JP2003151116A - Magnetic recording medium and magnetic recorder using the same - Google Patents

Magnetic recording medium and magnetic recorder using the same

Info

Publication number
JP2003151116A
JP2003151116A JP2001344017A JP2001344017A JP2003151116A JP 2003151116 A JP2003151116 A JP 2003151116A JP 2001344017 A JP2001344017 A JP 2001344017A JP 2001344017 A JP2001344017 A JP 2001344017A JP 2003151116 A JP2003151116 A JP 2003151116A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
layer
magnetization
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001344017A
Other languages
Japanese (ja)
Inventor
Kazusukatsu Igarashi
万壽和 五十嵐
Fumiko Akagi
文子 赤城
Yoshiyuki Hirayama
義幸 平山
Tomoo Yamamoto
朋生 山本
Hiroshi Tomiyama
大士 富山
Yuzuru Hosoe
譲 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001344017A priority Critical patent/JP2003151116A/en
Publication of JP2003151116A publication Critical patent/JP2003151116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium suitable for high density magnetic recording with high resolution, low noise and small thermal fluctuation, and a mass magnetic storage device realized in using the medium, etc. SOLUTION: In this magnetic recording medium having at least three or more magnetic layers on a non-magnetic substrate, when a magnetic layer which is farthest from the non-magnetic substrate is used as a magnetic layer for recording, a magnetic layer which is father from the non-magnetic substrate next to the layer for recording is used as a magnetic layer for stabilization, and the entire magnetic layers other than the magnetic layer for recording and the magnetic layer for stabilization are used as a group of lower magnetic layers, an AFC type thin film magnetic recording medium has a connection layer made of non-magnetic material or weak magnetic material having nature that makes the magnetization of a contact magnetic layer reverse between the magnetic layer for recording and the magnetic layer for stabilization, and uses a magnetic recording medium, wherein the rearrangement of the magnetic layer for stabilization and the group of lower magnetic layers generally ends within 10 millisecond after recording.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子計算機及び情
報処理装置等に用いられる磁気ディスク装置、ディジタ
ルVTR等の情報家電用の磁気記憶装置及びその磁気記
録媒体に係り、特に、高密度記録を実現する上で好適な
磁気記録媒体およびこれを用いた磁気記憶装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk device used in electronic computers and information processing devices, a magnetic storage device for information home appliances such as digital VTRs, and a magnetic recording medium thereof, and more particularly to high density recording. The present invention relates to a magnetic recording medium suitable for implementation and a magnetic storage device using the same.

【0002】[0002]

【従来の技術】情報機器の記憶(記録)装置には、半導
体メモリと磁性体メモリ等が用いられる。高速アクセス
性の観点から内部記憶装置には半導体メモリが用いら
れ、大容量・低コストかつ不揮発性の観点から外部記録
装置として磁性体メモリが用いられている。磁性体メモ
リの主流は、磁気ディスク装置、及び磁気テープ、磁気
カード装置である。磁気ディスク、磁気テープや磁気カ
ードといった記録媒体に磁気情報を書き込むため、強磁
界を発生する磁気記録部が用いられる。更に、高密度で
記録された磁気情報を再生するため、磁気抵抗現象ない
しは、電磁誘導現象を利用した再生部が用いられる。最
近では、巨大磁気抵抗効果、トンネル型磁気抵抗効果も
検討され始めている。これら機能部は、磁気ヘッドと呼
ばれる入出力用部品に共に設けられている。
2. Description of the Related Art A semiconductor memory, a magnetic memory, or the like is used for a storage (recording) device of information equipment. A semiconductor memory is used as an internal storage device from the viewpoint of high-speed accessibility, and a magnetic memory is used as an external recording device from the viewpoint of large capacity, low cost, and nonvolatility. The mainstream of magnetic memory is a magnetic disk device, a magnetic tape device, and a magnetic card device. In order to write magnetic information on a recording medium such as a magnetic disk, a magnetic tape or a magnetic card, a magnetic recording unit that generates a strong magnetic field is used. Further, in order to reproduce the magnetic information recorded at high density, a reproducing unit utilizing a magnetoresistive phenomenon or an electromagnetic induction phenomenon is used. Recently, the giant magnetoresistive effect and the tunnel type magnetoresistive effect have begun to be examined. These functional units are provided together with an input / output component called a magnetic head.

【0003】図10に磁気ディスク装置の基本構成を示
す。同図(a)は、装置の平面図、(b)は(a)に示
されたA-A'での断面図を示す。記録媒体101は、回転
軸受け104に固定され、モータ100により回転す
る。図10では5枚の磁気ディスク、10本の磁気ヘッ
ドを搭載した例において、磁気ディスク3枚分と磁気ヘ
ッド4本について示したが、磁気ディスク1枚以上、磁
気ヘッド1本以上であれば良い。磁気ヘッド102は、
回転する記録媒体面上を移動する。磁気ヘッドは、アー
ム105を介してロータリアクチュエータ103に支持
される。サスペンション106は、磁気ヘッド102を
記録媒体101に所定の荷重で押しつける機能を有す
る。再生信号の処理及び情報の入出力には、所定の電気
回路が必要である。最近では、EEPRML(Extended Extend
ed Partial Response Maximum Likelihood)、あるいは
これをエンハンスしたMEEPRML(Modified EEPRML)と言っ
た、高密度化時の波形干渉を積極的に活用した信号処理
回路が導入され、高密度化に大きく寄与している。これ
らは、ケース108等に取り付けられる。
FIG. 10 shows the basic structure of a magnetic disk device. 9A is a plan view of the device, and FIG. 9B is a sectional view taken along the line AA ′ shown in FIG. The recording medium 101 is fixed to the rotary bearing 104 and is rotated by the motor 100. Although FIG. 10 shows three magnetic disks and four magnetic heads in an example in which five magnetic disks and ten magnetic heads are mounted, one magnetic disk or more and one magnetic head or more may be used. . The magnetic head 102 is
It moves on the surface of a recording medium that rotates. The magnetic head is supported by the rotary actuator 103 via the arm 105. The suspension 106 has a function of pressing the magnetic head 102 against the recording medium 101 with a predetermined load. A predetermined electric circuit is required for processing the reproduction signal and inputting / outputting information. Recently, EEPRML (Extended Extend
ed Partial Response Maximum Likelihood) or enhanced MEEPRML (Modified EEPRML), which is a signal processing circuit that actively utilizes waveform interference at the time of densification, which greatly contributes to densification. . These are attached to the case 108 or the like.

【0004】磁気ヘッドに搭載される情報の書き込み及
び再生機能部は、例えば図11に示す構造から構成され
る。書き込み部111は、渦巻き型コイル116とこれ
を上下に包みかつ磁気的に結合された磁極117と磁極
118から構成される。磁極117と磁極118は、共
に磁性膜パターンから構成される。再生部112は、磁
気抵抗効果素子113と同素子に定電流を流し、かつ抵
抗変化を検出するための電極119から構成される。こ
れら書き込み部と再生部の間には、磁気的なシールド層
を兼ねる磁極118が設けられている。磁気抵抗効果素
子113の下層にはさらにシールド層115が設けられ
ている。再生分解能は、このシールド層115と磁極
(シールド層兼用)118との間隙長が短いほど大きくな
る。以上の機能部は、前記磁気ヘッドスライダ1110
上に形成されている。
The information writing / reproducing function unit mounted on the magnetic head is constructed, for example, of the structure shown in FIG. The writing unit 111 is composed of a spiral coil 116 and magnetic poles 117 and 118 that are wrapped up and down and are magnetically coupled. Both the magnetic pole 117 and the magnetic pole 118 are composed of magnetic film patterns. The reproducing unit 112 is composed of the magnetoresistive effect element 113 and an electrode 119 for supplying a constant current to the same element and detecting a resistance change. A magnetic pole 118 which doubles as a magnetic shield layer is provided between the writing section and the reproducing section. A shield layer 115 is further provided below the magnetoresistive effect element 113. The reproduction resolution is the shield layer 115 and the magnetic pole.
The shorter the gap length with (also serving as the shield layer) 118, the larger the gap. The above-mentioned functional parts are the same as those of the magnetic head slider 1110.
Formed on.

【0005】磁気記録ディスク装置を大容量化するに
は、図10の記録媒体101に記録される磁化情報を高
密度化すればよい。しかし、従来用いられている磁気記
録媒体は微小な結晶粒子で構成されているため、高記録
密度化に伴い1ビットあたり粒子数が少なくなりノイズ
が大きくなるという問題があった。これに対し、磁性粒
子径を小さくし、磁性粒界での非磁性成分の偏析を促進
して磁性粒子間の相互作用を小さくすることでノイズ低
減を図って来ている。ところが、最近の年率50%以上の
効率でさらに記録密度を高め15Gb/in2程度以上の面記
録密度で記録再生しようとすると、磁性粒子の体積が小
さくなるのに伴い、熱揺らぎによる記録磁化の減衰(熱
減磁)が深刻な問題となっている。これは、媒体を構成
する粒子の磁化が熱で反転させられる現象で、ノイズ低
減のために粒子の径を小さくすると顕著になる。このた
め、岩崎らによって提案された垂直磁気記録法式では、
この熱揺らぎの影響が緩和されることが期待されてい
る。また2000年のIntermag国際会議では、熱減磁抑制対
策として富士通、IBMより、磁性層がRuを介して反強磁
性的に結合した面内媒体(AFC媒体と呼ぶ)が提案され
た。この新しく提案された媒体は、書き込み磁界が大き
くなってしまい、熱減磁抑制メリットが相殺されてしま
う可能性が高いと考えられていた。ここで、図3を用い
て本発明のベースとなる反強磁性結合(AFC)媒体につ
いて説明する。
In order to increase the capacity of the magnetic recording disk device, the density of the magnetization information recorded on the recording medium 101 of FIG. 10 should be increased. However, since the magnetic recording medium used in the past is composed of fine crystal grains, there is a problem that the number of grains per bit decreases and noise increases as the recording density increases. On the other hand, the noise has been reduced by reducing the diameter of the magnetic particles, promoting the segregation of non-magnetic components at the magnetic grain boundaries, and reducing the interaction between the magnetic particles. However, when the recording density is further increased with the recent annual efficiency of 50% or more and the areal recording density of about 15 Gb / in2 or more is attempted, the recording magnetization is attenuated due to thermal fluctuation as the volume of the magnetic particles becomes smaller. (Thermal demagnetization) has become a serious problem. This is a phenomenon in which the magnetization of particles forming the medium is reversed by heat, and becomes remarkable when the particle diameter is reduced to reduce noise. Therefore, in the perpendicular magnetic recording method proposed by Iwasaki et al.
It is expected that the effects of this thermal fluctuation will be mitigated. At the 2000 Intermag International Conference, Fujitsu and IBM proposed an in-plane medium in which the magnetic layer was antiferromagnetically coupled via Ru (called AFC medium) as a measure to suppress thermal demagnetization. It has been considered that this newly proposed medium has a high possibility of canceling the thermal demagnetization suppression merit because the write magnetic field becomes large. An antiferromagnetically coupled (AFC) medium, which is the base of the present invention, will be described with reference to FIG.

【0006】図3は媒体の断面構造を概念的に示したも
のである。非磁性基板15上に形成された安定化磁性層
12、さらに非磁性中間層13を介して形成された記録
磁性層11からなる。非磁性中間層13としてRuを用い
ると、記録磁性層11と安定化磁性層12との間に交換
相互作用が働くようになる。このときの結合エネルギー
Jは、Ru非磁性中間層13の厚さに対して図4に示すよ
うな振動的な変化をする。記録磁性層11の磁化方向と
安定化磁性層12の磁化方向は、交換結合エネルギーJ
が負の値をとるときには反平行に、交換結合エネルギー
Jが正の値をとるときには平行に配置するような交換相
互作用が働く。そこでRu非磁性中間層13の厚さを負値
のピークの厚さに設定することにより、記録磁性層11
の磁化と安定化磁性層12の磁化とを反強磁性的(反平
行)に結合させることが可能となる。
FIG. 3 conceptually shows the sectional structure of the medium. It comprises a stabilizing magnetic layer 12 formed on a non-magnetic substrate 15, and a recording magnetic layer 11 formed via a non-magnetic intermediate layer 13. When Ru is used as the non-magnetic intermediate layer 13, exchange interaction acts between the recording magnetic layer 11 and the stabilizing magnetic layer 12. Binding energy at this time
J makes an oscillatory change as shown in FIG. 4 with respect to the thickness of the Ru nonmagnetic intermediate layer 13. The magnetization direction of the recording magnetic layer 11 and the magnetization direction of the stabilizing magnetic layer 12 are exchange coupling energy J
Is a negative value, the exchange coupling energy
When J takes a positive value, the exchange interaction works such that they are arranged in parallel. Therefore, by setting the thickness of the Ru non-magnetic intermediate layer 13 to the thickness of the negative peak, the recording magnetic layer 11
And the magnetization of the stabilizing magnetic layer 12 can be antiferromagnetically (antiparallelly) coupled.

【0007】記録磁性層11の膜厚と残留磁化の積は、
安定化磁性層12の膜厚と残留磁化の積より大きく採る
ものとする。簡単の為に、記録磁性層11と安定化磁性
層12の飽和磁化Ms、磁気異方性エネルギーKuを同じと
仮定し、記録磁性層11の粒子体積をv1、安定化磁性層
12の粒子体積をv2とする。反強磁性相互作用が十分強
い場合には、大きいほど耐熱揺らぎ性が向上する指標と
なるKβ(=Ku*v/(k*T)、k:ボルツマン定数、T:絶対温
度)値がKu(v1+ v2)/(k*T)となり、記録磁性層11単独
の(Ku*v1)/(k*T)に比べて、安定化磁性層12の持つKβ
値((Ku*v2)/(k*T))だけ大きくなり、熱的に安定とな
る。ところが、記録磁性層11の磁化と安定化磁性層1
2の磁化とが反平行であるため、全体の飽和磁化が実効
的に減少してMs(v1-v2)/v1となるため、磁化を反転させ
る磁界を決定する系の実効的な異方性磁界(2*Ku/Ms)
は、(2*Ku/Ms)*(v1+v2)/(v1-v2)となる。したがって
熱的安定性を得ようとしてv2を大きくすればする程、磁
化の反転磁界が大きくなることが理解される。しかし、
2001年のIntermag国際会議では、反強磁性結合があまり
大きくないAFC媒体では書き込み磁界が大きくならない
ことが報告された。この場合、媒体の実効的なKβ値は
記録磁性層のKβ値にほぼ一致する。ただし、上下層の
磁気特性がほぼ等しいこのAFC媒体では、R/W特性が劣化
しており、同等のR/W特性を得るために全体の膜厚を薄
くすると熱減磁特性の改善効果は極めて小さくなり、熱
揺らぎ特性とR/W特性の両立が困難であった。反強磁性
結合があまり大きくないAFC媒体では、書込み時に記録
磁性層11の磁化と安定化磁性層12の磁化とが平行に
なっているモデルが報告されている。我々は、この反強
磁性結合があまり大きくないAFC媒体において、安定化
磁性層の磁気異方性磁界を記録磁性層の磁気異方性磁界
に比べて小さくすることにより、大きな記録特性の改善
が得られることを提案している。
The product of the film thickness of the recording magnetic layer 11 and the residual magnetization is
It is assumed to be larger than the product of the film thickness of the stabilizing magnetic layer 12 and the residual magnetization. For the sake of simplicity, assuming that the saturation magnetization Ms and the magnetic anisotropy energy Ku of the recording magnetic layer 11 and the stabilizing magnetic layer 12 are the same, the particle volume of the recording magnetic layer 11 is v1, the particle volume of the stabilizing magnetic layer 12 is Is v2. When the antiferromagnetic interaction is sufficiently strong, Kβ (= Ku * v / (k * T), k: Boltzmann's constant, T: absolute temperature), which is an index to improve the thermal fluctuation, is the Ku v1 + v2) / (k * T), which is higher than Kβ of the stabilizing magnetic layer 12 as compared with (Ku * v1) / (k * T) of the recording magnetic layer 11 alone.
The value becomes larger ((Ku * v2) / (k * T)) and becomes thermally stable. However, the magnetization of the recording magnetic layer 11 and the stabilizing magnetic layer 1
Since the magnetization of 2 is anti-parallel, the overall saturation magnetization is effectively reduced to Ms (v1-v2) / v1, so the effective anisotropy of the system that determines the magnetic field that reverses the magnetization. Magnetic field (2 * Ku / Ms)
Is (2 * Ku / Ms) * (v1 + v2) / (v1-v2). Therefore, it is understood that the larger the v2 in order to obtain the thermal stability, the larger the reversal field of the magnetization. But,
At the 2001 Intermag International Conference, it was reported that the write magnetic field did not become large in the AFC medium where antiferromagnetic coupling was not so large. In this case, the effective Kβ value of the medium substantially matches the Kβ value of the recording magnetic layer. However, in this AFC medium in which the magnetic properties of the upper and lower layers are almost the same, the R / W characteristics have deteriorated, and the effect of improving the thermal demagnetization characteristics will not be improved if the overall film thickness is reduced to obtain the same R / W characteristics. It became extremely small, and it was difficult to achieve both thermal fluctuation characteristics and R / W characteristics. A model in which the magnetization of the recording magnetic layer 11 and the magnetization of the stabilizing magnetic layer 12 are parallel to each other during writing has been reported for an AFC medium in which antiferromagnetic coupling is not so large. In the AFC medium in which the antiferromagnetic coupling is not so large, we have made a large improvement in recording characteristics by making the magnetic anisotropy field of the stabilizing magnetic layer smaller than that of the recording magnetic layer. Proposes to be obtained.

【0008】[0008]

【発明が解決しようとする課題】図12を用いて、前記
反強磁性結合があまり大きくないAFC媒体の設計上の注
意点について説明する。図12は、50kfciの記録密度
でAFC媒体に記録した直後からの再生出力の変化を模式
的に示したものである。記録直後は、記録磁性層の磁化
と安定化磁性層の磁化とが平行になっているので大きな
出力が得られている。時間の経過とともに、安定化磁性
層の磁化が反転して記録磁性層の磁化と反平行になって
ゆく(再配列過程)ため、出力が急激に減少する。ただ
し、この間の記録磁性層の磁化はあまり変化していな
い。十分な時間(再配列完了時間)が経過すると、ほと
んどの安定化磁性層の磁化が反転して記録磁性層の磁化
と反平行になるので、再生出力の減少はきわめて緩やか
になる。反強磁性結合磁界によって記録層の磁化の耐熱
安定性が向上したためと考えられる。図中では、記録直
後から一定時間(回転待ち時間)までの間を点線で示し
ている。ここで言う回転待ち時間は、同じヘッドで記録
再生を行う場合における最短待ち時間で、磁気情報が記
録された媒体部分が再生の為にヘッド直下に再び移動し
て来るまでのディスク1回転に必要な時間である。ここ
で、再配列中の再生特性の問題点は、以下の3点であ
る。1)再配列過程における急激な出力変化によりエラ
ーレイトが増加する。2)再配列過程では記録磁性層の
磁化と安定化磁性層の磁化とが平行になっている部分と
反平行になっている部分が混在するため両者の境界にノ
イズが発生し、エラーレイトが増加する。3)記録磁性
層の磁化と安定化磁性層の磁化とが平行になっている部
分では再生実効膜厚が大きいので高記録密度における再
生出力が低下する。したがって、AFC媒体おいては、記
録後、最初に再生する前に、再配列が完了しているよう
に媒体を設計する必要がある。すなわち、再配列完了時
間<回転待ち時間、である。
Problems to be solved by the invention will be described with reference to FIG. 12 for designing an AFC medium in which the antiferromagnetic coupling is not so large. FIG. 12 schematically shows a change in reproduction output immediately after recording on an AFC medium at a recording density of 50 kfci. Immediately after recording, since the magnetization of the recording magnetic layer and the magnetization of the stabilizing magnetic layer are parallel to each other, a large output is obtained. With the passage of time, the magnetization of the stabilizing magnetic layer reverses and becomes antiparallel to the magnetization of the recording magnetic layer (rearrangement process), so that the output sharply decreases. However, the magnetization of the recording magnetic layer during this period has not changed much. When a sufficient time (rearrangement completion time) elapses, the magnetization of most of the stabilizing magnetic layer is inverted and becomes antiparallel to the magnetization of the recording magnetic layer, so that the reduction of the reproduction output becomes extremely gentle. It is considered that the anti-ferromagnetic coupling magnetic field improved the heat resistance stability of the magnetization of the recording layer. In the figure, a dotted line indicates a period from immediately after recording to a certain time (rotation waiting time). The rotation waiting time mentioned here is the shortest waiting time when recording / reproducing is performed with the same head, and is required for one rotation of the disk until the medium portion on which the magnetic information is recorded moves again directly below the head for reproduction. It's a good time. Here, there are the following three problems with the reproduction characteristic during the rearrangement. 1) The error rate increases due to a sudden output change in the rearrangement process. 2) In the rearrangement process, a portion in which the magnetization of the recording magnetic layer and a magnetization in the stabilizing magnetic layer are parallel and a portion in which they are anti-parallel are mixed, so noise is generated at the boundary between the two and the error rate is increased. To increase. 3) Since the reproducing effective film thickness is large in the portion where the magnetization of the recording magnetic layer and the magnetization of the stabilizing magnetic layer are parallel to each other, the reproducing output at high recording density is reduced. Therefore, in the AFC medium, it is necessary to design the medium so that the rearrangement is completed after the recording and before the first reproduction. That is, the rearrangement completion time <rotation waiting time.

【0009】再配列完了時間は、安定化磁性層の膜厚に
依存しており、該安定化磁性層の異方性エネルギーをKu
2(J/m^3)、上面から見た平均粒子直径をD、膜厚をt2と
し、ボルツマン定数をkするとき、Ku2とDの平方とt2の
積をkで除した値(Ku2×D×D×t2/k)を当該安定化磁性
層の耐熱係数とするとき、当該磁性層の耐熱係数が4000
以下となるよう磁性層の厚さt2が設定される必要があ
る。典型的には、 Ku2=160 kJ/m^3、D=9 nmのCoCrPt合
金薄膜では、4.5 nmを上限(臨界膜厚)とする必要があ
る。同様にして、装置性能を示す信号―ノイズ比S/N
は、図1に示すように安定化磁性層の膜厚t2とともに約
4.5nmまでは単調に増加する。安定化磁性層の膜厚が4.
5nmを超えて急に劣化するのは、安定化磁性層の再配列
が再生時点でまだ終了していないため、記録磁性層―安
定化磁性層間の打消しが不十分となり、ノイズが発生し
ているからであると考えられる。
The rearrangement completion time depends on the thickness of the stabilizing magnetic layer, and the anisotropic energy of the stabilizing magnetic layer is set to Ku.
2 (J / m ^ 3), the average particle diameter seen from the top is D, the film thickness is t2, and when the Boltzmann constant is k, the product of the square of Ku2 and D times t2 is divided by k (Ku2 × D × D × t2 / k) is the heat resistance coefficient of the stabilized magnetic layer, the heat resistance coefficient of the magnetic layer is 4000
The thickness t2 of the magnetic layer needs to be set so as to be as follows. Typically, for a CoCrPt alloy thin film with Ku2 = 160 kJ / m ^ 3 and D = 9 nm, 4.5 nm must be the upper limit (critical film thickness). Similarly, the signal-to-noise ratio S / N indicating the device performance
As shown in FIG. 1, together with the thickness t2 of the stabilizing magnetic layer,
It increases monotonically up to 4.5 nm. The thickness of the stabilizing magnetic layer is 4.
The sudden deterioration over 5 nm is due to the fact that the rearrangement of the stabilizing magnetic layer is not yet completed at the time of reproduction, so that the cancellation between the recording magnetic layer and the stabilizing magnetic layer is insufficient, and noise is generated. It is thought to be because there is.

【0010】本発明の目的は、AFC構造媒体における安
定化磁性層の再配列を早めることにより、高分解能、低
ノイズ、かつ熱揺らぎの小さな高密度磁気記録に好適な
磁気記録媒体、及びこの媒体等を用いた場合に実現され
る大容量磁気記憶装置を提供することにある。
It is an object of the present invention to accelerate rearrangement of a stabilizing magnetic layer in an AFC structure medium, which is suitable for high-resolution magnetic recording with high resolution, low noise and small thermal fluctuation, and this medium. Another object of the present invention is to provide a large-capacity magnetic storage device that is realized by using the above.

【0011】[0011]

【課題を解決するための手段】以下、非磁性物質または
弱磁性物質からなる接合層によって隔てられた3層以上
の磁性層を有する面内磁気記録媒体において、該非磁性
基板から最も遠い磁性層を記録磁性層、記録磁性層の次
に該非磁性基板から遠い磁性層を安定化磁性層、該記録
磁性層と該安定化磁性層とを除く他の全ての磁性層を下
層磁性層群と呼ぶことにする。前記目的を実現するた
め、媒体構造、材料、プロセス、及びヘッド等の装置関
係技術に付いて鋭意検討を進め、安定化磁性層の下地に
安定化磁性層の反転を促す下層磁性層群を用いることが
有効であることを発見した。該下層磁性層群は、安定化
磁性層に比べて熱揺らぎの影響を受けやすく設定し、こ
の揺らぎによって安定化磁性層の再配列を促すものであ
る。また、安定化磁性層を弱い強磁性結合を誘発する接
合層によって分断することも、前記目的を実現する極め
て有効な手段であることが分かった。適度に分断された
各磁性層は、熱揺らぎの影響が大きくなり再配列が速く
なるが、記録磁性層の耐熱特性にはほとんど影響が無
い。
Hereinafter, in an in-plane magnetic recording medium having three or more magnetic layers separated by a bonding layer made of a non-magnetic substance or a weak magnetic substance, the magnetic layer farthest from the non-magnetic substrate is The recording magnetic layer, the magnetic layer next to the recording magnetic layer and the magnetic layer farther from the non-magnetic substrate are called stabilizing magnetic layers, and all the magnetic layers other than the recording magnetic layer and the stabilizing magnetic layer are called lower magnetic layer groups. To In order to achieve the above-mentioned object, the present inventors have conducted intensive studies on the device structure technology such as the medium structure, material, process, and head, and use the lower magnetic layer group that promotes the inversion of the stabilizing magnetic layer as the underlayer of the stabilizing magnetic layer. It has been found to be effective. The lower magnetic layer group is set to be more susceptible to thermal fluctuations than the stabilizing magnetic layers, and this fluctuation promotes rearrangement of the stabilizing magnetic layers. It was also found that dividing the stabilizing magnetic layer with a bonding layer that induces weak ferromagnetic coupling is an extremely effective means for achieving the above object. Each magnetic layer, which is appropriately divided, is greatly affected by thermal fluctuations and has a faster rearrangement, but has little effect on the heat resistance of the recording magnetic layer.

【0012】AFC媒体特性の理解と改良には、書込み後
の再配列過程の制御が重要である。書込み直後に記録磁
性層11の磁化と、ほぼ平行であった安定化磁性層12
の磁化とが熱揺らぎの影響で反転し、反平行になる過程
である。熱揺らぎによる反転は確率過程であって、ほと
んどの安定化磁性層の磁性粒子が再配列を完了し、上下
層で反平行な磁化の対となるには有限な時間を要する。
再配列が未完の場合には、残留磁化が大きすぎて再生分
解能が劣化し、熱減磁も大きくなる。再配列完了の推定
には、磁化曲線を調べるのが有効である。
In order to understand and improve the characteristics of the AFC medium, it is important to control the rearrangement process after writing. The stabilizing magnetic layer 12 was almost parallel to the magnetization of the recording magnetic layer 11 immediately after writing.
Is a process in which the magnetization of and is reversed by the influence of thermal fluctuations and becomes antiparallel. The reversal due to thermal fluctuation is a stochastic process, and it takes a finite time for most of the magnetic particles in the stabilizing magnetic layer to complete rearrangement and to form antiparallel magnetization pairs in the upper and lower layers.
When the rearrangement is not completed, the residual magnetization is too large, the reproduction resolution is deteriorated, and the thermal demagnetization is also large. To estimate the completion of rearrangement, it is effective to examine the magnetization curve.

【0013】図5は、従来の2層(記録磁性層と安定化
磁性層)AFC媒体の磁化曲線とその微分を示したもので
ある。媒体のトラック方向に磁界を印加して磁気飽和さ
せた後、磁界を減少させ、さらにこのトラックの逆方向
に磁界を印加して磁気飽和に至らせる過程(M-Hルー
プ)においては、積層された磁性層の各層ごとの磁化が
異なる磁界で反転するのが観察される。図5(a)は、毎
秒300A/mの大きさで磁界を減少させて測定した磁性
層2層からなるAFC媒体のM-Hループの一例を示したもの
である。図の横軸を磁界軸とし、トラック方向を正とし
て示した。図では、逆方向に磁界を印加して磁気飽和に
至らせる後、磁界を大きくしてトラック方向の大きな磁
界で再再度磁気飽和に達するまでの過程を点線で示して
ある。プラスの大きな磁界からマイナスの大きな磁界へ
変化する間に大きく2回に分けて変化しているのが分か
る。1つ目の変化は、プラスの小さな磁界で発生してお
り、磁化の変化量が他方の磁化変化量に比べて小さいこ
とから安定化磁性層の磁化反転に対応していると考えら
れる。マイナスの大きな磁界における磁化の変化は、記
録磁性層の磁化反転に対応する。図5(b)は、図5(a)の
実線のM-Hループを磁界によって微分したものである。
図5(b)では、それぞれの磁化反転に対応したピークが
見られる。図5の例では、磁界が0の残留状態のとき、
安定化磁性層の磁化反転に伴う磁化の変化は消失してお
り、再配列が完了していると考えられる。図6(a)、(b)
は、図5と同じAFC媒体を毎秒30000A/mの大きさで
磁界を減少させて測定したM-Hループとその磁界微分を
示したものである。
FIG. 5 shows the magnetization curve and its derivative of a conventional two-layer (recording magnetic layer and stabilizing magnetic layer) AFC medium. In the process (MH loop) of applying a magnetic field in the track direction of the medium to magnetically saturate it, then decreasing the magnetic field and then applying a magnetic field in the opposite direction of this track to reach magnetic saturation (MH loop), It is observed that the magnetization of each of the layers reverses with different magnetic fields. FIG. 5 (a) shows an example of the MH loop of an AFC medium composed of two magnetic layers measured by reducing the magnetic field at a rate of 300 A / m per second. The horizontal axis of the figure is the magnetic field axis, and the track direction is positive. In the figure, the process of applying a magnetic field in the opposite direction to reach magnetic saturation, and then increasing the magnetic field to reach magnetic saturation again with a large magnetic field in the track direction is shown by a dotted line. It can be seen that during the change from the large positive magnetic field to the large negative magnetic field, it is divided into two large changes. The first change is caused by a small positive magnetic field, and the amount of change in magnetization is smaller than the amount of change in the other magnetization, and is considered to correspond to the magnetization reversal of the stabilizing magnetic layer. The change in magnetization in a large negative magnetic field corresponds to the magnetization reversal of the recording magnetic layer. FIG. 5B is a differentiation of the solid line MH loop of FIG. 5A by a magnetic field.
In FIG. 5B, peaks corresponding to the respective magnetization reversals are seen. In the example of FIG. 5, when the magnetic field is in the residual state of 0,
The change in magnetization due to the reversal of magnetization in the stabilizing magnetic layer has disappeared, and it is considered that the rearrangement is completed. 6 (a), (b)
5 shows an MH loop measured with the same AFC medium as in FIG. 5 at a magnitude of 30,000 A / m / sec and a magnetic field reduced, and its magnetic field derivative.

【0014】図6では、安定化磁性層の磁化反転する磁
界がほぼ0へと移動しているのが分かる。これは磁界の
変化が大きかったために安定化磁性層が磁化反転するタ
イミングが遅れたためと考えられる。これに対して記録
磁性層の磁化反転する磁界は余り大きな変化が見られな
い。この原因は、安定化磁性層の磁化反転が熱揺らぎに
よって確率的に起っているとすると理解しやすい。実
際、毎秒300A/mの磁界減少でも測定温度を約60度
下げることにより、図6とほぼ同じM-Hループが得られ
た。図6では、磁界が0の残留状態のとき、安定化磁性
層の磁化反転は、まだ半分しか終わっていない。この状
態では、残留磁化が大きく、さらに時間とともに大きく
減少する。図6の測定よりもさらに大きな磁界変化、ま
たはより低温での測定では、安定化磁性層の磁化反転す
る磁界がマイナスの値へと移動する。以上のことから、
1)AFC媒体のM-Hループまたはその磁界微分を調べるこ
とにより、再配列の状況が把握できること、2)M-Hル
ープ測定時の磁界掃引速度を一定としても、磁界掃引速
度を変えた場合とほぼ等価な測定温度が存在すること、
が判明した。
In FIG. 6, it can be seen that the magnetic field for reversing the magnetization of the stabilizing magnetic layer has moved to almost zero. It is considered that this is because the timing of the magnetization reversal of the stabilizing magnetic layer was delayed due to the large change in the magnetic field. On the other hand, the magnetic field for reversing the magnetization of the recording magnetic layer does not change so much. The cause of this is easy to understand if the magnetization reversal of the stabilizing magnetic layer occurs stochastically due to thermal fluctuation. In fact, even if the magnetic field was reduced by 300 A / m / sec, by lowering the measurement temperature by about 60 degrees, the same MH loop as in FIG. 6 was obtained. In FIG. 6, when the magnetic field is in the residual state of 0, the magnetization reversal of the stabilizing magnetic layer is only half completed. In this state, the remanent magnetization is large and further decreases with time. In the magnetic field change larger than that in the measurement of FIG. 6 or the measurement at a lower temperature, the magnetic field at which the magnetization reversal of the stabilizing magnetic layer shifts to a negative value. From the above,
1) The state of rearrangement can be grasped by examining the MH loop of the AFC medium or its magnetic field differential. 2) Even if the magnetic field sweep speed during MH loop measurement is constant, it is almost equivalent to the case where the magnetic field sweep speed is changed. The measurement temperature is present,
There was found.

【0015】図6の磁化曲線において安定化磁性層の反
転が終わった段階(磁界)で磁界の変化の向きを逆転さ
せ、マイナーループを形成したのが、図7である。安定
化磁性層がヒステリシスを持っているのが分かる。この
マイナーループは、プラスの磁界方向にシフトしてお
り、マイナーループ中心磁界を通常、反強磁性結合磁界
Hexと呼んでいる。記録磁性層と安定化磁性層の反強磁
性的交換相互作用の大きさJは、Hex/(Ms2*t2)で見積も
られる。ただし、Ms2、t2は、安定化磁性層の飽和磁化
と膜厚である。また、このマイナーループの磁界方向の
差し渡しの半値は、安定化磁性層の保磁力と考えられ
る。メジャーループの磁界方向の差し渡しの半値は、記
録磁性層の保磁力である。安定化磁性層は記録磁性層に
比べて熱揺らぎが大きく、測定温度が変わると保磁力が
大きく変化する。図8は、記録磁性層、安定化磁性層の
保磁力の温度変化を示したものである。これらは、概直
線的に推移しており、200ケルビンおよび100ケル
ビンにおける保磁力を直線で結ぶとほぼ絶対0度にな
る。本測定においては、磁界掃引速度によって200ケ
ルビンおよび100ケルビンにおける保磁力値は変化す
るが、絶対0度における推定値は変らない。この推定値
は、前記異方性磁界に対してほぼ40%の値となってい
た。
In the magnetization curve of FIG. 6, the direction of the change of the magnetic field is reversed at the stage (magnetic field) at which the inversion of the stabilizing magnetic layer is completed, and the minor loop is formed in FIG. It can be seen that the stabilizing magnetic layer has hysteresis. This minor loop is shifted in the positive magnetic field direction, and the minor loop center magnetic field is usually the antiferromagnetic coupling field.
I call it Hex. The magnitude J of the antiferromagnetic exchange interaction between the recording magnetic layer and the stabilizing magnetic layer is estimated by Hex / (Ms2 * t2). However, Ms2 and t2 are the saturation magnetization and the film thickness of the stabilizing magnetic layer. The half value of the crossing of the minor loop in the magnetic field direction is considered to be the coercive force of the stabilizing magnetic layer. The half value across the major loop in the magnetic field direction is the coercive force of the recording magnetic layer. The stabilizing magnetic layer has a larger thermal fluctuation than the recording magnetic layer, and the coercive force greatly changes when the measurement temperature changes. FIG. 8 shows the temperature change of the coercive force of the recording magnetic layer and the stabilizing magnetic layer. These change in a substantially linear manner, and if the coercive forces at 200 Kelvin and 100 Kelvin are connected by a straight line, the absolute value becomes almost 0 degrees. In this measurement, the coercive force values at 200 Kelvin and 100 Kelvin change depending on the magnetic field sweep speed, but the estimated value at absolute 0 degrees does not change. This estimated value was about 40% with respect to the anisotropic magnetic field.

【0016】3層以上の磁性層を有する場合には、磁化
の磁界による微分値が少なくとも3つ以上のピークを持
つ可能性が有る。それぞれのピークに対応した前記過程
における磁化変化量を、値が大きい方から降順にdM1、d
M2、dM3のように呼ぶものとすると、dM1は記録磁性層の
磁化に対応しており、これを与える磁界は、該磁化過程
において最初に磁化された方向の反対方向を向いてい
る。各ピークに対応する磁化の変化量は、図17(b)
に示すような下駄部分と微分曲線とで囲まれた斜線部分
の面積で与えられる。各ピークに対応する磁化の変化量
の総和は、測定媒体を十分飽和した時の磁化量の2倍に
対して、概ね60%から75%の間となる。dM2以下の磁化変
化は、安定化磁性層と下層磁性層群の磁化変化である。
再配列の完了は、該磁化過程において、記録磁性層以外
の磁化磁化変化に対応するピークが全て最初に磁化され
た方向を向いている(ピークがある)ことで確認でき
る。
In the case of having three or more magnetic layers, there is a possibility that the differential value of the magnetization due to the magnetic field has at least three or more peaks. The magnetization variation in the above process corresponding to each peak is dM1, d in descending order from the largest value.
When referred to as M2 and dM3, dM1 corresponds to the magnetization of the recording magnetic layer, and the magnetic field that gives it is in the direction opposite to the direction magnetized first in the magnetization process. The amount of change in magnetization corresponding to each peak is shown in FIG.
It is given by the area of the shaded part surrounded by the geta part and the differential curve as shown in. The total amount of change in magnetization corresponding to each peak is approximately 60% to 75% with respect to twice the amount of magnetization when the measurement medium is sufficiently saturated. The change in magnetization below dM2 is the change in magnetization of the stabilizing magnetic layer and the lower magnetic layer group.
The completion of the rearrangement can be confirmed by the fact that in the magnetization process, all the peaks corresponding to the magnetization magnetization changes in the layers other than the recording magnetic layer are oriented in the direction in which they are magnetized first (there are peaks).

【0017】磁気ディスク装置において書込み直後にデ
ィスクが1回転し、読み取り動作に入るまでの時間を約
10ミリ秒と考え、この時間までに安定化磁性層および下
層磁性層群の磁化反転が終わり再配列が完了する条件に
つき種々のAFC媒体において検討したところ、毎秒30
00A/mの大きさで磁界を変化させる場合には、135ケル
ビンにてM-Hループ測定をし、その磁界微分を取ったと
き、安定化磁性層の下層磁性層群の磁化変化に対応する
ピークを与える磁界が0またはプラスの値であれば良い
ことが分かった。磁界掃引速度を速める場合には、1桁
あたり約30度高い温度で測定すれば良い。
In the magnetic disk device, the time required for the disk to make one rotation immediately after writing and to start the reading operation is about
Assuming that the time is 10 milliseconds, the conditions under which the magnetization reversal of the stabilizing magnetic layer and the lower magnetic layer group is completed and the rearrangement is completed by this time were examined in various AFC media.
When changing the magnetic field with a magnitude of 00 A / m, MH loop measurement is performed at 135 Kelvin, and when the magnetic field differential is taken, the peak corresponding to the magnetization change of the lower magnetic layer group of the stabilizing magnetic layer is obtained. It was found that the applied magnetic field should be 0 or a positive value. When increasing the magnetic field sweep speed, it is sufficient to measure at a temperature about 30 degrees higher per digit.

【0018】また、216ケルビン(ドライアイス温
度)、磁界を毎秒3000A/mの大きさで磁界を変化さ
せて測定する場合、安定化磁性層と下層磁性層群の再配
列が、磁界がゼロとなった時点で完了するという条件で
も、記録後10ミリ秒までに安定化磁性層および下層磁性
層群の磁化反転が終わり再配列が完了する条件と一致す
ることが分かった。これには、前記磁化変化量dM1、dM2
に対応する前記微分ピークをそれぞれピーク1、ピーク
2とし、該ピーク1と該ピーク2の磁界の符号を考慮し
た平均磁界において該磁化曲線に引かれた接線がゼロ磁
界を横切るときの磁化量をMrte、当該磁化曲線のゼロ磁
界における実際の磁化量をMrtaとするとき、両磁化量の
差(Mrte- Mrta)のピーク2の磁化変化量dM2の比((M
rte- Mrta)/ dM2)が、0.05以下であればよい(図
7)。前記磁化曲線においてピーク2の磁化変化量dM2
の95%が変化した時の磁界を特にHx95とすれば、前記
条件は、Hx95>0で与えられる。さらに、該ピーク2を
与える磁界における磁化量をMt2とすると、当該磁化曲
線上において、磁化量(Mt2+0.45×dM2)を与える磁界Hx
と磁化量(Mt2-0.45×dM2)を与える磁界の差ΔHが該ピー
ク2を与える磁界の大きさに比べて1.5倍以下と成って
いるかどうかを調べても良い(図20)。これらは、安
定化磁性層の反転磁界の分散の指標となる。分散が大き
い場合には、臨界膜厚より薄い膜厚からノイズが増大す
る傾向が見られる。
When the magnetic field is measured at 216 Kelvin (dry ice temperature) by changing the magnetic field at a rate of 3000 A / m / s, the rearrangement of the stabilizing magnetic layer and the lower magnetic layer group shows that the magnetic field is zero. It was found that even under the condition that the process was completed at the point when the recording was completed, the magnetization reversal was completed in the stabilizing magnetic layer and the lower magnetic layer group by 10 ms after recording, and the condition that the rearrangement was completed was in agreement. This includes the magnetization change amounts dM1 and dM2
The differential peaks corresponding to are defined as peak 1 and peak 2, respectively, and the magnetization amount when the tangent line drawn on the magnetization curve crosses the zero magnetic field in the average magnetic field considering the signs of the magnetic fields of the peak 1 and the peak 2 is Mrte, where Mrta is the actual magnetization amount in the zero magnetic field of the magnetization curve, the ratio of the magnetization change amount dM2 of the peak 2 of the difference (Mrte-Mrta) between the two magnetization amounts ((M
rte-Mrta) / dM2) should be 0.05 or less (Fig. 7). Magnetization change amount dM2 of peak 2 in the magnetization curve
If the magnetic field when 95% of the change is Hx95, the above condition is given by Hx95> 0. Further, assuming that the magnetization amount in the magnetic field that gives the peak 2 is Mt2, the magnetic field Hx that gives the magnetization amount (Mt2 + 0.45 × dM2) on the magnetization curve.
Then, it may be examined whether or not the difference ΔH in the magnetic field that gives the magnetization amount (Mt2-0.45 × dM2) is 1.5 times or less the magnitude of the magnetic field that gives the peak 2 (FIG. 20). These are indicators of dispersion of the switching magnetic field of the stabilizing magnetic layer. If the dispersion is large, noise tends to increase from a film thickness smaller than the critical film thickness.

【0019】3層以上の磁性層を有する場合に、良好な
書き込み特性を得るには、前記安定化磁性層と前記下層
磁性層群のピークは一致していたほうが良い。このと
き、書き込みバブル(ヘッド磁界による磁化反転領域の
境界)の位置が、該安定化磁性層と該下層磁性層群とで
一致した状態と考えられる。この場合、各磁性層の異方
性磁界は、基板に近いほど小さくする必要がある。ただ
し、記録ヘッドと該安定化磁性層の距離および記録ヘッ
ドと該下層磁性層群の距離が大きく違わない限りにおい
ては、該安定化磁性層と該下層磁性層群との異方性磁界
を一致させても大きな書き込み性能の劣化とはならな
い。
In the case of having three or more magnetic layers, it is preferable that the stabilizing magnetic layer and the lower magnetic layer group have the same peak in order to obtain good writing characteristics. At this time, it is considered that the position of the write bubble (boundary of the magnetization reversal region due to the head magnetic field) is the same in the stabilizing magnetic layer and the lower magnetic layer group. In this case, the anisotropic magnetic field of each magnetic layer needs to be smaller as it is closer to the substrate. However, as long as the distance between the recording head and the stabilizing magnetic layer and the distance between the recording head and the lower magnetic layer group are not significantly different, the anisotropic magnetic fields of the stabilizing magnetic layer and the lower magnetic layer group are the same. Even if it does, it does not cause a large deterioration of the writing performance.

【0020】さらに、記録磁性層に形成された書き込み
バブルに対して、安定化磁性層と下層磁性層群に形成さ
れた書き込みバブルが30nm以上、好ましくは40nmから90
nm外側に有ることによって、さらに良好な書き込み特
性が得られることが、磁化遷移幅のマイクロ磁気シミュ
レーションの結果より明らかとなっている。改善効果が
大きい場合には、磁気異方性の小さな安定化磁性層に形
成される磁化遷移の位置が、記録磁性層の遷移位置より
ヘッド後方に形成されており、安定化磁性層の磁化遷移
からの磁界によって、記録磁性層の遷移位置のヘッド磁
界が変調を受け磁界勾配dH/dxが急峻化されていること
が判明した。記録磁性層の遷移位置と安定化磁性層の遷
移位置との差が磁化遷移幅以上に近づくと、このこの効
果は急速に消失する。記録磁性層と安定化磁性層の絶対
零度における保磁力の推定値の差を磁化遷移幅と磁界勾
配との積で除した値(Hco1Hco2)/(πa×dH/dx)が0.8
より小さい場合には、安定化磁性層の磁化遷移からの磁
界が逆に作用するようになり、磁化遷移幅は急速に増大
する。値(Hco1Hco2)/(πa×dH/dx)が0.9以上1.5以
下であれば、十分なヘッド磁界磁界勾配の急峻化が得ら
れる。値(Hco1Hco2)/(πa×dH/dx)が1.5を越える場
合には記録磁性層の遷移位置と安定化磁性層の遷移位置
との差が大きすぎてヘッド磁界がほとんど変らない。
Further, the write bubbles formed in the stabilizing magnetic layer and the lower magnetic layer group are 30 nm or more, preferably 40 nm to 90 nm with respect to the write bubbles formed in the recording magnetic layer.
It has been clarified from the results of micromagnetic simulation of the magnetization transition width that the better writing characteristics can be obtained by being outside the nm. When the improvement effect is large, the position of the magnetic transition formed in the stabilizing magnetic layer having a small magnetic anisotropy is formed behind the head of the transition position of the recording magnetic layer. It was found that the head magnetic field at the transition position of the recording magnetic layer was modulated and the magnetic field gradient dH / dx was sharpened by the magnetic field from. This effect disappears rapidly when the difference between the transition position of the recording magnetic layer and the transition position of the stabilizing magnetic layer approaches or exceeds the magnetization transition width. The value (Hco1Hco2) / (πa × dH / dx) obtained by dividing the difference between the estimated values of the coercive force at absolute zero between the recording magnetic layer and the stabilizing magnetic layer by the product of the magnetization transition width and the magnetic field gradient is 0.8.
When it is smaller, the magnetic field from the magnetization transition of the stabilizing magnetic layer acts in the opposite direction, and the magnetization transition width increases rapidly. If the value (Hco1Hco2) / (πa × dH / dx) is 0.9 or more and 1.5 or less, a sufficient head magnetic field magnetic field gradient can be obtained. When the value (Hco1Hco2) / (πa × dH / dx) exceeds 1.5, the difference between the transition position of the recording magnetic layer and the transition position of the stabilizing magnetic layer is too large, and the head magnetic field hardly changes.

【0021】安定化磁性層と下層磁性層群に形成された
書き込みバブルの形成位置の前記関係を満たすには、記
録磁性層の異方性磁界に対する安定化磁性層の異方性磁
界の比を0.7以下、さらに望ましくは0.2以上0.6以下と
するのが良い。磁気力顕微鏡(MFM)により、孤立遷移
の磁化遷移幅を観察すると、AFC媒体の安定化磁性層の
磁気異方性磁界Hk2と、記録磁性層の磁気異方性磁界Hk1
との比Hk2/Hk1に応じて磁化遷移幅が変化することが分
かる。単層面内媒体との比較により、比Hk2/Hk1が0.7を
越えると、記録磁性層と同じ膜厚の単層面内媒体より広
いな磁化遷移幅となり好ましくない。さらに、比Hk2/Hk
1が0.2以上0.6以下であれば実効膜厚が同等の単層面内
媒体と同程度の急峻な磁化遷移幅が得られる。磁気力顕
微鏡(MFM)により、孤立遷移の磁化遷移幅を観察する
と、AFC媒体の安定化磁性層の磁気異方性磁界Hk2と、記
録磁性層の磁気異方性磁界Hk1との比Hk2/HkAに応じて磁
化遷移幅が変化する。単層面内媒体との比較により、比
Hk2/Hk1が0.7を越えると、記録磁性層と同じ膜厚の単層
面内媒体より広いな磁化遷移幅となり好ましくない。さ
らに、比Hk2/Hk1が0.2以上0.6以下であれば実効膜厚が
同等の単層面内媒体と同程度の急峻な磁化遷移幅が得ら
れる。
In order to satisfy the above-mentioned relationship of the formation position of the write bubble formed in the stabilizing magnetic layer and the lower magnetic layer group, the ratio of the anisotropic magnetic field of the stabilizing magnetic layer to the anisotropic magnetic field of the recording magnetic layer is set. It is preferably 0.7 or less, more preferably 0.2 or more and 0.6 or less. When the magnetization transition width of the isolated transition is observed by a magnetic force microscope (MFM), the magnetic anisotropy field Hk2 of the stabilizing magnetic layer and the magnetic anisotropy field Hk1 of the recording magnetic layer of the AFC medium are observed.
It can be seen that the magnetization transition width changes according to the ratio Hk2 / Hk1 of In comparison with the single-layer in-plane medium, when the ratio Hk2 / Hk1 exceeds 0.7, the magnetization transition width is wider than in the single-layer in-plane medium having the same film thickness as the recording magnetic layer, which is not preferable. Furthermore, the ratio Hk2 / Hk
If 1 is 0.2 or more and 0.6 or less, a steep magnetization transition width comparable to that of a single-layer in-plane medium having an equivalent effective film thickness can be obtained. When the magnetization transition width of the isolated transition is observed by a magnetic force microscope (MFM), the ratio Hk2 / HkA of the magnetic anisotropy field Hk2 of the stabilizing magnetic layer of the AFC medium to the magnetic anisotropy field Hk1 of the recording magnetic layer is observed. The width of the magnetization transition changes in accordance with. Compared with single layer in-plane media, the ratio
When Hk2 / Hk1 exceeds 0.7, the magnetization transition width is wider than that of the single-layer in-plane medium having the same film thickness as the recording magnetic layer, which is not preferable. Further, when the ratio Hk2 / Hk1 is 0.2 or more and 0.6 or less, a steep magnetization transition width similar to that of a single-layer in-plane medium having an equivalent effective film thickness can be obtained.

【0022】該異方性磁界の比の推定には、100ケル
ビン以上離れた適当な温度、たとえば、216ケルビン
(ドライアイス)と77ケルビン(液体窒素)において測
定された記録磁性層および安定化磁性層の微分ピークを
与える磁界を絶対温度零度に外挿してえられる磁界の値
を、それぞれHxo1およびHxo2とし、Hxo1に対するHxo2の
比を用いれば良い。また、異なる磁界変化、たとえば、
毎秒300A/mおよび毎秒3000A/mで測定された記録
磁性層および安定化磁性層の微分ピークを与える磁界
を、1ナノ秒間にピーク1を与える大きさの磁界だけ変
化する磁界変化量に対数軸上で外挿して求めた磁界の値
を、それぞれHxr1、Hxr2とするとき、Hxr1に対するHxr2
の比を上記異方性の比推定値としても良い。各磁性層の
磁気異方性磁界の測定には、強磁性共鳴法を用いても良
い。磁界を膜面垂直に印加することにより、面内に磁気
異方性軸を持つ媒体の異方性磁界Hkが測定可能となる
(J. Appl. Phys.、Vol. 85、No. 8、4720(1999)。共鳴
周波数をf、磁気回転比をγ、磁性層の飽和磁束密度をB
s、とすると、 式 (2πf/γ)^2=(Hr-Bs)(Hr-Bs-Hk) で与えられる共鳴磁界Hrが各磁性層のHkに対応してえら
れる。各磁性層において、飽和磁束密度と異方性磁界の
組み合わせが異なっていれば、別の共鳴磁界ピークとし
て観測できる。
For estimating the ratio of the anisotropic magnetic field, the recording magnetic layer and the stabilizing magnetic layer measured at an appropriate temperature separated by 100 Kelvin or more, for example, 216 Kelvin (dry ice) and 77 Kelvin (liquid nitrogen). The values of the magnetic field obtained by extrapolating the magnetic field that gives the differential peak of the layer to the absolute temperature zero are Hxo1 and Hxo2, respectively, and the ratio of Hxo2 to Hxo1 may be used. Also, different magnetic field changes, for example,
The magnetic field that gives the differential peak of the recording magnetic layer and the stabilizing magnetic layer measured at 300 A / m / s and 3000 A / m / s is the logarithmic axis to the amount of change in the magnetic field that changes by a magnetic field of a magnitude that gives a peak 1 in 1 nanosecond. When the values of the magnetic field extrapolated above are Hxr1 and Hxr2, Hxr2 for Hxr1
May be used as the estimated value of the anisotropy ratio. The ferromagnetic resonance method may be used to measure the magnetic anisotropy field of each magnetic layer. By applying a magnetic field perpendicular to the film surface, it is possible to measure the anisotropy magnetic field Hk of a medium having an in-plane magnetic anisotropy axis.
(J. Appl. Phys., Vol. 85, No. 8, 4720 (1999). Resonance frequency is f, gyromagnetic ratio is γ, saturation magnetic flux density of magnetic layer is B.
Letting s be, the resonance magnetic field Hr given by the equation (2πf / γ) ^ 2 = (Hr-Bs) (Hr-Bs-Hk) can be obtained corresponding to Hk of each magnetic layer. If the combination of the saturation magnetic flux density and the anisotropic magnetic field is different in each magnetic layer, it can be observed as another resonance magnetic field peak.

【0023】安定化磁性層の再配列は一般に、その厚さ
とともに遅れるものと考えられる。これは図7に示すよ
うに、安定化磁性層膜厚に反比例する反強磁性結合磁界
の減少の影響と、安定化磁性層がヒステリシスを持つよ
うになりマイナーループが生じることによる影響とがあ
る。どちらの影響であっても、上記磁化過程において磁
界をゼロとしたときに、再配列が終了していない場合に
は、安定化磁性層による記録磁下層の打消しが十分にお
こなわれない。図13は、上記磁化過程において磁界を
ゼロとしたときの磁化量を、安定化磁性層の厚さに対し
てプロットしたものの1例を示したものである。記録磁
性層と安定化磁性層の2層からなる従来AFC媒体におい
ては、安定化磁性層の膜厚の増加とともに記録磁性層の
磁化が打ち消されて媒体全体の磁化量が減少するが、約
4.5nmを境として(臨界膜厚)急増に転ずる。4.5nmを超
えると再配列が終了しないことを示している。2層AFC
媒体における安定化磁性層の臨界膜厚tcは、反強磁性結
合の大きさによって多少変化するが、概ね、該安定化磁
性層の異方性エネルギーをKu2(J/m^3)、上面から見た平
均粒子直径をD、ボルツマン定数をkとするとき、Ku2とD
の平方とtcの積をkで除した値(Ku2×D×D ×tc/k)=40
00によって決定される。実際の装置における媒体設計に
おいては、磁気特性等のバラツキを考えて、臨界膜厚よ
り1.5 nm程度薄い値を上限とすべきである。室温の磁化
曲線の測定から得られた臨界膜厚は、ノイズが急増する
膜厚より1〜2ナノメートル程度大きな値が得られる。
The rearrangement of the stabilizing magnetic layer is generally considered to be delayed with its thickness. As shown in FIG. 7, this is due to the effect of a decrease in the antiferromagnetic coupling magnetic field, which is inversely proportional to the thickness of the stabilizing magnetic layer, and the effect of the stabilizing magnetic layer having a hysteresis and causing a minor loop. . Regardless of the influence, when the magnetic field is set to zero in the above-mentioned magnetization process and the rearrangement is not completed, the stabilizing magnetic layer does not sufficiently cancel the recording underlayer. FIG. 13 shows an example of a plot of the amount of magnetization when the magnetic field is zero in the above-described magnetization process, plotted against the thickness of the stabilizing magnetic layer. In a conventional AFC medium composed of two layers, a recording magnetic layer and a stabilizing magnetic layer, the magnetization of the recording magnetic layer is canceled and the amount of magnetization of the entire medium decreases as the thickness of the stabilizing magnetic layer increases.
Bounds at 4.5nm (critical film thickness) and suddenly increases. It indicates that the rearrangement does not end beyond 4.5 nm. 2-layer AFC
The critical film thickness tc of the stabilizing magnetic layer in the medium changes somewhat depending on the size of the antiferromagnetic coupling, but generally, the anisotropic energy of the stabilizing magnetic layer is Ku2 (J / m ^ 3), from the top surface. When the average particle diameter is D and the Boltzmann constant is k, Ku2 and D
The product of the square of x and tc divided by k (Ku2 x D x D x tc / k) = 40
Determined by 00. When designing the medium in an actual device, the upper limit should be a value that is about 1.5 nm thinner than the critical film thickness, considering variations in magnetic properties. The critical film thickness obtained from the measurement of the magnetization curve at room temperature is about 1 to 2 nanometers larger than the film thickness at which noise abruptly increases.

【0024】図13には、本発明の4層AFC媒体におけ
る再配列促進効果の例を重ねて示してある。実効安定化
磁性層厚は、安定化磁性層および下層磁性層(群)の飽
和磁化と膜厚の積の和を安定化磁性層の飽和磁化で除し
たものを用いた。飽和磁化は、各磁性層を単独で10nm
形成した膜の磁化測定より求めたものを用いた。図よ
り、臨界膜厚は、6.5nmまで厚くなったことが分かる。d
M1に対するdM2の比は、臨界膜厚が4.5nmの時の 0.41か
ら、臨界膜厚が6.5nmの時の 0.59へと増大させることが
できた。
FIG. 13 shows an example of the rearrangement promoting effect in the four-layer AFC medium of the present invention. As the effective stabilizing magnetic layer thickness, the sum of the products of the saturation magnetization and the film thickness of the stabilizing magnetic layer and the lower magnetic layer (group) divided by the saturation magnetization of the stabilizing magnetic layer was used. Saturation magnetization of each magnetic layer is 10 nm
The one obtained by measuring the magnetization of the formed film was used. From the figure, it can be seen that the critical film thickness increased to 6.5 nm. d
The ratio of dM2 to M1 could be increased from 0.41 when the critical film thickness was 4.5 nm to 0.59 when the critical film thickness was 6.5 nm.

【0025】記録磁性層と安定化磁性層の間にある接合
層が接する磁性層の磁化を逆向きにする性質を有するた
めには、公知例にもあるようにRu、または、Ir、Rh、C
r、Cu、Reからなる群から選ばれた少なくとも1種の金
属元素を用いるとよい。Rh、Cuは、延性、展性に富む金
属であり、反強磁性結合磁界が最大になる厚さもRu、I
r、Reの約倍の0.8nm程度であるため、厚さむら、ピンホ
ール等による反強磁性結合磁界のディスク面内のバラツ
キが小さく、磁気特性のそろった良質の媒体が得られ
る。また、Ru、Ir、Reは、反強磁性結合磁界が得られる
膜厚の範囲がその平均に比べて広いので、工程管理的に
優れている。非磁性中間層としてCu、Crを用いる場合
は、Co合金磁性膜との格子整合性が良いので記録磁性層
の結晶性、配向性が向上する。Crを用いる場合には、接
する磁性膜、または磁性膜の表面にFeが含まれていると
大きな反強磁性結合磁界が得られて良い。
In order to have the property that the magnetization of the magnetic layer in contact with the junction layer between the recording magnetic layer and the stabilizing magnetic layer is reversed, Ru or Ir, Rh, C
It is preferable to use at least one metal element selected from the group consisting of r, Cu, and Re. Rh and Cu are metals that are highly ductile and malleable, and the thicknesses that maximize the antiferromagnetic coupling field are also Ru and I.
Since it is about 0.8 nm, which is about twice as large as r and Re, variations in the antiferromagnetic coupling magnetic field due to pinholes and the like in the disk surface are small, and a high-quality medium with uniform magnetic characteristics can be obtained. Further, Ru, Ir, and Re are excellent in process control because the range of the film thickness at which the antiferromagnetic coupling magnetic field is obtained is wider than the average. When Cu or Cr is used for the non-magnetic intermediate layer, the lattice matching with the Co alloy magnetic film is good, so that the crystallinity and orientation of the recording magnetic layer are improved. When Cr is used, a large antiferromagnetic coupling magnetic field may be obtained if Fe is contained in the magnetic film in contact or the surface of the magnetic film.

【0026】また、RuとMo、Re、W、Crからなる群から
選ばれた少なくとも1種の金属元素とを含む合金、また
は、RhとPt、Pdから選ばれた少なくとも1種類以上の元
素合金とを含む合金である場合にはRuやRhに他の金属元
素が良く固溶するので結合エネルギーを制御して低下さ
せるのに有用である。AFC媒体の反強磁性結合磁界は、
本発明の実効安定化磁性層厚に反比例して減少する。記
録磁性層または安定化磁性層の接合層に接する領域で同
一磁性層内の他の領域より飽和磁化が大きい領域を設け
ることにより、記録磁性層と安定化磁性層の反強磁性結
合を強化するようなエンハンス構造(特願2000-10707
1)等の併用により、本発明のメリットを十分に引き出
すことができる。安定化磁性層をCoまたはCoを90%以
上含む合金としても良い。また、接合層をRFスハ゜ッタ法で
作成すると大きな反強磁性結合磁界が得られる。DCスハ゜ッ
タ法ではで得られる反強磁性結合磁界はRFスハ゜ッタ法の1/3
程度であるが、MBE法よりも倍大きい。接合層の作成に
は、必要な結合磁界が得られる方式を用いるのが良いま
た、接する磁性層の磁化を逆向きにする性質を有する接
合層が複数有る場合には、互いに他の接合層に含まれな
い元素を含ませることにより、生産工程管理が容易にな
る。
An alloy containing Ru and at least one metal element selected from the group consisting of Mo, Re, W and Cr, or at least one elemental alloy selected from Rh, Pt and Pd In the case of an alloy containing and, other metal elements are well dissolved in Ru and Rh, which is useful for controlling and lowering the binding energy. The antiferromagnetic coupling field of AFC media is
It decreases in inverse proportion to the thickness of the effective stabilizing magnetic layer of the present invention. By providing a region of the recording magnetic layer or the stabilizing magnetic layer which is in contact with the junction layer and has a larger saturation magnetization than other regions in the same magnetic layer, the antiferromagnetic coupling between the recording magnetic layer and the stabilizing magnetic layer is strengthened. Such an enhanced structure (Japanese Patent Application 2000-10707
The combined use of 1) and the like can bring out the full advantage of the present invention. The stabilizing magnetic layer may be made of Co or an alloy containing 90% or more of Co. In addition, a large antiferromagnetic coupling magnetic field can be obtained by forming the bonding layer by the RF sputtering method. The antiferromagnetic coupling magnetic field obtained by the DC sputtering method is 1/3 that of the RF scattering method.
It is about the size, but twice as large as the MBE method. It is preferable to use a method that can obtain a necessary coupling magnetic field for forming the bonding layer. Also, when there are a plurality of bonding layers having the property of reversing the magnetization of the magnetic layers in contact with each other, the other bonding layers should be connected to each other. By including the elements that are not contained, the production process control becomes easy.

【0027】安定化磁性層および下層磁性層群は、Co、
Fe、NiまたはCoを主成分とし、Fe、Ni、Cr、Ta、Pt、P
d、Ruの中から選ばれた少なくとも1種の元素を含む合
金、または加えてB(ボロン)またはO(酸素)を含む合金を
用いると良い。Co、Fe、NiまたはCoを主成分とするFeま
たはNi合金は、飽和磁化が大きく、記録磁性層との実効
的な反強磁性結合を高める働きがある。安定化磁性層形
成時に微量の酸素を導入すると、安定化磁性層が細分化
され、再配列が促進する。また、Coを主成分とし、Cr、
Ta、Pt、Pd、Ruの中から選ばれた少なくとも1種の元素
を含む合金を用いるとき、Co組成を85at%以上にする
と、安定化磁性層内の磁性粒子間の交換相互作用が大き
くなり、反転磁界の幅が小さくなってS/N比が向上す
る。安定化磁性層内の磁性粒子間の交換相互作用が大き
過ぎる場合には、安定化磁性層内の磁化遷移領域が乱れ
るのでS/N比は急に悪くなる。安定化磁性層内の磁性粒
子間の交換相互作用が大きくなり。反強磁性結合を誘導
する接合層の数を奇数とすることにより、下層磁性層群
内での磁化の打消しが十分に行える。
The stabilizing magnetic layer and the lower magnetic layer group are made of Co,
Fe, Ni or Co as the main component, Fe, Ni, Cr, Ta, Pt, P
It is preferable to use an alloy containing at least one element selected from d and Ru or an alloy containing B (boron) or O (oxygen) in addition. Co, Fe, Ni or an Fe or Ni alloy containing Co as a main component has a large saturation magnetization and has a function of enhancing effective antiferromagnetic coupling with the recording magnetic layer. If a small amount of oxygen is introduced at the time of forming the stabilizing magnetic layer, the stabilizing magnetic layer is subdivided and the rearrangement is promoted. Also, with Co as the main component, Cr,
When an alloy containing at least one element selected from Ta, Pt, Pd and Ru is used and the Co composition is 85 at% or more, the exchange interaction between the magnetic particles in the stabilized magnetic layer becomes large. , The width of the reversal magnetic field is reduced and the S / N ratio is improved. If the exchange interaction between the magnetic particles in the stabilizing magnetic layer is too large, the S / N ratio suddenly deteriorates because the magnetization transition region in the stabilizing magnetic layer is disturbed. Exchange interaction between magnetic particles in the stabilized magnetic layer becomes large. By setting the number of junction layers that induce antiferromagnetic coupling to be an odd number, it is possible to sufficiently cancel the magnetization in the lower magnetic layer group.

【0028】下層磁性層群を構成するそれぞれの磁性層
の厚さtiは、基板からi番目の磁性層の異方性エネルギ
ーをKui(J/m^3)、上面から見た平均粒子直径をD、膜厚
をtiとし、ボルツマン定数をkするとき、KuiとDの平方
とtiの積をkで除した値(Kui×D×D ×ti/k)を当該磁
性層の耐熱係数とするとき、当該磁性層の耐熱係数が40
00以下となるよう設定されることによって、下層磁性層
群の再配列が10ミリ秒以下となる。安定化磁性層の磁化
反転を促進する場合には、下層磁性層群の耐熱係数は、
3000以下とすべきである。この場合、下層磁性層群の耐
熱係数は非磁性基板から遠ざかるに従って大きくなるよ
うに設定することにより、非磁性基板から再配列を進め
ることができ、安定な再配列が期待できる。記録磁性層
と下層磁性層群のKuが近い場合には、前記耐熱係数を満
たす条件は、下層磁性層群の各磁性層の膜厚は記録磁性
層の厚さの約0.3倍以下であることである。同様にし
て、非磁性基板から遠ざかるに従って磁性層の厚さを、
厚くすることによって、基板側からの再配列が誘導でき
る。また、下層磁性層群の厚さをほぼ等しくする時に
は、前記Kuの推定式を用いて、Npの80%からNcを引
き、さらにNbの55%を引いた値(0.7×Np-Nc-0.55×N
b)が非磁性基板から遠ざかるに従って小さくなること
によって、基板側からの再配列が誘導できる。
The thickness ti of each magnetic layer constituting the lower magnetic layer group is Kui (J / m ^ 3), which is the anisotropy energy of the i-th magnetic layer from the substrate, and is the average particle diameter seen from the upper surface. When D is the film thickness and ti is the Boltzmann constant, the product of the square of Ku and D and ti is divided by k (Kui x D x D x ti / k) to be the heat resistance coefficient of the magnetic layer. When the heat resistance coefficient of the magnetic layer is 40
By setting it to be 00 or less, the rearrangement of the lower magnetic layer group is 10 milliseconds or less. When promoting the magnetization reversal of the stabilizing magnetic layer, the heat resistance coefficient of the lower magnetic layer group is
Should be 3000 or less. In this case, by setting the heat resistance coefficient of the lower magnetic layer group to increase as the distance from the nonmagnetic substrate increases, the rearrangement can be promoted from the nonmagnetic substrate, and stable rearrangement can be expected. When Ku of the recording magnetic layer and the lower magnetic layer group is close, the condition for satisfying the heat resistance coefficient is that the thickness of each magnetic layer of the lower magnetic layer group is about 0.3 times or less than the thickness of the recording magnetic layer. Is. Similarly, the thickness of the magnetic layer increases with increasing distance from the non-magnetic substrate.
By increasing the thickness, rearrangement from the substrate side can be induced. Further, when making the thicknesses of the lower magnetic layer groups approximately equal, a value obtained by subtracting Nc from 80% of Np, and further subtracting 55% of Nb (0.7 × Np-Nc-0.55, is used by using the above Ku's estimation formula. × N
Since b) becomes smaller with increasing distance from the non-magnetic substrate, rearrangement from the substrate side can be induced.

【0029】各磁性層の磁気異方性エネルギーKuの推定
は、各磁性層の組成を持つ単層(10nm)を作成し、残留
保磁力のパルス時間依存性をVSM測定や逆DC消磁法
より求め、Sharockの式にフィッティングして求めたK
β値やHkの値から関係式Kβ=Ku*v/(kT)やHk=2*Ku/Msを
使って算出すればよい。また、磁性層がCoCrPtB磁性薄
膜である場合には、Crの原子組成をNc、Ptの原子組成を
Np、Bの原子組成をNbとし、式Ku=(4.4-0.18×Nc+0.15
×Np-0.1×Nb)×100000J/m^3から簡易的に算出しても
良い(図22)。
To estimate the magnetic anisotropy energy Ku of each magnetic layer, a single layer (10 nm) having the composition of each magnetic layer was prepared, and the pulse time dependence of the residual coercive force was measured by VSM measurement or inverse DC demagnetization method. K calculated by fitting and fitting to Sharock's formula
It may be calculated from the β value and the value of Hk using the relational expressions Kβ = Ku * v / (kT) and Hk = 2 * Ku / Ms. In addition, when the magnetic layer is a CoCrPtB magnetic thin film, the atomic composition of Cr is set to the atomic composition of Nc and Pt.
The atomic composition of Np and B is Nb, and the formula Ku = (4.4-0.18 × Nc + 0.15
XNp-0.1xNb) x 100000 J / m ^ 3 may be simply calculated (Fig. 22).

【0030】安定化磁性層や下層磁性層群を弱い強磁性
結合を誘発する接合層によって分断することにより、こ
れらの磁性層の耐熱係数を下げることも、再配列を促進
する有効な手段である。弱い強磁性結合の大きさは、接
合層の交換表面結合エネルギーが5/10000J/m^2よ
り小さい時に良好に分断される。RuとNb、Ti、Pd、Pt、
Au、Cu、Pt、Pdからなる群から選ばれた少なくとも1種
の金属元素とを含む合金は、ほとんど固溶しない為、図
4のRuTi合金の結合エネルギーに示すように振動的性質
が失われ、指数関数的な減衰のみが観測されるので、隣
接する磁性層の磁化の向きが略平行な接合層には好適で
ある。特にRuとPtまたはPdの合金は、比較的、接合層膜
厚に対する減少が緩やかで、扱いやすい。
It is also an effective means to accelerate the rearrangement that the heat resistance coefficient of these magnetic layers is lowered by dividing the stabilizing magnetic layer and the lower magnetic layer group by the joining layer which induces weak ferromagnetic coupling. . The weak ferromagnetic coupling magnitude is well decoupled when the exchange surface binding energy of the bonding layer is less than 5/10000 J / m ^ 2. Ru and Nb, Ti, Pd, Pt,
An alloy containing at least one metal element selected from the group consisting of Au, Cu, Pt, and Pd hardly forms a solid solution, so that the vibrational property is lost as shown in the binding energy of the RuTi alloy in FIG. Since only exponential decay is observed, it is suitable for a junction layer in which the magnetization directions of adjacent magnetic layers are substantially parallel. In particular, an alloy of Ru and Pt or Pd has a relatively gradual decrease in the thickness of the bonding layer and is easy to handle.

【0031】磁性体を接合層とする場合には、該接合層
の厚さをtcrとすると交換表面結合エネルギーJは交換
スティフネス定数Aの2倍をtcrで除した値となる。Coを
主成分とし、Fe、Ni、Cr、Ta、Pt、Pd、Ruの中から選ば
れた少なくとも1種の元素を含む合金、または加えてB
(ボロン)またはO(酸素)を含む合金は、組成によって飽
和磁化、Aが変化するので、隣接する磁性層の磁化の向
きが略平行な接合層には好適である。また、Coを主成分
とし、Cr、Ta、Pt、Pd、Ruの中から選ばれた少なくとも
1種の元素を含む合金を用いるとき、Co組成を85at%以
上にすると、安定化磁性層内の磁性粒子間の交換相互作
用が大きくなり、反転磁界の幅が小さくなってS/N比が
向上する。安定化磁性層内の磁性粒子間の交換相互作用
が大き過ぎる場合には、安定化磁性層内の磁化遷移領域
が乱れるのでS/N比は急に悪くなる。接合層として、厚
さが0.1nmから0.4nmまたは1.0nmから1.6nmのRu、また
は、Ir、Rh、Cu、Reからなる群から選ばれた少なくとも
1種の金属元素、または、RuとMo、Re、W、Crからなる
群から選ばれた少なくとも1種の金属元素とを含む合
金、または、RhとPt、Pdから選ばれた少なくとも1種類
以上の元素合金とを含む合金、または、厚さが0.2nmか
ら1.0nmまたは2.5nmから3.2nmのCr、またはCrを主成分
とする合金を用いても隣接する磁性層の磁化の向きが略
平行なとすることができる。
When the magnetic layer is used as the bonding layer, the exchange surface binding energy J is a value obtained by dividing twice the exchange stiffness constant A by tcr, where tcr is the thickness of the bonding layer. An alloy containing Co as a main component and at least one element selected from Fe, Ni, Cr, Ta, Pt, Pd, and Ru, or in addition B
An alloy containing (boron) or O (oxygen) changes the saturation magnetization and A depending on the composition, and is therefore suitable for a junction layer in which the magnetization directions of adjacent magnetic layers are substantially parallel. Further, when an alloy containing Co as a main component and containing at least one element selected from Cr, Ta, Pt, Pd, and Ru is used and the Co composition is 85 at% or more, The exchange interaction between the magnetic particles is increased, the width of the switching magnetic field is reduced, and the S / N ratio is improved. If the exchange interaction between the magnetic particles in the stabilizing magnetic layer is too large, the S / N ratio suddenly deteriorates because the magnetization transition region in the stabilizing magnetic layer is disturbed. As the bonding layer, Ru having a thickness of 0.1 nm to 0.4 nm or 1.0 nm to 1.6 nm, or at least one metal element selected from the group consisting of Ir, Rh, Cu, and Re, or Ru and Mo, An alloy containing at least one metal element selected from the group consisting of Re, W and Cr, or an alloy containing Rh and at least one elemental alloy selected from Pt and Pd, or a thickness However, even if Cr of 0.2 nm to 1.0 nm or 2.5 nm to 3.2 nm or an alloy containing Cr as a main component is used, the magnetization directions of the adjacent magnetic layers can be made substantially parallel.

【0032】安定化磁性層と下層磁性層群を弱い強磁性
結合を誘発する接合層によって分断する場合にも、基板
からi番目の磁性層の異方性エネルギーをKui(J/m^3)、
上面から見た平均粒子直径をD、膜厚をtiとし、ボルツ
マン定数をkするとき、KuiとDの平方とtiの積をkで除し
た値(Kui×D×D ×ti/k)を当該磁性層の耐熱係数とす
るとき、当該磁性層の耐熱係数が4000以下となるよう設
定されることによって、安定化磁性層と下層磁性層群の
再配列が10ミリ秒以下となる。典型的には各磁性層の厚
さは5ナノメートルより設定すればよい。
Even when the stabilizing magnetic layer and the lower magnetic layer group are divided by the joining layer which induces weak ferromagnetic coupling, the anisotropic energy of the i-th magnetic layer from the substrate is Kui (J / m ^ 3). ,
When the average particle diameter viewed from the top is D, the film thickness is ti, and the Boltzmann constant is k, the product of the square of Ku and D and ti is divided by k (Kui × D × D × ti / k). When the heat resistance coefficient of the magnetic layer is set to be 4000 or less, the rearrangement of the stabilizing magnetic layer and the lower magnetic layer group is 10 milliseconds or less. Typically, the thickness of each magnetic layer may be set to 5 nanometers or less.

【0033】安定化磁性層および下層磁性層群が全て略
平行であるような磁気記録媒体において、安定化磁性層
と下層磁性層群の再配列時間がほぼ同じとなるようにす
るには、交換結合磁界の影響を考慮して、安定化磁性層
の耐熱係数を下層磁性層群のうち最も基板に近い磁性層
の耐熱係数に比べて多少大きくする必要がある。安定化
磁性層と下層磁性層群とを全て同じ材料で構成する場合
には、安定化磁性層の厚さが下層磁性層群のうち最も基
板に近い磁性層の厚さに比べて大きくすることで、良好
な記録特性と再生特性が得られる。
In a magnetic recording medium in which the stabilizing magnetic layer and the lower magnetic layer group are substantially parallel to each other, in order to make the rearrangement times of the stabilizing magnetic layer and the lower magnetic layer group approximately the same, exchange is performed. Considering the influence of the coupling magnetic field, it is necessary to make the heat resistance coefficient of the stabilizing magnetic layer slightly larger than that of the magnetic layer closest to the substrate in the lower magnetic layer group. When the stabilizing magnetic layer and the lower magnetic layer group are all made of the same material, the thickness of the stabilizing magnetic layer should be larger than the thickness of the magnetic layer closest to the substrate in the lower magnetic layer group. Thus, good recording characteristics and reproducing characteristics can be obtained.

【0034】安定化磁性層は記録磁性層と反強磁性結合
を誘導する接合層を介して接しており、安定化磁性層の
磁化状態によって記録磁性層の熱減磁が大きく変化す
る。安定化磁性層と記録磁性層の磁化が反平行の場合に
は、AFC効果で記録磁性層の熱減磁が抑制される。安定
化磁性層と記録磁性層の磁化が平行の場合には、逆に記
録磁性層の熱減磁が誘発される。したがって、安定化磁
性層の再配列を下層磁性層群の再配列に先立って速やか
に完了することで、再配列中の記録磁性層の熱減磁を抑
制することが可能となる。安定化磁性層の厚さを、該安
定化磁性層に接する下層磁性層群の厚さに比べて薄くす
るで本目的が達成される。典型的には2ナノメートル以
下とするのが良い。
The stabilizing magnetic layer is in contact with the recording magnetic layer via a bonding layer that induces antiferromagnetic coupling, and the thermal demagnetization of the recording magnetic layer greatly changes depending on the magnetization state of the stabilizing magnetic layer. When the magnetizations of the stabilizing magnetic layer and the recording magnetic layer are antiparallel, the thermal demagnetization of the recording magnetic layer is suppressed by the AFC effect. When the magnetizations of the stabilizing magnetic layer and the recording magnetic layer are parallel, conversely, thermal demagnetization of the recording magnetic layer is induced. Therefore, by quickly completing the rearrangement of the stabilizing magnetic layer prior to the rearrangement of the lower magnetic layer group, it becomes possible to suppress the thermal demagnetization of the recording magnetic layer during the rearrangement. This object is achieved by making the thickness of the stabilizing magnetic layer smaller than the thickness of the lower magnetic layer group in contact with the stabilizing magnetic layer. It is typically good to set it to 2 nanometers or less.

【0035】記録磁性層には通常磁気記録媒体として用
いている、Co-Cr-Pt、Co-Cr-Pt-B、Co-Pt、Fe-Co-Ni合
金等のCo、Fe、Niからなる群から選ばれた少なくとも1
種の金属元素を50at%以上含む結晶質磁性体を用いれば
よい。ただし、従来の単層磁性層媒体より厚めに作成す
る必要が有るので、粒径の拡大を抑制し、粒内の交換相
互作用を下げない配慮が必要となる。また、本発明を用
いて、更なる高記録密度媒体を作成する場合、磁性粒径
に比して記録磁性層の厚さが2倍を超えることが予想さ
れる。このとき、磁性粒内で磁化が一斉回転しないと耐
熱揺らぎ特性が著しく低下する。記録磁性層内の交換ス
ティフネス定数が3ピコJ/mより大きい場合、記録磁性
層の飽和磁化が0.85テスラを超える場合、記録磁性
層のCo組成が83at%を超える場合に本目的が達成され
る。
The recording magnetic layer is composed of Co, Fe and Ni, such as Co-Cr-Pt, Co-Cr-Pt-B, Co-Pt and Fe-Co-Ni alloys, which are usually used as magnetic recording media. At least one selected from the group
A crystalline magnetic body containing 50 at% or more of the seed metal element may be used. However, since it is necessary to make it thicker than the conventional single-layer magnetic layer medium, consideration must be given to suppressing the expansion of the grain size and not lowering the exchange interaction within the grain. Further, when a further high recording density medium is produced by using the present invention, it is expected that the thickness of the recording magnetic layer exceeds twice the magnetic particle size. At this time, if the magnetization does not rotate at the same time in the magnetic grains, the thermal fluctuation characteristics are significantly deteriorated. This object is achieved when the exchange stiffness constant in the recording magnetic layer is larger than 3 pico J / m, the saturation magnetization of the recording magnetic layer exceeds 0.85 Tesla, and the Co composition of the recording magnetic layer exceeds 83 at%. To be done.

【0036】本発明の記録媒体は、記録磁性層の厚さに
対して、該記録磁性層磁化を打ち消す安定化磁性層と下
層磁性層群の合計の厚さが大きいので、記録再生の実効
膜厚を低減することが可能となり、全磁性層の合計値に
対する記録媒体に形成された最小磁化遷移幅の比が1.5
より小さくすることが可能となる。
In the recording medium of the present invention, since the total thickness of the stabilizing magnetic layer for canceling the magnetization of the recording magnetic layer and the lower magnetic layer group is large with respect to the thickness of the recording magnetic layer, an effective film for recording and reproduction is provided. The thickness can be reduced, and the ratio of the minimum magnetic transition width formed on the recording medium to the total value of all magnetic layers is 1.5.
It is possible to make it smaller.

【0037】非磁性基板には、ガラス、NiPメッキAl、
セラミックス、Si、プラスチック等からなる3.5、2.5、
1.8、1径等の円盤状もしくはテープ、カードの形状をし
ており、さらに表面にCr、Mo、W、Ta、V、Nb、Ta、Ti、
Ge、Si、Co、Niからなる群から選ばれた少なくとも1種
の元素を含む、Cr、Mo、W、CrMo、CrTi、CrCo、NiCr、T
a、CoCr、Ta、TiCr、C、Ge、TiNb、非磁性CoCr/CrTi積
層下地、非磁性CoCrTa/CrTi/Cr積層下地等の非磁性層を
形成させることにより、磁性層の結晶粒径、配向性、格
子整合性が制御できる。表面の非磁性層を多層化するこ
とは、制御の自由度が増え、特に熱揺らぎの低減等での
見地で、更に好ましい。
For the non-magnetic substrate, glass, NiP plated Al,
3.5, 2.5 made of ceramics, Si, plastic, etc.
It has a disk shape such as 1.8, 1 diameter, or the shape of a tape or card, and further has Cr, Mo, W, Ta, V, Nb, Ta, Ti, and
Cr, Mo, W, CrMo, CrTi, CrCo, NiCr, T containing at least one element selected from the group consisting of Ge, Si, Co and Ni
a, CoCr, Ta, TiCr, C, Ge, TiNb, non-magnetic CoCr / CrTi laminated underlayer, non-magnetic CoCrTa / CrTi / Cr laminated underlayer, etc. And lattice matching can be controlled. The multilayer structure of the non-magnetic layer on the surface increases the degree of freedom in control, and is more preferable from the viewpoint of reducing thermal fluctuation.

【0038】記録された情報の再生には、巨大磁気抵抗
効果素子あるいは、磁気抵抗効果を示すトンネル接合膜
を用い、実効トラック幅が0.5μm以下である再生素
子を有する磁気ヘッドとを組み合わせて磁気情報の再生
を行う事で、信号処理方式の助けを借りて、装置動作に
必要な20dB以上の装置S/Nが得られ、EEPRMLやMEEPRML、
トレリス符号、ECC等と組み合わせる事で面記録密度50
Gb/in2以上で記録再生する事が出来る。記録部に、飽和
磁束密度が1.8T以上の磁極を用いたヘッドを用いる
ことで、より大きな磁気異方性を有する記録磁性層材料
が使えるようになるので好ましい。ここで、巨大磁気抵
抗効果素子(GMR)、及びトンネル型磁気ヘッドにつ
いては、特開昭61−097906、特開平02−61
572、特開平04−358310、特開平07−33
3015、及び特開平02−148643、02−21
8904号各公報に記載されている技術であり、KrF
ステッパによるリソグラフィ、もしくはFIB加工技術
等を駆使して実効トラック幅が0.5μm以下を実現し
た。
To reproduce the recorded information, a giant magnetoresistive effect element or a tunnel junction film exhibiting a magnetoresistive effect is used in combination with a magnetic head having a reproducing element having an effective track width of 0.5 μm or less. By reproducing the magnetic information, with the help of the signal processing method, a device S / N of 20 dB or more necessary for device operation can be obtained, and EEPRML and MEEPRML,
Areal recording density of 50 when combined with trellis code, ECC, etc.
It is possible to record and reproduce at Gb / in2 or higher. It is preferable to use a head using a magnetic pole having a saturation magnetic flux density of 1.8 T or more in the recording portion because a recording magnetic layer material having greater magnetic anisotropy can be used. Here, the giant magnetoresistive effect element (GMR) and the tunnel type magnetic head are disclosed in JP-A-61-097906 and JP-A-02-61.
572, JP 04-358310 A, JP 07-33 A
3015, and Japanese Patent Laid-Open Nos. 02-148643 and 02-21.
The technology described in each publication of 8904, KrF
An effective track width of 0.5 μm or less was achieved by making full use of lithography with a stepper, FIB processing technology, and the like.

【0039】本発明を用いることにより、磁気異方性の
最適値を規定した前述の安定化磁性層の磁気異方性磁界
を記録磁性層の磁気異方性磁界に比べて小さくする媒体
(特願2001-?(中研)31010410)のメリットを実効安
定化磁性層厚(安定化磁性層および下層磁性層群の飽和
磁化と膜厚の積の和を安定化磁性層の飽和磁化で除した
もの)が厚い領域まで十分に引き出すことができる。こ
れは、磁気異方性エネルギーを小さくすることで再配列
を促進しようとする場合、十分な記録層の耐熱減磁特性
が得られないためである。
By using the present invention, a medium for reducing the magnetic anisotropy field of the above-mentioned stabilizing magnetic layer which defines the optimum value of the magnetic anisotropy as compared with the magnetic anisotropy field of the recording magnetic layer (special characteristics Applicant 2001-? (Chuken) 31010410) The merit of effective stabilizing magnetic layer thickness (the sum of the product of the saturation magnetization and the film thickness of the stabilizing magnetic layer and the lower magnetic layer group is divided by the saturation magnetization of the stabilizing magnetic layer). ) Can be fully pulled out to a thick area. This is because when the magnetic anisotropy energy is reduced to promote rearrangement, sufficient heat-resistant demagnetization characteristics of the recording layer cannot be obtained.

【0040】[0040]

【発明の実施の形態】以下に、本発明の内容を実施例お
よび比較例によって詳細に説明する。 (実施例1)図2を用いて本発明の第1の実施例を述べ
る。図は、本発明を実施した磁気ディスクの概念図であ
る。図2は、図14に示す構成の3層型AFC媒体を非磁
性基板15の両面に作成したものである。本実施例で
は、比較として図3に示すような従来型2層AFC媒体や
図13および図15に示す構成の4層型AFC媒体につい
ても併せて説明する。15はガラス、NiPメッキAl、セ
ラミックス、Si、プラスチック等からなり、3.5、2.5、
1.8、1径等の円盤状もしくはテープ、カード状の非磁性
基板、記録磁性層11は通常磁気記録媒体として用いて
いる、CoCrPtB、CoCrPt、CoCrPtO、CoCrTa、CoNiPt、Co
Pt-SiO2、FeNiCo、CoFeTa、NiTa、CoW、CoNb、GdFeCo、
GdTbFeCo、Fe-N、Co-CoO、Co-Pt合金等のCo、Fe、Niか
らなる群から選ばれた少なくとも1種の金属元素を50at
%以上含む結晶質磁性体、安定化磁性層12および下層
磁性層群21はCo、Fe、NiまたはCoを主成分とし、Fe、
Ni、Cr、Ta、Pt、Pd、Ruの中から選ばれた少なくとも1
種の元素を含む合金、または加えてB(ボロン)またはO
(酸素)を含む合金層である。
BEST MODE FOR CARRYING OUT THE INVENTION The contents of the present invention will be described in detail below with reference to Examples and Comparative Examples. (Embodiment 1) A first embodiment of the present invention will be described with reference to FIG. The figure is a conceptual diagram of a magnetic disk embodying the present invention. FIG. 2 shows the three-layer AFC medium having the structure shown in FIG. 14 formed on both sides of the non-magnetic substrate 15. In this embodiment, as a comparison, a conventional two-layer AFC medium as shown in FIG. 3 and a four-layer AFC medium having the configurations shown in FIGS. 13 and 15 will be described together. 15 is made of glass, NiP plated Al, ceramics, Si, plastic, etc., and is 3.5, 2.5,
The disk-shaped or tape-shaped non-magnetic substrate having a diameter of 1.8, 1 or the like, the card-shaped non-magnetic substrate, and the recording magnetic layer 11 are usually used as a magnetic recording medium. CoCrPtB, CoCrPt, CoCrPtO, CoCrTa, CoNiPt, Co
Pt-SiO2, FeNiCo, CoFeTa, NiTa, CoW, CoNb, GdFeCo,
50at of at least one metal element selected from the group consisting of Co, Fe, and Ni such as GdTbFeCo, Fe-N, Co-CoO, and Co-Pt alloy.
% Of the crystalline magnetic material, the stabilizing magnetic layer 12 and the lower magnetic layer group 21 are mainly composed of Co, Fe, Ni or Co, and Fe,
At least 1 selected from Ni, Cr, Ta, Pt, Pd, Ru
Alloys containing certain elements, or in addition B (boron) or O
An alloy layer containing (oxygen).

【0041】安定化磁性層12や下層磁性層群21にB
(ボロン)またはO(酸素)が含まれていると、磁性粒径が
小さくなりノイズ低減効果が顕著となる。また、安定化
磁性層12および下層磁性層群21としてCoを主成分と
し、Cr、Ta、Pt、Pd、Ruの中から選ばれた少なくとも1
種の元素を含む合金を用いるとき、Co組成を85at%以上
にすると、安定化磁性層内の磁性粒子間の交換相互作用
が大きくなり、反転磁界の幅が小さくなってS/N比が向
上する。非磁性下地層14は、Cr、Mo、W、Ta、V、Nb、
Ta、Ti、Ge、Si、Co、Niからなる群から選ばれた少なく
とも1種の元素を含む、Cr、Mo、W、CrMo、CrTi、CrC
o、NiCr、Ta、CoCr、Ta、TiCr、C、Ge、TiNb、非磁性Co
Cr/CrTi積層下地、非磁性CoCrTa/CrTi/Cr積層下地等の
非磁性層である。非磁性下地層14を多層化することに
より磁性層の結晶粒径、配向性、格子整合性が容易に制
御できる。16はN添加C、H添加C、BN、ZrNbN等
の保護膜、17はOH、NH2等の吸着性、もしくは反応性
の末端基を有するパーフルオロアルキルポリエーテル、
金属脂肪酸等の潤滑剤である。
B is added to the stabilizing magnetic layer 12 and the lower magnetic layer group 21.
When (boron) or O (oxygen) is contained, the magnetic particle size becomes small and the noise reduction effect becomes remarkable. In addition, the stabilizing magnetic layer 12 and the lower magnetic layer group 21 contain Co as a main component and at least one selected from Cr, Ta, Pt, Pd, and Ru.
When using an alloy containing seed elements, if the Co composition is 85 at% or more, the exchange interaction between the magnetic particles in the stabilized magnetic layer becomes large and the width of the reversal magnetic field becomes small, improving the S / N ratio. To do. The non-magnetic underlayer 14 is made of Cr, Mo, W, Ta, V, Nb,
Cr, Mo, W, CrMo, CrTi, CrC containing at least one element selected from the group consisting of Ta, Ti, Ge, Si, Co and Ni
o, NiCr, Ta, CoCr, Ta, TiCr, C, Ge, TiNb, non-magnetic Co
It is a non-magnetic layer such as Cr / CrTi laminated base or non-magnetic CoCrTa / CrTi / Cr laminated base. By making the non-magnetic underlayer 14 multi-layered, the crystal grain size, orientation and lattice matching of the magnetic layer can be easily controlled. 16 is a protective film of N-added C, H-added C, BN, ZrNbN, etc., 17 is a perfluoroalkyl polyether having an adsorptive or reactive end group such as OH and NH2,
Lubricants such as metal fatty acids.

【0042】反強磁性結合を誘導する接合層13にはRu
を用いたが、Ir、Rh、Cr、Cu、Reからなる群から選ばれ
た少なくとも1種の金属元素、または、RuとMo、Re、
W、Crからなる群から選ばれた少なくとも1種の金属元
素とを含む合金、または、RhとPt、Pdから選ばれた少な
くとも1種類以上の元素合金とを含む合金を用いても良
い。弱い強磁性結合を誘導する接合層22にはCo-40at%
Crを用いたが、RuとNb、Ti、Pd、Pt、Au、Cu、Pt、Pdか
らなる群から選ばれた少なくとも1種の金属元素とを含
む合金、または、Coを主成分とし、Fe、Ni、Cr、Ta、P
t、Pd、Ruの中から選ばれた少なくとも1種の元素を含
む合金、または加えてB(ボロン)またはO(酸素)を含む合
金であり、飽和磁化が隣接する磁性層よりも小さな磁性
体を用いても同等の結果が得られた。弱い強磁性結合を
誘導する接合層22にはさらに、厚さが0.1nmから0.4nm
または1.0nmから1.6nmのRu、または、Ir、Rh、Cu、Reか
らなる群から選ばれた少なくとも1種の金属元素、また
は、RuとMo、Re、W、Crからなる群から選ばれた少なく
とも1種の金属元素とを含む合金、または、RhとPt、Pd
から選ばれた少なくとも1種類以上の元素合金とを含む
合金、または、厚さが0.2nmから1.0nmまたは2.5nmから
3.2nmのCr、またはCrを主成分とする合金を用いても良
い。記録磁性層11と非磁性中間層の間にPt組成の低い
材料を用いると反強磁性結合が安定化し、図16に示す
ような飽和磁化の大きな材料を用いると反強磁性結合結
合が強くなる。
Ru is used for the bonding layer 13 that induces antiferromagnetic coupling.
Was used, but at least one metal element selected from the group consisting of Ir, Rh, Cr, Cu, and Re, or Ru and Mo, Re,
An alloy containing at least one metal element selected from the group consisting of W and Cr, or an alloy containing Rh and at least one elemental alloy selected from Pt and Pd may be used. Co-40at% is used for the bonding layer 22 that induces weak ferromagnetic coupling.
Cr was used, but an alloy containing Ru and at least one metal element selected from the group consisting of Nb, Ti, Pd, Pt, Au, Cu, Pt, and Pd, or Co as a main component, and Fe , Ni, Cr, Ta, P
A magnetic substance which is an alloy containing at least one element selected from t, Pd, and Ru, or an alloy containing B (boron) or O (oxygen) in addition, and whose saturation magnetization is smaller than that of the adjacent magnetic layer. Similar results were obtained with. The bonding layer 22 that induces weak ferromagnetic coupling has a thickness of 0.1 nm to 0.4 nm.
Or Ru of 1.0 nm to 1.6 nm, or at least one metal element selected from the group consisting of Ir, Rh, Cu and Re, or selected from the group consisting of Ru and Mo, Re, W and Cr. Alloy containing at least one metal element, or Rh and Pt, Pd
An alloy containing at least one or more elemental alloys selected from, or having a thickness of 0.2 nm to 1.0 nm or 2.5 nm
3.2 nm of Cr or an alloy containing Cr as a main component may be used. When a material having a low Pt composition is used between the recording magnetic layer 11 and the non-magnetic intermediate layer, antiferromagnetic coupling is stabilized, and when a material having a large saturation magnetization as shown in FIG. 16 is used, antiferromagnetic coupling is strengthened. .

【0043】ここで、非磁性下地層14、磁性層、接合
層は、ともに基板15上に、低圧のArガスまたは数%の
酸素を含むAr-Oガス雰囲気中でDCスパッタリング法を用
いて形成した。本設備では、各層毎に独立にパラメータ
を変えられる様にしてある。この際、本設備では、Ar圧
力は1-10mTorr、基板温度は100-300℃、製膜速度0.1-10
nm/sとした。保護層は10nmである。記録磁性層のCo合金
系磁性層のCr含量は19から23原子パーセント、Pt含量は
4から20原子パーセント、V、Ta含量は2から5原子パー
セントとした。記録磁性層の膜厚、飽和磁化、異方性磁
界はそれぞれ12-22nm、0.3-0.7T、500-1200kA/mで変化
させた。安定化磁性層および下層磁性層群の膜厚、飽和
磁化、異方性磁界はそれぞれ1-8nm、0.3-1.5T、100-120
0kA/mで変化させた。反強磁性結合磁界は、磁性材料と
非磁性中間層との界面状態に敏感なため、膜の作成条件
にも大きく作用される。特にRFスハ゜ッタ法では大きな反強
磁性結合磁界が得られる。DCスハ゜ッタ法ではで得られる反
強磁性結合磁界はRFスハ゜ッタ法の1/3程度であるが、MBE法
よりも倍大きい。接合層の作成には、必要な結合磁界が
得られる方式を用いるのが良い。反強磁性結合を誘導す
る接合層が3層有る図15の媒体構造の場合には、互い
に他の接合層に含まれない元素をMo、Re、W、Crから選
びRuとの合金として用いると、生産工程管理が容易にな
る。X線回折測定によると、前記磁性膜は六方晶のc軸
が面内にランダムに分布した典型的な面内記録媒体と同
等の配向性を有していた。
Here, the non-magnetic underlayer 14, the magnetic layer, and the bonding layer are all formed on the substrate 15 by DC sputtering in a low-pressure Ar gas or Ar-O gas atmosphere containing several% oxygen. did. In this facility, the parameters can be changed independently for each layer. At this time, in this equipment, Ar pressure was 1-10 mTorr, substrate temperature was 100-300 ° C, and film formation rate was 0.1-10.
nm / s. The protective layer is 10 nm. The Cr content of the Co alloy type magnetic layer of the recording magnetic layer was 19 to 23 atomic percent, the Pt content was 4 to 20 atomic percent, and the V and Ta contents were 2 to 5 atomic percent. The thickness, saturation magnetization, and anisotropic magnetic field of the recording magnetic layer were changed at 12-22 nm, 0.3-0.7T, and 500-1200 kA / m, respectively. The thickness, saturation magnetization, and anisotropic magnetic field of the stabilizing magnetic layer and the lower magnetic layer group are 1-8 nm, 0.3-1.5T, and 100-120, respectively.
It was changed at 0 kA / m. Since the antiferromagnetic coupling magnetic field is sensitive to the interface state between the magnetic material and the nonmagnetic intermediate layer, it is also greatly affected by the film forming conditions. In particular, a large antiferromagnetic coupling magnetic field can be obtained by the RF sputtering method. The antiferromagnetic coupling field obtained by the DC sputtering method is about 1/3 that of the RF sputtering method, but it is twice as large as that of the MBE method. It is preferable to use a method capable of obtaining a necessary coupling magnetic field for forming the bonding layer. In the case of the medium structure shown in FIG. 15 in which there are three bonding layers that induce antiferromagnetic coupling, if elements that are not included in the other bonding layers are selected from Mo, Re, W, and Cr and used as an alloy with Ru. , The production process management becomes easy. According to X-ray diffraction measurement, the magnetic film had the same orientation as that of a typical in-plane recording medium in which the c-axis of hexagonal crystal was randomly distributed in the plane.

【0044】図17に、16nmのCoCrPtB記録磁性層を固
定した場合の残留磁化の安定化磁性層厚依存性を示し
た。残留磁化は、トラック方向にいったん磁界を印可し
て飽和させた後、磁界を取り除いて磁化測定したもので
ある。本発明の媒体は、図13に示す4層構造で、図3
の従来型2層AFC媒体の安定化磁性層の下に膜厚2nm
の一対のCoCrPt下層磁性層群をつけたものである。従来
媒体の臨界膜厚は約4.5nmであるのに対して、本発明の
媒体は、6.5nmまで厚くなっており、再配列が促進され
ていることを示している。
FIG. 17 shows the dependence of the residual magnetization on the thickness of the stabilizing magnetic layer when a 16 nm CoCrPtB recording magnetic layer is fixed. The remanent magnetization is measured by applying a magnetic field in the track direction to saturate it and then removing the magnetic field. The medium of the present invention has a four-layer structure shown in FIG.
2nm thickness under the stabilizing magnetic layer of the conventional two-layer AFC medium
A pair of CoCrPt lower magnetic layers are attached. The critical thickness of the conventional medium is about 4.5 nm, whereas the medium of the present invention has a thickness of up to 6.5 nm, which indicates that rearrangement is promoted.

【0045】図18に、16nmのCoCrPtB記録磁性層を固
定した場合の別の残留磁化の安定化磁性層厚依存性を示
した。媒体は弱い強磁性結合を誘導する結合層を有する
ものであり、図14に示す3層構造(2分割)と図15
に示す4層構造(3分割)および図3の従来型2層AF
C媒体構造の比較を行った。安定化磁性層および下層磁
性層群は同じ組成のCoCrPtである。実効安定化磁性膜厚
は、安定化磁性層および下層磁性層群の磁性層の厚さの
合計値で定義した。従来媒体の臨界膜厚は約4.5nmであ
るのに対して、本発明の2分割媒体は6.0nmまで、本発
明の3分割媒体は8.5nmまで厚くなっており、分割によ
る再配列が促進されていることを示している。
FIG. 18 shows another dependence of residual magnetization on the thickness of the stabilizing magnetic layer when a 16 nm CoCrPtB recording magnetic layer is fixed. The medium has a coupling layer that induces weak ferromagnetic coupling, and has a three-layer structure (divided into two) shown in FIG.
4 layer structure (3 divisions) shown in FIG.
A comparison of C medium structures was made. The stabilizing magnetic layer and the lower magnetic layer group are CoCrPt having the same composition. The effective stabilizing magnetic film thickness was defined as the total value of the thicknesses of the stabilizing magnetic layer and the magnetic layers of the lower magnetic layer group. The critical film thickness of the conventional medium is about 4.5 nm, whereas the two-division medium of the present invention is as thick as 6.0 nm and the three-division medium of the present invention is as thick as 8.5 nm, which facilitates rearrangement by division. It indicates that

【0046】図17、図18に示した3層以上のAFC
媒体は、図20に示すような3つ以上の微分ピークは測
定されなかった。交換結合は弱い場合には、3つ以上の
ピークが測定されるようである。記録磁性層に対応する
磁化変化をdM1、安定化磁性層および下層磁性層に対応
する磁化変化をdM2とすると、比dM2/dM1は、従来媒体で
は最大0.3であるのに対して、本発明の2分割媒体は0.
5、3分割媒体は0.7、また、図13の4層媒体では0.6
程度まで大きくできることが分かった。
AFC with three or more layers shown in FIGS. 17 and 18
The medium did not measure more than two differential peaks as shown in FIG. If the exchange coupling is weak, more than two peaks appear to be measured. Assuming that the magnetization change corresponding to the recording magnetic layer is dM1 and the magnetization change corresponding to the stabilizing magnetic layer and the lower magnetic layer is dM2, the ratio dM2 / dM1 is 0.3 at the maximum in the conventional medium, whereas 2 split media is 0.
5, 0.7 for three-division media, 0.6 for four-layer media in FIG.
It turns out that it can be increased to a certain degree.

【0047】図21は、図14および図15に示した2
分割媒体および3分割媒体において、CoCr16からなる弱
い強磁性層を誘導する接合層の厚さに対する臨界膜厚を
示したものである。どちらの構造においても、CoCr16接
合層が薄い場合には臨界膜厚が4.5nmとなり、安定化磁
性膜と下層磁性膜群が一体化しているのがわかる。CoCr
20接合層の厚さが2nmを超えると各磁性層がばらばらに
なると考えられる。CoCr20単結晶の交換スティフネス定
数は、ブリュアン散乱測定より0.5pJ/mであった。従っ
て、各磁性層がばらばらになって再配列促進効果がえら
れる表面交換結合エネルギーは、2A/t=2×(0.5/10^12)/
(2/10^9)=5/10000J/m^2、という値が得られた。
FIG. 21 is a circuit diagram of the circuit shown in FIG. 14 and FIG.
3 shows the critical film thickness with respect to the thickness of the bonding layer that induces the weak ferromagnetic layer made of CoCr16 in the divided medium and the three-divided medium. In both structures, when the CoCr16 bonding layer is thin, the critical film thickness is 4.5 nm, which shows that the stabilizing magnetic film and the lower magnetic film group are integrated. CoCr
It is considered that when the thickness of the 20-junction layer exceeds 2 nm, the magnetic layers are separated. The exchange stiffness constant of the CoCr20 single crystal was 0.5 pJ / m as measured by Brillouin scattering. Therefore, the surface exchange coupling energy at which each magnetic layer is scattered and the rearrangement promoting effect is obtained is 2A / t = 2 × (0.5 / 10 ^ 12) /
The value of (2/10 ^ 9) = 5 / 10000J / m ^ 2 was obtained.

【0048】前記媒体を、飽和磁束密度1.5Tの45Ni-55F
eをFIB(Focused Ion Beam)加工技術によりトラック
幅0.4μmの磁極材とし、記録ギャップ長0.15μm(ギャ
ップ材:Al2O3)とした記録部と、NiFe/Co(4nm)、
Cu(2.5nm)、固定層CoFe(3nm)、CrMnPt(20n
m)を順次積層し、矩形状にパタン化した後に、その両端
部に、Co80-Cr15-Pt5(10nm)/Cr(10nm)永久磁石およびTa
電極膜(100nm)を配置し、KrFステッパリソグラフィ
技術により電極で規定したトラック幅を0.3μmとした巨
大磁気抵抗効果素子を2μmのNi80-Fe20シールド膜で挟
んだ構造(シールド間隔:0.07μm、ギャップ材:Al2O
3)の再生部とを有する磁気ヘッド素子を、Al2O3-TiC製
の大きさの1.0×0.8×0.2mm3のスライダに形成した磁
気ヘッドを用い、図10に示す本発明の磁気ディスク装置
に実装して評価した。スライダは微小突起を3ヶ所設け
た負圧型とし、浮上面にはC−H保護膜を設けたもの
で、また図10(a)は、装置の平面図、(b)は断面図
である。再生信号の処理及び情報の入出力には、従来技
術と同じ所定の電気回路が必要である。ここでは、EEPR
ML(Extended Extended Partial Response Maximum Like
lihood)をエンハンスし、ECC機能を強化したMEEPRML(Mo
dified PRML)と言う、高密度化時の波形干渉を積極的に
活用した信号処理回路を導入した。
The above medium was replaced with 45Ni-55F having a saturation magnetic flux density of 1.5T.
e is a magnetic pole material having a track width of 0.4 μm and a recording gap length of 0.15 μm (gap material: Al2O3) by FIB (Focused Ion Beam) processing technology, NiFe / Co (4 nm),
Cu (2.5 nm), fixed layer CoFe (3 nm), CrMnPt (20n
m) are sequentially laminated and formed into a rectangular pattern, and then Co80-Cr15-Pt5 (10 nm) / Cr (10 nm) permanent magnet and Ta
A structure in which an electrode film (100 nm) is arranged and a giant magnetoresistive element with a track width of 0.3 μm specified by the KrF stepper lithography technology is sandwiched between 2 μm Ni80-Fe20 shield films (shield interval: 0.07 μm, gap) Material: Al2O
The magnetic head element having the reproducing portion of 3) was formed on an Al2O3-TiC-sized slider of 1.0 × 0.8 × 0.2 mm 3 and mounted on the magnetic disk device of the present invention shown in FIG. Evaluated. The slider is a negative pressure type in which three minute protrusions are provided, and a CH protective film is provided on the air bearing surface. Further, FIG. 10 (a) is a plan view of the device and FIG. 10 (b) is a sectional view. The same predetermined electric circuit as in the prior art is necessary for processing the reproduction signal and inputting / outputting information. Here, EEPR
ML (Extended Extended Partial Response Maximum Like)
lihood) and enhanced ECC function MEEPRML (Mo
We introduced a signal processing circuit called "dified PRML" that positively utilizes waveform interference during high density.

【0049】図1は、450kFCIにおける信号ノイズ
比(Smf/N)の安定化磁性膜厚依存性を記録磁性層単独
で得られる値からの利得分として示したものである。比
較は、図17および図18に用いた媒体についておこな
った。Smf/N利得分は安定化磁性膜厚の増加とともに大
きくなるが、従来媒体では3.5nm、本発明の2分割媒体
(図14)では5.0nm、本発明の4層媒体(図13)で
は6.5nmを超えると急激にSmf/N利得分が低下した。各
媒体のHex95=0を与える膜厚を調べると、従来媒体で
は3.4nm、本発明の2分割媒体では5.1nm、本発明の4層
媒体では6.3nmとなり、Smf/N利得分が急激に変化する
膜厚に一致した。図1で用いた媒体の各構成において、
最大のSmf/N利得分を与える安定化磁性膜厚においてさ
らに高記録密度で記録再生したところ、従来媒体では60
0kFCIまで、本発明の2分割媒体では800kFCIまで、本発
明の4層媒体では850kFCIまで良好な特性が得られた。
本発明によれば、記録媒体の全磁性層の合計値に対する
記録媒体に形成された最小磁化遷移幅の比が1.5より小
さくすることが可能となる。
FIG. 1 shows the dependence of the signal noise ratio (Smf / N) at 450 kFCI on the stabilized magnetic film thickness as the gain from the value obtained by the recording magnetic layer alone. The comparison was made for the media used in FIGS. 17 and 18. The Smf / N gain increases as the stabilizing magnetic film thickness increases, but it is 3.5 nm in the conventional medium, 5.0 nm in the two-division medium of the present invention (FIG. 14), and 6.5 nm in the four-layer medium of the present invention (FIG. 13). When the value exceeds nm, the Smf / N gain component sharply decreases. When the film thickness of Hex95 = 0 of each medium is examined, it is 3.4 nm in the conventional medium, 5.1 nm in the two-divided medium of the present invention, and 6.3 nm in the four-layer medium of the present invention, and the Smf / N gain component changes rapidly. It matched the film thickness. In each configuration of the medium used in FIG. 1,
When recording / reproducing was performed at a higher recording density with a stabilized magnetic film thickness that gives the maximum Smf / N gain, it was 60 with the conventional medium.
Good characteristics were obtained up to 0 kFCI, up to 800 kFCI in the two-division medium of the present invention, and up to 850 kFCI in the four-layer medium of the present invention.
According to the present invention, the ratio of the minimum magnetization transition width formed in the recording medium to the total value of all magnetic layers of the recording medium can be made smaller than 1.5.

【0050】図19は、図14示す2分割媒体におい
て、オーバーライトの安定化磁性膜厚依存性を記録磁性
層単独で得られる値からの利得分として示したものであ
る。安定化磁性層が厚くなるとオーバーライト利得分は
大きくなる。ただし、安定化磁性層の異方性磁界Hk2と
下層磁性層の異方性磁界Hk3が異なる場合には十分な利
得分が得られていない。
FIG. 19 shows the dependence of overwriting on the stabilizing magnetic film thickness in the two-division medium shown in FIG. 14 as a gain amount from a value obtained by the recording magnetic layer alone. The thicker the stabilizing magnetic layer, the larger the overwrite gain. However, when the anisotropic magnetic field Hk2 of the stabilizing magnetic layer and the anisotropic magnetic field Hk3 of the lower magnetic layer are different, sufficient gain is not obtained.

【0051】孤立遷移の出力に対する450kFCIにお
ける再生出力の割合である分解能は、安定化磁性層の異
方性磁界Hk2の記録磁性層の異方性磁界Hk1に対する比Hk
2/Hk1に対して図9のような関係が得られた。比Hk2/Hk1
が0.7を超えると分解能が記録磁性層単独の磁性層から
なる媒体より悪くなる。比Hk2/Hk1が0.2以上0.6以下で
あると残留磁化の等しい単層媒体と同等の分解能が得ら
れる。
The resolution, which is the ratio of the reproduction output at 450 kFCI to the output of the isolated transition, is the ratio Hk of the anisotropic magnetic field Hk2 of the stabilizing magnetic layer to the anisotropic magnetic field Hk1 of the recording magnetic layer.
The relationship as shown in FIG. 9 was obtained for 2 / Hk1. Ratio Hk2 / Hk1
When the value exceeds 0.7, the resolution becomes worse than that of the medium composed of the magnetic layer of the recording magnetic layer alone. When the ratio Hk2 / Hk1 is 0.2 or more and 0.6 or less, a resolution equivalent to that of a single layer medium having the same residual magnetization can be obtained.

【0052】なお、記録磁極を従来の1T(80Ni-20Fe組
成)、1.3T(FeTaC)、1.7T(FeNiN)としたヘッドでも評価
したが、1T、1.3Tでは重ね書き特性が20dBと低く、十分
な急峻な記録が行えず、ノイズも極めて大きく実用に堪
えず、1.5T、1.7Tの場合にだけ良好な記録を確認でき
た。以上から1.5T以上は必要である事がわかった。更に
特開平02−148643、02−218904号各公
報に記載された技術により試作した、再生トラック幅
0.4μmのトンネル型磁気ヘッドで特性を評価した場
合には全く同様の結果が得られたが、同じトラック幅の
従来型MRヘッドでは、十分な再生感度が得られず、評
価に堪えなかった。
The heads having the recording poles of 1T (80Ni-20Fe composition), 1.3T (FeTaC) and 1.7T (FeNiN) as the recording magnetic poles were also evaluated. Sufficiently sharp recording could not be performed, noise was extremely large and it could not be used practically, and good recording was confirmed only at 1.5T and 1.7T. From the above, it was found that 1.5T or more is necessary. Further, when the characteristics were evaluated by a tunnel type magnetic head having a reproducing track width of 0.4 μm, which was prototyped by the techniques disclosed in JP-A-02-148643 and 02-218904, the same result was obtained. With the conventional MR head having the same track width, sufficient reproduction sensitivity was not obtained, and the evaluation could not be endured.

【0053】以上述べた実施例は、本発明で開示する類
似の発明を代表するものであり、本発明から同業者が容
易に類推できる例においても本発明の範囲に入るもので
ある。例えば、RFマグネトロンスパッタ法、ECRスパッ
タ法、ヘリコンスパッタ法等でも同様の効果が得られ
る。また、本発明で開示する磁気記録媒体によれば15Gb
/in2以上の記録密度での記録再生が初めて可能となる。
したがって、本発明の磁気記録媒体で可能となる磁気テ
ープ、磁気カード、光磁気ディスク等を用いた磁気記録
再生装置についても本発明の範囲にはいる。以上、本発
明の磁気記録媒体、磁気記録再生装置を用いることによ
り高速かつ大容量の記録再生が初めて可能となる。これ
により、商品競争力の極めて強い磁気記録再生装置を実
現できる。 (実施例2)実施例2の磁気記録媒体の特徴は、非磁性
基板上に形成された少なくとも3層以上の磁性層を有す
る面内磁気記録媒体において、該非磁性基板から最も遠
い磁性層を記録磁性層、記録磁性層の次に該非磁性基板
から遠い磁性層を安定化磁性層、該記録磁性層と該安定
化磁性層とを除く他の全ての磁性層を下層磁性層群とす
るとき、該磁性層は非磁性物質または弱磁性物質からな
る接合層によって隔てられており、トラック方向に磁界
を印加して磁気飽和させた後、磁界を減少させ、さらに
逆方向に磁界を印加して磁気飽和に至らせる磁化過程に
おいて、磁化の磁界による微分値が少なくとも2つ以上
のピークを持ち、それぞれのピークに対応した前記過程
における磁化変化量を、値が大きい方から降順にdM1、d
M2のように呼ぶとき、dM1とdM2の和は飽和磁化量の2倍
の90%以上であり、かつ、dM1に対するdM2の比が0.45
以上であり、更に前記記録磁性層と前記安定化磁性層の
間には、接する磁性層の磁化を逆向きにする性質を有す
る非磁性物質または弱磁性物質からなる接合層が設けら
れた点にある。
The embodiments described above are representative of similar inventions disclosed in the present invention, and even examples which can be easily inferred by those skilled in the art from the present invention fall within the scope of the present invention. For example, the same effect can be obtained by the RF magnetron sputtering method, the ECR sputtering method, the helicon sputtering method, or the like. Further, according to the magnetic recording medium disclosed in the present invention, 15 Gb
Recording / reproducing at a recording density of / in2 or more becomes possible for the first time.
Therefore, a magnetic recording / reproducing apparatus using a magnetic tape, a magnetic card, a magneto-optical disk, etc., which is possible with the magnetic recording medium of the present invention, is also within the scope of the present invention. As described above, by using the magnetic recording medium and the magnetic recording / reproducing apparatus of the present invention, high-speed and large-capacity recording / reproducing becomes possible for the first time. As a result, it is possible to realize a magnetic recording / reproducing device having extremely strong product competitiveness. (Example 2) The magnetic recording medium of Example 2 is characterized in that in a longitudinal magnetic recording medium having at least three magnetic layers formed on a non-magnetic substrate, the magnetic layer farthest from the non-magnetic substrate is recorded. When the magnetic layer next to the magnetic layer and the recording magnetic layer is the stabilizing magnetic layer, and the magnetic layers other than the recording magnetic layer and the stabilizing magnetic layer are the lower magnetic layer groups, The magnetic layers are separated by a bonding layer made of a non-magnetic material or a weak magnetic material, and a magnetic field is applied in the track direction to cause magnetic saturation, and then the magnetic field is reduced, and then a magnetic field is applied in the opposite direction. In the magnetization process to reach saturation, the differential value of the magnetic field of the magnetization has at least two peaks, and the magnetization change amount in the process corresponding to each peak is dM1, d in descending order from the largest value.
When called as M2, the sum of dM1 and dM2 is 90% or more, which is twice the saturation magnetization, and the ratio of dM2 to dM1 is 0.45.
Above, further, between the recording magnetic layer and the stabilizing magnetic layer, a junction layer made of a non-magnetic substance or a weak magnetic substance having a property of reversing the magnetization of the contacting magnetic layer is provided. is there.

【0054】また、前記接する磁性層の磁化を逆向きに
する性質を有する非磁性物質または弱磁性物質からなる
接合層は、Ru、または、Ir、Rh、Cr、Cu、Reからなる群
から選ばれた少なくとも1種の金属元素、または、Ruと
Mo、Re、W、Crからなる群から選ばれた少なくとも1種
の金属元素とを含む合金、または、RhとPt、Pdから選ば
れた少なくとも1種類以上の元素合金とを含む合金であ
ることが好ましい。
The joining layer made of a non-magnetic substance or a weak magnetic substance having a property of reversing the magnetization of the magnetic layer in contact is selected from the group consisting of Ru, Ir, Rh, Cr, Cu and Re. At least one metal element or Ru
An alloy containing at least one metal element selected from the group consisting of Mo, Re, W and Cr, or an alloy containing Rh and at least one elemental alloy selected from Pt and Pd. Is preferred.

【0055】また、135ケルビンにおいて磁界を毎秒3
000A/mの大きさで磁界を変化させて得られる前記磁
化過程より得られる前記磁化変化量dM1、dM2に対応する
前記微分ピークをそれぞれピーク1、ピーク2とし、該
ピーク2の磁界は最初に磁気飽和させた方向の磁界であ
り、該ピーク1の磁界は次に磁気飽和させた方向の磁界
であることが好ましい。
Also, at 135 Kelvin, a magnetic field of 3 per second
The differential peaks corresponding to the magnetization change amounts dM1 and dM2 obtained by the magnetization process obtained by changing the magnetic field with a magnitude of 000 A / m are defined as peak 1 and peak 2, respectively. It is preferable that the magnetic field is in the magnetically saturated direction, and the magnetic field of the peak 1 is the magnetic field in the next magnetically saturated direction.

【0056】また、前述の磁化変化量dM1、dM2に対応す
る前記微分ピークをそれぞれピーク1、ピーク2とし、
216ケルビンと77ケルビンにおいて測定された該ピーク
1、ピーク2を与える磁界をそれぞれ絶対温度零度に外
挿した磁界の値を、それぞれHxo1、Hxo2とするとき、Hx
o1に対するHxo2の比は0.7以下であることが好ましい。
Further, the differential peaks corresponding to the above-mentioned magnetization change amounts dM1 and dM2 are referred to as peak 1 and peak 2, respectively,
Let Hxo1 and Hxo2 be the values of the magnetic fields obtained by extrapolating the magnetic fields that give the peaks 1 and 2 measured at 216 Kelvin and 77 Kelvin to absolute temperature zero, respectively.
The ratio of Hxo2 to o1 is preferably 0.7 or less.

【0057】更にまた、前述の磁界の比Hxo2/ Hxo1が0.
2以上0.6以下であることが好ましい。
Furthermore, the above-mentioned magnetic field ratio Hxo2 / Hxo1 is 0.
It is preferably 2 or more and 0.6 or less.

【0058】また、磁化変化量dM1、dM2に対応する前記
微分ピークをそれぞれピーク1、ピーク2とし、前記磁
化過程において磁界を毎秒300A/mおよび毎秒300
0A/mの大きさで磁界を変化させて得られる該ピークの
磁界を、1ナノ秒間にピーク1を与える大きさの磁界だ
け変化する磁界変化量に対数軸上で外挿して求めた磁界
の値を、それぞれHxr1、Hxr2とするとき、Hxr1に対する
Hxr2の比は0.7以下であることが好ましい。
The differential peaks corresponding to the amounts of change in magnetization dM1 and dM2 are defined as peak 1 and peak 2, respectively, and the magnetic field is 300 A / m / s and 300 / s in the magnetization process.
The magnetic field of the peak obtained by changing the magnetic field at a magnitude of 0 A / m is extrapolated on the logarithmic axis to the magnetic field change amount that changes by a magnetic field of a magnitude giving peak 1 in 1 nanosecond. When the values are Hxr1 and Hxr2 respectively, for Hxr1
The ratio of Hxr2 is preferably 0.7 or less.

【0059】更にまた、磁界の比Hxr2/ Hxr1が0.2以上
0.6以下であることが好ましい。
Furthermore, the magnetic field ratio Hxr2 / Hxr1 is 0.2 or more.
It is preferably 0.6 or less.

【0060】また、216ケルビンにおいて磁界を毎秒3
000A/mの大きさで磁界を変化させて得られる前記磁
化過程より得られる前記磁化変化量dM1、dM2に対応する
前記微分ピークをそれぞれピーク1、ピーク2とし、該
ピーク1と該ピーク2の磁界の符号を考慮した平均磁界
において該磁化曲線に引かれた接線がゼロ磁界を横切る
ときの磁化量をMrte、当該磁化曲線のゼロ磁界における
磁化量をMrtaとするとき、両磁化量の差(Mrte-Mrta)
のピーク2の磁化変化量dM2の比((Mrte-Mrta)/dM2)
が、0.05以下であることが好ましい。
At 216 Kelvin, the magnetic field is 3
The differential peaks corresponding to the magnetization change amounts dM1 and dM2 obtained by the magnetization process obtained by changing the magnetic field with a magnitude of 000 A / m are defined as peak 1 and peak 2, respectively. When the tangent line drawn in the magnetization curve in the average magnetic field considering the sign of the magnetic field crosses the zero magnetic field, the magnetization amount is Mrte, and the magnetization amount in the zero magnetic field of the magnetization curve is Mrta, the difference between the two magnetization amounts ( Mrte-Mrta)
Ratio of the amount of change in magnetization dM2 of peak 2 of ((Mrte-Mrta) / dM2)
Is preferably 0.05 or less.

【0061】また、216ケルビンにおいて磁界を毎秒3
000A/mの大きさで磁界を変化させて得られる前記磁
化過程より得られる前記磁化変化量dM1、dM2に対応する
前記微分ピークをそれぞれピーク1、ピーク2とし、該
ピーク2の磁界は最初に磁気飽和させた方向の磁界であ
り、該ピーク2を与える磁界における磁化量をMt2とし
たとき、磁化曲線上において、磁化量(Mt2+0.45×dM2)
を与える磁界と磁化量(Mt2-0.45×dM2)を与える磁界の
差ΔHが該ピーク2の磁界の大きさに比べて1.5倍以下で
あることが望ましい。
At 216 Kelvin, the magnetic field is 3
The differential peaks corresponding to the magnetization change amounts dM1 and dM2 obtained by the magnetization process obtained by changing the magnetic field with a magnitude of 000 A / m are defined as peak 1 and peak 2, respectively. A magnetic field in a magnetically saturated direction, and assuming that the amount of magnetization in the magnetic field that gives the peak 2 is Mt2, the amount of magnetization (Mt2 + 0.45 × dM2) on the magnetization curve
It is desirable that the difference ΔH between the magnetic field that gives the magnetic field and the magnetic field that gives the amount of magnetization (Mt2-0.45 × dM2) is 1.5 times or less the magnitude of the magnetic field of the peak 2.

【0062】なお、前記安定化磁性層および上記下層磁
性層群は、Co、Fe、NiまたはCoを主成分とし、Fe、Ni、
Cr、Ta、Pt、Pd、Ruの中から選ばれた少なくとも1種の
元素を含む合金、または加えてB(ボロン)またはO(酸素)
を含む合金であることが好ましい。 (実施例3)実施例3に記載の発明の特徴は、非磁性基
板上に形成された少なくとも3層以上の磁性層を有する
磁気記録媒体において、該非磁性基板から最も遠い磁性
層を記録磁性層、記録磁性層の次に該非磁性基板から遠
い磁性層を安定化磁性層、該記録磁性層と該安定化磁性
層とを除く他の全ての磁性層を下層磁性層群とすると
き、各磁性層は、非磁性層または非磁性物質からなる接
合層によって隔てられており、該記録磁性層の磁化と該
安定化磁性層の磁化とが互いに反平行であり、かつ、隣
接する磁性層の磁化の向きが反平行な接合層の数は奇数
であり、基板からi番目の磁性層について異方性エネル
ギーをKui(J/m^3)、上面から見た平均粒子直径をD、膜
厚をtiとし、ボルツマン定数をkするとき、KuiとDの平
方とtiの積をkで除した値(Kui×D×D×ti/k)を当該磁
性層の耐熱係数とするとき、該下層磁性層群を構成する
それぞれの磁性層の厚さtiは、当該磁性層の耐熱係数が
4000以下となるよう設定されることを特徴とする磁気記
録媒体という点にある。ここで、磁性層の膜厚は、当該
磁性層の耐熱係数が非磁性基板から遠ざかるに従って大
きくなるように設定されていることが好ましい。 (実施例4)実施例4に記載の発明の特徴は、非磁性基
板上に形成された少なくとも3層以上の磁性層を有する
磁気記録媒体において、該非磁性基板から最も遠い磁性
層を記録磁性層、記録磁性層の次に該非磁性基板から遠
い磁性層を安定化磁性層、該記録磁性層と該安定化磁性
層とを除く他の全ての磁性層を下層磁性層群とすると
き、各磁性層は、非磁性層または非磁性物質からなる接
合層によって隔てられており、該記録磁性層の磁化と該
安定化磁性層の磁化とが互いに反平行であり、かつ、隣
接する磁性層の磁化の向きが反平行な接合層の数は奇数
であり、かつ、該下層磁性層群を構成するそれぞれの磁
性層の厚さは記録磁性層の厚さの0.3倍以下であること
を特徴とする磁気記録媒体と言う点にある。
The stabilizing magnetic layer and the lower magnetic layer group contain Co, Fe, Ni or Co as a main component, and Fe, Ni,
An alloy containing at least one element selected from Cr, Ta, Pt, Pd and Ru, or additionally B (boron) or O (oxygen)
It is preferable that the alloy contains. (Embodiment 3) The feature of the invention described in Embodiment 3 is that in a magnetic recording medium having at least three magnetic layers formed on a non-magnetic substrate, the magnetic layer farthest from the non-magnetic substrate is the recording magnetic layer. When the magnetic layer next to the non-magnetic substrate next to the recording magnetic layer is a stabilizing magnetic layer and all the other magnetic layers except the recording magnetic layer and the stabilizing magnetic layer are lower magnetic layer groups, The layers are separated by a non-magnetic layer or a bonding layer made of a non-magnetic substance, the magnetization of the recording magnetic layer and the magnetization of the stabilizing magnetic layer are antiparallel to each other, and the magnetization of an adjacent magnetic layer is The number of bonding layers whose directions are anti-parallel is odd, and the anisotropy energy of the i-th magnetic layer from the substrate is Kui (J / m ^ 3), the average particle diameter seen from the top is D, and the film thickness is When ti is the Boltzmann constant and k is the value of the product of the square of Ku and D and ti divided by k (Kui × D XD × ti / k) is the heat resistance coefficient of the magnetic layer, the thickness ti of each magnetic layer constituting the lower magnetic layer group is the heat resistance coefficient of the magnetic layer.
The magnetic recording medium is characterized by being set to 4000 or less. Here, the film thickness of the magnetic layer is preferably set such that the heat resistance coefficient of the magnetic layer increases as the distance from the non-magnetic substrate increases. (Embodiment 4) The feature of the invention described in Embodiment 4 is that in a magnetic recording medium having at least three magnetic layers formed on a non-magnetic substrate, the magnetic layer farthest from the non-magnetic substrate is the recording magnetic layer. When the magnetic layer next to the non-magnetic substrate next to the recording magnetic layer is a stabilizing magnetic layer and all the other magnetic layers except the recording magnetic layer and the stabilizing magnetic layer are lower magnetic layer groups, The layers are separated by a non-magnetic layer or a bonding layer made of a non-magnetic substance, the magnetization of the recording magnetic layer and the magnetization of the stabilizing magnetic layer are antiparallel to each other, and the magnetization of an adjacent magnetic layer is The number of the bonding layers whose directions are antiparallel is odd, and the thickness of each magnetic layer forming the lower magnetic layer group is 0.3 times or less the thickness of the recording magnetic layer. It is called a magnetic recording medium.

【0063】また、磁性層の膜厚は、非磁性基板から遠
ざかるに従って厚くすることが好ましい。また、上述の
磁性層の組成は、Crの原子組成をNc、Ptの原子組成をN
p、 Bの原子組成をNb とするとき、Npの80%からNcを
引き、さらにNbの55%を引いた値(0.7×Np-Nc-0.55
×Nb)が非磁性基板から遠ざかるに従って小さくなるこ
とを特徴とすることが好ましい。
Further, it is preferable that the film thickness of the magnetic layer be made thicker as the distance from the non-magnetic substrate increases. Further, the composition of the magnetic layer described above is such that the atomic composition of Cr is Nc and the atomic composition of Pt is Nc.
When the atomic composition of p and B is Nb, the value obtained by subtracting Nc from 80% of Np, and further subtracting 55% of Nb (0.7 × Np-Nc-0.55
It is preferable that xNb) becomes smaller as the distance from the nonmagnetic substrate increases.

【0064】更にまた、前述の隣接する磁性層の磁化の
向きが反平行な記接合層は、互いに他の接合層に含まれ
ない元素を含んでいることが好ましい。
Furthermore, it is preferable that the above-mentioned junction layers in which the magnetization directions of the adjacent magnetic layers are antiparallel to each other include elements that are not included in the other junction layers.

【0065】また、安定化磁性層と下層磁性層群とを構
成する磁性層を隔てる非磁性層または非磁性物質からな
る接合層においては、隣接する磁性層の磁化の向きが略
平行な接合層を少なくとも1対含んでいることが望まし
い。ここで、隣接する磁性層の磁化の向きが略平行な接
合層の交換表面結合エネルギーは、5/10000J/m^2
より小さいことが好ましい。
Further, in the non-magnetic layer or the joining layer made of a non-magnetic substance that separates the magnetic layers constituting the stabilizing magnetic layer and the lower magnetic layer group, the joining layers in which the magnetization directions of the adjacent magnetic layers are substantially parallel to each other. It is desirable to include at least one pair. Here, the exchange surface binding energy of the junction layer in which the magnetization directions of the adjacent magnetic layers are substantially parallel is 5/10000 J / m ^ 2.
It is preferably smaller.

【0066】また、前述の隣接する磁性層の磁化の向き
が略平行な接合層は、RuとNb、Ti、Pd、Pt、Au、Cu、P
t、Pdからなる群から選ばれた少なくとも1種の金属元
素とを含む合金、または、Coを主成分とし、Fe、Ni、C
r、Ta、Pt、Pd、Ruの中から選ばれた少なくとも1種の
元素を含む合金、または加えてB(ボロン)またはO(酸素)
を含む合金であり、飽和磁化が隣接する磁性層よりも小
さな磁性体、または、厚さが0.1nmから0.4nmまたは1.0n
mから1.6nmのRu、または、Ir、Rh、Cu、Reからなる群か
ら選ばれた少なくとも1種の金属元素、または、RuとM
o、Re、W、Crからなる群から選ばれた少なくとも1種の
金属元素とを含む合金、または、RhとPt、Pdから選ばれ
た少なくとも1種類以上の元素合金とを含む合金、また
は、厚さが0.2nmから1.0nmまたは2.5nmから3.2nmのCr、
またはCrを主成分とする合金であることが好ましい。
The above-mentioned junction layers in which the magnetization directions of the adjacent magnetic layers are substantially parallel are Ru, Nb, Ti, Pd, Pt, Au, Cu and P.
An alloy containing at least one metal element selected from the group consisting of t and Pd, or Co as a main component and Fe, Ni, and C
Alloy containing at least one element selected from r, Ta, Pt, Pd and Ru, or in addition B (boron) or O (oxygen)
A magnetic substance having a saturation magnetization smaller than that of the adjacent magnetic layer, or having a thickness of 0.1 nm to 0.4 nm or 1.0 n
Ru from m to 1.6 nm or at least one metal element selected from the group consisting of Ir, Rh, Cu and Re, or Ru and M
o, Re, W, an alloy containing at least one metal element selected from the group consisting of Cr, or an alloy containing Rh and at least one elemental alloy selected from Pt and Pd, or Cr with a thickness of 0.2 nm to 1.0 nm or 2.5 nm to 3.2 nm,
Alternatively, an alloy containing Cr as a main component is preferable.

【0067】また、安定化磁性層と下層磁性層群とを構
成する磁性層の膜厚は、基板からi番目の磁性層につい
て異方性エネルギーをKui(J/m^3)、上面から見た平均粒
子直径をD、膜厚をti、ボルツマン定数をkとするとき、
KuiとDの平方とtiの積をkで除した値(Kui×D×D ×ti/
k)で定義される磁性層の耐熱係数を用いて、それぞれ
の磁性層の膜厚は、前記磁性層の耐熱係数が4000以下と
なるように各磁性層の膜厚がに設定されることが望まし
い。
The thickness of the magnetic layers constituting the stabilizing magnetic layer and the lower magnetic layer group is the anisotropic energy Kui (J / m ^ 3) of the i-th magnetic layer from the substrate, viewed from the top. When the average particle diameter is D, the film thickness is ti, and the Boltzmann constant is k,
The value of the product of square and ti of Kui and D divided by k (Kui × D × D × ti /
Using the heat resistance coefficient of the magnetic layer defined in k), the film thickness of each magnetic layer may be set so that the heat resistance coefficient of the magnetic layer is 4000 or less. desirable.

【0068】安定化磁性層および下層磁性層群を構成す
る磁性層の厚さは5ナノメートルより小さいがことが望
ましい。また、安定化磁性層および下層磁性層群を構成
する磁性層の磁気異方性磁界が概ね等しいことが好まし
い。
The thickness of the stabilizing magnetic layer and the magnetic layers constituting the lower magnetic layer group is preferably less than 5 nanometers. Moreover, it is preferable that the magnetic anisotropy fields of the magnetic layers constituting the stabilizing magnetic layer and the lower magnetic layer group are substantially the same.

【0069】更に、上記接合層に接する磁性層のうち少
なくとも1つには、該接合層に接する1nm以内の領域で
該磁性層内の他の領域より飽和磁化が大きい領域が存在
することが好ましい。
Further, it is preferable that at least one of the magnetic layers in contact with the bonding layer has a region having a saturation magnetization larger than that of other regions in the magnetic layer within a region of 1 nm in contact with the bonding layer. .

【0070】記録磁性層の磁気異方性磁界HkAに対す
る、安定化磁性層および下層磁性層群を構成する磁性層
の平均的な磁気異方性磁界HkBの比HkB/HkAが0.7以下で
あることを特徴とすることが好ましい。この場合、HkB/
HkAは0.2以上0.6以下であることが更に好ましい。
The ratio HkB / HkA of the average magnetic anisotropy field HkB of the stabilizing magnetic layer and the magnetic layers constituting the lower magnetic layer group to the magnetic anisotropy field HkA of the recording magnetic layer is 0.7 or less. Is preferable. In this case, HkB /
More preferably, HkA is 0.2 or more and 0.6 or less.

【0071】また安定化磁性層の厚さは下層磁性層群の
うち最も基板に近い磁性層の厚さに比べて大きいことが
好ましい。また前記安定化磁性層の厚さを、該安定化磁
性層に接する下層磁性層群の厚さに比べて薄くすること
も好ましい。
The thickness of the stabilizing magnetic layer is preferably larger than the thickness of the magnetic layer closest to the substrate in the lower magnetic layer group. It is also preferable that the thickness of the stabilizing magnetic layer is smaller than the thickness of the lower magnetic layer group in contact with the stabilizing magnetic layer.

【0072】安定化磁性層の層膜厚は、2ナノメートル
以下であることが好ましい。また、記録磁性層内の交換
スティフネス定数は3ピコJ/mより大きいことが好まし
い。
The layer thickness of the stabilizing magnetic layer is preferably 2 nanometers or less. The exchange stiffness constant in the recording magnetic layer is preferably larger than 3 pico J / m.

【0073】また、磁性層の飽和磁化が0.85テスラ
を超えることが好ましい。また、磁性層の材呂組成とし
ては、Co濃度が83at%を超えることが好ましい。
The saturation magnetization of the magnetic layer preferably exceeds 0.85 tesla. Further, as a material composition of the magnetic layer, it is preferable that the Co concentration exceeds 83 at%.

【0074】磁性層を形成する磁性粒子の記磁性膜の上
面側から見た平均粒子直径Dと録磁性層の厚さt1との比
(D/t1)が0.5より小さいことが好ましい。
The ratio of the average particle diameter D of the magnetic particles forming the magnetic layer as seen from the upper surface side of the recording film to the thickness t1 of the recording magnetic layer.
It is preferable that (D / t1) is smaller than 0.5.

【0075】安定化磁性層および下層磁性層群の材料と
しては、Co主成分とし、Cr、Ta、Pt、の中から選ばれた
少なくとも1種の元素を含む合金、または加えてO(酸
素)を含む合金であることが好ましい。かつ、前述した
非磁性中間層の材料としてRuであることが好ましい。
As the material of the stabilizing magnetic layer and the lower magnetic layer group, an alloy containing Co as a main component and containing at least one element selected from Cr, Ta, and Pt, or O (oxygen) in addition to It is preferable that the alloy contains. In addition, Ru is preferably used as the material of the above-mentioned non-magnetic intermediate layer.

【0076】記録磁性層の材料としてはCoを主成分とす
るCr、Ta、Pt、の中から選ばれた少なくとも1種の元素
を含む合金、または加えてB(ボロン)を含む合金である
ことが好ましい。また、下層磁性層群は非磁性の下地膜
上に形成されていることが好ましく、非磁性下地層の材
料としてはCr、Mo、W、Ta、V、Nb、Ta、Ti、Ge、Si、C
o、Niからなる群から選ばれた少なくとも1種の元素を
含む非磁性材料であることが好ましい。
The material of the recording magnetic layer is an alloy containing Co as a main component and containing at least one element selected from Cr, Ta, and Pt, or an alloy containing B (boron) in addition. Is preferred. Further, the lower magnetic layer group is preferably formed on a non-magnetic underlayer, and as the material of the non-magnetic underlayer, Cr, Mo, W, Ta, V, Nb, Ta, Ti, Ge, Si, C
It is preferably a non-magnetic material containing at least one element selected from the group consisting of o and Ni.

【0077】隣接する磁性層の磁化の向きが略平行な接
合層は、RuとNb、Ti、Pd、Pt、Au、Cu、Pt、Pdからなる
群から選ばれた少なくとも1種の金属元素とを含む合
金、または、Coを主成分とし、Fe、Ni、Cr、Ta、Pt、P
d、Ruの中から選ばれた少なくとも1種の元素を含む合
金、または加えてO(酸素)を含む合金であり、飽和磁化
が隣接する磁性層よりも小さな磁性体、または、厚さが
0.1nmから0.4nmまたは1.0nmから1.6nmのRu、または、I
r、Rh、Cu、Reからなる群から選ばれた少なくとも1種
の金属元素、または、RuとMo、Re、W、Crからなる群か
ら選ばれた少なくとも1種の金属元素とを含む合金から
なることが好ましい。 (実施例5)実施例5に記載の発明の特徴は、実施例4
で述べた接合層をRFスパッタ法で作成することを特徴と
する磁気記録媒体の製造方法という点にある。 (実施例6)実施例6に記載の発明の特徴は、実効トラ
ック幅が0.5μm以下である再生素子を有する磁気ヘ
ッドと実施例1〜5に記載された磁気記録媒体とを組み
合わせて磁気情報の再生を行うことを特徴とする磁気記
憶装置と言う点にある。記録ヘッドとしては、特に、記
録磁極の飽和磁束密度が1.8T以上であることが好ま
しい。また、記録媒体の全磁性層の合計値に対する記録
媒体に形成された最小磁化遷移幅の比が1.5より小さい
ことが好ましい。
The junction layer in which the magnetization directions of the adjacent magnetic layers are substantially parallel to each other is Ru and at least one metal element selected from the group consisting of Nb, Ti, Pd, Pt, Au, Cu, Pt, and Pd. Alloy containing Co or Co as the main component, Fe, Ni, Cr, Ta, Pt, P
d, an alloy containing at least one element selected from Ru, or an alloy containing O (oxygen) in addition to the magnetic substance having a saturation magnetization smaller than that of the adjacent magnetic layer, or having a thickness
Ru from 0.1 nm to 0.4 nm or 1.0 nm to 1.6 nm or I
From an alloy containing at least one metal element selected from the group consisting of r, Rh, Cu, and Re, or Ru and at least one metal element selected from the group consisting of Mo, Re, W, and Cr It is preferable that (Fifth Embodiment) The characteristics of the invention described in the fifth embodiment are the same as those of the fourth embodiment.
The point is a method of manufacturing a magnetic recording medium, which is characterized in that the bonding layer described in 1) is formed by the RF sputtering method. (Embodiment 6) A feature of the invention described in Embodiment 6 is that a magnetic head having a reproducing element having an effective track width of 0.5 .mu.m or less is combined with the magnetic recording medium described in Embodiments 1 to 5 to perform magnetic recording. It is a magnetic storage device characterized by reproducing information. For the recording head, it is particularly preferable that the saturation magnetic flux density of the recording magnetic pole is 1.8 T or more. Further, it is preferable that the ratio of the minimum magnetization transition width formed on the recording medium to the total value of all magnetic layers of the recording medium is smaller than 1.5.

【0078】[0078]

【発明の効果】耐熱揺らぎ性と高S/N比とを両立させる
ことができる。
EFFECTS OF THE INVENTION It is possible to achieve both heat fluctuation resistance and a high S / N ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の効果を示す主要図。FIG. 1 is a main view showing an effect of the present invention.

【図2】本発明の磁気記録媒体の主要部概念図。FIG. 2 is a conceptual diagram of a main part of a magnetic recording medium of the present invention.

【図3】AFC媒体の概念図。FIG. 3 is a conceptual diagram of an AFC medium.

【図4】交換結合の概念図。FIG. 4 is a conceptual diagram of exchange coupling.

【図5】本発明の磁気記録媒体の磁化曲線を示す図。FIG. 5 is a diagram showing a magnetization curve of the magnetic recording medium of the present invention.

【図6】本発明の磁気記録媒体の別の磁化曲線を示す
図。
FIG. 6 is a diagram showing another magnetization curve of the magnetic recording medium of the present invention.

【図7】本発明の磁気記録媒体の磁気特性を定義する
図。
FIG. 7 is a diagram defining magnetic characteristics of the magnetic recording medium of the present invention.

【図8】本発明の磁気記録媒体における各磁性層の保磁
力の温度変化を示す図。
FIG. 8 is a diagram showing a temperature change of coercive force of each magnetic layer in the magnetic recording medium of the present invention.

【図9】本発明の別の効果を示す主要図。FIG. 9 is a main view showing another effect of the present invention.

【図10】従来磁気ディスク装置の概念図。FIG. 10 is a conceptual diagram of a conventional magnetic disk device.

【図11】従来磁気ヘッドの概念図。FIG. 11 is a conceptual diagram of a conventional magnetic head.

【図12】AFC媒体における再配列の概念図。FIG. 12 is a conceptual diagram of rearrangement in an AFC medium.

【図13】本発明の磁気記録媒体の構成を示す図。FIG. 13 is a diagram showing a configuration of a magnetic recording medium of the present invention.

【図14】本発明の磁気記録媒体の別の構成を示す図。FIG. 14 is a diagram showing another configuration of the magnetic recording medium of the present invention.

【図15】本発明の磁気記録媒体の別の構成を示す図。FIG. 15 is a diagram showing another configuration of the magnetic recording medium of the present invention.

【図16】本発明の磁気記録媒体の別の構成を示す図。FIG. 16 is a diagram showing another configuration of the magnetic recording medium of the present invention.

【図17】本発明の別の効果を示す図。FIG. 17 is a diagram showing another effect of the present invention.

【図18】本発明の別の効果を示す他の図。FIG. 18 is another diagram showing another effect of the present invention.

【図19】本発明の別の効果を示す図。FIG. 19 is a diagram showing another effect of the present invention.

【図20】本発明の磁気記録媒体の別の磁気特性を定義
する図。
FIG. 20 is a diagram defining another magnetic characteristic of the magnetic recording medium of the present invention.

【図21】本発明の別の効果を示す図。FIG. 21 is a diagram showing another effect of the present invention.

【符号の説明】[Explanation of symbols]

11・・・記録磁性層、12・・・安定化磁性層、13・・反
強磁性誘導接合層、14・・・非磁性下地層、15・・・非
磁性基板、16・・・保護膜、17・・・潤滑層、21・・・
下層磁性層群、22・・・弱強磁性誘導接合層、23・・・
飽和磁化増加領域、41・・・最大反強磁性結合エネルギ
ーJ1、42・・・ピーク膜厚tpeak、43・・・反強磁性結
合反値幅dt、51・・・安定化磁性層の磁化反転に伴う磁
化変化量、52・・・記録磁性層の磁化反転に伴う磁化変
化量、71・・・記録磁性層の保磁力、72・・安定化磁性
層のマイナーループの幅、73・・・反強磁性結合磁界、
81・・・記録磁性層の保磁力の温度変化、83・・・安定
化磁性層の保磁力の温度変化、101・・・記録媒体、102
・・・磁気ヘッド、103・・・ロータリアクチュエー
タ、104・・・回転軸受け、105・・・アーム、106・・
・サスペンション、108・・・筐体、111・・・書き込み
部、112・・・再生部、113・・・磁気抵抗素子、1110・
・・非磁性基板、115・・・シールド層、116・・・渦巻
き型コイル、117・・・磁極、118・・・磁極(シールド
層兼用)、119・・・電極。
11 ... Recording magnetic layer, 12 ... Stabilizing magnetic layer, 13 ... Antiferromagnetic induction junction layer, 14 ... Nonmagnetic underlayer, 15 ... Nonmagnetic substrate, 16 ... Protective film , 17 ... Lubrication layer, 21 ...
Lower magnetic layer group, 22 ... Weak ferromagnetic induction junction layer, 23 ...
Saturation magnetization increasing region, 41 ... Maximum antiferromagnetic coupling energy J1, 42 ... Peak film thickness tpeak, 43 ... Antiferromagnetic coupling antivalue width dt, 51 ... For magnetization reversal of stabilizing magnetic layer Amount of magnetization change accompanying, 52 ... Amount of magnetization change accompanying reversal of magnetization of the recording magnetic layer, 71 ... Coercive force of the recording magnetic layer, 72 ... Minor loop width of the stabilizing magnetic layer, 73 ... Ferromagnetic coupling field,
81 ... Temperature change of coercive force of recording magnetic layer, 83 ... Temperature change of coercive force of stabilizing magnetic layer, 101 ... Recording medium, 102
... Magnetic head, 103 ... Rotary actuator, 104 ... Rotation bearing, 105 ... Arm, 106 ...
・ Suspension, 108 ... Housing, 111 ... Writing section, 112 ... Reproducing section, 113 ... Magnetoresistive element, 1110.
..Non-magnetic substrate, 115 ... Shield layer, 116 ... Spiral coil, 117 ... Magnetic pole, 118 ... Magnetic pole (also serves as shield layer), 119 ... Electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年2月8日(2002.2.8)[Submission date] February 8, 2002 (2002.2.8)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】3層以上の磁性層を有する場合には、磁化
の磁界による微分値が少なくとも3つ以上のピークを持
つ可能性が有る。それぞれのピークに対応した前記過程
における磁化変化量を、値が大きい方から降順にdM1、d
M2、dM3のように呼ぶものとすると、dM1は記録磁性層の
磁化に対応しており、これを与える磁界は、該磁化過程
において最初に磁化された方向の反対方向を向いてい
る。各ピークに対応する磁化の変化量は、図20(b)
に示すような下駄部分(ベースライン)と微分曲線とで
囲まれた斜線部分の面積で与えられる。各ピークに対応
する磁化の変化量の総和は、測定媒体を十分飽和した時
の磁化量の2倍に対して、概ね60%から75%の間とな
る。dM2以下の磁化変化は、安定化磁性層と下層磁性層
群の磁化変化である。再配列の完了は、該磁化過程にお
いて、記録磁性層以外の磁化磁化変化に対応するピーク
が全て最初に磁化された方向を向いている(ピークがあ
る)ことで確認できる。
In the case of having three or more magnetic layers, there is a possibility that the differential value of the magnetization due to the magnetic field has at least three or more peaks. The magnetization variation in the above process corresponding to each peak is dM1, d in descending order from the largest value.
When referred to as M2 and dM3, dM1 corresponds to the magnetization of the recording magnetic layer, and the magnetic field that gives it is in the direction opposite to the direction magnetized first in the magnetization process. Variation of magnetization corresponding to each peak, FIG 20 (b)
It is given by the area of the shaded part surrounded by the geta part (baseline) and the differential curve as shown in FIG. The total amount of change in magnetization corresponding to each peak is approximately 60% to 75% with respect to twice the amount of magnetization when the measurement medium is sufficiently saturated. The change in magnetization below dM2 is the change in magnetization of the stabilizing magnetic layer and the lower magnetic layer group. The completion of the rearrangement can be confirmed by the fact that in the magnetization process, all the peaks corresponding to the magnetization magnetization changes in the layers other than the recording magnetic layer are oriented in the direction in which they are magnetized first (there are peaks).

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】また、RuとMo、Re、W、Crからなる群から
選ばれた少なくとも1種の金属元素とを含む合金、また
は、RhとPt、Pdから選ばれた少なくとも1種類以上の元
素合金とを含む合金である場合にはRuやRhに他の金属元
素が良く固溶するので結合エネルギーを制御して低下さ
せるのに有用である。AFC媒体の反強磁性結合磁界は、
本発明の実効安定化磁性層厚に反比例して減少する。記
録磁性層または安定化磁性層の接合層に接する領域で同
一磁性層内の他の領域より飽和磁化が大きい領域を設け
ることにより、記録磁性層と安定化磁性層の反強磁性結
合を強化するようなエンハンス構造(特開2001-56921号
公報)等の併用により、本発明のメリットを十分に引き
出すことができる。安定化磁性層をCoまたはCoを90%
以上含む合金としても良い。また、接合層をRFスハ゜ッタ法
で作成すると大きな反強磁性結合磁界が得られる。DCスハ
゜ッタ法ではで得られる反強磁性結合磁界はRFスハ゜ッタ法の1/
3程度であるが、MBE法よりも倍大きい。接合層の作成に
は、必要な結合磁界が得られる方式を用いるのが良いま
た、接する磁性層の磁化を逆向きにする性質を有する接
合層が複数有る場合には、互いに他の接合層に含まれな
い元素を含ませることにより、生産工程管理が容易にな
る。
An alloy containing Ru and at least one metal element selected from the group consisting of Mo, Re, W and Cr, or at least one elemental alloy selected from Rh, Pt and Pd In the case of an alloy containing and, other metal elements are well dissolved in Ru and Rh, which is useful for controlling and lowering the binding energy. The antiferromagnetic coupling field of AFC media is
It decreases in inverse proportion to the thickness of the effective stabilizing magnetic layer of the present invention. By providing a region of the recording magnetic layer or the stabilizing magnetic layer which is in contact with the junction layer and has a larger saturation magnetization than other regions in the same magnetic layer, the antiferromagnetic coupling between the recording magnetic layer and the stabilizing magnetic layer is strengthened. Such an enhanced structure ( Japanese Patent Laid-Open No. 2001-56921
The merits of the present invention can be sufficiently brought out by the combined use of ( publication ) and the like. 90% Co or Co for stabilizing magnetic layer
An alloy containing the above may be used. In addition, a large antiferromagnetic coupling magnetic field can be obtained by forming the bonding layer by the RF sputtering method. The antiferromagnetic coupling field obtained by the DC spreader method is 1 / of the RF spreader method.
It is about 3, but twice as large as the MBE method. It is preferable to use a method that can obtain a necessary coupling magnetic field for forming the bonding layer. Also, when there are a plurality of bonding layers having the property of reversing the magnetization of the magnetic layers in contact with each other, the other bonding layers should be connected to each other. By including the elements that are not contained, the production process control becomes easy.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】各磁性層の磁気異方性エネルギーKuの推定
は、各磁性層の組成を持つ単層(10nm)を作成し、残留
保磁力のパルス時間依存性をVSM測定や逆DC消磁法
より求め、Sharockの式にフィッティングして求めたK
β値やHkの値から関係式Kβ=Ku*v/(kT)やHk=2*Ku/Msを
使って算出すればよい。また、磁性層がCoCrPtB磁性薄
膜である場合には、Crの原子組成をNc、Ptの原子組成を
Np、Bの原子組成をNbとし、式Ku=(4.4-0.18×Nc+0.15
×Np-0.1×Nb)×100000J/m^3から簡易的に算出しても
良い。
To estimate the magnetic anisotropy energy Ku of each magnetic layer, a single layer (10 nm) having the composition of each magnetic layer was prepared, and the pulse time dependence of the residual coercive force was measured by VSM measurement or inverse DC demagnetization method. K calculated by fitting and fitting to Sharock's formula
It may be calculated from the β value and the value of Hk using the relational expressions Kβ = Ku * v / (kT) and Hk = 2 * Ku / Ms. In addition, when the magnetic layer is a CoCrPtB magnetic thin film, the atomic composition of Cr is set to the atomic composition of Nc and Pt.
The atomic composition of Np and B is Nb, and the formula Ku = (4.4-0.18 × Nc + 0.15
× Np-0.1 × Nb) × 100000J / m ^ 3 may be simply calculated.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0039】本発明を用いることにより、磁気異方性の
最適値を規定した前述の安定化磁性層の磁気異方性磁界
を記録磁性層の磁気異方性磁界に比べて小さくする媒体
のメリットを実効安定化磁性層厚(安定化磁性層および
下層磁性層群の飽和磁化と膜厚の積の和を安定化磁性層
の飽和磁化で除したもの)が厚い領域まで十分に引き出
すことができる。これは、磁気異方性エネルギーを小さ
くすることで再配列を促進しようとする場合、十分な記
録層の耐熱減磁特性が得られないためである。
By using the present invention, the merit of the medium in which the magnetic anisotropy magnetic field of the above-mentioned stabilizing magnetic layer which defines the optimum value of the magnetic anisotropy is made smaller than the magnetic anisotropy magnetic field of the recording magnetic layer. Can be sufficiently drawn to a region where the effective stabilizing magnetic layer thickness (the sum of the product of the saturation magnetization and the film thickness of the stabilizing magnetic layer and the lower magnetic layer group divided by the saturation magnetization of the stabilizing magnetic layer) is large. . This is because when the magnetic anisotropy energy is reduced to promote rearrangement, sufficient heat-resistant demagnetization characteristics of the recording layer cannot be obtained.

フロントページの続き (72)発明者 平山 義幸 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山本 朋生 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 富山 大士 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 細江 譲 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D006 BB02 BB05 BB07 BB08 Continued front page    (72) Inventor Yoshiyuki Hirayama             1-280, Higashi Koikekubo, Kokubunji, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor Tomoo Yamamoto             1-280, Higashi Koikekubo, Kokubunji, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor Daishi Toyama             1-280, Higashi Koikekubo, Kokubunji, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor Joe Hosoe             1-280, Higashi Koikekubo, Kokubunji, Tokyo             Central Research Laboratory, Hitachi, Ltd. F term (reference) 5D006 BB02 BB05 BB07 BB08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ディスク形状の基板上に直接または下地層
を介して形成された少なくとも3層以上の磁性層と、該
3層以上の磁性層の間に設けられた非磁性物質または弱
磁性物質からなる接合層とを有する磁気記録媒体におい
て、基板の円周方向に磁界を印加して得られる磁化曲線
において磁化の磁界による微分値が少なくとも2つ以上
のピークを有し、該2つ以上のピークに対応する磁化変
化量を変化量の最も大きい方からdM1、dM2とするとき、
dM1とdM2の和は飽和磁化量の2倍の90%以上であり、
dM1に対するdM2の比dM2/dM1が0.45以上であることを特
徴とする磁気記録媒体。
1. A non-magnetic substance or a weak magnetic substance provided between at least three magnetic layers formed directly or via an underlayer on a disk-shaped substrate and between the three magnetic layers. In a magnetic recording medium having a bonding layer made of, the differential curve of the magnetization due to the magnetic field has at least two peaks in the magnetization curve obtained by applying a magnetic field in the circumferential direction of the substrate, When the amount of change in magnetization corresponding to the peak is set to dM1 or dM2 from the largest change amount,
The sum of dM1 and dM2 is 90% or more, which is twice the saturation magnetization.
A magnetic recording medium having a ratio of dM2 to dM1 of dM2 / dM1 of 0.45 or more.
【請求項2】請求項1に記載の磁気記録媒体において、
磁界を毎秒3000A/mの大きさで磁界を変化させて得
られる磁化曲線における前記磁化変化量dM1、dM2に対応
する前記微分ピークをそれぞれピーク1、ピーク2と
し、該ピーク2の磁界は最初に磁気飽和させた方向の磁
界であり、該ピーク2を与える磁界における磁化量をMt
2とすると、当該磁化曲線上において、磁化量(Mt2+0.45
×dM2)を与える磁界と磁化量(Mt2-0.45×dM2)を与える
磁界の差ΔHが該ピーク2の磁界の大きさに比べて1.5倍
以下であることを特徴とする磁気記録媒体。
2. The magnetic recording medium according to claim 1,
The differential peaks corresponding to the magnetization change amounts dM1 and dM2 in the magnetization curve obtained by changing the magnetic field at a rate of 3000 A / m per second are defined as peak 1 and peak 2, respectively. It is a magnetic field in a magnetically saturated direction, and the amount of magnetization in the magnetic field that gives the peak 2 is Mt.
2, the magnetization amount (Mt2 + 0.45
A magnetic recording medium characterized in that a difference ΔH between a magnetic field giving a magnetic field (× dM2) and a magnetic field giving a magnetization amount (Mt2-0.45 × dM2) is not more than 1.5 times the magnitude of the magnetic field of the peak 2.
【請求項3】基板上に直接または下地層を介して形成さ
れた少なくとも3層以上の磁性層と、該3層以上の磁性
層の間に設けられた非磁性物質または弱磁性物質からな
る接合層とを有し、該非磁性基板から最も遠い磁性層を
記録磁性層、記録磁性層の次に該非磁性基板から遠い磁
性層を安定化磁性層、該記録磁性層と該安定化磁性層と
を除く他の全ての磁性層を下層磁性層群とするとき、該
記録磁性層の磁化と該安定化磁性層の磁化とが互いに反
平行であり、かつ基板側からi番目の磁性層の異方性エ
ネルギーKui(J/m^3)、I番目の磁性層を上面から見た平
均粒子直径D、磁性層の膜厚ti、ボルツマン定数kによ
り、KuiとDの平方とtiの積をkで除した値として定義さ
れる磁性層の耐熱係数(√Kui×√D×ti)/kが4000以下
であることを特徴とする磁気記録媒体。
3. A bond composed of at least three magnetic layers formed directly or through an underlayer on a substrate and a non-magnetic substance or a weak magnetic substance provided between the magnetic layers of three or more layers. A magnetic layer farthest from the non-magnetic substrate is a recording magnetic layer, a magnetic layer next to the recording magnetic layer is a stabilizing magnetic layer, and the recording magnetic layer and the stabilizing magnetic layer are When all other magnetic layers except for the lower magnetic layer group, the magnetization of the recording magnetic layer and the magnetization of the stabilizing magnetic layer are antiparallel to each other, and the anisotropic i-th magnetic layer from the substrate side. The product of the square and ti of Kui and D is k in terms of the kinetic energy Kui (J / m ^ 3), the average particle diameter D of the I-th magnetic layer seen from the top surface, the film thickness ti of the magnetic layer, and the Boltzmann constant k. A magnetic recording medium characterized in that a heat resistance coefficient (√Kui × √D × ti) / k of a magnetic layer defined as a value obtained by dividing is 4000 or less.
【請求項4】基板上に直接または下地層を介して形成さ
れた少なくとも3層以上の磁性層と、該3層以上の磁性
層の間に設けられた非磁性物質または弱磁性物質からな
る接合層とを有し、該非磁性基板から最も遠い磁性層を
記録磁性層、記録磁性層の次に該非磁性基板から遠い磁
性層を安定化磁性層、該記録磁性層と該安定化磁性層と
を除く他の全ての磁性層を下層磁性層群とするとき、該
記録磁性層の磁化と該安定化磁性層の磁化とは互いに反
平行であり、かつ、該下層磁性層群を構成する磁性層の
厚さは記録磁性層の厚さの0.3倍以下であることを特徴
とする磁気記録媒体。
4. A bond comprising at least three or more magnetic layers formed on a substrate directly or via an underlayer, and a non-magnetic substance or a weak magnetic substance provided between the three or more magnetic layers. A magnetic layer farthest from the non-magnetic substrate is a recording magnetic layer, a magnetic layer next to the recording magnetic layer is a stabilizing magnetic layer, and the recording magnetic layer and the stabilizing magnetic layer are When all other magnetic layers except for the lower magnetic layer group, the magnetization of the recording magnetic layer and the magnetization of the stabilizing magnetic layer are antiparallel to each other, and the magnetic layers constituting the lower magnetic layer group. The magnetic recording medium is characterized in that the thickness is less than 0.3 times the thickness of the recording magnetic layer.
JP2001344017A 2001-11-09 2001-11-09 Magnetic recording medium and magnetic recorder using the same Pending JP2003151116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344017A JP2003151116A (en) 2001-11-09 2001-11-09 Magnetic recording medium and magnetic recorder using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344017A JP2003151116A (en) 2001-11-09 2001-11-09 Magnetic recording medium and magnetic recorder using the same

Publications (1)

Publication Number Publication Date
JP2003151116A true JP2003151116A (en) 2003-05-23

Family

ID=19157601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344017A Pending JP2003151116A (en) 2001-11-09 2001-11-09 Magnetic recording medium and magnetic recorder using the same

Country Status (1)

Country Link
JP (1) JP2003151116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976964B2 (en) 2005-03-18 2011-07-12 Hitachi Global Storage Technologies Netherlands B.V. Disk drive with laminated magnetic thin films with sublayers for magnetic recording

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976964B2 (en) 2005-03-18 2011-07-12 Hitachi Global Storage Technologies Netherlands B.V. Disk drive with laminated magnetic thin films with sublayers for magnetic recording

Similar Documents

Publication Publication Date Title
US6635367B2 (en) Magnetic recording medium
US7625643B2 (en) Magnetic recording medium, magnetic storage apparatus and recording method
JP3385004B2 (en) Magnetic recording media
US7348078B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
US7327528B2 (en) Magnetic recording medium and magnetic storage apparatus
KR100630583B1 (en) Magnetic recording medium
US20030108721A1 (en) Thermally - assisted magnetic recording disk with recording layer exchange- coupled to antiferromagnetic-to-ferromagnetic switching layer
US20030124390A1 (en) Magnetic recording medium and magnetic storage apparatus
JP2008176858A (en) Perpendicular magnetic recording medium and hard disk drive using the same
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2007317304A (en) Magnetic recording medium and magnetic recording system
US6623875B2 (en) Magnetic recording medium and magnetic storage apparatus
JP3421632B2 (en) Magnetic recording medium, magnetic storage device, recording method, and method of manufacturing magnetic recording medium
US6773833B2 (en) Magnetic storage medium having improved thermal stability and a magnetic storage device using such a high-density magnetic storage medium
JP2001056922A (en) Magnetic recording medium
JP2001056921A (en) Magnetic recording medium
EP1359570A1 (en) Magnetic recording medium and magnetic storage device
JP2001056925A (en) Magnetic recording medium and magnetic storage device
JP2003151116A (en) Magnetic recording medium and magnetic recorder using the same
CN101627429A (en) Perpendicular magnetic recording medium and magnetic recording/reproducing device
JP2000339657A (en) Magnetic recording medium
JP2000067423A (en) Intra-surface magnetic recording medium and magnetic storage using the same
JP2001118234A (en) Perpendicular magnetic recording medium and magnetic storage device
JPH10135039A (en) Magnetic recording medium and magnetic storage device
JP2002063712A (en) Magnetic recording medium and magnetic recording apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061114