JP2003152404A - Signal transmission line, suspension provided therewith, and recorder - Google Patents

Signal transmission line, suspension provided therewith, and recorder

Info

Publication number
JP2003152404A
JP2003152404A JP2001344018A JP2001344018A JP2003152404A JP 2003152404 A JP2003152404 A JP 2003152404A JP 2001344018 A JP2001344018 A JP 2001344018A JP 2001344018 A JP2001344018 A JP 2001344018A JP 2003152404 A JP2003152404 A JP 2003152404A
Authority
JP
Japan
Prior art keywords
conductor
line
transmission
transmitting
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001344018A
Other languages
Japanese (ja)
Other versions
JP3931074B2 (en
Inventor
Nobumasa Nishiyama
延昌 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001344018A priority Critical patent/JP3931074B2/en
Publication of JP2003152404A publication Critical patent/JP2003152404A/en
Application granted granted Critical
Publication of JP3931074B2 publication Critical patent/JP3931074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)
  • Moving Of Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the area of a stainless plate under a conductor concerns the transmission loss, the hole pitch concerns the transmission band, and there are some lines not ensuring the transmission band, depending on the a rate of hole area the hole pitch of the stainless plate. SOLUTION: It is found that increasing the rate of hole area (H/HP) of holes 33 formed in a stainless plate 30 reduces the line loss, and the transmission band can be ensured up to a frequency determined to such extent that the shortest wavelength is 5 times as much as the hole pitch HP. A transmission line is constituted with a maximum hole pitch HP set to 1/5 times as short as a wavelength meeting a required band involving harmonic components of a recorded waveform, this ensuring a low transmission loss and the required transmission band.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】磁気ディスク装置等の記録装
置のプリアンプから記録再生ヘッドへ至る記録系および
再生系の伝送線路構造及び伝送線路を備えたサスペンシ
ョン及び記録装置に関する。
The present invention relates to a transmission line structure of a recording system and a reproducing system from a preamplifier of a recording device such as a magnetic disk device to a recording / reproducing head, a suspension provided with the transmission line, and a recording device.

【0002】[0002]

【従来の技術】コンピュータの発展に伴い、磁気ディス
ク装置の大容量高速転送化が要求されるようになった。
大容量高速転送化のためには、記録ヘッド・再生ヘッド
をそれぞれ分離し、記録はインダクティブヘッド、再生
は磁気抵抗効果を用いたMRヘッドが受け持つようにな
った。そのためにプリアンプからは記録ヘッド・再生ヘ
ッドへそれぞれ専用の往復線路が隣接して設けられてい
る。
2. Description of the Related Art With the development of computers, there has been a demand for high capacity and high speed transfer of magnetic disk devices.
For large-capacity and high-speed transfer, the recording head and the reproducing head are separated from each other, and the recording is performed by the inductive head, and the reproducing is performed by the MR head using the magnetoresistive effect. Therefore, dedicated reciprocating lines are provided adjacent to the recording head and the reproducing head from the preamplifier.

【0003】情報の記録は、媒体上の磁化反転の有無に
対応して情報の“1”、“0”を割り当てている。従っ
て、情報を記録する場合、記録ヘッドからの反転磁界を
記録することになる。
For information recording, information "1" and "0" are assigned according to the presence or absence of magnetization reversal on the medium. Therefore, when recording information, the reversal magnetic field from the recording head is recorded.

【0004】記録ヘッドで反転磁界を生成するために、
記録ヘッドへ伝送する記録電流波形は、立上り/立下り
でオーバーシュートを持つ矩形波を特徴として持たせて
いる。
In order to generate a reversal magnetic field in the recording head,
The recording current waveform transmitted to the recording head is characterized by a rectangular wave having an overshoot at rising / falling.

【0005】高速転送を進めるための、高周波記録で
は、記録電流の立上り/立下り部の時間を短くする必要
がある。立上り/立下り時間を短くすると、波形のスペ
クトラムが高い周波数まで必要になる。
In high frequency recording for advancing high speed transfer, it is necessary to shorten the time of the rising / falling portion of the recording current. If the rise / fall time is shortened, the spectrum of the waveform needs to have a high frequency.

【0006】この観点から、線路の特性インピーダンス
と記録系プリアンプ回路との間をインピーダンス整合す
る必要が有ることが知られている。(John D. Leighto
n, Sally Doherty, Carl Elliott; ”Design Considera
tions for High Data-Rate Pre-Amplifiers for Use in
a Disk-Drive”, IEEE Trans. MAG., vol.37, No.2,p
p.627-632) インピーダンス整合をとるために、特開平9−2826
24号公報に開示の様に伝送線路下のステンレス部分に
孔をあけることにより、線路導体とステンレス間の静電
容量と相互インダクタンスを適切に調整して伝送線路の
特性インピーダンスを調整する方法がある。
From this point of view, it is known that it is necessary to perform impedance matching between the characteristic impedance of the line and the recording system preamplifier circuit. (John D. Leighto
n, Sally Doherty, Carl Elliott; ”Design Considera
tions for High Data-Rate Pre-Amplifiers for Use in
a Disk-Drive ”, IEEE Trans. MAG., vol.37, No.2, p
p.627-632) Japanese Patent Application Laid-Open No. 9-2826 for impedance matching.
There is a method of adjusting the characteristic impedance of the transmission line by appropriately adjusting the electrostatic capacitance and the mutual inductance between the line conductor and the stainless steel by forming a hole in the stainless steel portion under the transmission line as disclosed in Japanese Patent No. 24. .

【0007】[0007]

【発明が解決しようとする課題】伝送線路の特性インピ
ーダンスを調整するために、線路導体下のステンレス部
分に孔をあけた伝送線路を用いると、伝送信号帯域内に
も係わらずある周波数以上では伝送損失が急激に増加
し、帯域制限を持った伝送系になる。そのために、伝送
波形が歪み、磁気記録電流の特性劣化、そして高記録密
度化への障害になるという新たな課題が生じた。
In order to adjust the characteristic impedance of the transmission line, when a transmission line having a hole in the stainless steel portion under the line conductor is used, transmission is performed at a certain frequency or higher even within the transmission signal band. Loss sharply increases and the transmission system becomes band limited. Therefore, a new problem arises that the transmission waveform is distorted, the characteristic of the magnetic recording current is deteriorated, and it becomes an obstacle to high recording density.

【0008】しかしながら、上記の従来例においてはど
のように孔を設ければ良いのかについては何ら記載され
ていないため、この課題について解決することが出来な
い。
However, in the above-mentioned conventional example, there is no description about how to form the holes, and therefore this problem cannot be solved.

【0009】[0009]

【課題を解決するための手段】上記課題に対しいろいろ
調査した結果、線路導体下のステンレス部分の開孔率を
増加させることにより伝送損失低減が期待できるが、開
孔ピッチが伝送損失を急激に増加させる周波数と関係し
ていることがわかった。そこで、必要伝送信号帯域内で
低損失線路を確保するために、ステンレス部分の開孔ピ
ッチの最大値を制限した。
[Means for Solving the Problems] As a result of various investigations on the above problems, transmission loss can be expected to be reduced by increasing the aperture ratio of the stainless portion under the line conductor, but the aperture pitch drastically reduces the transmission loss. It was found to be related to increasing frequency. Therefore, in order to secure a low loss line within the required transmission signal band, the maximum opening pitch of the stainless steel part was limited.

【0010】具体的には、差動信号を伝送する導体と、
この導体と絶縁体を挟んで設けられた金属体とを備え、
この金属体に導体と平行して2mm以下のピッチで設け
た孔を設ける。
Specifically, a conductor for transmitting a differential signal,
A metal body provided with the conductor and the insulator sandwiched therebetween,
The metal body is provided with holes parallel to the conductor and provided at a pitch of 2 mm or less.

【0011】或いは、差動信号を伝送する少なくとも2
本の導体と、これら導体と絶縁体を挟んで設けられた金
属体とを備え、この金属体に導体の幅とこれら導体の間
隔との和に0.16mm以上を加算した値の幅を有する
孔を備える。
Alternatively, at least two transmitting differential signals
The present invention includes a book conductor and a metal body provided with the conductor and the insulator sandwiched therebetween, and has a width of a value obtained by adding 0.16 mm or more to the sum of the width of the conductor and the interval between these conductors. With holes.

【0012】また或いは、差動信号を伝送する導体と、
この導体と絶縁体を挟んで設けられた金属体とを備え、
伝送帯域の最大周波数の波長に対して5分の1以下のピ
ッチで金属体の導体と平行する方向に孔を設ける。
Alternatively, a conductor for transmitting a differential signal,
A metal body provided with the conductor and the insulator sandwiched therebetween,
The holes are provided in the direction parallel to the conductor of the metal body at a pitch of 1/5 or less with respect to the wavelength of the maximum frequency of the transmission band.

【0013】[0013]

【発明の実施の形態】本発明を磁気ディスク装置に適用
した例を、図面を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to a magnetic disk device will be described with reference to the drawings.

【0014】まず、磁気ディスク装置の構成を図2及び
図3を用いて説明する。磁気ディスク装置は、ヘッドデ
ィスクアセンブリ(HDA)10と記録再生制御回路1
1で構成している。なお、HDA10と記録制御回路1
1は同一の筐体内に納めるものも含む。HDA10は、
磁気記録媒体13を積層したスピンドル部12と、磁気
記録媒体13に情報を記録し、また記録された情報を読
み出す磁気ヘッド14を搭載したキャリッジ部15で構
成している。
First, the structure of the magnetic disk device will be described with reference to FIGS. The magnetic disk device includes a head disk assembly (HDA) 10 and a recording / reproducing control circuit 1.
It is composed of 1. The HDA 10 and the recording control circuit 1
1 also includes those which are housed in the same housing. HDA10 is
The magnetic recording medium 13 is composed of a spindle section 12 and a carriage section 15 having a magnetic head 14 for recording information on the magnetic recording medium 13 and for reading the recorded information.

【0015】キャリッジ部15は、サスペンション19
の先端に取付けた磁気ヘッド14を磁気記録媒体上でシ
ークおよび位置決めさせるためのボイスコイルモータ
(VCM)17と、サスペンション19を取付けたアー
ム18と、磁気ヘッド14に記録再生信号を伝送するフ
レキシブル・プリンティド・サーキッツ(FPC;Flex
ible Printed Circuits)16と、FPC16に搭載し
たR/W−IC(プリアンプ)20と、R/W−IC2
0と磁気ヘッド14間の記録再生信号を中継する伝送線
路21で構成している。
The carriage portion 15 includes a suspension 19
Voice coil motor (VCM) 17 for seeking and positioning the magnetic head 14 attached to the tip of the magnetic recording medium on the magnetic recording medium, an arm 18 to which a suspension 19 is attached, and a flexible coil for transmitting a recording / reproducing signal to the magnetic head 14. Printed Circuits (FPC; Flex
16), R / W-IC (preamplifier) 20 mounted on the FPC 16, and R / W-IC 2
0 and the magnetic head 14 are constituted by a transmission line 21 for relaying a recording / reproducing signal.

【0016】HDA10と外部装置との間には、記録再
生制御回路11がある。記録再生制御回路11には、信
号処理LSI22とハードディスクドライブ制御(HD
Ccontrol)23が搭載されている。HDA側のコネク
タ25−1と記録再生制御回路11側のコネクタ25−
2を接続することにより、R/W−IC20と信号処理
LSI22を接続する。記録再生制御回路11の外部イ
ンタフェース24を介して、外部装置と接続する。
A recording / reproducing control circuit 11 is provided between the HDA 10 and the external device. The recording / reproducing control circuit 11 includes a signal processing LSI 22 and a hard disk drive control (HD
C control) 23 is installed. HDA side connector 25-1 and recording / reproduction control circuit 11 side connector 25-
By connecting 2, the R / W-IC 20 and the signal processing LSI 22 are connected. It is connected to an external device via the external interface 24 of the recording / reproducing control circuit 11.

【0017】次に、アーム18の先端に設置している配
線一体型のサスペンション19について、図3を用いて
説明する。サスペンション19の構造は、ステンレス材
料で形成したバネ部の上に伝送線路21と磁気ヘッド1
4を備えるジンバル部を組み合わせた部材を溶接などの
接合方法を用いて積層一体化させたものである。伝送線
路21は、サスペンション上配線部分とアーム併走中継
配線部分の2つに分けられる。アーム18に沿うように
伝送線路21aがある。さらに、サスペンション19上
にも、伝送線路21bがある。伝送線路21bの先端に
は、磁気ヘッド14が接続されている。
Next, the wiring-integrated suspension 19 installed at the tip of the arm 18 will be described with reference to FIG. The structure of the suspension 19 is such that the transmission line 21 and the magnetic head 1 are formed on a spring portion made of a stainless material.
The members obtained by combining the gimbal portions including No. 4 are laminated and integrated by using a joining method such as welding. The transmission line 21 is divided into two parts, that is, an on-suspension wiring portion and an arm parallel running relay wiring portion. There is a transmission line 21a along the arm 18. Further, the transmission line 21b is also provided on the suspension 19. The magnetic head 14 is connected to the tip of the transmission line 21b.

【0018】伝送線路21の第1の線路構成は、アーム
併走中継配線部分からサスペンション上配線部分へ、配
線形態が変わるところで接続する中継接続型である。ま
た第2の線路構成は、サスペンション上のプリント配線
と同構造のプリント配線でプリアンプまで延長したロン
グテール構造型である。本発明は、両構造に適用でき、
特にロングテール構造の場合は、以下に述べるサスペン
ションのプリント配線部分の構造を適用すればよい。
The first line configuration of the transmission line 21 is a relay connection type, in which the connection is made from the arm parallel wiring portion to the wiring portion on the suspension at a place where the wiring form changes. The second line configuration is a long tail structure type in which a printed wiring having the same structure as the printed wiring on the suspension extends to the preamplifier. The present invention is applicable to both structures,
Particularly in the case of a long tail structure, the structure of the printed wiring portion of the suspension described below may be applied.

【0019】次に、本発明が対象とする伝送線路21
(b)構造について図1を用いて説明する。
Next, the transmission line 21 targeted by the present invention
(B) The structure will be described with reference to FIG.

【0020】まず、基板となる下層金属板がある。本実
施例ではステンレス板30を用いて説明するが、ステン
レス以外の金属、例えば銅でもよい。この下層金属板で
あるステンレス板30上にポリイミドに代表される絶縁
層31を塗布して絶縁体を形成し、この絶縁層31上に
メッキ法または蒸着法によって往復線路(並行導体、導
体とも言う)32を形成する。そして導体保護のために
一部または全部の線路上にポリイミドでカバーした断面
構造を持つ伝送線路を基本とする。
First, there is a lower metal plate which serves as a substrate. In this embodiment, the stainless plate 30 is used for description, but a metal other than stainless steel, for example, copper may be used. An insulating layer 31 typified by polyimide is applied on the stainless steel plate 30 which is the lower metal plate to form an insulator, and a reciprocating line (also referred to as parallel conductor or conductor) is formed on the insulating layer 31 by plating or vapor deposition. ) 32 is formed. A transmission line having a cross-sectional structure in which a part or all of the line is covered with polyimide to protect the conductor is basically used.

【0021】また伝送線路21は、まず絶縁材料を板状
にしたものに、一方の面にはステンレスなどの金属材料
を接着し、他方の面には圧延銅などの導体32形成材料
を接着した積層基板を準備する。その積層基板の導体面
をエッチングなどの手法で導体32形状を削り出すこと
により形成してもよい。何れの形成方法であっても、ス
テンレス材料の板30がジンバル形成用部材にも共用さ
れる。
The transmission line 21 is made of a plate-shaped insulating material, a metal material such as stainless steel adhered to one surface, and a conductor 32 forming material such as rolled copper adhered to the other surface. Prepare a laminated substrate. The conductor surface of the laminated substrate may be formed by shaving the shape of the conductor 32 by a method such as etching. Whichever forming method is used, the plate 30 made of a stainless material is also used as a gimbal forming member.

【0022】線路導体下のステンレス板30に、導体と
平行に所定の間隔で適切な孔33を開け、孔33の大き
さの面積とステンレス板30の面積との比率を適切に選
ぶことにより、往復線路32間のインダクタンスおよび
静電容量を制御し、特性インピーダンスを適切な値に設
定する。
By making appropriate holes 33 in the stainless steel plate 30 under the line conductor at a predetermined interval in parallel with the conductor, and selecting the ratio of the area of the size of the hole 33 and the area of the stainless steel plate 30 appropriately, The characteristic impedance is set to an appropriate value by controlling the inductance and capacitance between the reciprocating lines 32.

【0023】ここで孔33の面積とステンレス板30の
面積比を適切に選んだにもかかわらず、ある周波数以上
では伝送損失が非常に大きくなり、伝送帯域が制限され
た線路になった。そこで、孔33の大きさと伝送帯域と
の関係を調査した。
Here, although the area ratio of the holes 33 and the area ratio of the stainless steel plate 30 are properly selected, the transmission loss becomes very large above a certain frequency, and the transmission band is limited. Therefore, the relationship between the size of the hole 33 and the transmission band was investigated.

【0024】主要なパラメータは、HP:開孔ピッチ、
H:開孔長、M:ステンレスカバー長=HP−H、H
W:開孔幅、Lw:導体幅、S:導体間隔である。その
他には、開孔率=H/HP(%)、Vp=信号の伝搬速
度、α:伝送損失、θ:回転偏角、BWw:伝送帯域周
波数、length:線路長、にて定義するものであ
る。
The main parameters are HP: hole pitch,
H: hole length, M: stainless steel cover length = HP-H, H
W: open hole width, Lw: conductor width, S: conductor interval. In addition, the aperture ratio = H / HP (%), Vp = signal propagation speed, α: transmission loss, θ: rotation declination, BWw: transmission band frequency, length: line length. is there.

【0025】まず、伝送線路の伝送特性の測定方法につ
いて、図4を用いて説明する。
First, a method of measuring the transmission characteristic of the transmission line will be described with reference to FIG.

【0026】伝送線路の伝送特性をSパラメータとして
測定し、S21(S行列の2行1列要素)より伝送損失
(α)、伝搬速度(Vp)を求める。S21をガウス平
面に表したものが図4(a)である。周波数の増加とと
もに反時計方向に軌跡は回転する。回転偏角(θ)34
が、線路長に対する波長の比率になっている。そこで図
4(b)に示すように、横軸:周波数(Freq)、縦
軸:回転偏角(θ)をとり、周波数毎の回転偏角(θ)
をプロットすると、原点を通る直線になる。この直線の
傾き(θ/Freq)の逆数に(−2π)を乗じたもの
が、信号が線路長(length)を通過するに必要な
時間を表している。従って、この直線は、伝搬速度(V
p)を表し、Vpをこの図より求めることができる。
The transmission characteristic of the transmission line is measured as the S parameter, and the transmission loss (α) and the propagation velocity (Vp) are obtained from S21 (the 2nd row and 1st column element of the S matrix). FIG. 4A shows S21 on a Gaussian plane. The locus rotates counterclockwise with increasing frequency. Rotation declination (θ) 34
Is the ratio of the wavelength to the line length. Therefore, as shown in FIG. 4B, the horizontal axis represents the frequency (Freq) and the vertical axis represents the rotation declination (θ), and the rotation declination (θ) for each frequency.
If is plotted, it becomes a straight line passing through the origin. The product of the reciprocal of the slope (θ / Freq) of this line and (−2π) represents the time required for the signal to pass through the line length. Therefore, this straight line is the propagation velocity (V
p), and Vp can be obtained from this figure.

【0027】また、図4(a)の中心(座標(0,
0))から半径1の円を基準として、各偏角(θ)にお
ける基準円からS21軌跡への減少量がインピーダンス
ミスマッチによる影響を含めた伝送損失(α)35を表
している。
Further, the center (coordinates (0,
From 0)) to a circle having a radius of 1 as a reference, the amount of decrease from the reference circle to the S21 locus at each declination (θ) represents the transmission loss (α) 35 including the effect of impedance mismatch.

【0028】ステンレス板30に孔33がない線路サン
プルを評価した結果、サンプル毎に周波数に対する回転
偏角(θ)の比率は一定、すなわち伝搬速度(Vp)
は、伝送帯域周波数(BWw)に依存することなく一定
であった。伝送損失(α)も評価した結果、概ね伝送帯
域周波数(BWw)の平方に比例して増加することがわ
かった。
As a result of evaluating the line samples having no holes 33 in the stainless plate 30, the ratio of the rotation deviation angle (θ) to the frequency is constant for each sample, that is, the propagation velocity (Vp).
Was constant without depending on the transmission band frequency (BWw). As a result of evaluating the transmission loss (α), it was found that the transmission loss increased substantially in proportion to the square of the transmission band frequency (BWw).

【0029】以降で述べる伝送損失(α)の定義は、 α={ln(損失量)}/length 〔Np/m〕 (数1) で表す。ここでln( )は、自然対数を表す。The definition of transmission loss (α) described below is as follows:     α = {ln (loss amount)} / length [Np / m] (Equation 1) It is represented by. Here, ln () represents a natural logarithm.

【0030】伝送線路は、入力したものをロス無く出力
点まで伝送することがタスクである。従って、伝送線路
での伝達効率を高めるには、伝送損失(α)を低減する
ことが必要である。以下では、伝送損失(α)を評価値
として、線路条件の比較を行う。
The task of the transmission line is to transmit the input data to the output point without loss. Therefore, it is necessary to reduce the transmission loss (α) in order to increase the transmission efficiency in the transmission line. Below, the line conditions are compared using the transmission loss (α) as an evaluation value.

【0031】まず、伝送特性とステンレス材の開孔サイ
ズとの関係について、図5〜図9を用いて説明する。
First, the relationship between the transmission characteristics and the hole size of the stainless material will be described with reference to FIGS.

【0032】HW=0.56mm、開孔率=50%(H
=M)、Lw=0.16mm、S=0.08mm(2×
Lw+S=0.40mm)なる伝送線路について、導体
32下のステンレス板30の開孔ピッチ(HP)をパラ
メータとした伝送損失(α)の周波数特性を図5に示
す。6GHzまでの測定においては、開孔ピッチ(H
P)=30mmでは1.8GHz以上で伝送損失(α)
が急激に大きくなっており、開孔ピッチ(HP)=14
mmでは約3.7GHz以上で伝送損失(α)が急激に
大きくなっている。また、開孔ピッチ(HP)=2mm
では、少なくとも6GHzまでに伝送損失(α)が急激
に大きくなる周波数はない。この結果から、線路の伝送
帯域と開孔ピッチ(HP)との間に関係があることがわ
かる。また、開孔ピッチ(HP)を2mm以下とするこ
とにより、周波数に関わらずに伝送損失(α)を小さく
保つことが出来ることもわかる。もちろん伝送帯域周波
数(BWw)が3.7GHzよりも小さい場合には開孔
ピッチ(HP)を14mm以下で、また伝送帯域周波数
(BWw)1.8GHzよりも小さい場合には開孔ピッ
チ(HP)を30mm以下で設計してもよいことはもち
ろんである。また、開孔ピッチ(HP)は2mm以下で
いくら小さくしても良い。
HW = 0.56 mm, open area ratio = 50% (H
= M), Lw = 0.16 mm, S = 0.08 mm (2 ×
FIG. 5 shows the frequency characteristic of the transmission loss (α) with respect to the transmission line (Lw + S = 0.40 mm) with the aperture pitch (HP) of the stainless plate 30 below the conductor 32 as a parameter. For measurement up to 6 GHz, the aperture pitch (H
P) = 30 mm, transmission loss (α) above 1.8 GHz
Is rapidly increasing, and the opening pitch (HP) = 14
In mm, the transmission loss (α) sharply increases above 3.7 GHz. In addition, opening pitch (HP) = 2 mm
Then, there is no frequency at which the transmission loss (α) rapidly increases up to at least 6 GHz. From this result, it can be seen that there is a relationship between the transmission band of the line and the aperture pitch (HP). It can also be seen that the transmission loss (α) can be kept small regardless of the frequency by setting the aperture pitch (HP) to 2 mm or less. Of course, when the transmission band frequency (BWw) is less than 3.7 GHz, the aperture pitch (HP) is 14 mm or less, and when the transmission band frequency (BWw) is less than 1.8 GHz, the aperture pitch (HP). Needless to say, may be designed to be 30 mm or less. Further, the aperture pitch (HP) may be 2 mm or less and may be made as small as possible.

【0033】一方、各線路の伝搬速度(Vp)を図4の
測定で求めた結果、概ねVp=1.6×10(m/
s)であった。伝送損失(α)が急激に大きくなる周波
数を伝送帯域(BWw)と定義すると、伝搬速度(V
p)を用いて伝送帯域に対応した波長(λ)を求めるこ
とができる。
On the other hand, as a result of obtaining the propagation velocity (Vp) of each line by the measurement of FIG. 4, it is approximately Vp = 1.6 × 10 8 (m /
s). When the frequency at which the transmission loss (α) rapidly increases is defined as the transmission band (BWw), the propagation speed (V
The wavelength (λ) corresponding to the transmission band can be obtained using p).

【0034】λ=Vp/BWw 〔m〕 (数2) そこで、開孔幅(HW)、開孔率(H/HP)などをパ
ラメータとして、開孔ピッチ(HP)に対する伝送帯域
と伝搬速度から求まる波長(λ)の関係を図6に示し
た。図中のE8は、10を意味している。開孔幅(H
W)、開孔率(H/HP)等をいろいろな条件で測定す
ると、波長(λ)((2.5×HP)≦λ≦(5×H
P))で示す範囲内に有り、伝送帯域(BWw)に換算
すると、((Vp/(5×HP))≦BWw≦(Vp/
(2.5×HP)))が定まる。
Λ = Vp / BWw [m] (Equation 2) Therefore, using the aperture width (HW), aperture ratio (H / HP), etc. as parameters, from the transmission band and the propagation speed with respect to the aperture pitch (HP). The relationship of the obtained wavelength (λ) is shown in FIG. E8 in the figure means 10 8 . Opening width (H
W), open area ratio (H / HP), etc. are measured under various conditions, the wavelength (λ) ((2.5 × HP) ≦ λ ≦ (5 × H
P)), and converted to the transmission band (BWw), ((Vp / (5 × HP)) ≦ BWw ≦ (Vp /
(2.5 × HP))) is determined.

【0035】現実には、どのように孔がばらついても、
これ以上伝送帯域が狭くならない状態を最悪状態として
取る。そのときの伝送帯域相当波長を(λmax)とす
ると、 λmax=5×HP 〔m〕 (数3) の関係となる。よって、伝送帯域の最大周波数(BW
w)に対応した波長(λ)に対する開孔ピッチ(HP)
の最大値が5分の1以下となるようにくり返しピッチを
設けると良い。尚下限に関しは特に制限はないが、上記
の範囲より5分の2以上とすれば良い。但しこの5分の
2以上は、実質的に製造限界以上と考えても良い。
In reality, no matter how the holes vary,
The worst state is the state in which the transmission band does not become narrower than this. Assuming that the wavelength corresponding to the transmission band at that time is (λmax), the following relationship holds: λmax = 5 × HP [m] (Equation 3). Therefore, the maximum frequency of the transmission band (BW
Hole pitch (HP) for wavelength (λ) corresponding to w)
It is advisable to provide the repeating pitch so that the maximum value of is less than 1/5. The lower limit is not particularly limited, but may be set to ⅕ or more from the above range. However, the two-fifths or more may be considered to be substantially the manufacturing limit or more.

【0036】次に、HW=0.56mm,HP=2m
m、Lw=0.16mm、S=0.08mm(2×Lw
+S=0.40mm)なる伝送線路について、開孔率
(H/HP)をパラメータとして測定した伝送損失
(α)の周波数特性を図7に示す。この図によれば、開
孔率(H/HP)を大きくするに従い、伝送損失(α)
を低減できることがわかる。
Next, HW = 0.56 mm, HP = 2 m
m, Lw = 0.16 mm, S = 0.08 mm (2 × Lw
FIG. 7 shows the frequency characteristic of the transmission loss (α) measured using the open area ratio (H / HP) as a parameter for the transmission line of + S = 0.40 mm). According to this figure, as the open area ratio (H / HP) is increased, the transmission loss (α)
It can be seen that can be reduced.

【0037】次に、HP=2mm、開孔率=50%(H
=M)、Lw=0.16mm、S=0.08mm(2×
Lw+S=0.40mm)なる伝送線路について、開孔
幅(HW)をパラメータとして測定した伝送損失(α)
の周波数特性を図8に示す。HW=0.40mmより、
HW=0.56mm、HW=0.72mm条件の伝送損
失(α)が小さくなっていることがわかる。この結果か
ら、少なくとも、HW≧0.56であるならば、伝送損
失(α)は十分低減できていることがわかる。よって、
0.56=(2×Lw+S+0.16mm)であるの
で、導体幅(Lw)と導体間隔(S)の和に0.16m
mを加算した値以上の開孔幅(HW)とすることにより
伝送損失(α)は十分低減できていることがわかる。こ
の0.16mmの値はステンレス板30の幅等には影響
を受けない値である。尚、開孔幅(HW)はステンレス
板30の幅よりは狭いことは言うまでもない。
Next, HP = 2 mm, open area ratio = 50% (H
= M), Lw = 0.16 mm, S = 0.08 mm (2 ×
Transmission loss (α) measured with the aperture width (HW) as a parameter for the transmission line Lw + S = 0.40 mm)
FIG. 8 shows the frequency characteristics of the. From HW = 0.40mm,
It can be seen that the transmission loss (α) under the conditions of HW = 0.56 mm and HW = 0.72 mm is small. From this result, it is understood that the transmission loss (α) can be sufficiently reduced if HW ≧ 0.56 at least. Therefore,
Since 0.56 = (2 × Lw + S + 0.16 mm), the sum of the conductor width (Lw) and the conductor interval (S) is 0.16 m.
It can be seen that the transmission loss (α) can be sufficiently reduced by setting the aperture width (HW) equal to or larger than the value obtained by adding m. The value of 0.16 mm is not affected by the width of the stainless plate 30 and the like. Needless to say, the opening width (HW) is narrower than the width of the stainless plate 30.

【0038】図5から図8の結果を基に、2条件で検討
を行う。
Based on the results shown in FIGS. 5 to 8, an examination will be conducted under two conditions.

【0039】条件A:Lw=0.16mm、S=0.0
8mm、開孔幅(Hw)=2×Lw+S+0.16mm
=0.56mm、とし、開孔ピッチ(HP)は2mm〜
30mmの範囲で、特性インピーダンスの開孔率依存性
を評価した。
Condition A: Lw = 0.16 mm, S = 0.0
8 mm, opening width (Hw) = 2 × Lw + S + 0.16 mm
= 0.56 mm, and the opening pitch (HP) is 2 mm ~
The open area dependency of the characteristic impedance was evaluated in the range of 30 mm.

【0040】条件B:Lw=0.08mm、S=0.0
8mm、開孔幅(Hw)=2×Lw+S+0.16mm
=0.40mmとし、開孔ピッチ(HP)は2mm〜3
0mmの範囲で、特性インピーダンスの開孔率依存性を
評価した。
Condition B: Lw = 0.08 mm, S = 0.0
8 mm, opening width (Hw) = 2 × Lw + S + 0.16 mm
= 0.40 mm, and the opening pitch (HP) is 2 mm to 3
The open area dependency of the characteristic impedance was evaluated in the range of 0 mm.

【0041】基準として、ステンレス板30には孔33
を開けない伝送線路(開孔率=0%)の特性インピーダ
ンスをとる。基準特性インピーダンスを(Zo’)とす
ると、条件Aにおける基準特性インピーダンス(Z
o’)は、44.8Ω、条件Bにおける基準特性インピ
ーダンス(Zo’)は、67.3Ωである。そして、ス
テンレス板30に孔33を開けた伝送線路(開孔率>
0)の特性インピーダンスを(Zo)とすると、ステン
レス板に孔を開けたことによる特性インピーダンスの増
加分(ΔZo)は、 ΔZo=Zo−Zo’ (数4) で求められる。そこで、条件A、条件Bの線路を代表と
して、開孔率(H/HP)に対する特性インピーダンス
の増加分(ΔZo)の関係を図9に示した。開孔率(H
/HP)を増すと特性インピーダンスは増加し、その増
加割合は線路幅には依存せず、ほぼ同じである。また、
開孔ピッチ(HP)を変えても特性インピーダンスの変
化は僅かである。
As a reference, the holes 33 are formed in the stainless steel plate 30.
The characteristic impedance of the transmission line that cannot be opened (aperture ratio = 0%) is taken. When the reference characteristic impedance is (Zo ′), the reference characteristic impedance (Z
o ′) is 44.8Ω, and the reference characteristic impedance (Zo ′) under condition B is 67.3Ω. Then, a transmission line in which a hole 33 is formed in the stainless plate 30 (aperture ratio>
When the characteristic impedance of 0) is (Zo), the increase (ΔZo) of the characteristic impedance due to the holes made in the stainless steel plate is obtained by ΔZo = Zo−Zo ′ (Equation 4). Therefore, the relationship between the increase in characteristic impedance (ΔZo) with respect to the open area ratio (H / HP) is shown in FIG. Porosity (H
/ HP) increases, the characteristic impedance increases, and the rate of increase does not depend on the line width and is almost the same. Also,
Even if the aperture pitch (HP) is changed, the characteristic impedance changes only slightly.

【0042】従って、所望の特性インピーダンスを有す
る線路のステンレス板開孔率を求めるには、まず開孔率
(H/HP)に対する特性インピーダンスの関係を求め
るために、ステンレス板30に孔を開けない伝送線路の
特性インピーダンス(基準特性インピーダンスZo’)
と、線路導体部の構造は同じで、ステンレス板30が無
い伝送線路の特性インピーダンスZ2、および開孔率
(H/HP)が50%の伝送線路の特性インピーダンス
Z3を求め、開孔率(H/HP)に対する特性インピー
ダンスのグラフ上で3点(Zo’、Z2、Z3)を通る
2次曲線の関係を求める。その関係を用いて、所望の特
性インピーダンスに対する開孔率(H/HP)を求める
という手段を用いる。図9の関係は、特性インピーダン
スの増加分(ΔZo)=34.805×(開孔率+0.
3253)−3.682で近似できる。従って、特性
インピーダンスは、特性インピーダンスの増加分に開孔
率(H/HP)0%での特性インピーダンスを加算する
ことにより得られる。
Therefore, in order to obtain the stainless steel plate aperture ratio of the line having the desired characteristic impedance, first, in order to obtain the relation of the characteristic impedance to the aperture ratio (H / HP), the stainless steel plate 30 is not perforated. Characteristic impedance of transmission line (reference characteristic impedance Zo ')
And the structure of the line conductor portion is the same, the characteristic impedance Z2 of the transmission line without the stainless plate 30 and the characteristic impedance Z3 of the transmission line with the open area ratio (H / HP) of 50% are obtained, and the open area ratio (H / HP) on the graph of the characteristic impedance with respect to / HP, the relationship of a quadratic curve passing through three points (Zo ', Z2, Z3) is obtained. By using the relationship, a means for obtaining the open area ratio (H / HP) for a desired characteristic impedance is used. The relationship of FIG. 9 is as follows: Increase in characteristic impedance (ΔZo) = 34.805 × (opening rate + 0.
3253) can be approximated by 2 -3.682. Therefore, the characteristic impedance can be obtained by adding the characteristic impedance at the open area ratio (H / HP) of 0% to the increase in the characteristic impedance.

【0043】以上の検討では、ステンレス板の孔33を
長方形で表し、長方形の方向が導体32に対して直角
(90°)になっている図として示しているが、機械加
工の精度上長方形のコーナーは円弧になる場合でも同様
の効果が得られる。また長方形と導体32とが斜交して
いてもよい。ただし、孔33の方向がどのようになって
いても開孔ピッチ(HP)は導体32方向に測定した値
で表す。
In the above examination, the hole 33 of the stainless steel plate is represented by a rectangle, and the direction of the rectangle is shown as a right angle (90 °) with respect to the conductor 32. The same effect can be obtained even when the corner is an arc. Moreover, the rectangle and the conductor 32 may be obliquely crossed. However, regardless of the direction of the holes 33, the opening pitch (HP) is represented by a value measured in the conductor 32 direction.

【0044】以上の伝送特性を考慮し、伝送帯域を確保
するための伝送線路構造を求める。
In consideration of the above transmission characteristics, a transmission line structure for securing a transmission band will be obtained.

【0045】まず、伝送線路を用いる磁気ディスク装置
の部位では、矩形波電流を伝送させる。磁気ディスク装
置では、矩形波電流の立上り・立下りの傾きが重要であ
る。そこで、立上り・立下り傾斜の許容範囲から許容伝
送損失を求める。
First, a rectangular wave current is transmitted in the portion of the magnetic disk device using the transmission line. In the magnetic disk device, the rising and falling slopes of the rectangular wave current are important. Therefore, the permissible transmission loss is calculated from the permissible range of rising and falling slopes.

【0046】伝送損失(α)をもつ線路を通過した波形
の求め方は、入力波形のスペクトラムに損失の周波数特
性を乗じることにより得られることを波形解析学で教え
ている。そこで、1GHzにおける伝送損失をαとし、
かつ伝送損失(α)は周波数の平方に比例するとして、
立上り・立下り(tr)の矩形波スペクトラムに乗じ
る。ここで線路損失(α)が周波数の平方に概ね比例す
ることは、図5、図7、図8より明白である。損失を受
けたスペクトラムの逆フーリエ変換を解くことにより、
損失を受けた矩形波が求められる。
The waveform analysis teaches that how to obtain the waveform that has passed through the line having the transmission loss (α) can be obtained by multiplying the spectrum of the input waveform by the frequency characteristic of the loss. Therefore, let α be the transmission loss at 1 GHz,
And assuming that the transmission loss (α) is proportional to the square of the frequency,
Multiply the rising and falling (tr) rectangular wave spectrum. It is clear from FIGS. 5, 7 and 8 that the line loss (α) is approximately proportional to the square of the frequency. By solving the inverse Fourier transform of the lossy spectrum,
A square wave that suffers loss is required.

【0047】例として、tr=0.17ns(ナノ秒)
について、損失を受けていない矩形波の立上り時間に対
する損失を受けた矩形波の立上り時間の比率を立上り時
間の劣化率(trRatio)とし、伝送損失(α)の
1GHzにおける損失量との関係で求めた。それを図1
0に示す。ここで、50mm線路長における立上り劣化
(trRatio)を trRatio≦1.015 (1.5%劣化許容) (数5) まで許容すると、 α≦3 [Np/m] (数6) となる。
As an example, tr = 0.17 ns (nanosecond)
For the rise time of a rectangular wave that has not suffered loss, the ratio of the rise time of the square wave that has suffered loss to the rise time deterioration rate (trRatio), and is calculated in relation to the amount of transmission loss (α) at 1 GHz. It was Figure 1
It shows in 0. Here, if the rise deterioration (trRatio) in a 50 mm line length is allowed up to trRatio ≦ 1.015 (1.5% deterioration allowance) (Equation 5), α ≦ 3 [Np / m] (Equation 6).

【0048】もし、trが例と異なる場合、例えばtr
=0.34nsの場合のtr劣化1.015に対する1
GHzでの伝送損失(α)は、次のようにして求められ
る。
If tr is different from the example, for example tr
= 1 for tr degradation 1.015 when = 0.34 ns
The transmission loss (α) at GHz is obtained as follows.

【0049】 α(0.34)=α(0.17)×√(0.34/0.17) =3×√(0.34/0.17) =4.2 [Np/m] (数7) 次に、ビット時間(tbit)に対する立上り時間(t
r)の決め方について図11を用いて説明する。
Α (0.34) = α (0.17) × √ (0.34 / 0.17) = 3 × √ (0.34 / 0.17) = 4.2 [Np / m] ( (7) Next, the rise time (t) with respect to the bit time (tbit)
A method of determining r) will be described with reference to FIG.

【0050】最高記録周波数での記録電流波形を正弦波
で近似し、電流振幅は、低周波電流波形でオーバーシュ
ート(30%)を含めた振幅と一致させる。その時の正
弦波の立上り時間(tr’)は、低周波電流でいう立上
り時間(tr)を定義する振幅10%−90%変化に対
応した正弦波の振幅変化時間である。正弦波では、立上
りが遅くなると振幅が減少するので、tr’より早くす
ることが賢明である。ビット時間(tbit)に対する
正弦波の立上り時間(tr’)の比率は、次のようにし
て求めることができる。
The recording current waveform at the highest recording frequency is approximated by a sine wave, and the current amplitude is matched with the amplitude including overshoot (30%) in the low frequency current waveform. The rise time (tr ') of the sine wave at that time is the amplitude change time of the sine wave corresponding to the amplitude 10% -90% change that defines the rise time (tr) referred to in the low frequency current. For a sine wave, it is advisable to make it earlier than tr ', as the amplitude decreases with a slower rise. The ratio of the rising time (tr ') of the sine wave to the bit time (tbit) can be obtained as follows.

【0051】まず、正弦波の振幅を低周波電流波形の振
幅と一致させると、正弦波の振幅(2.0)が低周波電
流の振幅(160%)に相当する。今、低周波電流波形
の振幅10%、90%に対応する正弦波での振幅は、1
0%の振幅が(−0.5)、90%の振幅が(0.5)
に対応し、tr’に相当する回転角度(θt)は、 θt=ArcSin(0.5)−ArcSin(−0.5) =π/3 (数8) である。正弦波における1ビットに相当する回転角度
(θb)は、 θb=π (数9) である。従って、tbitに対するtr’の割合は、 tr’/tbit=θt/θb=1/3=0.33 (数10) である。さらに第5高調波成分まで通過させることによ
り、上述のように最高記録周波数での立上り時間を早め
ることをねらっている。また、正弦波近似波形の立上り
時間(tr’)を、低周波電流の立上り時間(tr)以
下にすることにより、最高記録周波数での電流振幅確保
を保証している。
First, when the amplitude of the sine wave is matched with the amplitude of the low frequency current waveform, the amplitude of the sine wave (2.0) corresponds to the amplitude of the low frequency current (160%). Now, the amplitude of the sine wave corresponding to the amplitude 10% and 90% of the low frequency current waveform is 1
0% amplitude is (-0.5), 90% amplitude is (0.5)
The rotation angle (θt) corresponding to tr ′ is θt = ArcSin (0.5) −ArcSin (−0.5) = π / 3 (Equation 8). The rotation angle (θb) corresponding to 1 bit in the sine wave is θb = π (Equation 9). Therefore, the ratio of tr ′ to tbit is tr ′ / tbit = θt / θb = 1/3 = 0.33 (Equation 10). Further, by passing even the fifth harmonic component, the rise time at the highest recording frequency is intended to be shortened as described above. Further, by ensuring that the rise time (tr ') of the approximate sine wave is less than or equal to the rise time (tr) of the low frequency current, the current amplitude at the highest recording frequency is guaranteed.

【0052】従って、伝送通過帯域は、最高記録周波数
の5倍とし、かつ立上り時間(tr)は、ビット時間
(tbit)の33%以下にする。
Therefore, the transmission pass band is set to 5 times the maximum recording frequency, and the rising time (tr) is set to 33% or less of the bit time (tbit).

【0053】実施例として、記録速度2Gbps、特性
インピーダンス80Ω、線路長50mmの記録系の線路
構造を求める。特性インピーダンスは、インピーダンス
マッチングの観点から定まるものであり、本実施例では
よく使われている80Ωを一例として用いた。
As an example, a line structure of a recording system having a recording speed of 2 Gbps, a characteristic impedance of 80Ω and a line length of 50 mm will be obtained. The characteristic impedance is determined from the viewpoint of impedance matching, and 80Ω which is often used in this embodiment is used as an example.

【0054】2Gbpsよりtbitを求めると、 tbit=1/(2×10)=0.5 〔ns〕 (数11) になる。従って、立上り時間(tr)は、 tr=tbit×0.33=0.17 〔ns〕 (数12) になる。立上り時間(tr)の劣化比率を1.015と
すると、伝送損失(α)3.0Np/m(1GHz)に
なる。また伝送帯域(BWw)は、 BWw=5×最高周波数 =5×(1/(2×tbit)) =5×(1/(2×0.5〔ns〕)) =5 〔GHz〕 (数13) である。
When tbit is calculated from 2 Gbps, tbit = 1 / (2 × 10 9 ) = 0.5 [ns] (Equation 11) is obtained. Therefore, the rise time (tr) is tr = tbit × 0.33 = 0.17 [ns] (Equation 12). If the deterioration ratio of the rise time (tr) is 1.015, the transmission loss (α) is 3.0 Np / m (1 GHz). The transmission band (BWw) is: BWw = 5 × maximum frequency = 5 × (1 / (2 × tbit)) = 5 × (1 / (2 × 0.5 [ns])) = 5 [GHz] 13).

【0055】従って、特性インピーダンス80Ω、伝送
損失(α)が3.0Np/m(1GHz)以下、伝送帯
域5GHz以上の伝送特性をもつ線路構造を求めること
になる。
Therefore, a line structure having a characteristic impedance of 80Ω, a transmission loss (α) of 3.0 Np / m (1 GHz) or less, and a transmission characteristic of a transmission band of 5 GHz or more should be obtained.

【0056】前述した特性を含めて、線路構造をパラメ
ータとした特性インピーダンス(Zo)に対する伝送損
失(α)の関係を図12、図13に纏めた。図12は、
導体厚(tCu)=0.018mm、ステンレスと導体
の間隔(tBASE)=0.018mmの層形成素材で
線路を形成した場合の関係を示す。図13は、導体厚
(tCu)=0.010mm、ステンレスと導体の間隔
(tBASE)=0.010mmの層形成素材で線路を
形成した場合の関係を示す。
The relationship of the transmission loss (α) to the characteristic impedance (Zo) using the line structure as a parameter, including the above-mentioned characteristics, is summarized in FIGS. Figure 12
The relationship when a line is formed by a layer forming material having a conductor thickness (tCu) of 0.018 mm and a distance between stainless steel and a conductor (tBASE) of 0.018 mm is shown. FIG. 13 shows a relationship when a line is formed by a layer forming material having a conductor thickness (tCu) of 0.010 mm and a distance between stainless steel and a conductor (tBASE) of 0.010 mm.

【0057】図12を用いて、特性インピーダンス80
Ωと伝送損失(α)が3.0Np/mとの交点にある線
路構造を求めると、線路幅(Lw)=0.08mm、線
路間隔(S)=0.08mm、開孔率(H/HP)=3
0%になる。上述の結果より、開孔幅(Hw)は、 Hw=2×Lw+S+0.16 =2×0.08+0.08+0.16 =0.40 〔mm〕 (数14) になる。一方、開孔ピッチ(HP)は、上述のように伝
送帯域と伝搬速度の比によって求められる。
With reference to FIG. 12, characteristic impedance 80
When the line structure at the intersection of Ω and the transmission loss (α) with 3.0 Np / m is obtained, the line width (Lw) = 0.08 mm, the line interval (S) = 0.08 mm, and the open area ratio (H / HP) = 3
It will be 0%. From the above results, the opening width (Hw) is Hw = 2 × Lw + S + 0.16 = 2 × 0.08 + 0.08 + 0.16 = 0.40 [mm] (Equation 14). On the other hand, the aperture pitch (HP) is obtained by the ratio between the transmission band and the propagation speed as described above.

【0058】Hp=(λmax/5) (数15) λmax=Vp/BWw (数16) を前式に代入すると、 Hp=Vp/(5×BWw) =1.7×10/(5×5×10) =6.8 〔mm〕 (数17) となる。Hp = (λmax / 5) (Equation 15) Substituting λmax = Vp / BWw (Equation 16) into the above equation, Hp = Vp / (5 × BWw) = 1.7 × 10 8 / (5 ×) 5 × 10 9 ) = 6.8 [mm] (Equation 17).

【0059】従って、開孔長(H)は、 H=Hp×開孔率 =6.8×0.30 =2.0 〔mm〕 (数18) となる。Therefore, the aperture length (H) is H = Hp x porosity = 6.8 × 0.30 = 2.0 [mm] (Equation 18) Becomes

【0060】伝送帯域はディスク装置のデータ転送速度
仕様から定まるが、伝搬速度は伝送線路構造から定まる
ものである。一般に開孔率(H/HP)が大きくなる
と、伝搬速度は速くなる。ここでは安全策をとるため
に、開孔率(H/HP)0%における伝搬速度を用いて
いる。
The transmission band is determined by the data transfer rate specification of the disk device, and the propagation rate is determined by the transmission line structure. Generally, as the open area ratio (H / HP) increases, the propagation speed increases. Here, in order to take a safety measure, the propagation velocity at an aperture ratio (H / HP) of 0% is used.

【0061】そこで、上述の目標点を参考に、目標の範
囲を、伝送損失(α)≦3NP/m、特性インピーダン
ス(Zo)=75Ω〜85Ωと定義する。目標範囲に対
応した線路構造は以下のようになる。線幅(Lw)は、
Lw=0.12mm〜0.08mm、導体間隔(S)=
0.08mm、開孔率(H/HP)=30%〜95%で
ある。以下同様に、開孔幅(Hw)は、 Hw=2×Lw+S+0.16 =(2×0.08+0.08+0.16) 〜(2×0.12+0.08+0.16) =0.40〜0.48 〔mm〕 (数19) の範囲になる。
Therefore, referring to the above-mentioned target point, the target range is defined as transmission loss (α) ≦ 3NP / m and characteristic impedance (Zo) = 75Ω to 85Ω. The line structure corresponding to the target range is as follows. Line width (Lw) is
Lw = 0.12 mm to 0.08 mm, conductor spacing (S) =
0.08 mm, open area ratio (H / HP) = 30% to 95%. Similarly, the aperture width (Hw) is Hw = 2 × Lw + S + 0.16 = (2 × 0.08 + 0.08 + 0.16) to (2 × 0.12 + 0.08 + 0.16) = 0.40-0. The range is 48 [mm] (Equation 19).

【0062】一方開孔ピッチ(HP)は、前述のように Hp=Vp/(5×BWw) =1.7×10/(5×5×10) =6.8 〔mm〕 (数20) となる。On the other hand, the opening pitch (HP) is Hp = Vp / (5 × BWw) = 1.7 × 10 8 / (5 × 5 × 10 9 ) = 6.8 [mm] (number) as described above. 20).

【0063】従って、開孔長さ(H)は、 H=HP×開孔率 =(6.8×0.30)〜(6.8×0.95) =2.0〜6.5 〔mm〕 (数21) の範囲になる。Therefore, the aperture length (H) is H = HP x porosity = (6.8 x 0.30) to (6.8 x 0.95) = 2.0 to 6.5 [mm] (Equation 21) It becomes the range of.

【0064】以上の結果は、導体膜厚(tCu)が18
マイクロメータ、導体32とステンレス板30との間隔
(tBASE)が18マイクロメータのものである。導
体32とステンレス板30との間隔を変えたものおよび
導体膜厚を変えたものについても図12と同様の関係が
得られる。これらの結果を基に、各線路条件に対して上
述の検討を行い、ディスク装置仕様に適した線路を選択
する。
The above results show that the conductor film thickness (tCu) is 18
The distance (tBASE) between the micrometer and the conductor 32 and the stainless steel plate 30 is 18 micrometers. The same relationship as in FIG. 12 can be obtained with the conductor 32 and the stainless steel plate 30 having different intervals and with the conductor film having different thickness. Based on these results, the above study is performed for each line condition, and a line suitable for the disk device specifications is selected.

【0065】図12とは異なる層形成素材による伝送線
路について、例えば、導体膜厚(tCu)=10マイク
ロメータ、導体とステンレス板との間隔(tBASE)
=10マイクロメータの層形成素材で、特性インピーダ
ンス80Ω、伝送損失3.0Np/m以下、伝送帯域5
GHz以上の伝送特性を持つ線路構造を考える。図13
の特性インピーダンスと伝送損失(α)との関係図を用
いて検討すると、上記特性を満足する解は得られなかっ
た。従って、導体とステンレス板の間隔を広くする必要
が有り、これにより伝送損失(α)が低減できることが
わかる。
For a transmission line made of a layer forming material different from that shown in FIG. 12, for example, the conductor film thickness (tCu) = 10 micrometers, the distance between the conductor and the stainless steel plate (tBASE).
= 10 micrometer layer forming material, characteristic impedance 80Ω, transmission loss 3.0 Np / m or less, transmission band 5
Consider a line structure having a transmission characteristic of GHz or higher. FIG.
An examination using the relationship diagram between the characteristic impedance of 1 and the transmission loss (α) revealed that no solution satisfying the above characteristics was obtained. Therefore, it is necessary to widen the gap between the conductor and the stainless steel plate, and it can be understood that the transmission loss (α) can be reduced by this.

【0066】図14には、導体膜厚および導体とステン
レス板間隔の条件毎に線路特性を満たすための線路構造
を纏めた。表より、ステンレスと導体との間隔(tBA
SE)が大きい方の(tBASE=0.018mm)で
は、解は見つかるが、tBASEが薄い方(tBASE
=0.01mm)では解が得られないことがわかる。
FIG. 14 shows a line structure for satisfying the line characteristics for each condition of the conductor film thickness and the distance between the conductor and the stainless steel plate. From the table, the distance between the stainless steel and the conductor (tBA
A solution can be found with a larger SE (tBASE = 0.018 mm), but a smaller tBASE (tBASE).
= 0.01 mm), no solution can be obtained.

【0067】尚、上記実施例においては本発明を磁気デ
ィスク装置に適用した場合について説明をしたが、本発
明の主な特徴は信号伝送線路にあるので、磁気ディスク
装置に限らず、光ディスク装置や光磁気ディスク装置は
もちろんのこと、信号伝送線路を備えたいかなる装置に
ついても適用が可能であることは言うまでもない。
In the above embodiment, the case where the present invention is applied to the magnetic disk device has been described. However, since the main feature of the present invention is the signal transmission line, the present invention is not limited to the magnetic disk device, and is not limited to the optical disk device or the optical disk device. It goes without saying that the present invention can be applied not only to the magneto-optical disk device but also to any device provided with a signal transmission line.

【0068】[0068]

【発明の効果】本発明により、伝送線路の特性インピー
ダンスを調整するためのステンレス板孔のピッチが伝送
帯域と関係していること、また開孔率が伝送損失にも影
響を与えていることがわかり、必要な伝送帯域を確保し
つつ伝送線路の伝送損失を低く押さえ、かつ特性インピ
ーダンスが調整できるようになった。
According to the present invention, the pitch of the stainless steel plate holes for adjusting the characteristic impedance of the transmission line is related to the transmission band, and the open area ratio also affects the transmission loss. As a result, the transmission impedance of the transmission line can be kept low and the characteristic impedance can be adjusted while ensuring the required transmission band.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の伝送線路の構造を示す図である。FIG. 1 is a diagram showing a structure of a transmission line of the present invention.

【図2】磁気ディスク装置の概略を示す図である。FIG. 2 is a diagram showing an outline of a magnetic disk device.

【図3】R/W IC(プリアンプ)を搭載したアーム
先端部の拡大図である。
FIG. 3 is an enlarged view of an arm tip portion on which an R / W IC (preamplifier) is mounted.

【図4】伝送特性評価法の説明図である。FIG. 4 is an explanatory diagram of a transmission characteristic evaluation method.

【図5】ステンレス板孔の開孔ピッチをパラメータにし
た伝送損失の周波数特性を示す図である。
FIG. 5 is a diagram showing frequency characteristics of transmission loss with the opening pitch of stainless plate holes as a parameter.

【図6】最小伝送帯域(最大波長)と開孔ピッチとの関
係を示す図である。
FIG. 6 is a diagram showing the relationship between the minimum transmission band (maximum wavelength) and the aperture pitch.

【図7】開孔率をパラメータにした伝送損失の周波数特
性を示す図である。
FIG. 7 is a diagram showing frequency characteristics of transmission loss with a porosity as a parameter.

【図8】開孔幅をパラメータにした伝送損失の周波数特
性を示す図である。
FIG. 8 is a diagram showing frequency characteristics of transmission loss with the aperture width as a parameter.

【図9】開孔率と特性インピーダンス変化量の関係図を
示す図である。
FIG. 9 is a diagram showing a relationship diagram between a porosity and a characteristic impedance change amount.

【図10】線路損失による矩形波立上り時間劣化特性を
示す図である
FIG. 10 is a diagram showing rectangular wave rise time deterioration characteristics due to line loss.

【図11】記録電流立上り時間の説明をする図である。FIG. 11 is a diagram for explaining a recording current rise time.

【図12】各線路条件毎の特性インピーダンスと伝送損
失との関係を示す図である。
FIG. 12 is a diagram showing a relationship between characteristic impedance and transmission loss for each line condition.

【図13】各線路条件毎の特性インピーダンスと伝送損
失との関係を示す図である。
FIG. 13 is a diagram showing a relationship between characteristic impedance and transmission loss for each line condition.

【図14】材料条件毎に伝送特性を満たした線路構造を
示す図である。
FIG. 14 is a diagram showing a line structure satisfying transmission characteristics for each material condition.

【符号の説明】[Explanation of symbols]

10…ヘッドディスクアセンブリ(HDA)、11…記
録再生制御回路、12…スピンドル部、13…磁気記録
媒体、14…磁気ヘッド、15…キャリッジ部、16…
フレキシブル・プリンティド・サーキッツ(FPC)、
17…ボイスコイルモータ(VCM)、18…アーム、
19…サスペンション、20…R/W−IC、21…中
継線路、22…信号処理LSI、23…ハードディスク
ドライブ制御(HDControl)、24…外部インタフェ
ース、25…コネクタ、30…ステンレス板、31…絶
縁層、32…導体、33…ステンレス板孔、34…回転
偏角(θ)、35…伝送損失(α)。
DESCRIPTION OF SYMBOLS 10 ... Head disk assembly (HDA), 11 ... Recording / reproducing control circuit, 12 ... Spindle part, 13 ... Magnetic recording medium, 14 ... Magnetic head, 15 ... Carriage part, 16 ...
Flexible Printed Circuits (FPC),
17 ... Voice coil motor (VCM), 18 ... Arm,
19 ... Suspension, 20 ... R / W-IC, 21 ... Relay line, 22 ... Signal processing LSI, 23 ... Hard disk drive control (HDControl), 24 ... External interface, 25 ... Connector, 30 ... Stainless plate, 31 ... Insulation layer , 32 ... Conductor, 33 ... Stainless plate hole, 34 ... Rotation declination (θ), 35 ... Transmission loss (α).

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】差動信号を伝送する導体と、この導体と絶
縁体を挟んで設けられた金属体とを備えた信号伝送線路
であって、前記金属体に前記導体と平行して2mm以下
のピッチで設けた孔を備えた信号伝送線路。
1. A signal transmission line comprising a conductor for transmitting a differential signal and a metal body sandwiching the conductor and an insulator, wherein the metal body is 2 mm or less in parallel with the conductor. Signal transmission line with holes provided at the pitch.
【請求項2】差動信号を伝送する少なくとも2本の導体
と、これら導体と絶縁体を挟んで設けられた金属体とを
備えた信号伝送線路であって、前記導体の幅とこれら導
体の間隔との和に0.16mm以上を加算した値の幅を
有する孔を前記金属体に備えた信号伝送線路。
2. A signal transmission line comprising at least two conductors for transmitting a differential signal, and a metal body provided sandwiching these conductors and an insulator, the width of the conductors and the width of these conductors. A signal transmission line in which the metal body is provided with a hole having a width of a value obtained by adding 0.16 mm or more to the sum of the intervals.
【請求項3】差動信号を伝送する導体と、この導体と絶
縁体を挟んで設けられた金属体とを備えた信号伝送線路
であって、伝送帯域の最大周波数の波長に対して5分の
1以下のピッチで前記金属体に前記導体と平行する方向
で孔を設けた信号伝送線路。
3. A signal transmission line comprising a conductor for transmitting a differential signal and a metal body provided with the conductor and an insulator sandwiched therebetween, wherein the signal transmission line has a length of 5 minutes with respect to the wavelength of the maximum frequency of the transmission band. Signal transmission line in which holes are provided in the metal body in a direction parallel to the conductor at a pitch of 1 or less.
【請求項4】ステンレス材料で形成したバネ部と、 このバネ部の上にヘッドからの信号をアンプに伝送する
線路とを備えたサスペンションであって、 前記線路は、前記情報を伝送する導体と、この導体と絶
縁体を挟んで設けられ前記導体と平行する方向に孔を2
mm以下のピッチで設けた金属体とを備えたサスペンシ
ョン。
4. A suspension comprising a spring portion made of a stainless material and a line for transmitting a signal from a head to an amplifier on the spring portion, the line being a conductor for transmitting the information. , 2 holes are provided in a direction parallel to the conductor by sandwiching the conductor and the insulator.
A suspension provided with a metal body provided at a pitch of mm or less.
【請求項5】ステンレス材料で形成したバネ部と、 このバネ部の上にヘッドからの信号をアンプに伝送する
線路とを備えたサスペンションであって、 前記線路は、前記信号を伝送する少なくとも2本の導体
と、これら導体と絶縁体を挟んで設けられ設けられ前記
導体と平行する方向に前記導体の幅とこれら導体の間隔
との和に0.16mm以上を加算した値の幅を有する孔
を設けた金属体とを備えたサスペンション。
5. A suspension comprising a spring portion formed of a stainless material and a line for transmitting a signal from a head to an amplifier on the spring portion, wherein the line is at least 2 for transmitting the signal. Hole having a width of a value obtained by adding 0.16 mm or more to the sum of the width of the conductor and the distance between the conductors in a direction parallel to the conductor, the hole being provided between the conductor and the insulator. A suspension provided with a metal body provided with.
【請求項6】ステンレス材料で形成したバネ部と、 このバネ部の上にヘッドからの信号をアンプに伝送する
線路とを備えたサスペンションであって、 前記線路は、前記信号を伝送する導体と、この導体と絶
縁体を挟んで設けられた前記信号の伝送帯域の最大周波
数の波長に対して5分の1以下のピッチで前記導体と平
行する方向の孔を設けた金属体とを備えたサスペンショ
ン。
6. A suspension comprising a spring portion formed of a stainless material and a line for transmitting a signal from a head to an amplifier on the spring portion, the line being a conductor for transmitting the signal. A metal body provided with holes in a direction parallel to the conductor at a pitch of ⅕ or less with respect to the wavelength of the maximum frequency of the transmission band of the signal provided with the conductor and the insulator interposed therebetween. suspension.
【請求項7】情報を記録する記録媒体と、 この記録媒体を回転させるスピンドルモータと、 前記記録媒体に情報を記録し、また記録された情報を読
み出すヘッドと、 このヘッドを搭載したサスペンションと、 このサスペンションを取付けたアームと、 このアームに沿って前記ヘッドに前記情報を伝送する線
路と、 前記ヘッドを前記記録媒体上で位置決めさせるボイスコ
イルモータとを備えた磁気ディスク装置であって、 前記線路は、前記情報を伝送する導体と、この導体と絶
縁体を挟んで設けられ2mm以下のピッチで設けた孔を
前記導体と平行して有する金属体とを備えた記録装置。
7. A recording medium for recording information, a spindle motor for rotating the recording medium, a head for recording information on the recording medium and reading the recorded information, and a suspension having the head mounted thereon. A magnetic disk device comprising: an arm to which the suspension is attached; a line for transmitting the information to the head along the arm; and a voice coil motor for positioning the head on the recording medium. Is a recording device including a conductor for transmitting the information, and a metal body having holes provided at a pitch of 2 mm or less and sandwiching the conductor and the insulator in parallel with the conductor.
JP2001344018A 2001-11-09 2001-11-09 Signal transmission line, suspension and recording apparatus including the same Expired - Fee Related JP3931074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344018A JP3931074B2 (en) 2001-11-09 2001-11-09 Signal transmission line, suspension and recording apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344018A JP3931074B2 (en) 2001-11-09 2001-11-09 Signal transmission line, suspension and recording apparatus including the same

Publications (2)

Publication Number Publication Date
JP2003152404A true JP2003152404A (en) 2003-05-23
JP3931074B2 JP3931074B2 (en) 2007-06-13

Family

ID=19157602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344018A Expired - Fee Related JP3931074B2 (en) 2001-11-09 2001-11-09 Signal transmission line, suspension and recording apparatus including the same

Country Status (1)

Country Link
JP (1) JP3931074B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282995A (en) * 2007-05-10 2008-11-20 Nitto Denko Corp Wiring circuit board
JP2009218329A (en) * 2008-03-10 2009-09-24 Nitto Denko Corp Wiring circuit board and method of manufacturing the same
US7692900B2 (en) 2006-08-30 2010-04-06 Toshiba Storage Device Corporation Head stack assembly, and storage having the same
US7724475B2 (en) 2005-02-04 2010-05-25 Hitachi Global Storage Technologies Netherlands B.V. Conductive member, disk drive using same, and conductive member fabricating method
JP2011060360A (en) * 2009-09-08 2011-03-24 Nhk Spring Co Ltd Disk drive suspension
US8134080B2 (en) 2005-07-07 2012-03-13 Nitto Denko Corporation Wired circuit board
JP2012074901A (en) * 2010-09-28 2012-04-12 Asahi Kasei Electronics Co Ltd Transmission line and transmission apparatus
US8266794B2 (en) 2006-08-30 2012-09-18 Nitto Denko Corporation Method of producing a wired circuit board
JP2013016232A (en) * 2011-07-04 2013-01-24 Nhk Spring Co Ltd Wiring circuit board

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724475B2 (en) 2005-02-04 2010-05-25 Hitachi Global Storage Technologies Netherlands B.V. Conductive member, disk drive using same, and conductive member fabricating method
US8134080B2 (en) 2005-07-07 2012-03-13 Nitto Denko Corporation Wired circuit board
US7692900B2 (en) 2006-08-30 2010-04-06 Toshiba Storage Device Corporation Head stack assembly, and storage having the same
US8266794B2 (en) 2006-08-30 2012-09-18 Nitto Denko Corporation Method of producing a wired circuit board
JP2008282995A (en) * 2007-05-10 2008-11-20 Nitto Denko Corp Wiring circuit board
US8760815B2 (en) 2007-05-10 2014-06-24 Nitto Denko Corporation Wired circuit board
JP2009218329A (en) * 2008-03-10 2009-09-24 Nitto Denko Corp Wiring circuit board and method of manufacturing the same
JP2011060360A (en) * 2009-09-08 2011-03-24 Nhk Spring Co Ltd Disk drive suspension
US8503133B2 (en) 2009-09-08 2013-08-06 Nhk Spring Co., Ltd. Flexure to be secured to a load beam of a disk drive suspension
JP2012074901A (en) * 2010-09-28 2012-04-12 Asahi Kasei Electronics Co Ltd Transmission line and transmission apparatus
JP2013016232A (en) * 2011-07-04 2013-01-24 Nhk Spring Co Ltd Wiring circuit board

Also Published As

Publication number Publication date
JP3931074B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP5052469B2 (en) Head gimbal assembly
JP3725991B2 (en) Magnetic disk unit
EP0834866B1 (en) Multi-trace transmission lines for r/w head interconnect in hard disk drive
US8111483B2 (en) Disk drive flexure
US8189281B2 (en) Magnetic recording disk drive with write driver to write head transmission line having non-uniform sections for optimal write current pulse overshoot
JP2005011387A (en) Magnetic disk unit
US20110141626A1 (en) Magnetic recording disk drive with integrated lead suspension having multiple segments for optimal characteristic impedance
US8467150B2 (en) Recording head, disk drive with recording head, and recording method using recording head
JP2004133988A (en) Disk drive suspension
US8705210B2 (en) Interleaved circuit of flexure for disk drive
JP4312968B2 (en) Wiring member for disk drive suspension
US9576601B2 (en) Flexure of disk drive suspension
US9564155B2 (en) Flexure of disk drive suspension having a tail pad portion with a bridge element and a plurality of tail terminals
JP2011060360A (en) Disk drive suspension
US9064516B2 (en) Disk drive flexure
JP3931074B2 (en) Signal transmission line, suspension and recording apparatus including the same
US8189297B2 (en) Disk drive flexure having a metal base with a band-like portion overlapping a gap between conductors for data writing
US8988813B2 (en) Microwave-assisted magnetic recording and reproducing device
JP2006209838A (en) Wire member, and magnetic recording and reproducing apparatus using the same
CN102194468B (en) Cantilever part and there is magnetic head fold piece combination, the hard disk drive of this cantilever part
US9396747B2 (en) Interleave circuit of conductive circuit portion of disk drive flexure
US9153274B2 (en) Microwave-assisted magnetic head, head gimbal assembly, and magnetic recording and reproducing device
JP2007287280A (en) Transmission wiring structure and disk driving device
US9036305B1 (en) Magnetic recording disk drive with write driver to write head transmission line with multiple segments having different numbers of conductive traces
US10283150B2 (en) Suspension adjacent-conductors differential-signal-coupling attenuation structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees