JP2003151583A - Solid high polymer electrolyte film and fuel cell - Google Patents

Solid high polymer electrolyte film and fuel cell

Info

Publication number
JP2003151583A
JP2003151583A JP2001350596A JP2001350596A JP2003151583A JP 2003151583 A JP2003151583 A JP 2003151583A JP 2001350596 A JP2001350596 A JP 2001350596A JP 2001350596 A JP2001350596 A JP 2001350596A JP 2003151583 A JP2003151583 A JP 2003151583A
Authority
JP
Japan
Prior art keywords
resin
polymer electrolyte
electrolyte membrane
solid polymer
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001350596A
Other languages
Japanese (ja)
Other versions
JP4413459B2 (en
Inventor
Katsuhiro Kino
野 勝 博 城
Tsuguo Koyanagi
柳 嗣 雄 小
Michio Komatsu
松 通 郎 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001350596A priority Critical patent/JP4413459B2/en
Priority to US10/495,371 priority patent/US7582373B2/en
Priority to PCT/JP2002/011678 priority patent/WO2003043029A1/en
Publication of JP2003151583A publication Critical patent/JP2003151583A/en
Application granted granted Critical
Publication of JP4413459B2 publication Critical patent/JP4413459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid high polymer electrolyte that can provide a fuel cell, which can maintain high voltage also in long-term operation or high temperature operation and has excellent stability. SOLUTION: It consists of an organic resin and hydrate oxide antimony particles expressed with a formula Sb2 O5 .nH2 O (n=0.1 to 5). Average particle diameter of this particles is in the range of 5 to 50 nm, and the content of hydrate oxide antimony particles is in the range of 5 to 80 weight % by converting it to the oxide (Sb2 O5 ).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、固体高分子電解質膜およ
び該固体高分子電解質膜を用いた燃料電池に関する。さ
らに詳しくは、長期運転あるいは高温運転においても高
い電圧を維持できる安定性に優れた固体高分子電解質膜
型燃料電池に関する。
TECHNICAL FIELD The present invention relates to a solid polymer electrolyte membrane and a fuel cell using the solid polymer electrolyte membrane. More specifically, the present invention relates to a solid polymer electrolyte membrane fuel cell having excellent stability capable of maintaining high voltage even during long-term operation or high temperature operation.

【0002】[0002]

【発明の技術的背景】近年、クリーンな水素をエネルギ
ー源とする高効率、無公害でCO2等温暖化ガスを発生し
ない発電システムとして燃料電池が注目されている。こ
のような燃料電池は、家庭や事業所など固定設備、自動
車などの移動設備などでの使用を目的に本格的な開発研
究が行われている。
BACKGROUND OF THE INVENTION In recent years, fuel cells have been attracting attention as a power generation system that uses clean hydrogen as an energy source and that does not generate greenhouse gases such as CO 2 with high efficiency and no pollution. Such fuel cells are under full-scale development research for the purpose of use in fixed facilities such as homes and businesses, and mobile facilities such as automobiles.

【0003】燃料電池は使用する電解質膜によって分類
され、アルカリ電解質膜型、固体高分子電解質膜型、リ
ン酸型、溶融炭酸塩型、固体電解質膜型に分けられる。
このとき固体高分子電解質膜型およびリン酸型は電荷移
動体がプロトンであり、プロトン型燃料電池ともいわれ
る。この燃料電池に用いる燃料としては、天然ガス、L
Pガス、都市ガス、アルコール、ガソリン、灯油、軽油
などの炭化水素系燃料が挙げられる。
Fuel cells are classified according to the electrolyte membrane used, and are classified into alkaline electrolyte membrane type, solid polymer electrolyte membrane type, phosphoric acid type, molten carbonate type, and solid electrolyte membrane type.
At this time, in the solid polymer electrolyte membrane type and the phosphoric acid type, the charge transfer body is a proton, and it is also called a proton type fuel cell. The fuel used in this fuel cell is natural gas, L
Hydrocarbon-based fuels such as P gas, city gas, alcohol, gasoline, kerosene, and light oil are included.

【0004】このような炭化水素系燃料を、まず水蒸気
改質、部分酸化などの反応により水素ガス、COガスに
変換し、COガスを除去して水素ガスを得る。この水素
は、アノードに供給され、アノードの金属触媒によって
プロトン(水素イオン)と電子に解離し、電子は回路を
通じて仕事をしながらカソードに流れ、プロトン(水素
イオン)は電解質膜を拡散してカソードに流れ、カソー
ドにてこの電子、水素イオンとカソードに供給される酸
素とから水となって電解質膜に拡散する。すなわち、酸
素と燃料ガスに由来する水素とを供給して水を生成する
過程で電流を取り出すメカニズムになっている。
First, such a hydrocarbon fuel is converted into hydrogen gas and CO gas by reactions such as steam reforming and partial oxidation, and CO gas is removed to obtain hydrogen gas. This hydrogen is supplied to the anode and dissociated into protons (hydrogen ions) and electrons by the metal catalyst of the anode, the electrons flow to the cathode while working through the circuit, and the protons (hydrogen ions) diffuse through the electrolyte membrane and form the cathode. And then becomes water from the electrons and hydrogen ions at the cathode and oxygen supplied to the cathode and diffuses into the electrolyte membrane. That is, it is a mechanism for extracting an electric current in the process of supplying oxygen and hydrogen derived from fuel gas to generate water.

【0005】このような燃料電池に用いられる電解質膜
としてはスルホン酸基を有するポリスチレン系の陽イオ
ン交換膜、フルオロカーボンスルホン酸とポリビニリデ
ンフルオライドとの混合膜、フルオロカーボンマトリッ
クスにトリフルオロエチレンをグラフト化した膜、パー
フルオロカーボンスルホン酸膜等が用いられている。し
かしながら、このような有機樹脂膜からなる電解質膜中
のプロトンの移動、すなわち膜のイオン電導度は、膜中
の含水率に依存し、長期運転した場合、あるいは約80
℃以上の高温運転すると、膜内の含水率が低下し、その
結果、イオン電導度が低下し、発生電圧電圧の低下をき
たすなどの問題があった。
As an electrolyte membrane used in such a fuel cell, a polystyrene type cation exchange membrane having a sulfonic acid group, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, and a fluorocarbon matrix grafted with trifluoroethylene. The film used is a perfluorocarbon sulfonic acid film or the like. However, the movement of protons in the electrolyte membrane made of such an organic resin membrane, that is, the ionic conductivity of the membrane, depends on the water content in the membrane, and is about 80% after long-term operation.
When it is operated at a high temperature of ℃ or higher, the water content in the membrane is lowered, and as a result, the ionic conductivity is lowered and the generated voltage and voltage are lowered.

【0006】このため、特開平6−103983号公報
には、高分子膜にリン酸基を持つ化合物を含有させるこ
とで、高分子膜に良好な保水性能を発揮させ、これによ
り、80℃あるいはそれ以上の運転温度において好適に
使用可能な固体高分子電解質膜型燃料電池も提案されて
いる。また、特開2001−143723号公報には、
80℃あるいはそれ以上の運転温度において好適に使用
可能な燃料電池用電解質膜として、五酸化リンを含む非
晶質シリカ成形体からなるものが開示されている。
For this reason, in JP-A-6-103983, a compound having a phosphoric acid group is contained in a polymer film to allow the polymer film to exhibit a good water retention performance, whereby 80 ° C. or A solid polymer electrolyte membrane fuel cell that can be suitably used at operating temperatures higher than that has also been proposed. Further, Japanese Patent Laid-Open No. 2001-143723 discloses that
As an electrolyte membrane for a fuel cell, which can be suitably used at an operating temperature of 80 ° C. or higher, there is disclosed a membrane made of an amorphous silica molded body containing phosphorus pentoxide.

【0007】しかしながら、これらの提案された固体高
分子電解質膜を100℃以上の高温で長期にわたり使用
するとやはり電圧が降下し、電池性能が低下するという
問題があった。そこで、本発明者らは、このような高温
条件での長期間使用による電池性能の向上させる手段に
ついて鋭意検討した結果、酸化アンチモン粒子はプロト
ン導電性が高く、しかも高温で高い保水性を有してお
り、この酸化アンチモン粒子を有機樹脂とともに固体高
分子電解質膜として使用することで、長期間高温下で使
用しても高い電池性能を有する燃料電池が得られること
を見出し、本発明を完成するに至った。
However, when these proposed solid polymer electrolyte membranes are used at a high temperature of 100 ° C. or higher for a long period of time, the voltage still drops and the battery performance deteriorates. Therefore, as a result of diligent studies on means for improving battery performance by long-term use under such high temperature conditions, the present inventors have found that antimony oxide particles have high proton conductivity and high water retention at high temperatures. Therefore, by using these antimony oxide particles as a solid polymer electrolyte membrane together with an organic resin, it was found that a fuel cell having high cell performance can be obtained even when used at high temperature for a long time, and the present invention is completed. Came to.

【0008】[0008]

【発明の目的】本発明は、長期運転あるいは高温運転に
おいても高い電圧を維持できる安定性に優れた燃料電池
を提供可能な固体高分子電解質を提供することを目的と
している。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a solid polymer electrolyte capable of providing a fuel cell excellent in stability capable of maintaining a high voltage even in long-term operation or high temperature operation.

【0009】[0009]

【発明の概要】本発明に係る固体高分子電解質膜は、有
機樹脂と下記式(1)で表される水和酸化アンチモン粒
子とからなり、該粒子の平均粒子径が5〜50nmの範
囲にあり、水和酸化アンチモン粒子の含有量が酸化物
(Sb25)換算で5〜80重量%の範囲にあることを
特徴としている。
SUMMARY OF THE INVENTION A solid polymer electrolyte membrane according to the present invention comprises an organic resin and hydrated antimony oxide particles represented by the following formula (1), and the average particle diameter of the particles is in the range of 5 to 50 nm. It is characterized in that the content of the hydrated antimony oxide particles is in the range of 5 to 80% by weight in terms of oxide (Sb 2 O 5 ).

【0010】Sb25・nH2O (1) n=0.1〜5 前記有機樹脂が、スルホン酸基を有するポリスチレン陽
イオン交換樹脂、フルオロカーボンスルホン酸とポリビ
ニリデンフルオライドとの混合物、フルオロカーボンマ
トリックスにトリフルオロエチレンをグラフト化したグ
ラフト共重合体、パーフルオロカーボンスルホン酸樹
脂、フッ化ビニリデン樹脂、2−ジクロロエチレン樹
脂、ポリエチレン樹脂、塩化ビニル樹脂、ABS樹脂、
AS樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポ
リイミド樹脂、メタクリル樹脂からなる群から選ばれる
少なくとも1種が好ましい。
Sb 2 O 5 .nH 2 O (1) n = 0.1 to 5 The organic resin is a polystyrene cation exchange resin having a sulfonic acid group, a mixture of fluorocarbon sulfonic acid and polyvinylidene fluoride, a fluorocarbon. Graft copolymer grafted with trifluoroethylene on the matrix, perfluorocarbon sulfonic acid resin, vinylidene fluoride resin, 2-dichloroethylene resin, polyethylene resin, vinyl chloride resin, ABS resin,
At least one selected from the group consisting of AS resin, polycarbonate resin, polyamide resin, polyimide resin, and methacrylic resin is preferable.

【0011】本発明に係る高分子電解質膜型燃料電池
は、前記固体高分子電解質膜を用いてなる。
A polymer electrolyte membrane fuel cell according to the present invention comprises the above solid polymer electrolyte membrane.

【0012】[0012]

【発明の具体的説明】以下、本発明に係る固体高分子電
解質膜型燃料電池について説明する。固体高分子電解質膜 本発明に係る固体高分子電解質膜は、有機樹脂と下記式
(1)で表される水和酸化アンチモン粒子とからなる。
DETAILED DESCRIPTION OF THE INVENTION The solid polymer electrolyte membrane fuel cell according to the present invention will be described below. Solid Polymer Electrolyte Membrane The solid polymer electrolyte membrane according to the present invention comprises an organic resin and hydrated antimony oxide particles represented by the following formula (1).

【0013】[有機樹脂]有機樹脂としては、固体電解
質膜として用いることができれば特に制限はなく、たと
えば、スルホン酸基を有するポリスチレン陽イオン交換
樹脂、フルオロカーボンスルホン酸とポリビニリデンフ
ルオライドとの混合物、フルオロカーボンマトリックス
にトリフルオロエチレンをグラフト化したグラフト共重
合体、パーフルオロカーボンスルホン酸樹脂、フッ化ビ
ニリデン樹脂、2−ジクロロエチレン樹脂、ポリエチレ
ン樹脂、塩化ビニル樹脂、ABS樹脂、AS樹脂、ポリ
カーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、
メタクリル樹脂からなる群から選ばれる少なくとも1種
が好ましい。
[Organic Resin] The organic resin is not particularly limited as long as it can be used as a solid electrolyte membrane. For example, a polystyrene cation exchange resin having a sulfonic acid group, a mixture of fluorocarbon sulfonic acid and polyvinylidene fluoride, Graft copolymer obtained by grafting trifluoroethylene on a fluorocarbon matrix, perfluorocarbon sulfonic acid resin, vinylidene fluoride resin, 2-dichloroethylene resin, polyethylene resin, vinyl chloride resin, ABS resin, AS resin, polycarbonate resin, polyamide resin, Polyimide resin,
At least one selected from the group consisting of methacrylic resins is preferable.

【0014】これらの有機樹脂は、たとえば、特開平6-
275301号公報、特開平10-199559号公報、特開平10-4073
7号公報、特開平6-103983号公報に例示されたものを使
用することができる。 [水和酸化アンチモン粒子]本発明に用いる水和酸化アン
チモン粒子は、酸化アンチモンの水和物であり、下記式
で表される。(結晶水ではない、単なる付着水を除く) Sb25・nH2O (1) n=0.1〜5 酸化アンチモン粒子は、プロトン導電性を有しており、
固体高分子電解質膜の導電性を高めるために配合され
る。
These organic resins are disclosed, for example, in JP-A-6-
275301, JP 10-199559, JP 10-4073
It is possible to use the materials exemplified in JP-A No. 7 and JP-A No. 6-103983. [Hydrated antimony oxide particles] The hydrated antimony oxide particles used in the present invention are antimony oxide hydrates and are represented by the following formula. (Except for mere adhering water, which is not water of crystallization) Sb 2 O 5 · nH 2 O (1) n = 0.1 to 5 Antimony oxide particles have proton conductivity,
It is added to enhance the conductivity of the solid polymer electrolyte membrane.

【0015】このような水和酸化アンチモン粒子の平均
粒子径は、5〜50nm、さらには5〜25nmの範囲
にあることが好ましい。平均粒子径が5nm未満の場合
は、粉体抵抗(体積抵抗値)が1010Ω・cmを越える
ことがあり、このため陽イオンの伝導性が低く、このた
め充分な出力電圧が得られないことがある。平均粒子径
が上限範囲を越えると、固体高分子電解質膜の製造方法
にもよるが、電解質膜中に水和酸化アンチモン粒子を充
分に導入することができない場合があり、導入できたと
しても固体高分子電解質膜の強度が不充分となることが
ある。
The average particle size of such hydrated antimony oxide particles is preferably 5 to 50 nm, more preferably 5 to 25 nm. When the average particle size is less than 5 nm, the powder resistance (volume resistance value) may exceed 10 10 Ω · cm, which results in low cation conductivity, and thus a sufficient output voltage cannot be obtained. Sometimes. If the average particle diameter exceeds the upper limit range, depending on the method for producing a solid polymer electrolyte membrane, it may not be possible to sufficiently introduce hydrated antimony oxide particles into the electrolyte membrane, and even if it can be introduced, it is solid. The strength of the polymer electrolyte membrane may be insufficient.

【0016】水和酸化アンチモン粒子の水分含有量とし
ては、100℃で1時間乾燥したときの水分含有量が、
概ね0.5〜22重量%、さらには2〜22重量%の範
囲にあることが好ましい。さらに、好ましくは、200
℃で乾燥した後の水分含有量が0.25〜10重量%、
さらには0.5〜10重量%の範囲にあることが望まし
い。
The water content of the hydrated antimony oxide particles is the water content when dried at 100 ° C. for 1 hour,
It is preferably in the range of approximately 0.5 to 22% by weight, more preferably 2 to 22% by weight. Further, preferably 200
The water content after drying at ℃ is 0.25 to 10% by weight,
Further, it is desirable to be in the range of 0.5 to 10% by weight.

【0017】水和酸化アンチモン粒子の200℃で乾燥
した後の水分含有量が0.25重量%未満の場合は、無
機プロトン導電性粒子として水和酸化アンチモン粒子を
用いた効果が得られず、高温運転、長期運転した場合に
電圧が降下し、電池の性能が低下する傾向にある。20
0℃で乾燥した後の水分含有量が10重量%を越えたも
のは得ることが困難である。
When the water content of the hydrated antimony oxide particles after drying at 200 ° C. is less than 0.25% by weight, the effect of using the hydrated antimony oxide particles as the inorganic proton conductive particles cannot be obtained. During high temperature operation and long term operation, the voltage drops and the battery performance tends to decrease. 20
It is difficult to obtain a product having a water content of more than 10% by weight after drying at 0 ° C.

【0018】また、本発明に用いる水和酸化アンチモン
粒子は固体高分子電解質膜の調製に用いる際に前記水分
含有量範囲にある必要はなく、固体高分子電解質膜を調
製した後、加湿処理等によって前記水分範囲として用い
ることもできる。本発明で使用される水和酸化アンチモ
ン粒子は、粉体抵抗(体積抵抗値)が1010Ω・cm未
満、さらには107Ω・cm未満であることが好まし
い。
The hydrated antimony oxide particles used in the present invention do not need to be in the above water content range when used for preparing a solid polymer electrolyte membrane, and after the solid polymer electrolyte membrane is prepared, it is subjected to humidification treatment or the like. It can also be used as the water content range. The hydrated antimony oxide particles used in the present invention preferably have a powder resistance (volume resistance value) of less than 10 10 Ω · cm, and more preferably less than 10 7 Ω · cm.

【0019】導電性酸化物粒子の体積抵抗値が前記上限
を越えると、固体高分子電解質膜中の含有量にもよる
が、電気抵抗を低く維持する効果が不充分となり充分な
出力電圧が得られないことがある。 [固体高分子電解質膜] 本発明に係る固体高分子電解質膜は、前記有機樹脂と前
記水和酸化アンチモン粒子とから構成されている。
If the volume resistance value of the conductive oxide particles exceeds the above upper limit, the effect of keeping the electric resistance low is insufficient, but a sufficient output voltage is obtained, although it depends on the content in the solid polymer electrolyte membrane. Sometimes I can't. [Solid Polymer Electrolyte Membrane] The solid polymer electrolyte membrane according to the present invention is composed of the organic resin and the hydrated antimony oxide particles.

【0020】固体高分子電解質膜中の水和酸化アンチモ
ン粒子の含有量は、酸化物(Sb2 5)として5〜80
重量%、さらには10〜50重量%の範囲にあることが
好ましい。水和酸化アンチモン粒子の含有量が前記範囲
内にあれば、固体高分子電解質膜のプロトン導電性が高
く、しかも高温で高い保水性を有しており、長期間高温
下で使用しても高い電池性能を有する燃料電池が得られ
る。なお、前記下限未満の量で水和酸化アンチモン粒子
を含んでいても、粒子を用いた効果が不充分となること
があり、水和酸化アンチモン粒子の含有量が前記上限を
越えるものは製造困難であり、仮に作製できたとしても
固体高分子電解質膜の強度が不充分となることがある。
Hydrated antimony oxide in solid polymer electrolyte membrane
The content of particles is oxide (Sb2O Five) As 5-80
%, Or even 10 to 50% by weight
preferable. The content of hydrated antimony oxide particles is in the above range
If it is inside, the proton conductivity of the solid polymer electrolyte membrane is high.
In addition, it has high water retention at high temperature and can be used at high temperature for a long time.
A fuel cell with high cell performance can be obtained even when used under
It In addition, hydrated antimony oxide particles in an amount less than the above lower limit
Even if it contains, the effect of using particles will be insufficient.
And the content of hydrated antimony oxide particles exceeds the above upper limit.
It is difficult to manufacture anything that exceeds this amount, and even if it could be made,
The strength of the solid polymer electrolyte membrane may be insufficient.

【0021】本発明に係る固体高分子電解質膜は、実質
的に、前記した有機樹脂からなる膜体に、水和酸化アン
チモン粒子が付着(担持)あるいは導入されている。こ
のため、有機樹脂膜体は、多孔質であるものが望まし
く、気孔率が5%以上、好ましくは10%以上のものが
望ましい。本発明に係る固体高分子電解質膜の製造方法
は、有機樹脂膜体に水和酸化アンチモン粒子を付着(担
持)あるいは導入できれば特に制限はないが、たとえ
ば、水和酸化アンチモン粒子の分散液に有機樹脂膜を浸
漬し、有機樹脂膜の細孔中に水和酸化アンチモン粒子を
導入し、ついで乾燥することによって得ることができ
る。また、必要に応じてこの浸漬と乾燥を繰り返すこと
によって水和酸化アンチモン粒子の導入量を増量するこ
とができる。
In the solid polymer electrolyte membrane according to the present invention, substantially hydrated antimony oxide particles are attached (supported) or introduced into the membrane body made of the above-mentioned organic resin. Therefore, the organic resin film body is preferably porous and has a porosity of 5% or more, preferably 10% or more. The method for producing a solid polymer electrolyte membrane according to the present invention is not particularly limited as long as hydrated antimony oxide particles can be attached (supported) or introduced into an organic resin film body. It can be obtained by immersing the resin film, introducing hydrated antimony oxide particles into the pores of the organic resin film, and then drying. In addition, the amount of hydrated antimony oxide particles introduced can be increased by repeating this dipping and drying, if necessary.

【0022】前記分散液としては、特に水和酸化アンチ
モン粒子が安定に分散したゾルを用いると水和酸化アン
チモン粒子が膜中均一に分散した固体高分子電解質膜を
得ることができる。ゾルの分散媒としては水およびアル
コールの混合溶媒を用いると、樹脂との親和性が増大
し、無機プロトン導電性酸化物粒子が膜中でより均一に
分散した固体高分子電解質膜を得ることができる。その
結果、形成した燃料電池を高温運転、長期運転でもプロ
トン導電性の低下が小さく、高い出力電圧を維持するこ
とができる。
When a sol in which hydrated antimony oxide particles are stably dispersed is used as the dispersion liquid, a solid polymer electrolyte membrane in which hydrated antimony oxide particles are uniformly dispersed can be obtained. When a mixed solvent of water and alcohol is used as the dispersion medium of the sol, the affinity with the resin is increased, and it is possible to obtain a solid polymer electrolyte membrane in which the inorganic proton conductive oxide particles are more uniformly dispersed in the membrane. it can. As a result, even if the formed fuel cell is operated at a high temperature for a long time, the decrease in proton conductivity is small and a high output voltage can be maintained.

【0023】さらに、上記分散液に浸漬したのち、取り
出し、乾燥した後、使用有機樹脂の軟化点付近の温度で
加熱すれば、有機樹脂膜へ水和酸化アンチモン粒子を強
く固定することができる。あるいは、乾燥後の固体高分
子電解質膜を、2枚の電極膜で挟み、ホットプレスする
際に固定することもできる。また、有機樹脂膜を製造す
る際に、あらかじめ樹脂モノマーに水和酸化アンチモン
粒子を分散させて、重合させることによっても得ること
ができる。また、一旦有機樹脂を溶解したのち水和酸化
アンチモン粒子を混合し、公知の成型法で膜体を成形す
ることによって、本発明に係る固体高分子電解質膜を製
造することができる。
Further, after immersing in the above dispersion liquid, taking out, drying and then heating at a temperature near the softening point of the organic resin used, the hydrated antimony oxide particles can be strongly fixed to the organic resin film. Alternatively, the solid polymer electrolyte membrane after drying can be sandwiched between two electrode membranes and fixed during hot pressing. It can also be obtained by previously dispersing hydrated antimony oxide particles in a resin monomer and polymerizing it when the organic resin film is manufactured. In addition, the solid polymer electrolyte membrane according to the present invention can be manufactured by once dissolving the organic resin, mixing the hydrated antimony oxide particles, and molding the membrane by a known molding method.

【0024】本発明では、得られる膜の強度、製造簡便
性の点からは、有機樹脂膜体を、水和酸化アンチモン粒
子の分散液に浸漬・乾燥する方法が望ましい。燃料電池 本発明に係る燃料電池は、上記した固体高分子電解質膜
を使用することを特徴としている。
In the present invention, a method of immersing and drying the organic resin film body in a dispersion liquid of hydrated antimony oxide particles is preferable from the viewpoint of strength of the film to be obtained and ease of production. Fuel Cell The fuel cell according to the present invention is characterized by using the above-mentioned solid polymer electrolyte membrane.

【0025】具体的には、前記した固体高分子電解質膜
と、この両側に配置される一対のガス拡散電極(燃料極
および酸化極)とから構成され、燃料極と酸化剤極とで
固体高分子電解質膜を挟持するとともに、両極の外側に
燃料室および酸化剤室を形成する溝付きの集電体を配し
たものを単セルとし、このような単セルを、冷却板等を
介して複数層積層することによって構成される。
Specifically, the solid polymer electrolyte membrane is composed of the above-mentioned solid polymer electrolyte membrane and a pair of gas diffusion electrodes (fuel electrode and oxidizing electrode) arranged on both sides of the membrane. A unit cell is formed by sandwiching a molecular electrolyte membrane and arranging a current collector with a groove that forms a fuel chamber and an oxidant chamber on both sides of the both electrodes. It is configured by stacking layers.

【0026】ガス拡散電極は、通常、触媒粒子を担持さ
せた導電性材料をPTFEなどの疎水性樹脂結着剤で保持さ
せた多孔質体シートからなる。また、導電性材料とPTFE
などの疎水性樹脂結着剤とからなる多孔質体シートの固
体高分子電解質膜接触面に触媒粒子層を設けたものであ
ってもよい。このようなガス拡散電極の一対で、固体高
分子電解質膜を挟持し、ホットプレスなどの公知の圧着
手段により、圧着される。
The gas diffusion electrode usually comprises a porous sheet in which a conductive material carrying catalyst particles is held by a hydrophobic resin binder such as PTFE. Also, conductive material and PTFE
A catalyst particle layer may be provided on the contact surface of the solid polymer electrolyte membrane of a porous sheet made of a hydrophobic resin binder such as A solid polymer electrolyte membrane is sandwiched between a pair of such gas diffusion electrodes, and they are crimped by a known crimping means such as hot pressing.

【0027】触媒としては、水素の酸化反応及び酸素の
還元反応に触媒作用を有するものであれば良く、白金、
ルテニウム、イリジウム、ロジウム、パラジウム、オス
ニウム、タングステン、鉛、鉄、クロム、コバルト、ニ
ッケル、マンガン、バナジウム、モリブデン、ガリウ
ム、アルミニウム等の金属またはそれらの合金から選択
することができる。
Any catalyst may be used as long as it has a catalytic action on hydrogen oxidation reaction and oxygen reduction reaction, such as platinum,
It can be selected from metals such as ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum or alloys thereof.

【0028】電導性材料としては電子伝導性物質であれ
ば良く、たとえば炭素材料として公知のファーネスブラ
ック、チャンネルブラック、アセチレンブラック等のカ
ーボンブラックの他、活性炭、黒鉛、また各種金属も使
用可能である。疎水性樹脂結着剤としては、たとえばフ
ッ素を含む各種樹脂が挙げられ、ポリテトラフルオロエ
チレン(PTFE)、テトラフルオロエチレン−パーフ
ルオロアルキルビニルエーテル共重合体、パーフルオロ
スルホン酸等などが挙げられる。
Any electrically conductive material may be used as the electrically conductive material. For example, carbon black such as furnace black, channel black, and acetylene black known as carbon materials, activated carbon, graphite, and various metals can be used. . Examples of the hydrophobic resin binder include various resins containing fluorine, such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and perfluorosulfonic acid.

【0029】疎水性樹脂結着剤として、プロトン伝導性
ポリマーを用いてもよく、このポリマーは、ポリマー自
体に結着剤としての機能も有しており、触媒層内で触媒
粒子、電導性粒子との充分な安定性のあるマトリックス
を形成させることが可能である。また、固体高分子電解
質膜と接する反対の面に、前記疎水性樹脂結着剤からな
るガス拡散層が設けられていてもよい。
A proton conductive polymer may be used as the hydrophobic resin binder, and this polymer also has a function as a binder in the polymer itself, and in the catalyst layer, the catalyst particles and the conductive particles are contained. It is possible to form a matrix having sufficient stability with Further, a gas diffusion layer made of the hydrophobic resin binder may be provided on the opposite surface in contact with the solid polymer electrolyte membrane.

【0030】触媒の担持量は、触媒層シートを形成した
状態で0.01〜5mg/cm2であり、より好ましく
は0.1〜1mg/cm2であればよい。電気伝導性多
孔質材料は、比表面積として、100〜2000m2
gであることが、充分な透過性を得る上で好ましい。ま
たガス拡散電極の平均細孔直径は、0.01〜1μmで
あることが好ましい。
The supported amount of the catalyst is 0.01 to 5 mg / cm 2 in the state where the catalyst layer sheet is formed, and more preferably 0.1 to 1 mg / cm 2 . The electrically conductive porous material has a specific surface area of 100 to 2000 m 2 /
A value of g is preferable for obtaining sufficient permeability. The average pore diameter of the gas diffusion electrode is preferably 0.01 to 1 μm.

【0031】さらに、本発明では触媒層の少なくとも一
方と固体高分子電解質膜の接する界面に形成させるプロ
トン伝導性ポリマー層を形成してもよい。本発明に係る
燃料電池では、燃料室に水素を供給し、酸化剤室に空気
(酸素)を供給し、下記電極反応により電気を発生させ
る。 燃料極(アノード): H2 → 2H+ + 2e- 酸素極(カソード): 2H+ + 1/2O2 + 2e-
2H2O 固体高分子電解質膜中の酸化アンチモン粒子では、水素
が酸化アンチモン骨格の酸素と結合しているか、水の状
態で存在するか、プロトン(H+)あるいはヒドロニウ
ムイオン(H3+)の状態で存在しているものと思料さ
れる。
Further, in the present invention, a proton conductive polymer layer formed at the interface where at least one of the catalyst layers and the solid polymer electrolyte membrane are in contact may be formed. In the fuel cell according to the present invention, hydrogen is supplied to the fuel chamber, air (oxygen) is supplied to the oxidant chamber, and electricity is generated by the following electrode reaction. A fuel electrode (anode): H 2 → 2H + + 2e - oxygen electrode (cathode): 2H + + 1 / 2O 2 + 2e - →
In the antimony oxide particles in the 2H 2 O solid polymer electrolyte membrane, hydrogen is bonded to oxygen of the antimony oxide skeleton, exists in the state of water, or is a proton (H + ) or hydronium ion (H 3 O +). ) It is thought that it exists in the state of.

【0032】電池反応で生成されたガス状の水や凝縮さ
れた水は、より撥水性の高く、微細な孔を有する層を毛
細管現象によって、速やかに酸素極を通過する。
Gaseous water and condensed water produced by the cell reaction quickly pass through the oxygen electrode through a layer having higher water repellency and fine pores by a capillary phenomenon.

【0033】[0033]

【発明の効果】本発明によると、固体高分子電解質膜
が、有機樹脂膜と、高温保水性能および導電性に優れた
無機プロトン導電性酸化物粒子とから構成されているの
で、長期運転、100℃以上の高温運転した場合にも高
い出力電圧を安定に維持することができる固体高分子電
解質膜型燃料電池を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, the solid polymer electrolyte membrane is composed of an organic resin membrane and inorganic proton conductive oxide particles excellent in high-temperature water retention performance and conductivity, so long-term operation, 100 It is possible to provide a solid polymer electrolyte membrane fuel cell that can stably maintain a high output voltage even when it is operated at a high temperature of ℃ or higher.

【0034】[0034]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0035】[0035]

【実施例1】無機プロトン導電性酸化物粒子として五酸
化アンチモン粒子(平均粒子径10nm、Sb25・2.
5H2O)を用い、濃度がSb25として30重量%のエ
チルアルコール:水=50:50の混合溶媒分散液を調
製した。これに有機樹脂膜としてパーフルオロカーボン
スルホン酸膜(A)(Du Pont社製:Nafion膜 N-11
7、膜厚183μm)を50℃で12時間浸漬し、これ
を取り出した後100℃で12時間乾燥して固体高分子
電解質膜(A)を得た。固体高分子電解質膜(A)中の
五酸化アンチモン粒子の含有量は、重量増加から算出し
て20重量%であった。
EXAMPLE 1 Inorganic proton conductive oxide particles as antimony pentoxide particles (average particle diameter 10nm, Sb 2 O 5 · 2 .
5H 2 O) was used to prepare a mixed solvent dispersion having a concentration of Sb 2 O 5 of 30% by weight of ethyl alcohol: water = 50: 50. As an organic resin film, a perfluorocarbon sulfonic acid film (A) (manufactured by Du Pont: Nafion film N-11)
(7, film thickness 183 μm) was immersed at 50 ° C. for 12 hours, taken out, and dried at 100 ° C. for 12 hours to obtain a solid polymer electrolyte membrane (A). The content of antimony pentoxide particles in the solid polymer electrolyte membrane (A) was 20% by weight calculated from the weight increase.

【0036】また、白金含有量がPtとして40重量%
の白金担持カーボン粒子にエチルアルコール:水=5
0:50の混合溶媒を加えてペースト状とし、これをテ
トラフルオロエチレンで撥水処理したカーボン紙(東レ
(株)製)2枚に、各々白金担持カーボン粒子は0.5
mg/cm2の密度となるように塗布し、100℃で1
2時間乾燥してガス拡散電極(A)2枚を作成した。
The platinum content is 40% by weight as Pt.
Of platinum-supported carbon particles in ethyl alcohol: water = 5
A 0:50 mixed solvent was added to form a paste, and two carbon papers (manufactured by Toray Industries, Inc.) treated with tetrafluoroethylene for water repellency were used.
Apply to a density of mg / cm 2 and apply at 100 ° C for 1
After drying for 2 hours, two gas diffusion electrodes (A) were prepared.

【0037】2枚のガス拡散電極(A)を正極および負
極とし、この両極の間に固体高分子電解質膜(A)を挟
み、150Kg/cm2の加圧下、100℃で5分間ホ
ットプレスし、ガス拡散電極(A)と固体高分子電解質
膜(A)を接合した単位セル(A)を作成した。評価 単位セル(A)を80℃、相対湿度30%で2時間加湿
処理した。ついで、常圧下、80℃、100℃、140
℃の各温度において電流密度0.5A/cm2で50時間
運転し、このときの各温度における出力電圧を測定し
た。
Two gas diffusion electrodes (A) were used as a positive electrode and a negative electrode, and the solid polymer electrolyte membrane (A) was sandwiched between these electrodes, and hot pressed at 100 ° C. for 5 minutes under a pressure of 150 kg / cm 2. A unit cell (A) in which the gas diffusion electrode (A) and the solid polymer electrolyte membrane (A) were joined was prepared. Evaluation The unit cell (A) was humidified at 80 ° C. and 30% relative humidity for 2 hours. Then, under normal pressure, 80 ℃, 100 ℃, 140
At each temperature of ° C, the device was operated at a current density of 0.5 A / cm 2 for 50 hours, and the output voltage at each temperature was measured.

【0038】結果を表1に示す。The results are shown in Table 1.

【0039】[0039]

【実施例2】実施例1と同様にして得た固体高分子電解
質膜(A)を再び五酸化アンチモン粒子分散液に50℃
で12時間浸漬し、これを取り出した後100℃で12
時間乾燥して固体高分子電解質膜(B)を得た。 固体
高分子電解質膜(B)中の五酸化アンチモン粒子の含有
量は、重量増加から35重量%であった。
Example 2 The solid polymer electrolyte membrane (A) obtained in the same manner as in Example 1 was again added to the antimony pentoxide particle dispersion liquid at 50 ° C.
Soak for 12 hours at 100 ° C for 12 hours
It was dried for an hour to obtain a solid polymer electrolyte membrane (B). The content of antimony pentoxide particles in the solid polymer electrolyte membrane (B) was 35% by weight due to the weight increase.

【0040】評価 固体高分子電解質膜(B)を用いた以外は実施例1と同
様にして単位セル(B)を作成し、出力電圧を測定し
た。結果を表1に示す。
Evaluation A unit cell (B) was prepared in the same manner as in Example 1 except that the solid polymer electrolyte membrane (B) was used, and the output voltage was measured. The results are shown in Table 1.

【0041】[0041]

【実施例3】実施例2と同様にして得た固体高分子電解
質膜(B)を再び五酸化アンチモン粒子分散液に50℃
で12時間浸漬し、これを取り出した後100℃で12
時間乾燥して固体高分子電解質膜(C)を得た。固体高
分子電解質膜(C)中の五酸化アンチモン粒子の含有量
は、重量増加から45重量%であった。
Example 3 The solid polymer electrolyte membrane (B) obtained in the same manner as in Example 2 was again added to the antimony pentoxide particle dispersion liquid at 50 ° C.
Soak for 12 hours at 100 ° C for 12 hours
It was dried for an hour to obtain a solid polymer electrolyte membrane (C). The content of antimony pentoxide particles in the solid polymer electrolyte membrane (C) was 45% by weight due to the weight increase.

【0042】評価 固体高分子電解質膜(C)を用いた以外は実施例1と同
様にして単位セル(C)を作成し、出力電圧を測定し
た。結果を表1に示す。
Evaluation A unit cell (C) was prepared in the same manner as in Example 1 except that the solid polymer electrolyte membrane (C) was used, and the output voltage was measured. The results are shown in Table 1.

【0043】[0043]

【実施例4】五酸化アンチモン粒子(平均粒子径40n
m、Sb25・2.5H2O)を用いた以外は実施例1と
同様にして固体高分子電解質膜(D)を得た。 固体高
分子電解質膜(D)中の五酸化アンチモン粒子の含有量
は重量増加から15重量%であった。
Example 4 Antimony Pentoxide Particles (Average Particle Diameter 40n
m, Sb 2 O 5 .2.5H 2 O) was used to obtain a solid polymer electrolyte membrane (D) in the same manner as in Example 1. The content of antimony pentoxide particles in the solid polymer electrolyte membrane (D) was 15% by weight due to the weight increase.

【0044】評価 固体高分子電解質膜(D)を用いた以外は実施例1と同
様にして単位セル(D)を作成し、出力電圧を測定し
た。結果を表1に示す。
Evaluation A unit cell (D) was prepared in the same manner as in Example 1 except that the solid polymer electrolyte membrane (D) was used, and the output voltage was measured. The results are shown in Table 1.

【0045】[0045]

【実施例5】有機樹脂膜としてパーフルオロカーボンス
ルホン酸膜(B)(DuPont 社製:Nafion膜 N-11
5、膜厚127μm)を用いた以外は実施例1と同様に
して固体高分子電解質膜(E)を得た。固体高分子電解
質膜(E)中の五酸化アンチモン粒子の含有量は、重量
増加から25重量%であった。
[Example 5] Perfluorocarbon sulfonic acid film (B) as an organic resin film (manufactured by DuPont: Nafion film N-11)
5, a solid polymer electrolyte membrane (E) was obtained in the same manner as in Example 1 except that the thickness was 127 μm). The content of antimony pentoxide particles in the solid polymer electrolyte membrane (E) was 25% by weight due to the weight increase.

【0046】評価 固体高分子電解質膜(E)を用いた以外は実施例1と同
様にして単位セル(E)を作成し、出力電圧を測定し
た。結果を表1に示す。
Evaluation A unit cell (E) was prepared in the same manner as in Example 1 except that the solid polymer electrolyte membrane (E) was used, and the output voltage was measured. The results are shown in Table 1.

【0047】[0047]

【実施例6】有機樹脂膜としてパーフルオロカーボンス
ルホン酸膜(C)(DuPont 社製:Nafion膜 NE-11
35、膜厚51μm)を用いた以外は実施例1と同様に
して固体高分子電解質膜(F)を得た。固体高分子電解
質膜(F)中の五酸化アンチモン粒子の含有量は重量増
加から15重量%であった。
[Example 6] Perfluorocarbon sulfonic acid film (C) as an organic resin film (manufactured by DuPont: Nafion film NE-11)
35, film thickness 51 μm) was used to obtain a solid polymer electrolyte membrane (F) in the same manner as in Example 1. The content of antimony pentoxide particles in the solid polymer electrolyte membrane (F) was 15% by weight due to the weight increase.

【0048】評価 固体高分子電解質膜(F)を用いた以外は実施例1と同
様にして単位セル(F)を作成し、出力電圧を測定し
た。結果を表1に示す。
Evaluation A unit cell (F) was prepared in the same manner as in Example 1 except that the solid polymer electrolyte membrane (F) was used, and the output voltage was measured. The results are shown in Table 1.

【0049】[0049]

【比較例1】固体高分子電解質膜(G)として五酸化ア
ンチモン粒子を導入することなくパーフルオロカーボン
スルホン酸膜(A)を用いた以外は実施例1と同様にし
て単位セル(G)を作成し、出力電圧を測定した。結果
を表1に示す。
COMPARATIVE EXAMPLE 1 A unit cell (G) was prepared in the same manner as in Example 1 except that the perfluorocarbon sulfonic acid membrane (A) was used as the solid polymer electrolyte membrane (G) without introducing antimony pentoxide particles. Then, the output voltage was measured. The results are shown in Table 1.

【0050】[0050]

【比較例2】固体高分子電解質膜(H)として五酸化ア
ンチモン粒子を導入することなくパーフルオロカーボン
スルホン酸膜(B)を用いた以外は実施例1と同様にし
て単位セル(H)を作成し、出力電圧を測定した。結果
を表1に示す。
[Comparative Example 2] A unit cell (H) was prepared in the same manner as in Example 1 except that the perfluorocarbon sulfonic acid membrane (B) was used as the solid polymer electrolyte membrane (H) without introducing antimony pentoxide particles. Then, the output voltage was measured. The results are shown in Table 1.

【0051】[0051]

【比較例3】固体高分子電解質膜(I)として五酸化ア
ンチモン粒子を導入することなくパーフルオロカーボン
スルホン酸膜(C)を用いた以外は実施例1と同様にし
て単位セル(I)を作成し、出力電圧を測定した。結果
を表1に示す。
Comparative Example 3 A unit cell (I) was prepared in the same manner as in Example 1 except that the perfluorocarbon sulfonic acid membrane (C) was used as the solid polymer electrolyte membrane (I) without introducing antimony pentoxide particles. Then, the output voltage was measured. The results are shown in Table 1.

【0052】[0052]

【表1】 [Table 1]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年11月13日(2002.11.
13)
[Submission Date] November 13, 2002 (2002.11.
13)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】このような燃料電池に用いられる電解質膜
としてはスルホン酸基を有するポリスチレン系の陽イオ
ン交換膜、フルオロカーボンスルホン酸とポリビニリデ
ンフルオライドとの混合膜、フルオロカーボンマトリッ
クスにトリフルオロエチレンをグラフト化した膜、パー
フルオロカーボンスルホン酸膜等が用いられている。し
かしながら、このような有機樹脂膜からなる電解質膜中
のプロトンの移動、すなわち膜のイオン電導度は、膜中
の含水率に依存し、長期運転した場合、あるいは約80
℃以上の高温運転すると、膜内の含水率が低下し、その
結果、イオン電導度が低下し、発生電圧の低下をきたす
などの問題があった。
As an electrolyte membrane used in such a fuel cell, a polystyrene type cation exchange membrane having a sulfonic acid group, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, and a fluorocarbon matrix grafted with trifluoroethylene. The film used is a perfluorocarbon sulfonic acid film or the like. However, the movement of protons in the electrolyte membrane made of such an organic resin membrane, that is, the ionic conductivity of the membrane, depends on the water content in the membrane, and is about 80% after long-term operation.
When ℃ high temperature operation above, the water content is reduced in the membrane, resulting in reduced ion conductivity, there are problems such as causing a decrease in the generation voltage.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Name of item to be corrected] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0037】2枚のガス拡散電極(A)を正極および負
極とし、この両極の間に固体高分子電解質膜(A)を挟
み、150Kg/cm2の加圧下、100℃で5分間ホ
ットプレスし、ガス拡散電極(A)と固体高分子電解質
膜(A)を接合した単位セル(A)を作成した。評価 単位セル(A)を80℃、相対湿度30%で2時間加湿
処理した。ついで、常圧下、80℃、100℃、120
℃、140℃の各温度において電流密度0.5A/cm2
で50時間運転し、このときの各温度における出力電圧
を測定した。
Two gas diffusion electrodes (A) were used as a positive electrode and a negative electrode, and the solid polymer electrolyte membrane (A) was sandwiched between these electrodes, and hot pressed at 100 ° C. for 5 minutes under a pressure of 150 kg / cm 2. A unit cell (A) in which the gas diffusion electrode (A) and the solid polymer electrolyte membrane (A) were joined was prepared. Evaluation The unit cell (A) was humidified at 80 ° C. and 30% relative humidity for 2 hours. Then, under normal pressure, 80 ° C, 100 ° C, 120
Current density of 0.5 A / cm 2 at each temperature of ℃ and 140 ℃
Was operated for 50 hours, and the output voltage at each temperature at this time was measured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小 松 通 郎 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 Fターム(参考) 5H026 AA06 CX05 EE12 EE18 EE19 HH01 HH05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiro Komatsu             No. 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu City, Fukuoka Prefecture             Medium Chemical Industry Co., Ltd. Wakamatsu Factory F term (reference) 5H026 AA06 CX05 EE12 EE18 EE19                       HH01 HH05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】有機樹脂と下記式(1)で表される水和酸
化アンチモン粒子とからなり、該粒子の平均粒子径が5
〜50nmの範囲にあり、水和酸化アンチモン粒子の含
有量が酸化物(Sb25)換算で5〜80重量%の範囲
にあることを特徴とする固体高分子電解質膜。 Sb25・nH2O (1) n=0.1〜5
1. An organic resin and hydrated antimony oxide particles represented by the following formula (1), wherein the particles have an average particle size of 5:
The solid polymer electrolyte membrane is in the range of ˜50 nm, and the content of the hydrated antimony oxide particles is in the range of 5 to 80% by weight in terms of oxide (Sb 2 O 5 ). Sb 2 O 5 · nH 2 O (1) n = 0.1 to 5
【請求項2】前記有機樹脂がポリスチレン系陽イオン交
換樹脂、フルオロカーボンスルホン酸とポリビニリデン
フルオライドとの混合物、フルオロカーボンマトリック
スにトリフルオロエチレンをグラフト化したグラフト共
重合体、パーフルオロカーボンスルホン酸樹脂、フッ化
ビニリデン樹脂、2−ジクロロエチレン樹脂、ポリエチ
レン樹脂、塩化ビニル樹脂、ABS樹脂、AS樹脂、ポ
リカーボネート樹脂、ポリアミド樹脂、ポリイミド樹
脂、メタクリル樹脂からなる群から選ばれる少なくとも
1種であることを特徴とする請求項1に記載の固体高分
子電解質膜。
2. The organic resin is a polystyrene cation exchange resin, a mixture of fluorocarbon sulfonic acid and polyvinylidene fluoride, a graft copolymer in which trifluoroethylene is grafted on a fluorocarbon matrix, a perfluorocarbon sulfonic acid resin, and a fluorocarbon resin. At least one selected from the group consisting of vinylidene chloride resin, 2-dichloroethylene resin, polyethylene resin, vinyl chloride resin, ABS resin, AS resin, polycarbonate resin, polyamide resin, polyimide resin, and methacrylic resin. Item 2. The solid polymer electrolyte membrane according to item 1.
【請求項3】請求項1または2に記載の固体高分子電解
質膜を用いてなることを特徴とする固体高分子電解質膜
型燃料電池。
3. A solid polymer electrolyte membrane fuel cell comprising the solid polymer electrolyte membrane according to claim 1 or 2.
JP2001350596A 2001-11-15 2001-11-15 Solid polymer electrolyte membrane and fuel cell Expired - Lifetime JP4413459B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001350596A JP4413459B2 (en) 2001-11-15 2001-11-15 Solid polymer electrolyte membrane and fuel cell
US10/495,371 US7582373B2 (en) 2001-11-15 2002-11-08 Electrolyte film and fuel cell
PCT/JP2002/011678 WO2003043029A1 (en) 2001-11-15 2002-11-08 Electrolyte film and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350596A JP4413459B2 (en) 2001-11-15 2001-11-15 Solid polymer electrolyte membrane and fuel cell

Publications (2)

Publication Number Publication Date
JP2003151583A true JP2003151583A (en) 2003-05-23
JP4413459B2 JP4413459B2 (en) 2010-02-10

Family

ID=19163067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350596A Expired - Lifetime JP4413459B2 (en) 2001-11-15 2001-11-15 Solid polymer electrolyte membrane and fuel cell

Country Status (1)

Country Link
JP (1) JP4413459B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300135A (en) * 2007-05-30 2008-12-11 Hitachi Ltd Complex electrolyte membrane for fuel cell, manufacturing method thereof, membrane electrode assembly, and fuel cell
JP2009104895A (en) * 2007-10-23 2009-05-14 Hitachi Maxell Ltd Proton conductive composite electrolyte membrane, and membrane electrode assembly and fuel cell using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116252A (en) * 1993-10-21 1995-05-09 Japan Storage Battery Co Ltd Liquid transporting device
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
JP2001035509A (en) * 1999-07-19 2001-02-09 Agency Of Ind Science & Technol Ionic conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116252A (en) * 1993-10-21 1995-05-09 Japan Storage Battery Co Ltd Liquid transporting device
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
JP2001035509A (en) * 1999-07-19 2001-02-09 Agency Of Ind Science & Technol Ionic conductive film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300135A (en) * 2007-05-30 2008-12-11 Hitachi Ltd Complex electrolyte membrane for fuel cell, manufacturing method thereof, membrane electrode assembly, and fuel cell
KR100983089B1 (en) * 2007-05-30 2010-09-17 히다치 막셀 가부시키가이샤 Composite electrolyte membrane for fuel cell and method for preparing the same, membrane electrode assembly and fuel cell
US8163438B2 (en) 2007-05-30 2012-04-24 Hitachi, Ltd. Composite electrolyte membrane, production method thereof, membrane-electrode assembly, and fuel cell
JP2009104895A (en) * 2007-10-23 2009-05-14 Hitachi Maxell Ltd Proton conductive composite electrolyte membrane, and membrane electrode assembly and fuel cell using the same

Also Published As

Publication number Publication date
JP4413459B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
CN110504472B (en) Direct methanol fuel cell membrane electrode for improving catalyst utilization rate and preparation method thereof
JP4522502B2 (en) Gas diffusion electrodes for polymer membrane fuel cells
JP4607708B2 (en) Fuel cell electrode, fuel cell, and fuel cell manufacturing method
JP2000106203A (en) Solid polymer electrolyte membrane, electrode for fuel cell, and solid polymer electrolyte fuel cell
JP2004006306A (en) Fuel cell, electrode for fuel cell and manufacturing method of these
JP4861608B2 (en) Composite electrolyte membrane and fuel cell employing the same
JPH0888007A (en) Solid polymer fuel cell and its electrode
JPH0992293A (en) Electrode for solid polymer, type fuel cell and fuel cell using this electrode
AU2003253438A1 (en) Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell
JP3523484B2 (en) Fuel cell
JP2003151580A (en) Inorganic electrolyte film and inorganic electrolyte film type fuel cell
JPH03184266A (en) Fuel cell with solid electrolyte
KR100578969B1 (en) Electrode for fuel cell and fuel cell comprising same
KR101229597B1 (en) Membrane electrode assembly for fuel cell and Method of preparing the same and Fuel cell comprising the same
JP2003115299A (en) Solid polymer fuel cell
US20070184329A1 (en) Liquid feed fuel cell with orientation-independent fuel delivery capability
JP4407308B2 (en) Method for producing catalyst electrode for direct methanol fuel cell, method for producing membrane electrode assembly for direct methanol fuel cell, and method for producing direct methanol fuel cell
WO2003043029A1 (en) Electrolyte film and fuel cell
JP2008123941A (en) Polyelectrolyte membrane, catalytic electrode, membrane electrode assembly, their manufacturing methods and binder
JP7359077B2 (en) Laminate for fuel cells
JP4413459B2 (en) Solid polymer electrolyte membrane and fuel cell
JP2006221970A (en) Operation method of direct methanol fuel cell
JP2003282097A (en) Proton-conductive membrane for fuel cell and fuel cell equipped with the membrane
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2007103175A (en) Electrode for polymeric fuel cell and polymeric fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term