、ステップS101〜S104までとステップS10
9〜S111までは主系と従系の両系処理で、その他は
主系である親局連絡担当側処理である。
FIG. 34 is a flowchart of the master station search method in the slave station. In step S101, it is determined whether the received frame is addressed to the own station. If (Y), it is determined whether the received frame is for failure search ( S102), and if (N), it is determined whether the terminal / relay or terminal-time main system is designated (S103). If the result of this determination is (N), it is determined whether the request is a terminal era transmission request (S104). If (N), it is determined whether an information request has been received (S105). After determining (S106), if (N), it is determined whether a confirmation message has been received (S107), and the other processing (S107)
108), and returns to step S101. If each of the determination units in steps S102 to S107 determines (Y), the processes in steps S109 to S114 are performed, and the process returns to step S101. Steps S101 to S104 and step S10
9 to S111 are processing of both the main system and the slave system, and the others are processes of the master station contact person in charge, which is the main system.

【0065】図35は、子局における子局探索方式のフ
ローチャートで、ステップS121はフレーム受信した
かを判定し、(Y)ならステップS122で当該フレー
ム自局宛かを判定する。ステップS122の判定結果が
(Y)ならステップS123で当該フレームは障害検出
用かを判定する。この判定で(N)なら端末/中継、端
末時主系指定であるかを判定(S124)し、以下図3
4のステップS105〜S108までと同様な処理を行
う。ステップS129はステップS121で(N)と判
定されたときに一定時間経過したかを判定し、(N)な
らステップS121に戻り、(Y)ならステップS13
2の障害探索送信を行ってステップS121に処理が戻
る。前記ステップS122で判定が(N)ならステップ
S130の判定を行って、(N)ならステップS121
に戻り、(Y)ならステップS132の処理を行う。ス
テップS123の判定で(Y)なら障害情報更新処理
(S131)を行い、ステップS124の判定で(Y)
なら端末/中継指定受信か、端末時主系指定受信処理
(S133)を行って処理がステップS121に戻る。
なお、ステップS125〜S127の処理は図34と同
様に処理される。
FIG. 35 is a flowchart of the slave station search method in the slave station. In step S121, it is determined whether a frame has been received. If (Y), in step S122, it is determined whether the frame is addressed to its own station. If the determination result of step S122 is (Y), it is determined in step S123 whether the frame is for failure detection. If the result of this determination is (N), it is determined whether the terminal / relay or terminal-time main system is designated (S124).
The same processing as Steps S105 to S108 of Step 4 is performed. In step S129, it is determined whether a predetermined time has elapsed when it is determined as (N) in step S121. If (N), the process returns to step S121. If (Y), the process returns to step S13.
The fault search transmission of No. 2 is performed, and the process returns to step S121. If the determination in step S122 is (N), the determination in step S130 is performed. If the determination is (N), step S121 is performed.
Returning to (Y), the process of step S132 is performed. If (Y) is determined in step S123, the failure information update process (S131) is performed, and (Y) is determined in step S124.
If so, the terminal / relay designation reception or terminal-time master designation reception process (S133) is performed, and the process returns to step S121.
The processing in steps S125 to S127 is performed in the same manner as in FIG.

【0066】[0066]

【発明の効果】以上述べたように、この発明によれば、
SDLC方式を使用した遠方監視制御において、回線障
害時の対処を簡易化し、障害部の検出時間を早め、回線
障害時連絡中断時間を短縮できる。
As described above, according to the present invention,
In the remote monitoring control using the SDLC method, it is possible to simplify the handling at the time of a line failure, to shorten the detection time of a failed part, and to shorten the communication interruption time at the time of a line failure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正常時の回線構成図。FIG. 1 is a circuit configuration diagram in a normal state.

【図2】検討対象障害パタン説明図。FIG. 2 is an explanatory diagram of a failure pattern to be examined.

【図3】回線障害発生時の状態を示す説明図。FIG. 3 is an explanatory diagram showing a state when a line failure occurs.

【図4】暫定運用中の状態を示す説明図。FIG. 4 is an explanatory diagram showing a state during provisional operation.

【図5】この発明の実施の第1形態を示す回線構成図。FIG. 5 is a circuit diagram showing a first embodiment of the present invention.

【図6】親局探索方式の平常時の動作を説明するSDL
C方式のタイムチャート。
FIG. 6 is an SDL for explaining the normal operation of the master station search method.
Time chart of the C system.

【図7】親局探索方式の状変時の動作を説明するSDL
C方式のタイムチャート。
FIG. 7 is an SDL for explaining an operation at the time of state change in the master station search method.
Time chart of the C system.

【図8】親局探索方式の制御時の動作を説明するSDL
C方式のタイムチャート。
FIG. 8 is an SDL for explaining the operation at the time of controlling the master station search method.
Time chart of the C system.

【図9】親局探索方式の瞬時障害の動作を説明するSD
LC方式のタイムチャート。
FIG. 9 is an SD illustrating an operation of an instantaneous failure in the master station search method.
LC time chart.

【図10】親局探索方式の継続障害の発生検出動作を説
明するSDLC方式のタイムチャート。
FIG. 10 is a time chart of the SDLC method for explaining the operation of detecting the occurrence of a continuous failure in the master station search method.

【図11】親局探索方式の障害部検出の動作を説明する
SDLC方式のタイムチャート。
FIG. 11 is a time chart of the SDLC system for explaining the operation of detecting a fault in the master station search system.

【図12】親局探索方式の分割部移動の動作を説明する
SDLC方式のタイムチャート。
FIG. 12 is a time chart of the SDLC method for explaining the operation of moving the division unit in the master station search method.

【図13】親局探索方式の継続障害回復の動作を説明す
るSDLC方式のタイムチャート。
FIG. 13 is a time chart of the SDLC system for explaining an operation of continuous failure recovery in the master station search system.

【図14】親局探索方式の分割部正常化の動作を説明す
るSDLC方式のタイムチャート。
FIG. 14 is a time chart of the SDLC method for explaining the operation of normalizing the division unit in the master station search method.

【図15】親局探索方式のマクロフローチャート。FIG. 15 is a macro flowchart of a master station search method.

【図16】親局探索方式の障害対策処理フローチャー
ト。
FIG. 16 is a flowchart of a failure countermeasure process of the master station search method.

【図17】親局探索方式の子局連絡処理フローチャー
ト。
FIG. 17 is a slave station contact processing flowchart of the master station search method.

【図18】親局探索方式の情報要求処理フローチャー
ト。
FIG. 18 is an information request processing flowchart of a master station search method.

【図19】親局探索方式の障害回復処理フローチャー
ト。
FIG. 19 is a failure recovery processing flowchart of a master station search method.

【図20】親局探索方式の継続障害対策処理フローチャ
ート。
FIG. 20 is a continuation failure countermeasure processing flowchart of the master station search method.

【図21】親局探索方式における中間探索方式の障害部
検出処理フローチャート。
FIG. 21 is a flowchart of a faulty part detection process of the intermediate search method in the master station search method.

【図22】親局探索方式における順次探索方式の障害部
検出処理フローチャート。
FIG. 22 is a flowchart of a failure detection process in the sequential search method in the master station search method.

【図23】親局探索方式の親局と子局間連絡成立判定処
理フローチャート。
FIG. 23 is a flowchart of a process for determining the establishment of communication between a master station and slave stations in a master station search method.

【図24】親局探索方式の分割部移動処理フローチャー
ト。
FIG. 24 is a flowchart of a division unit moving process of the master station search method.

【図25】この発明の実施の第2形態を示す回線構成
図。
FIG. 25 is a circuit diagram showing a second embodiment of the present invention.

【図26】子局探索方式の瞬時障害の動作を説明するS
DLC方式のタイムチャート。
FIG. 26 is a flow chart illustrating the operation of an instantaneous failure operation in the slave station search method.
4 is a time chart of the DLC method.

【図27】子局探索方式の継続障害の動作を説明するS
DLC方式のタイムチャート。
FIG. 27 is a diagram illustrating an operation of a continuous failure operation in the slave station search method.
4 is a time chart of the DLC method.

【図28】子局探索方式の親左側の動作を説明するSD
LC方式のタイムチャート。
FIG. 28 is an SD for explaining the operation of the left side of the parent station in the slave station search method.
LC time chart.

【図29】子局探索方式の親右側の動作を説明するSD
LC方式のタイムチャート。
FIG. 29 is an SD for explaining the operation of the right side of the parent in the slave station search method.
LC time chart.

【図30】子局探索方式の継続障害回復の動作を説明す
るSDLC方式のタイムチャート。
FIG. 30 is a time chart of the SDLC method for explaining the operation of continuous fault recovery in the slave station search method.

【図31】子局探索方式の分割部正常化の動作を説明す
るSDLC方式のタイムチャート。
FIG. 31 is a time chart of the SDLC method for explaining the operation of normalizing the division unit in the slave station search method.

【図32】子局探索方式の障害回復処理フローチャー
ト。
FIG. 32 is a flowchart of a failure recovery process of the slave station search method.

【図33】子局探索方式の継続障害対策処理フローチャ
ート。
FIG. 33 is a flowchart of a continuation failure countermeasure processing in the slave station search method.

【図34】子局における親局探索方式のフローチャー
ト。
FIG. 34 is a flowchart of a master station search method in a slave station.

【図35】子局における子局探索方式のフローチャー
ト。
FIG. 35 is a flowchart of a slave station search method in a slave station.

【図36】ポーリング方式における3群構成の概略構成
図。
FIG. 36 is a schematic configuration diagram of a three-group configuration in a polling method.

【図37】トークンリング方式における3群構成の概略
構成図。
FIG. 37 is a schematic configuration diagram of a three-group configuration in the token ring system.

【図38】ポーリング方式における回線障害対応の概略
構成図。
FIG. 38 is a schematic configuration diagram of a line failure response in a polling method.

【図39】トークンリング方式における回線障害対応の
概略構成図。
FIG. 39 is a schematic configuration diagram of a line failure response in the token ring system.

【図40】ポーリング方式における回線障害対応の概略
構成図。
FIG. 40 is a schematic configuration diagram of handling a line failure in the polling method.

【図41】トークンリング方式における回線障害対応の
概略構成図。
FIG. 41 is a schematic configuration diagram of a line failure response in the token ring system.

【符号の説明】[Explanation of symbols]

ML…親局左 MR…親局右 S1,S2,S3……子局 ML: Master station left MR: Master station right S1, S2, S3: Child station

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河辺 公一 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Koichi Kawabe 2-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の親局と多数の子局間が親局毎のル
ープ回線で結合され、ループ回線の障害で各ループ回線
の対する子局の所属を変えることにより、通信機能を維
持させる遠方監視制御方式において、 親局から情報要求を子局に送信したとき、その情報要求
を受信した子局から応答が無かったなら、親局から巡回
連絡確認信号を送信し、この確認信号が巡回不能と検出
されたなら回線に継続障害が発生している認識したこと
を特徴とする遠方監視制御方式。
A remote station for maintaining a communication function by changing the assignment of a slave station to each loop line due to a loop line failure, wherein a plurality of master stations and a number of slave stations are connected by a loop line for each master station. In the supervisory control system, when a master station sends an information request to a slave station, if there is no response from the slave station that received the information request, the master station sends a cyclic contact confirmation signal, and this confirmation signal is not patrolable. A remote monitoring control method characterized in that it is recognized that a continuous fault has occurred in the line if detected.
【請求項2】 前記継続障害が発生していると認識した
際、親局と隣接する子局間で連絡が不成立なら親局と隣
接子局間に障害部位があると検出し、前記連絡が成立な
ら親局と1/2中間子局間の連絡が成立するのを見て、
成立なら次に親局と3/4中間子局間の連絡を判定し、
判定が不成立なら親局と1/4中間子局間の連絡の判定
を以下順次細分化して障害部位を検出することを特徴と
する請求項1記載の遠方監視制御方式。
2. When it is recognized that the continuous fault has occurred, if communication between the master station and the adjacent slave station is not established, it is detected that there is a faulty part between the master station and the adjacent slave station, and the communication is determined. If it is established, see that the communication between the master station and 1/2 meson station is established,
If established, then determine the communication between the master station and the 3/4 meson station,
2. The remote monitoring control system according to claim 1, wherein if the determination is not successful, the determination of communication between the master station and the 1/4 intermediate station is sequentially subdivided to detect a faulty part.
【請求項3】 前記継続障害が発生していると認識した
際、親局と隣接する子局間で連絡が不成立なら親局と隣
接子局間に障害部位があると検出し、成立なら親局と2
番目子局間の連絡が成立か、不成立かを見て、不成立な
ら最初の子局と2番目の子局間に障害部位があると検出
し、以下順次親局とn番目の子局間の連絡が成立か、不
成立かを判断するようにしたことを特徴する請求項1記
載の遠方監視制御方式。
3. When it is recognized that the continuous fault has occurred, if communication between the master station and the adjacent slave station is not established, it is detected that a faulty part exists between the master station and the adjacent slave station. Bureau and 2
It checks whether the communication between the slave stations is established or not. If the communication is not established, it detects that there is a faulty part between the first and second slave stations. 2. The remote monitoring control system according to claim 1, wherein it is determined whether the communication is established or not.
【請求項4】 前記継続障害が発生していると認識した
際、継続障害を検出した第1親局より障害部位第1親局
側隣接子局へ端末移行指令を送信して、第1親局の回線
の正常化を行ったことを確認した後、第1親局から第2
親局に連絡を行って第2親局より端末子局へ中継移行指
令を送信し、第2親局より障害部位第2親局側隣接子局
へ端末移行指令を送信し、第2親局の回線の正常化を行
ったことを特徴とする請求項1、2および3記載の遠方
監視制御方式。
4. When recognizing that the continuous failure has occurred, a terminal transfer command is transmitted from the first master station that has detected the continuous failure to the adjacent child station on the side of the failure site first master station, and After confirming that the line of the station has been normalized, the second master station
The second master station sends a relay shift command to the terminal slave station, and the second master station sends a terminal shift command to the faulty site second master station side adjacent slave station to notify the second slave station. 4. The remote monitoring control system according to claim 1, wherein the line is normalized.
【請求項5】 複数の親局と多数の子局間が親局毎のル
ープ回線で結合され、ループ回線の障害で各ループ回線
の対する子局の所属を変えることにより、通信機能を維
持させる遠方監視制御方式において、 一定時間以上信号を受信しない子局は当該回線の障害探
索信号を送信し、上流からの障害探索信号を受信した子
局は、障害探索信号の送信を停止し、前記障害探索信号
が親局に着信した回数が予め定めた回数に達したとき
に、回線に継続障害が発生していると認識することを特
徴とする遠方監視制御方式。
5. A remote station for maintaining a communication function by connecting a plurality of master stations and a number of slave stations by loop lines for each master station, and changing the assignment of slave stations to each loop line due to a failure of the loop line. In the supervisory control method, a slave station that does not receive a signal for a certain period of time transmits a fault search signal for the line, and a slave station that receives a fault search signal from upstream stops transmitting the fault search signal, and performs the fault search. A remote monitoring control method characterized by recognizing that a continuous fault has occurred in a line when the number of times a signal arrives at a master station reaches a predetermined number.
JP8343712A 1996-12-24 1996-12-24 Remotely monitoring and controlling system Pending JPH10190711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8343712A JPH10190711A (en) 1996-12-24 1996-12-24 Remotely monitoring and controlling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8343712A JPH10190711A (en) 1996-12-24 1996-12-24 Remotely monitoring and controlling system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002244628A Division JP3656622B2 (en) 2002-08-26 2002-08-26 Remote monitoring control system

Publications (1)

Publication Number Publication Date
JPH10190711A true JPH10190711A (en) 1998-07-21

Family

ID=18363673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8343712A Pending JPH10190711A (en) 1996-12-24 1996-12-24 Remotely monitoring and controlling system

Country Status (1)

Country Link
JP (1) JPH10190711A (en)

Similar Documents

Publication Publication Date Title
US4745597A (en) Reconfigurable local area network
US4875208A (en) Transmission method for control information in communication network
CN102394787B (en) Based on the Dual-link redundancy control method of EPA switch
JPH0351142B2 (en)
KR101113488B1 (en) Information transmitting system and information transmitting method
JPS63303537A (en) Method of forming address table in ring type communication network
JP2007180830A (en) Duplex monitoring control system and redundant switching method of the system
KR100407323B1 (en) Method for duplicating call manager in private wireless network
CN107026780A (en) A kind of distribution optical fiber ring network fault point positioning method and system based on Internet of Things
KR100711677B1 (en) Method for circular routing detecting in No.7 signaling network
JPH10190711A (en) Remotely monitoring and controlling system
KR0136507B1 (en) Communication error detection method between signal exchange and management system of common line (No.7) signal network
JP3656622B2 (en) Remote monitoring control system
JPS58170247A (en) Automatic loop back controlling system
JP2008228046A (en) Fault diagnosis system and fault diagnosis method for wireless network
JPH08251216A (en) Data transmitter
CN100518179C (en) Method for realizing instructure self circulation in No.7 signalling system
JP3576001B2 (en) Optical double loop transmission device
JP2501335B2 (en) Gateway backup method
JP3571135B2 (en) Disaster prevention monitoring system
JP2002064522A (en) Network system and shift method for its management station
JPH0582101B2 (en)
JP2000295142A (en) Self-diagnostic device
JP2967702B2 (en) Centralized monitoring method of centralized monitoring system
JPH0348705B2 (en)