JPH03184266A - Fuel cell with solid electrolyte - Google Patents

Fuel cell with solid electrolyte

Info

Publication number
JPH03184266A
JPH03184266A JP1323624A JP32362489A JPH03184266A JP H03184266 A JPH03184266 A JP H03184266A JP 1323624 A JP1323624 A JP 1323624A JP 32362489 A JP32362489 A JP 32362489A JP H03184266 A JPH03184266 A JP H03184266A
Authority
JP
Japan
Prior art keywords
electrode
fine particles
catalyst
ion exchange
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1323624A
Other languages
Japanese (ja)
Inventor
Nobukazu Suzuki
鈴木 信和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1323624A priority Critical patent/JPH03184266A/en
Publication of JPH03184266A publication Critical patent/JPH03184266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance the operating performance by allowing a porous catalyst layer to contain fine particles for attaching ion exchange resin to the surface, and thereby securing a sufficient path for material transfer without decreasing the effective reaction area. CONSTITUTION:Catalyst electrodes 2, 3 are formed from a porous substance in which electroconductive fine particles, for ex. carbon fine particles, bearing the catalyst such as Pt, Pd, or alloy thereof are held by a hydrophobic resin binder such as polytetrafluoroethylene. Further, fine particles 21 which bear attached ion exchange resin 22, for ex. perfluorocarbonsulphonic acid resin- Naffion-, is included as an electrode constituent element. Thus a path for material transfer in a gas diffusion electrode can be secured sufficiently without dropping the three-dimensional reaction region, and now it is practicable to move stably the reaction gas to interfere with electrode reaction or reactive products to lead to easy enhancement of the electrode characteristic (reduction of polarization voltage).

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、イオン伝導性固体電解質層を有する燃料電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a fuel cell having an ion-conducting solid electrolyte layer.

(従来の技術) 近年、高効率のエネルギー変換装置として、燃料電池が
注目を集めている。燃料電池は、一般に電極反応に寄与
するイオン種を含む電解質層を、電極反応で変質しない
で電子の授受が行え、かつ反応物質が移行できる正負2
種類の電極によって挟持することによって素電進を形成
し、この素電池の複数を集電板を介して積層することに
よって構成される。上記電極は、起電反応を生じさせる
場所を提供するものであることから、通常多孔質体によ
って構成されており、かつ起電反応に寄与する触媒を含
む触媒電極として使用されている。
(Prior Art) In recent years, fuel cells have attracted attention as highly efficient energy conversion devices. In general, fuel cells have an electrolyte layer containing ionic species that contribute to electrode reactions, which can exchange electrons without being altered by electrode reactions, and which can transfer reactants into positive and negative two-layer electrolyte layers.
It is constructed by sandwiching between different types of electrodes to form an elementary battery, and stacking a plurality of these unit cells via a current collector plate. Since the above-mentioned electrode provides a place where an electromotive reaction occurs, it is usually made of a porous material and is used as a catalytic electrode containing a catalyst that contributes to the electromotive reaction.

このような燃料電池における反応系のフローは、イオン
種が酸性かアルカリ性かで異なり、たとえば酸性の場合
には、以下に示すフローによって反応が進み、(+)極
側で生成物(水)が生ずる。
The flow of the reaction system in such a fuel cell differs depending on whether the ion species is acidic or alkaline. For example, in the case of acidity, the reaction proceeds according to the flow shown below, and the product (water) is produced on the (+) pole side. arise.

負荷e −1〆   ゝ、 (+)極  (−)極 (H+) Ox  →   ←   ←Re (例ニー、、01 +2H” +2e−4H20)l 
    I(例:82−+2)1”+2e−)ところで
、上記したような燃料電池のうち、電解質層をプロトン
伝導性の固体高分子電解質(S。
Load e -1〆 ゝ, (+) pole (-) pole (H+) Ox → ← ←Re (e.g. knee, 01 +2H" +2e-4H20)l
I (Example: 82-+2) 1''+2e-) By the way, among the above-mentioned fuel cells, the electrolyte layer is made of a proton-conducting solid polymer electrolyte (S).

−1id Polymer Electrolyte)
とした燃料電池(以下、SPE燃料電池と記す)は、コ
ンパクトな構造で高出力密度であり、かつ簡略なシステ
ムで運転か可能なことから、宇宙用や車両用の移動用電
源として注目されている。
-1id Polymer Electrolyte)
Fuel cells (hereinafter referred to as SPE fuel cells) have a compact structure, high output density, and can be operated with a simple system, so they are attracting attention as a mobile power source for space applications and vehicles. There is.

このようなSPE燃料電池の性能向上を目的として、(
+)および(−)側の触媒電極に用いられるガス拡散電
極に対して以下のような改良がなされてきた。
In order to improve the performance of such SPE fuel cells, (
The following improvements have been made to the gas diffusion electrodes used for the +) and (-) side catalyst electrodes.

たとえばプロトン伝導体であるパーフルオロカーボンス
ルフオン酸樹脂のようなイオン交換樹脂の溶液をガス拡
散電極に塗布し、該イオン交換樹脂をガス拡散電極中に
含有させることによって、反応領域を電解質層と電極と
の界面のみから三次元的に増大させ、電極性能を向上さ
せる試みがなされている。また、イオン交換樹脂溶液に
触媒金属を含有させ、これとフッ素樹脂懸濁液との混合
酸を電解質膜に塗着させることによって触媒電極を形成
し、同様に反応領域を三次元的に増大させる試み(特開
昭61−295387号公報、同61−295388号
公報参照)なとが検討されてきた。
For example, by applying a solution of an ion exchange resin such as perfluorocarbon sulfonic acid resin, which is a proton conductor, to a gas diffusion electrode and incorporating the ion exchange resin into the gas diffusion electrode, the reaction region is separated from the electrolyte layer and the electrode. Attempts have been made to increase the electrode performance three-dimensionally only from the interface with the electrode. In addition, a catalyst electrode is formed by containing a catalyst metal in an ion exchange resin solution and applying a mixed acid of this and a fluororesin suspension to an electrolyte membrane, and similarly increasing the reaction area three-dimensionally. Attempts have been made (see Japanese Unexamined Patent Publications Nos. 61-295387 and 61-295388).

(発明が解決しようとする課題) 上述したように、プロトン伝導性のイオン交換樹脂を含
有させたガス拡散電極を用いることにより、三次元的な
反応領域を増大でき、これが実効的な反応面積の増大に
つながって、SPE燃料電池の電極性能を向上させるこ
とか可能となる。
(Problems to be Solved by the Invention) As mentioned above, by using a gas diffusion electrode containing a proton-conducting ion exchange resin, the three-dimensional reaction area can be increased, which increases the effective reaction area. As a result, it is possible to improve the electrode performance of SPE fuel cells.

しかしながら、その半面電子伝導性を持たないイオン交
換樹脂が反応サイトを被覆するために、内部抵抗が増大
するという欠点を有していた。また、この反応サイトの
被覆は、電極の細孔構造を狭小にし、電極反応に関与す
る水素や酸素などの反応ガスや水などの反応生成物の物
質移動を阻害することによって、特性低下の要因となっ
ていた。
However, since the reaction sites are coated with an ion exchange resin that does not have electron conductivity, it has the disadvantage that internal resistance increases. In addition, this coating of reaction sites narrows the pore structure of the electrode and inhibits the mass transfer of reaction gases such as hydrogen and oxygen, as well as reaction products such as water, which are involved in electrode reactions, and is a contributing factor to the deterioration of characteristics. It became.

本発明は、このような課題に対処するためになされたも
ので、実効的な反応面積を減少させることなく、充分な
物質移動の通路を確保することによって、性能向上を図
った固体電解質型燃料電池を提供することを目的として
いる。
The present invention was made to address these issues, and is a solid oxide fuel that improves performance by ensuring sufficient mass transfer paths without reducing the effective reaction area. The purpose is to provide batteries.

[発明の構成] (課題を解決するための手段) すなわち本発明の固体電解質型燃料電池は、触媒を担持
した導電性微粒子が疎水性結合剤により保持された多孔
質触媒層を有する一対のガス拡散電極と、これら一対の
ガス拡散電極によって挟持されたイオン伝導性固体電解
質層とを具備する固体電解質型燃料電池において、前記
多孔質触媒層が表面にイオン交換樹脂を付着させた微粒
子を含有することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) That is, the solid oxide fuel cell of the present invention comprises a pair of gaseous catalyst layers having a porous catalyst layer in which conductive fine particles supporting a catalyst are held by a hydrophobic binder. In a solid electrolyte fuel cell comprising a diffusion electrode and an ion-conducting solid electrolyte layer sandwiched between the pair of gas diffusion electrodes, the porous catalyst layer contains fine particles having an ion exchange resin adhered to the surface. It is characterized by

本発明における多孔質触媒層は、イオン交換樹脂を付着
・担持した微粒子を構成要素とし、上記微粒子と触媒を
担持した導電性微粒子とを疎水性結合剤によって多孔質
状に保持したものである。
The porous catalyst layer in the present invention is composed of fine particles to which an ion exchange resin is attached and supported, and the fine particles and conductive fine particles carrying a catalyst are held in a porous state by a hydrophobic binder.

本発明において使用するイオン交換樹脂としては、通常
、種々の電気化学装置(燃料電池、水電解槽、食塩電解
槽など)にイオン交換樹脂膜として用いられているよう
な、耐アルカリ性、耐酸性、耐熱性に冨むものが好まし
い。その中でも特に、含フツ素高分子を骨格とするイオ
ン交換樹脂、たとえばパーフルオロカーボンスルフオン
酸樹脂などが好適である。
The ion exchange resin used in the present invention is usually alkali-resistant, acid-resistant, such as those used as ion exchange resin membranes in various electrochemical devices (fuel cells, water electrolyzers, salt electrolyzers, etc.). Those with high heat resistance are preferred. Among these, ion exchange resins having a skeleton of fluorine-containing polymers, such as perfluorocarbon sulfonic acid resins, are particularly suitable.

また、上記イオン交換樹脂の担持体となる微粒子は、特
にその素材が限定されるものではなく、有機材料、無機
材料のいずれをも使用することが可能であるが、たとえ
ばナイロン12(商品名)やスチレン系樹脂などの耐薬
品性を有する有機樹脂からなる粒径1〜100μm程度
の粒子が好ましい。
Furthermore, the material of the fine particles that serve as a support for the ion exchange resin is not particularly limited, and both organic and inorganic materials can be used; for example, nylon 12 (trade name) Particles having a particle size of about 1 to 100 μm are preferably made of an organic resin having chemical resistance such as a styrene resin or a styrene resin.

上記微粒子にイオン交換樹脂を付着させる方法としては
、イオン交換樹脂を溶液化し、デイ・ツブ法や濾過法と
いった一般的な被覆方法を用いることが可能であり、こ
れらにより容易に付着・担持させることができる。
As a method for attaching the ion exchange resin to the above-mentioned fine particles, it is possible to make the ion exchange resin into a solution and use a general coating method such as a dipping method or a filtration method. I can do it.

このようなイオン交換樹脂を担持した微粒子は、多孔質
触媒層中に1〜10重量%重量%側合で含有させること
が好ましい。このイオン交換樹脂を担持した微粒子の含
有量が(重量%未満ては反応領域を充分に増大させるこ
とができず、また10重量%を超えると内部抵抗が増大
して電極特性を逆に低下させてしまう。
It is preferable that such fine particles carrying an ion exchange resin be contained in the porous catalyst layer in an amount of 1 to 10% by weight. If the content of the fine particles supporting this ion exchange resin is less than (wt%), the reaction area cannot be sufficiently increased, and if it exceeds 10 wt%, the internal resistance will increase and the electrode properties will deteriorate. It ends up.

(作 用) 本発明の固体電解質型燃料電池においては、多孔質触媒
層内にイオン交換樹脂を付着させた微粒子を構成成分と
して含有させている。これにより、三次元的な反応領域
を低下させることなく、ガス拡散電極中の物質移動に要
する通路を充分に確保することができ、電極反応に関与
する反応ガスや反応生成物を安定して移動させることが
可能となる。したがって、電極特性の向上(分極電圧低
減)か容易に図れる。
(Function) In the solid oxide fuel cell of the present invention, fine particles to which an ion exchange resin is attached are contained in the porous catalyst layer as a constituent component. This makes it possible to secure sufficient passages for mass transfer within the gas diffusion electrode without reducing the three-dimensional reaction area, allowing stable movement of reaction gases and reaction products involved in electrode reactions. It becomes possible to do so. Therefore, improvement in electrode characteristics (reduction in polarization voltage) can be easily achieved.

(実施例) 以下、本発明の固体電解質型燃料電池をSPE燃料電池
に適用した実施例について図面を参照にして説明する。
(Example) Hereinafter, an example in which the solid oxide fuel cell of the present invention is applied to an SPE fuel cell will be described with reference to the drawings.

第1図は、本発明の一実施例のSPE燃料電池の要部を
示す断面図である。同図中、1はイオン伝導性を有する
固体電解質膜であり、たとえばパーフルオロカーボンス
ルフオン酸樹脂・ナフィオン(商品名、デュポン社製)
などのプロトン伝導性を有する固体高分子膜によって構
成されている。
FIG. 1 is a sectional view showing essential parts of an SPE fuel cell according to an embodiment of the present invention. In the figure, 1 is a solid electrolyte membrane having ion conductivity, such as perfluorocarbon sulfonic acid resin Nafion (trade name, manufactured by DuPont).
It is composed of a solid polymer membrane with proton conductivity such as.

この電解質膜1の両表面上には、(=)副触媒電極2と
(+)副触媒電極3とか一体的に形成されており、これ
らによって素電池4が構成されている。
On both surfaces of this electrolyte membrane 1, a (=) sub-catalyst electrode 2 and a (+) sub-catalyst electrode 3 are integrally formed, and a unit cell 4 is constituted by these.

これら触媒電極2.3は、多孔質状態のガス拡散電極で
あり、多孔質触媒層とガス拡散層の両方の機能を兼ね備
えるものである。これら触媒電極2.3は、白金、パラ
ジウムあるいはこれらの合金などの触媒を担持した導電
性微粒子たとえばカーボン微粒子をポリテトラフルオロ
エチレンのような疎水性樹脂結合剤により保持した多孔
質体によって構成されており、さらにイオン交換樹脂た
とえばパーフルオロカーボンスルフオン酸樹脂・ナフィ
オンを付着・担持した微粒子を電極構成要素として含ん
でいる。
These catalyst electrodes 2.3 are gas diffusion electrodes in a porous state, and have the functions of both a porous catalyst layer and a gas diffusion layer. These catalyst electrodes 2.3 are composed of a porous body in which conductive fine particles, such as carbon fine particles, carrying a catalyst such as platinum, palladium, or an alloy thereof are held by a hydrophobic resin binder such as polytetrafluoroethylene. The electrode further contains fine particles to which an ion exchange resin, such as perfluorocarbon sulfonic acid resin Nafion, is attached and supported as an electrode component.

また、(−)副触媒電極2の他方の面には、多孔質カー
ボン支持体5を介して、燃料ガスたとえば水素ガスの通
路となる溝6aが形成された導電性物質たとえばカーボ
ンからなる集電板6が配置されている。また、(+)副
触媒電極3の他方の面には、多孔質導電性撥水層7を介
して、酸化剤ガスたとえば酸素ガスの通路となる溝8a
が形成された導電性物質たとえばカーボンからなる集電
板8が配置されている。
Further, on the other surface of the (-) sub-catalyst electrode 2, a current collector made of a conductive material such as carbon is formed with grooves 6a, which serve as passages for fuel gas such as hydrogen gas, through a porous carbon support 5. A plate 6 is arranged. Further, on the other surface of the (+) sub-catalyst electrode 3, a groove 8a that serves as a passage for an oxidant gas, such as oxygen gas, is provided through a porous conductive water-repellent layer 7.
A current collector plate 8 made of a conductive material such as carbon is arranged.

さらに、(+)副触媒電極3に酸化剤ガスを供給すると
、反応生成物たとえば水が(+)側触媒電極3側に生じ
るため、電解液や液状反応生成物の移動通路となるウィ
ック9が、(+)側触媒電極3側の集電板8に設けられ
た溝8a内に形成されている。
Furthermore, when the oxidant gas is supplied to the (+) side catalyst electrode 3, a reaction product such as water is generated on the (+) side catalyst electrode 3, so that the wick 9, which serves as a movement path for the electrolyte and liquid reaction products, is , is formed in a groove 8a provided in the current collector plate 8 on the (+) side catalyst electrode 3 side.

そして、電解質層1、(+)側および(−)副触媒電極
2.3および集電板6.8などによって、燃料電池の電
池ユニット10が構成されている。
The electrolyte layer 1, the (+) and (-) side catalyst electrodes 2.3, the current collector plate 6.8, and the like constitute a fuel cell unit 10.

なお、図中11は上記燃料電池のユニット10を直列に
積層してスタックを構成する場合の電池の作動温度を制
御するための冷却水通路である。
In the figure, reference numeral 11 indicates a cooling water passage for controlling the operating temperature of the fuel cell when the fuel cell units 10 are stacked in series to form a stack.

次に、上記構成のSPE燃料電池の具体例について説明
する。
Next, a specific example of the SPE fuel cell having the above configuration will be described.

実施例1 ます、ナイロンi2からなる平均粒径5〜6μ會の有機
樹脂微粒子の表面に、イオン交換樹脂としてナフィオン
をデイツプ法によって被覆した。得られた微粒子は、第
2図に示すように、有機樹脂微粒子21の表面にイオン
交換樹脂膜22が均一に付着(被覆)されたイオン交換
樹脂付着粒子23であった。
Example 1 First, the surface of organic resin fine particles made of nylon i2 and having an average particle size of 5 to 6 μm was coated with Nafion as an ion exchange resin by a dip method. As shown in FIG. 2, the obtained fine particles were ion exchange resin-attached particles 23 in which an ion exchange resin film 22 was uniformly adhered (coated) to the surface of organic resin fine particles 21.

次に、上記イオン交換樹脂付着微粒子10重量部と、触
媒としての白金が10重量%添加されたカーボンブラッ
ク50重量部と、疎水性樹脂結合剤としてポリテトラフ
ロロエチレン樹脂を分散液で40重量部とに対し、この
分散液の約10倍の水を添加し、これを充分に混合した
後、濾過、乾燥して疎水性樹脂結合剤とイオン交換樹脂
付着微粒子と触媒担持炭素微粒子とが均一に混合された
混合物を得た。
Next, 10 parts by weight of the above ion-exchange resin-attached fine particles, 50 parts by weight of carbon black to which 10% by weight of platinum as a catalyst was added, and 40 parts by weight of a dispersion of polytetrafluoroethylene resin as a hydrophobic resin binder. About 10 times as much water as this dispersion was added, mixed thoroughly, filtered and dried, and the hydrophobic resin binder, ion exchange resin-attached fine particles, and catalyst-supported carbon fine particles were uniformly mixed. A blended mixture was obtained.

次いで、上記混合物をさらに充分に混練して、ポリテト
ラフロロエチレン樹脂を繊維化させて全体が餅状をなす
餅状物を得た。次に、この餅状物をローラでシート化し
て多孔質状態の触媒層シートを作製した。この後、この
触媒層シートを320℃の窒素ガス中で熱処理してガス
拡散電極を得た。
Next, the above mixture was further sufficiently kneaded to fiberize the polytetrafluoroethylene resin to obtain a rice cake-like product having a rice cake-like shape as a whole. Next, this cake-like material was formed into a sheet using a roller to produce a porous catalyst layer sheet. Thereafter, this catalyst layer sheet was heat treated in nitrogen gas at 320°C to obtain a gas diffusion electrode.

このようにして得たガス拡散電極を(+)側および(=
)側の触媒電極2.3として用い、この2枚の触媒電極
2.3で電解質膜1となるナフィオン膜を挟み込み、温
度120℃〜130℃、圧力100kg/e1の条件で
ホットプレスし一体化することにより電極・電解質膜複
合体Aを得た。
The gas diffusion electrode obtained in this way is placed on the (+) side and (=
) side as the catalyst electrode 2.3, the Nafion membrane that will become the electrolyte membrane 1 is sandwiched between these two catalyst electrodes 2.3, and hot pressed at a temperature of 120°C to 130°C and a pressure of 100kg/e1 to integrate them. By doing so, electrode/electrolyte membrane composite A was obtained.

次に、このようにして得た電極・電解質膜複合体Aを素
電池4として用いて、上記構成のSPE燃料電池を組み
立てた。
Next, the electrode/electrolyte membrane composite A thus obtained was used as a unit cell 4 to assemble an SPE fuel cell having the above configuration.

また、本発明との比較として、ナフィオンで被覆した微
粒子を用いない以外は上記実施例1と同様にして作製し
た電極・電解質膜複合体B(比較例1)および上記比較
例1のガス拡散電極にナフィオン溶液を塗布して作製し
た電極・電解質膜複合体C(比較例2)とをそれぞれ用
い、実施例1と同様にしてSPE燃料電池を組み立てた
In addition, as a comparison with the present invention, an electrode/electrolyte membrane composite B (Comparative Example 1) prepared in the same manner as in Example 1 above except that fine particles coated with Nafion were not used, and a gas diffusion electrode of Comparative Example 1 above. An SPE fuel cell was assembled in the same manner as in Example 1 using the electrode/electrolyte membrane composite C (Comparative Example 2) prepared by applying the Nafion solution to the electrode and electrolyte membrane composite C (Comparative Example 2).

これら実施例および比較例のSPE燃料電池の電流・電
圧特性を評価するために、それぞれ運転試験を行った。
In order to evaluate the current/voltage characteristics of the SPE fuel cells of these Examples and Comparative Examples, operational tests were conducted for each.

なお、試験条件は、温度80℃、圧力3aLls燃料ガ
ス/水素、酸化剤ガス/酸素である。
The test conditions were a temperature of 80°C, a pressure of 3aLls, fuel gas/hydrogen, and oxidant gas/oxygen.

その結果を第3図に示す。The results are shown in FIG.

第3図から明らかなように、実施例1によるSPE燃料
電池は、比較例1.2によるSPE燃料電池に比べて、
電流・電圧特性に優れていることか分る。これは、イオ
ン交換樹脂を電極内に存在させる方法として、イオン交
換樹脂膜で被覆した微粒子を電極構成要素として含有さ
せているため、移動物質の通路が充分に確保されたこと
による。
As is clear from FIG. 3, the SPE fuel cell according to Example 1 has a
It can be seen that the current and voltage characteristics are excellent. This is because the method of making the ion exchange resin exist in the electrode includes containing fine particles coated with an ion exchange resin membrane as an electrode component, so that a sufficient path for the transferred substances is ensured.

実施例2 実施例1で作製した疎水性樹脂結合剤とイオン交換樹脂
付着微粒子と触媒担持炭素微粒子とが均一に混合された
混合物に、さらに造孔剤として炭酸水素アンモニウムを
60重量部添加し、均一に混合した。次いで、この混合
物を用いて実施例1と同様にして触媒層シートを作製し
、この触媒層シートに一旦100℃で熱処理を施して造
孔剤を気化させた後、320℃の窒素ガス中で熱処理し
てガス拡散電極を得た。
Example 2 60 parts by weight of ammonium hydrogen carbonate as a pore-forming agent was added to the homogeneous mixture of the hydrophobic resin binder, ion exchange resin-attached fine particles, and catalyst-supported carbon fine particles prepared in Example 1. Mixed evenly. Next, a catalyst layer sheet was prepared using this mixture in the same manner as in Example 1, and this catalyst layer sheet was once heat-treated at 100°C to vaporize the pore-forming agent, and then heated in nitrogen gas at 320°C. A gas diffusion electrode was obtained by heat treatment.

そして、このようにして得たガス拡散電極を用いて実施
例1と同一条件で電極・電解質膜複合体りを作製し、同
様にSPE燃料電池を組み立てた。
Then, using the gas diffusion electrode thus obtained, an electrode/electrolyte membrane composite was produced under the same conditions as in Example 1, and an SPE fuel cell was assembled in the same manner.

このようにして作製したSPE燃料電池の電流・電圧特
性を実施例1と同一条件下で評価したところ、実施例1
のSPE燃料電池とほぼ同じ優れた特性が得られた。
When the current/voltage characteristics of the SPE fuel cell thus prepared were evaluated under the same conditions as in Example 1, it was found that
Almost the same excellent characteristics as the SPE fuel cell were obtained.

なお、上記各実施例では触媒として白金を用いたが、パ
ラジウムや白金とパラジウムとの合金を用いた系につい
ても同様な効果が得られた。
Although platinum was used as the catalyst in each of the above Examples, similar effects were obtained with systems using palladium or an alloy of platinum and palladium.

また、上記実施例では本発明をSPE燃料電池に適用し
た例について説明したが、本発明はこれに限定されるも
のではなく、イオン伝導性固体電解質層を用いる各種燃
料電池に適用可能である。
Further, in the above embodiment, an example in which the present invention is applied to an SPE fuel cell has been described, but the present invention is not limited thereto, and can be applied to various fuel cells using an ion-conductive solid electrolyte layer.

〔発明の効果] 以上説明したように本発明の固体電解質型燃料電池によ
れば、ガス拡散電極中の物質移動に要する通路を十分に
確保した上で、反応領域を三次元的に増大させることを
可能としているため、電極特性を確実に向上させること
が可能となる。
[Effects of the Invention] As explained above, according to the solid oxide fuel cell of the present invention, the reaction area can be increased three-dimensionally while ensuring sufficient passages for mass transfer in the gas diffusion electrode. This makes it possible to reliably improve electrode characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例のSPE燃料電池の要部を
示す断面図、第2図は第1図の燃料電池に使用したイオ
ン交換樹脂膜付着微粒子を説明するための図、第3図は
本発明の実施例および比較例のSPE燃料電池における
電流・電圧特性を示す図である。 1・・・・・・電解質膜、2・・・・・・(−)側触媒
電極、3・・・・・・(+)側触媒電極、4・・・・・
・素電池、5・・・・・・多孔質カーボン支持体、6.
8・・・・・・・・・集電板、7・・・・・多孔質導電
性撥水層、21・・・・・・有機樹脂微粒子、22・・
・・・・イオン交換樹脂膜、23・・・・・・イオン交
換樹脂膜付着微粒子。
FIG. 1 is a sectional view showing essential parts of an SPE fuel cell according to an embodiment of the present invention, FIG. 2 is a diagram for explaining fine particles attached to an ion exchange resin membrane used in the fuel cell of FIG. FIG. 3 is a diagram showing current/voltage characteristics in SPE fuel cells of Examples and Comparative Examples of the present invention. 1... Electrolyte membrane, 2... (-) side catalyst electrode, 3... (+) side catalyst electrode, 4...
- Unit cell, 5...Porous carbon support, 6.
8... Current collector plate, 7... Porous conductive water repellent layer, 21... Organic resin fine particles, 22...
...Ion exchange resin membrane, 23...Ion exchange resin membrane attached fine particles.

Claims (1)

【特許請求の範囲】[Claims] (1)触媒を担持した導電性微粒子が疎水性結合剤によ
り保持された多孔質触媒層を有する一対のガス拡散電極
と、これら一対のガス拡散電極によって挟持されたイオ
ン伝導性固体電解質層とを具備する固体電解質型燃料電
池において、 前記多孔質触媒層が、表面にイオン交換樹脂を付着させ
た微粒子を含有することを特徴とする固体電解質型燃料
電池。
(1) A pair of gas diffusion electrodes having a porous catalyst layer in which conductive fine particles supporting a catalyst are held by a hydrophobic binder, and an ion conductive solid electrolyte layer sandwiched between the pair of gas diffusion electrodes. A solid oxide fuel cell comprising: The porous catalyst layer contains fine particles having an ion exchange resin adhered to the surface thereof.
JP1323624A 1989-12-13 1989-12-13 Fuel cell with solid electrolyte Pending JPH03184266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1323624A JPH03184266A (en) 1989-12-13 1989-12-13 Fuel cell with solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1323624A JPH03184266A (en) 1989-12-13 1989-12-13 Fuel cell with solid electrolyte

Publications (1)

Publication Number Publication Date
JPH03184266A true JPH03184266A (en) 1991-08-12

Family

ID=18156814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323624A Pending JPH03184266A (en) 1989-12-13 1989-12-13 Fuel cell with solid electrolyte

Country Status (1)

Country Link
JP (1) JPH03184266A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163057A (en) * 1992-11-18 1994-06-10 Hakukin Warmers Co Ltd Battery
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
US5346780A (en) * 1991-11-25 1994-09-13 Kabushiki Kaisha Toshiba Fuel cell and method for producing an electrode used therefor
EP0637851A1 (en) * 1993-08-06 1995-02-08 Matsushita Electric Industrial Co., Ltd. Solid polymer type fuel cell and method for manufacturing the same
US5723173A (en) * 1995-01-26 1998-03-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing solid polymer electrolyte fuel cell
US6060187A (en) * 1997-04-22 2000-05-09 Matsushita Electric Industrial Co., Ltd. Solid polymer type fuel cell and method for manufacturing the same
US6746793B1 (en) 1998-06-16 2004-06-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
KR100442827B1 (en) * 1997-08-30 2004-09-18 삼성전자주식회사 Composition for forming catalyst layer and fuel cell using the same to improve oxidation/reduction activity and ion conductivity with reduced amount of platinum catalyst in convenient way
US6916575B2 (en) 2001-03-08 2005-07-12 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346780A (en) * 1991-11-25 1994-09-13 Kabushiki Kaisha Toshiba Fuel cell and method for producing an electrode used therefor
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
JPH06163057A (en) * 1992-11-18 1994-06-10 Hakukin Warmers Co Ltd Battery
JPH0744036B2 (en) * 1992-11-18 1995-05-15 株式会社ハクキン Battery
EP0637851A1 (en) * 1993-08-06 1995-02-08 Matsushita Electric Industrial Co., Ltd. Solid polymer type fuel cell and method for manufacturing the same
US5474857A (en) * 1993-08-06 1995-12-12 Matsushita Electric Industrial Co., Ltd. Solid polymer type fuel cell and method for manufacturing the same
DE19602629C2 (en) * 1995-01-26 2000-09-28 Matsushita Electric Ind Co Ltd Method for producing a fuel cell with a polymer solid electrolyte
US5723173A (en) * 1995-01-26 1998-03-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing solid polymer electrolyte fuel cell
US6060187A (en) * 1997-04-22 2000-05-09 Matsushita Electric Industrial Co., Ltd. Solid polymer type fuel cell and method for manufacturing the same
KR100442827B1 (en) * 1997-08-30 2004-09-18 삼성전자주식회사 Composition for forming catalyst layer and fuel cell using the same to improve oxidation/reduction activity and ion conductivity with reduced amount of platinum catalyst in convenient way
US6746793B1 (en) 1998-06-16 2004-06-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7455703B2 (en) 2000-08-04 2008-11-25 Panasonic Corporation Method for manufacturing polymer electrolyte fuel cell
US6916575B2 (en) 2001-03-08 2005-07-12 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power

Similar Documents

Publication Publication Date Title
US7993791B2 (en) Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
US6465136B1 (en) Membranes, membrane electrode assemblies and fuel cells employing same, and process for preparing
US8389173B2 (en) Method for activating fuel cell
JP4522502B2 (en) Gas diffusion electrodes for polymer membrane fuel cells
JPH05144444A (en) Fuel cell and electrode manufacturing method
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
JP2000058073A (en) Fuel cell
JP2000106203A (en) Solid polymer electrolyte membrane, electrode for fuel cell, and solid polymer electrolyte fuel cell
US8257825B2 (en) Polymer electrode membrane for fuel, and membrane-electrode assembly and fuel cell system comprising the same
US6638659B1 (en) Membrane electrode assemblies using ionic composite membranes
JPH09265993A (en) Solid polymer type fuel cell
JPH03184266A (en) Fuel cell with solid electrolyte
WO2003105265A1 (en) Liquid fuel feed type fuel cell
JP4870360B2 (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
CN100404503C (en) Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell
JP2003115299A (en) Solid polymer fuel cell
CN101978536A (en) Membrane electrode assembly and fuel cell
JP4945887B2 (en) Cell module and solid polymer electrolyte fuel cell
JP2008123941A (en) Polyelectrolyte membrane, catalytic electrode, membrane electrode assembly, their manufacturing methods and binder
JP3608564B2 (en) Fuel cell and manufacturing method thereof
KR100481591B1 (en) Polyelectrolyte nanocomposite membrane and the preparation method thereof and the fuel cell using the prepared polyelectrolyte nanocomposite membrane
JP4779278B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP4413459B2 (en) Solid polymer electrolyte membrane and fuel cell
JPH04218267A (en) Solid electrolyte type fuel cell
JP5313569B2 (en) Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane