JP2003148755A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003148755A
JP2003148755A JP2001342664A JP2001342664A JP2003148755A JP 2003148755 A JP2003148755 A JP 2003148755A JP 2001342664 A JP2001342664 A JP 2001342664A JP 2001342664 A JP2001342664 A JP 2001342664A JP 2003148755 A JP2003148755 A JP 2003148755A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air conditioner
compressor
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001342664A
Other languages
Japanese (ja)
Inventor
Hiroshi Kogure
博志 小暮
Koichi Fukushima
功一 福島
Nobuo Inagaki
信夫 稲垣
Isao Yokoshima
功 横島
Shigeyuki Sasaki
重幸 佐々木
Mitsuo Kudo
光夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001342664A priority Critical patent/JP2003148755A/en
Publication of JP2003148755A publication Critical patent/JP2003148755A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve safety for refrigerant leakage of an air conditioner for a domestic use, using a refrigeration cycle using a HC refrigerant to be a combustible refrigerant. SOLUTION: A pipe diameter of a heat exchanger is thinned to reduce sealed quantity of the refrigerant. Pressure is made low to reduce refrigerants entering a compressor. The sealed quantity of the refrigerant is reduced down to about <=185 g by eliminating liquid parts of a pipe in the refrigeration cycle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、可燃性冷媒である
HC冷媒を用いた空気調和機に関する。
TECHNICAL FIELD The present invention relates to an air conditioner using an HC refrigerant which is a flammable refrigerant.

【0002】[0002]

【従来の技術】従来の空気調和機は、HCFC冷媒のR
22(クロロジフルオロメタン、CHClF)が広く
用いられてきたが、地球のオゾン層破壊に影響する恐れ
から、塩素を含まないHFC冷媒のR32(ジフルオロ
メタン,CH)、R125(ペンタフルオロエタ
ン,H−CHF)、R134a(1,1,1,2−
テトラフルオロエタン,F−CH−CHF)等の
混合冷媒が考えられている。小形の家庭用空気調和機で
は、HFC冷媒のR410a(R32(50%)、R1
25(50%)の混合)がオゾン層破壊防止と性能及び
安全性等の面から冷媒R22代替冷媒として使われ始め
ている。
2. Description of the Related Art A conventional air conditioner uses an HCFC refrigerant R
22 (chlorodifluoromethane, CHClF 2 ) has been widely used. However, due to the fear of affecting the ozone layer depletion of the earth, chlorine-free HFC refrigerants R32 (difluoromethane, CH 2 F 2 ), R125 (pentafluoromethane) are used. ethane, H 3 -CHF 2), R134a (1,1,1,2-
Tetrafluoroethane, F 3 -CH 3 mixed refrigerant -CH 2 F) or the like has been considered. For small home air conditioners, the HFC refrigerant R410a (R32 (50%), R1
25 (50%) is being used as a substitute refrigerant for the refrigerant R22 in terms of prevention of ozone layer depletion, performance and safety.

【0003】ここでHFC冷媒、例えばR410a冷媒
は、地球温暖化に対する影響が従来のHCFC冷媒のR
22と同程度に近いという欠点がある。地球温暖化に対
する影響が小さく、オゾン層破壊のない冷媒としてはH
C冷媒があるが、可燃性が強いという欠点を有してい
る。
Here, the HFC refrigerant, for example, R410a refrigerant, has the effect on global warming of the conventional HCFC refrigerant R
It has a drawback that it is close to 22. H is a refrigerant that has a small impact on global warming and does not cause ozone depletion.
Although there is a C refrigerant, it has the drawback of being highly flammable.

【0004】冷凍サイクルにHC(ハイドロカーボン)
冷媒を用いた場合、この冷媒は可燃性であるため、冷凍
サイクルからHC冷媒が外部へ漏れた場合の可燃性に対
する安全装置が必要である。
HC (hydrocarbon) for the refrigeration cycle
When a refrigerant is used, the refrigerant is flammable, so a safety device for flammability in the case where the HC refrigerant leaks from the refrigeration cycle to the outside is required.

【0005】この種、従来技術として、炭化水素濃度の
時間的変化を検出して、室外にHC冷媒を排出する構造
が、特開平10−300294号公報に記載されてい
る。また、HC冷媒を室外ユニットに回収して、室内に
漏洩するのを防止する機能が、特開平6−180166
号公報に開示されている。
As a conventional technique of this type, a structure for detecting the time-dependent change of the hydrocarbon concentration and discharging the HC refrigerant to the outside is disclosed in Japanese Patent Application Laid-Open No. 10-300294. Further, the function of collecting the HC refrigerant in the outdoor unit and preventing it from leaking into the room is disclosed in JP-A-6-180166.
It is disclosed in the publication.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、冷凍装
置の冷凍サイクルに封入する冷媒をHC冷媒とする場
合、HC冷媒センサーを設けて漏洩を検知し、可燃に対
する防止手段を講じたとしても十分にこれを防止するこ
とは困難である。すなわち、HC冷媒センサーの誤動作
が考えられ、冷媒漏洩が十分検知されない場合、完全に
可燃性を防止することはできない。
However, when the refrigerant to be sealed in the refrigerating cycle of the refrigerating apparatus is the HC refrigerant, even if an HC refrigerant sensor is provided to detect the leakage and take measures to prevent flammability, this is sufficient. Is difficult to prevent. That is, if the HC refrigerant sensor malfunctions and refrigerant leakage is not sufficiently detected, it is impossible to completely prevent flammability.

【0007】本発明は、HC冷媒を用いた冷凍装置の可
燃性に対する問題を取り除こうとすることを目的とする
ものである。
An object of the present invention is to eliminate the problem of flammability of a refrigeration system using an HC refrigerant.

【0008】[0008]

【課題を解決するための手段】上記目的は、圧縮機、室
外側熱交換器、減圧器、室内側熱交換器この順で接続配
管にて接続した冷凍サイクルを有し、使用冷媒としてH
C冷媒を用いた空気調和機において、前記室内側熱交換
器用パイプの径を5.4mm以下、段ピッチを20mm
以上とすることにより達成される。
The object is to have a refrigeration cycle in which a compressor, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are connected in this order by connecting pipes, and H is used as a refrigerant.
In an air conditioner using C refrigerant, the diameter of the indoor heat exchanger pipe is 5.4 mm or less, and the stage pitch is 20 mm.
This is achieved by the above.

【0009】すなわち、凝縮器及び蒸発器に用いる熱交
換器のパイプ径を細くすることにより、HC冷媒の冷凍
サイクル内の封入量を少なくし、冷凍サイクル内の冷媒
が室内に漏洩した時でも、室内に可燃性空間が発生しな
いようにした。
That is, by narrowing the pipe diameter of the heat exchanger used for the condenser and the evaporator, the amount of HC refrigerant enclosed in the refrigeration cycle is reduced, and even when the refrigerant in the refrigeration cycle leaks into the room, No flammable space was created in the room.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施例を図面を
用いて説明する。図1は、一般的な家庭用空気調和機の
冷凍サイクルを示す。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a refrigeration cycle of a general household air conditioner.

【0011】1は圧縮機、2は冷媒切換え四方弁、3は
室外側熱交換器、4は減圧弁、5は室内側熱交換器、6
は室外側送風ファン、7は室内側送風ファンであり、室
外側に設置される室外機8の中には、圧縮機1、四方弁
2、室外側熱交換器3、減圧弁4、室外側送風ファン6
が収納され、室内側に設置される室内機の中には、室内
側熱交換器5、室内側送風ファン7が収納されている。
室外機8と室内機9の間は、接続配管10、11で連結
されている。
1 is a compressor, 2 is a refrigerant switching four-way valve, 3 is an outdoor heat exchanger, 4 is a pressure reducing valve, 5 is an indoor heat exchanger, and 6
Is an outdoor blower fan, 7 is an indoor blower fan, and among the outdoor units 8 installed on the outdoor side, there are a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a pressure reducing valve 4, and an outdoor side. Blower fan 6
The indoor heat exchanger 5 and the indoor blower fan 7 are housed in the indoor unit installed on the indoor side.
The outdoor unit 8 and the indoor unit 9 are connected by connection pipes 10 and 11.

【0012】かかるセパレートタイプの空気調和機にお
いて、部屋の大きさとして6畳から16畳位を冷房及び
暖房する能力の空気調和機にであって、冷凍サイクル中
を循環する冷媒としてHFC冷媒のR410aを用い、
例えば、室内側を暖房した場合の冷媒の各部分への分布
を調べた結果、表1のNO1のような状態になってい
た。
In such a separate type air conditioner, the air conditioner has the ability to cool and heat 6 to 16 tatami mats as the size of the room, and R410a of HFC refrigerant is used as the refrigerant circulating in the refrigeration cycle. Using
For example, as a result of investigating the distribution of the refrigerant to each part when the indoor side is heated, it is in a state like NO1 in Table 1.

【0013】[0013]

【表1】 室内側熱交換器5(凝縮器)に51%、室外側熱交換器
3(蒸発器)に17%、圧縮機1に8%、その他(接続
配管等)に24%が分布しており、トータルとして質量
約1050gの冷媒が封入されている。
[Table 1] 51% is distributed in the indoor heat exchanger 5 (condenser), 17% in the outdoor heat exchanger 3 (evaporator), 8% in the compressor 1, and 24% in other (connection pipes, etc.). A total of about 1050 g of the refrigerant is enclosed.

【0014】このような冷凍サイクルにHC冷媒のプロ
パンを用いた場合の各部分への分布を調べた結果、表1
のNO2のような状態になっていた。冷媒としてプロパ
ンを用いると、冷凍サイクル内への冷媒の封入量は大幅
に少なくなり、約46%である484gまで少なくなっ
ていた。
As a result of investigating the distribution to each portion when propane of HC refrigerant was used in such a refrigeration cycle, Table 1
It was in a state like NO2. When propane was used as the refrigerant, the amount of the refrigerant enclosed in the refrigeration cycle was significantly reduced to about 484 g, which is about 46%.

【0015】冷媒封入量が少なくなった大きな原因は、
表2に示す如く、R22とプロパンの冷媒を比較する
と、液及びガスの密度がプロパンの方が約1/2と小さ
いためである。
The main cause of the reduced amount of refrigerant enclosed is
This is because, as shown in Table 2, when R22 and propane refrigerant are compared, the density of liquid and gas is about 1/2, which is smaller than that of propane.

【0016】[0016]

【表2】 圧縮機1内部の冷媒量が減っていないのは、圧縮機1内
の空間に入るガス量は減るわけであるが、圧縮機1内の
冷凍機油(図示せず)に溶け込んでいる冷媒量が、R2
2よりプロパン冷媒の方が多くなっているためと考えら
れる。
[Table 2] The reason why the amount of refrigerant inside the compressor 1 is not decreased is that the amount of gas entering the space inside the compressor 1 is decreased, but the amount of refrigerant dissolved in the refrigeration oil (not shown) inside the compressor 1 is , R2
It is considered that the amount of propane refrigerant is larger than that of No. 2.

【0017】一方、HC冷媒であるプロパンの最低爆発
濃度(LEL:Lower Explosion Le
vel)は2.0%であり、この量を部屋の大きさで求
めてみると表3の如くなる。
On the other hand, the minimum explosion concentration (LEL: Lower Explosion Le) of propane which is an HC refrigerant.
vel) is 2.0%, and when this amount is calculated by the size of the room, it becomes as shown in Table 3.

【0018】[0018]

【表3】 部屋の大きさが6、8、12、16畳と変化した時の部
屋の体積は、部屋の高さを2.4mとすると、23.
3、31.1、46.7、62.2mとなる。
[Table 3] The volume of the room when the size of the room changes to 6, 8, 12, and 16 tatami, and the height of the room is 2.4 m, 23.
The 3,31.1,46.7,62.2m 3.

【0019】この部屋の大きさに相当するプロパンの最
低爆発冷媒量は、932、1160、1720、228
0gとなり、更なる安全上の配慮から実用上のLELと
してLELを考えると、LEL=LEL×20%位
が考えられ(安全率5倍)、これを求めると表3の18
6、232、344、456gとなる。
The minimum explosive refrigerant amount of propane corresponding to the size of this room is 932, 1160, 1720, 228.
When considering LEL 0 as a practical LEL from the viewpoint of further safety, LEL 0 = LEL × 20% is considered (safety factor 5 times).
It becomes 6,232,344,456g.

【0020】従って、室内側にHC冷媒が洩れて爆発等
の火災の事故を防ぐためには、安全上において家庭用空
調機の冷凍サイクルに使用される冷媒封入量としては、
約185g以下にすべきである。
Therefore, in order to prevent the accident of fire such as explosion due to HC refrigerant leaking to the indoor side, the amount of refrigerant to be used in the refrigeration cycle of the home air conditioner is set as a safety amount in terms of safety.
Should be no more than about 185 g.

【0021】表3において、圧縮機1内に入る冷媒量
は、圧縮機1内を低圧にすれば圧縮機内のガス密度が大
幅に小さくなり、表3のNO3に示す如く19gに低減
できることがわかった。また、接続配管等にある冷媒量
は、室内側熱交換器5と減圧器4の間の配管11内に液
冷媒として入っている冷媒を、室内側熱交換器5と減圧
器4の間に抵抗となる絞り12を設けることにより、配
管内10を二相液とすることができるために、冷媒を1
5gと大幅に低減できることがわかった。また、室内側
熱交換器5と室外側熱交換器3の熱交換器のパイプを外
径5.4mm、内径4.8mmにすると、熱交換器の冷
媒量が約1/2以下となり、表3のNO3の如く194
gになることがわかった。
In Table 3, it can be seen that the amount of refrigerant entering the compressor 1 can be reduced to 19 g as shown in NO3 of Table 3 by significantly reducing the gas density in the compressor by reducing the pressure in the compressor 1. It was The amount of the refrigerant in the connection pipe or the like is the same as the amount of the refrigerant contained in the pipe 11 between the indoor heat exchanger 5 and the pressure reducer 4 as the liquid refrigerant between the indoor heat exchanger 5 and the pressure reducer 4. Since the inside of the pipe 10 can be made into a two-phase liquid by providing the throttle 12 which becomes a resistance, the refrigerant is
It was found that it could be significantly reduced to 5 g. Further, when the pipes of the heat exchangers of the indoor heat exchanger 5 and the outdoor heat exchanger 3 have an outer diameter of 5.4 mm and an inner diameter of 4.8 mm, the refrigerant amount in the heat exchanger becomes about 1/2 or less, Like NO3 of 3 194
It turned out to be g.

【0022】表1のNO3に用いた室内側熱交換器の仕
様を示すと、表4のNOIIの如くなっている。
The specifications of the indoor heat exchanger used for NO3 in Table 1 are shown as NOII in Table 4.

【0023】[0023]

【表4】 表4の熱交換器仕様において、NOIII、NOIVは熱交
換器の性能を同じくして、パイプ内容積を少なくした仕
様を示している。NOIII、NOIVの仕様は、NOIIに
対して内容積が91%、81%になっており、冷媒封入
量も少なくできる仕様である。
[Table 4] In the heat exchanger specifications in Table 4, NOIII and NOIV indicate the specifications in which the heat exchanger performance is the same and the pipe inner volume is reduced. The specifications of NOIII and NOIV are such that the internal volume is 91% and 81% with respect to NOII, and the amount of refrigerant enclosed can be reduced.

【0024】しかし、パイプの段ピッチが大きくなる
と、フィン効率が低下するため、フィンの面積を大きく
する必要があり、フィンの列ピッチが増加することとな
り、奥行が大きい熱交換器になる欠点を有し、コンパク
ト化には反することとなる。
However, if the stage pitch of the pipe increases, the fin efficiency decreases, so that the fin area needs to be increased, and the fin row pitch increases, resulting in a heat exchanger having a large depth. It is against the compactness.

【0025】熱交換器NOII、NOIII、NOIVを埋め
込んだ時の冷媒封入量を調べてみると表5の如くなる。
Table 5 shows the amount of refrigerant enclosed when the heat exchangers NOII, NOIII and NOIV are embedded.

【0026】[0026]

【表5】 表5のNOIII、NOIVの如く、パイプ段ピッチが大き
な熱交換器にすれば、冷媒封入量を185g以下に抑え
ることが出来ることがわかった。
[Table 5] It has been found that when a heat exchanger having a large pipe stage pitch, such as NOIII and NOIV in Table 5, is used, the refrigerant charge amount can be suppressed to 185 g or less.

【0027】以上の如く、冷凍サイクルの熱交換器の細
径化、圧縮機の低圧化、接続配管のガス化等により、H
C冷媒を用いた空気調和機用冷凍サイクル内の冷媒封入
量を、室内側に洩れた場合でも爆発等の火災が発生する
のを防止できる程度の少量に抑えることができ、安全な
空気調和機を提供できるものである。
As described above, H is reduced by reducing the diameter of the heat exchanger of the refrigeration cycle, lowering the pressure of the compressor, and gasifying the connecting piping.
A safe air conditioner that can reduce the amount of refrigerant enclosed in a refrigeration cycle for an air conditioner using C refrigerant to a small amount that can prevent a fire such as an explosion even if it leaks indoors. Can be provided.

【0028】ここでは、熱交換器の細径化、圧縮機の低
圧化、配管の液部分の二相液化等により、冷媒封入量を
安全な冷媒量まで減らしているが、熱交換器部分の小形
化等にすれば、冷凍サイクル内の冷媒封入量は更に少な
くできるため、これらの技術をすべて合わせないと安全
性に優れた空気調和機ができないわけではなく、例え
ば、熱交換器の小形化と細径化でも実現することは可能
である。
Here, the refrigerant filling amount is reduced to a safe refrigerant amount by reducing the diameter of the heat exchanger, lowering the pressure of the compressor, and liquefying the two-phase liquid portion of the pipe. If it is downsized, the amount of refrigerant enclosed in the refrigeration cycle can be further reduced, so it is not possible to create an air conditioner with excellent safety without combining all of these technologies.For example, downsizing of the heat exchanger It is also possible to realize with a smaller diameter.

【0029】[0029]

【発明の効果】以上述べたように、本発明はオゾン層に
対する有害な影響がなく、地球温暖化に対する影響も少
ないHC冷媒を用いた空気調和機において、熱交換器の
細径化、圧縮機の低圧化、配管部分の二相液化等の技術
を用いることにより、冷凍サイクル内の冷媒封入量を大
幅に低減し、室内側に冷媒が洩れた場合でも火災に対す
る安全性を向上させた空気調和機にすることができる。
As described above, according to the present invention, in the air conditioner using the HC refrigerant which does not have a harmful effect on the ozone layer and has a small effect on global warming, the heat exchanger has a small diameter and the compressor has a small diameter. Air conditioning that uses technologies such as low pressure and two-phase liquefaction of piping to significantly reduce the amount of refrigerant filled in the refrigeration cycle and improve safety against fire even if refrigerant leaks to the indoor side. Can be an opportunity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る可燃性冷媒を用いた空気調和機用
冷凍サイクル図。
FIG. 1 is a refrigeration cycle diagram for an air conditioner using a flammable refrigerant according to the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室外側熱交換器、4…減
圧器、5…室内側熱交換器、6…室外側送風ファン、7
…室内側送風ファン、8…室外機、9…室内機、10、
11…配管、12…絞り。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Decompressor, 5 ... Indoor heat exchanger, 6 ... Outdoor blowing fan, 7
… Indoor fan, 8… outdoor unit, 9… indoor unit, 10,
11 ... Piping, 12 ... Throttling.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 信夫 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 横島 功 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 佐々木 重幸 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 工藤 光夫 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 3L051 BE04 BF01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuo Inagaki             800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi             Hitachi Co., Ltd., Cooling & Heat Division (72) Inventor Isao Yokoshima             800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi             Hitachi Co., Ltd., Cooling & Heat Division (72) Inventor Shigeyuki Sasaki             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Mitsuo Kudo             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center F-term (reference) 3L051 BE04 BF01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、室外側熱交換器、減圧器、室内側
熱交換器この順で接続配管にて接続した冷凍サイクルを
有し、使用冷媒としてHC冷媒を用いた空気調和機にお
いて、前記室内側熱交換器用パイプの径を5.4mm以
下、段ピッチを20mm以上とした空気調和機。
1. An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are connected by connecting pipes in this order, and HC refrigerant is used as a refrigerant. An air conditioner in which the diameter of the indoor heat exchanger pipe is 5.4 mm or less and the stage pitch is 20 mm or more.
【請求項2】請求項1において、前記圧縮機の内部を低
圧式にした空気調和機。
2. The air conditioner according to claim 1, wherein the inside of the compressor is of a low pressure type.
【請求項3】請求項1において、前記圧縮機の内部を低
圧式にし、前記減圧弁と室内機を接続する配管の一部に
絞りを設けた空気調和機。
3. The air conditioner according to claim 1, wherein the inside of the compressor is of a low pressure type, and a throttle is provided in a part of a pipe connecting the pressure reducing valve and the indoor unit.
JP2001342664A 2001-11-08 2001-11-08 Air conditioner Pending JP2003148755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001342664A JP2003148755A (en) 2001-11-08 2001-11-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342664A JP2003148755A (en) 2001-11-08 2001-11-08 Air conditioner

Publications (1)

Publication Number Publication Date
JP2003148755A true JP2003148755A (en) 2003-05-21

Family

ID=19156481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342664A Pending JP2003148755A (en) 2001-11-08 2001-11-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP2003148755A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002139A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2013083437A (en) * 2012-12-26 2013-05-09 Mitsubishi Electric Corp Air conditioning apparatus and safety management method for the same
WO2019171588A1 (en) * 2018-03-09 2019-09-12 三菱電機株式会社 Refrigeration cycle apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002139A (en) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2013083437A (en) * 2012-12-26 2013-05-09 Mitsubishi Electric Corp Air conditioning apparatus and safety management method for the same
WO2019171588A1 (en) * 2018-03-09 2019-09-12 三菱電機株式会社 Refrigeration cycle apparatus
JPWO2019171588A1 (en) * 2018-03-09 2020-10-01 三菱電機株式会社 Refrigeration cycle equipment
CN111801535A (en) * 2018-03-09 2020-10-20 三菱电机株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP7244763B2 (en) refrigeration equipment
US11906207B2 (en) Refrigeration apparatus
JP5818849B2 (en) Air conditioner and refrigerant leakage detection method
WO2019124138A1 (en) Air conditioning unit
JP5665937B1 (en) Refrigeration cycle equipment
EP2339271A1 (en) Cooling cycle device
WO2019124140A1 (en) Refrigeration cycle device
US20040123608A1 (en) Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
JP5239427B2 (en) Method for updating air conditioner
JP5908183B1 (en) Air conditioner
JPH08145489A (en) Refrigerator and operating method therefor
WO2015140887A1 (en) Refrigeration cycle apparatus
JP2022125358A (en) Refrigeration device
JP2012122677A (en) Air conditioner
JP2003148755A (en) Air conditioner
JP6605156B2 (en) Flow path switching valve and air conditioner using the same
JP3380452B2 (en) Refrigeration cycle apparatus and retrofit method for refrigeration cycle apparatus
WO2012137260A1 (en) Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device
JP6725639B2 (en) Refrigeration cycle equipment
KR20230035461A (en) Refrigeration systems and methods
JP2000234797A (en) Indoor unit of refrigeration cycle device, and its installation method
Zhang et al. Performance Optimization of Variable Speed Room Air-Conditioner Under Intermediate Speed Working Condition
JP2002081798A (en) Refrigeration cycle device
Ferreira Design of A Heat Pump For Domestic Hot Water Using Natural Refrigerant Transcritical CO2
JP2000039221A (en) Refrigerating cycle apparatus