JP2003147049A - Embedding resin and wiring board using the same - Google Patents

Embedding resin and wiring board using the same

Info

Publication number
JP2003147049A
JP2003147049A JP2001352478A JP2001352478A JP2003147049A JP 2003147049 A JP2003147049 A JP 2003147049A JP 2001352478 A JP2001352478 A JP 2001352478A JP 2001352478 A JP2001352478 A JP 2001352478A JP 2003147049 A JP2003147049 A JP 2003147049A
Authority
JP
Japan
Prior art keywords
resin
wiring board
embedded
substrate
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001352478A
Other languages
Japanese (ja)
Other versions
JP3895156B2 (en
Inventor
Hirotaka Takeuchi
裕貴 竹内
Toshifumi Kojima
敏文 小嶋
Kazue Obayashi
和重 大林
Hisato Kashima
壽人 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001352478A priority Critical patent/JP3895156B2/en
Publication of JP2003147049A publication Critical patent/JP2003147049A/en
Application granted granted Critical
Publication of JP3895156B2 publication Critical patent/JP3895156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15182Fan-in arrangement of the internal vias
    • H01L2924/15184Fan-in arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Abstract

PROBLEM TO BE SOLVED: To provide an embedding resin having both of a low viscosity and high reliability caused by matching thermal expansion coefficients, and further to provide a wiring board having an electronic part arranged in an opening part formed in an insulating substrate, and embedded by using the embedding resin. SOLUTION: This embedding resin has <=85 Pa.s viscosity at 8.4 s<-1> shear rate after being allowed to stand at 25±1 deg.C for 24 hr. An acid anhydride curing agent having <=170 mPa.s viscosity at 25±1 deg.C is used as the curing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チップコンデンサ、チ
ップインダクタ、チップ抵抗等の電子部品を絶縁基板内
部に埋め込むための埋め込み樹脂およびそれを用いて電
子部品を絶縁基板内部に埋め込んだ配線基板に関する。
特には、多層配線基板、半導体素子収納用パッケージ等
に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an embedded resin for embedding electronic components such as chip capacitors, chip inductors, and chip resistors in an insulating substrate, and a wiring board in which the electronic components are embedded in an insulating substrate. .
Particularly, it is suitable for a multilayer wiring board, a package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】近年、ビルドアップ配線基板に多数の半
導体素子を搭載したマルチチップモジュール(MCM)
が検討されている。チップコンデンサ、チップインダク
タ、チップ抵抗等の電子部品を実装する場合には、配線
基板の表面に形成された実装用配線層上に半田を用いて
表面実装するのが一般的である。
2. Description of the Related Art In recent years, a multi-chip module (MCM) in which many semiconductor elements are mounted on a build-up wiring board
Is being considered. When mounting electronic components such as a chip capacitor, a chip inductor, and a chip resistor, it is common to carry out surface mounting using solder on a mounting wiring layer formed on the surface of a wiring board.

【0003】しかし、ビルドアップ配線基板の表面に電
子部品を表面実装すると、個々の電子部品に対応する所
定の実装面積が必要なため、小型化にはおのずと限界が
ある。また、表面実装する際の配線の取り回しによっ
て、特性上好ましくない寄生インダクタンスが大きくな
り、電子機器の高周波化に対応が難しくなるという問題
がある。
However, when electronic parts are surface-mounted on the surface of the build-up wiring board, a predetermined mounting area corresponding to each electronic part is required, and therefore there is a natural limit to miniaturization. In addition, there is a problem in that the parasitic inductance, which is unfavorable in terms of characteristics, increases due to the routing of the wiring during surface mounting, and it becomes difficult to cope with higher frequencies of electronic devices.

【0004】これら諸問題を解決するために、絶縁基板
内部に電子部品を埋め込む方法が種々検討されている。
特開平11−126978では、電子部品を予め金属箔
からなる転写シート付き配線基板に半田実装してから転
写する方法が開示されているが、実装での位置精度等で
課題が残る。特開2000−124352には、コア基
板内部に埋め込んだ電子部品上に絶縁層をビルドアップ
した多層配線基板が開示されている。
In order to solve these problems, various methods of embedding electronic parts inside the insulating substrate have been studied.
Japanese Unexamined Patent Application Publication No. 11-126978 discloses a method of soldering an electronic component on a wiring board with a transfer sheet, which is made of a metal foil in advance, and then transferring the same. Japanese Patent Laid-Open No. 2000-124352 discloses a multilayer wiring board in which an insulating layer is built up on an electronic component embedded inside a core board.

【0005】[0005]

【発明が解決しようとする課題】電子部品をコア基板等
の絶縁基板内部に埋め込む方法では、絶縁基板と電子部
品との隙間を埋め込み樹脂で埋めて、更にその上にビル
ドアップした絶縁層上に形成した配線層と電子部品の電
極とを無電解メッキ等により電気的に接続する必要があ
る。その際、接続信頼性の確保のためにも、電子部品の
電極間の微細な隙間にも埋め込み樹脂を回り込ませる必
要がある。そのため、埋め込み樹脂は低粘度である必要
がある。しかも、その使用環境を考えると、常温での可
使時間(硬化反応がある程度進行しても尚、埋め込み樹
脂の取り扱い性を良好に保っていられる時間)を長くし
ておく必要がある。
In a method of embedding an electronic component inside an insulating substrate such as a core substrate, a gap between the insulating substrate and the electronic component is filled with a filling resin, and the insulating layer is built up on the gap. It is necessary to electrically connect the formed wiring layer and the electrode of the electronic component by electroless plating or the like. At that time, in order to secure the connection reliability, it is necessary to wrap the embedded resin in the minute gaps between the electrodes of the electronic component. Therefore, the embedded resin needs to have a low viscosity. In addition, considering the usage environment, it is necessary to lengthen the pot life at room temperature (the time during which the curing reaction proceeds to some extent, but the handleability of the embedded resin is kept good).

【0006】埋め込み樹脂の粘度を調整する方法として
は、大きく分けて二つ考えられる。具体的には、フィラ
ーの添加量を調整する方法と、硬化剤として硬化速度が
遅い種類の物を用いる方法と、である。
There are roughly two methods for adjusting the viscosity of the embedding resin. Specifically, it is a method of adjusting the addition amount of the filler, and a method of using a kind of curing agent having a slow curing speed.

【0007】一般には、フィラーの添加量を少なくすれ
ば低粘度化できる。しかし、材料間の熱膨張係数の差に
起因する不具合発生の防止のためには、埋め込み樹脂の
熱膨張係数と、コア基板やビルドアップ材となる材料と
の熱膨張係数とをある程度整合させる必要がある。その
ためには、一定量以上のフィラーの添加が必要である。
このように、フィラーの添加量を増減するだけでは、低
粘度化と信頼性とを両立させるのは困難であった。
Generally, the viscosity can be lowered by reducing the amount of the filler added. However, in order to prevent the occurrence of defects due to the difference in thermal expansion coefficient between materials, it is necessary to match the thermal expansion coefficient of the embedded resin with the thermal expansion coefficient of the material that will be the core substrate or build-up material to some extent. There is. For that purpose, it is necessary to add a certain amount of filler or more.
Thus, it was difficult to achieve both low viscosity and reliability simply by increasing or decreasing the amount of filler added.

【0008】本発明は、低粘度化と熱膨張係数の整合に
よる高信頼性とを両立させた埋め込み樹脂及びその埋め
込み樹脂を用いて絶縁基板に設けた開口部内に配置した
電子部品を埋め込んだ配線基板を提供することを課題と
する。
According to the present invention, an embedded resin that achieves both low viscosity and high reliability due to matching of thermal expansion coefficients and a wiring embedded with an electronic component arranged in an opening provided in an insulating substrate using the embedded resin. An object is to provide a substrate.

【0009】[0009]

【課題を解決するための手段】埋め込み樹脂は、その使
用方法を考えると、樹脂成分、酸無水物硬化剤、硬化促
進剤、無機フィラーを混合した一液状態での粘度を低く
しておく必要がある。充填性等の作業性も考慮すると、
25℃±1℃にて24時間放置後の粘度が、剪断速度で
8.4s―1において85Pa・s以下、好ましくは6
0Pa・s以下、更に好ましくは45Pa・s以下に保つ
ことができる埋め込み樹脂とするとよい。更に好ましく
は、25℃±1℃にて48時間放置後の粘度が、剪断速
度で8.4s―1において85Pa・s以下、好ましく
は60Pa・s以下、更に好ましくは55Pa・s以下に
保つことができる埋め込み樹脂とするとよい。このよう
に長時間低粘度に保てるように材料を設定することで、
常温での作業中の粘度の上昇を抑えることが出来るた
め、充填不良等の不具合の発生を防止して歩留まり向上
を図ることができる。
[Means for Solving the Problems] Considering the method of using the embedded resin, it is necessary to lower the viscosity in a one-liquid state in which a resin component, an acid anhydride curing agent, a curing accelerator, and an inorganic filler are mixed. There is. Considering workability such as filling,
The viscosity after standing at 25 ° C. ± 1 ° C. for 24 hours is 85 Pa · s or less, preferably 6 at a shear rate of 8.4 s −1 .
It is preferable to use an embedding resin that can be maintained at 0 Pa · s or less, and more preferably 45 Pa · s or less. More preferably, the viscosity after standing at 25 ° C. ± 1 ° C. for 48 hours should be 85 Pa · s or less, preferably 60 Pa · s or less, and more preferably 55 Pa · s or less at a shear rate of 8.4 s− 1 . It is preferable to use an embedded resin that can By setting the materials so that the viscosity can be kept low for a long time,
Since it is possible to suppress the increase in viscosity during the operation at room temperature, it is possible to prevent the occurrence of defects such as defective filling and improve the yield.

【0010】硬化剤として25℃±1℃にてその粘度が
170mPa・s以下、好ましくは100mPa・s以
下、更に好ましくは60mPa・s以下の酸無水物硬化
剤を用いるとよい。酸無水物硬化剤は埋め込み樹脂の低
粘度化に寄与する材料である。出来るだけ低粘度の硬化
剤を用いることで、埋め込み樹脂自体の低粘度化を図る
ことができる。尚、粘度が170mPa・s以下の酸無
水物硬化剤は、埋め込み樹脂とは異なりニュートン流体
としての挙動を示すため、その粘度が剪断速度によって
大きく変動することはない。よって、埋め込み樹脂の測
定時の剪断速度(8.4s―1)と異なる剪断速度で粘
度を測定してもよい。
As the curing agent, an acid anhydride curing agent having a viscosity of 170 mPa · s or less, preferably 100 mPa · s or less, more preferably 60 mPa · s or less at 25 ° C. ± 1 ° C. may be used. The acid anhydride curing agent is a material that contributes to lowering the viscosity of the embedded resin. By using a curing agent having a viscosity as low as possible, it is possible to reduce the viscosity of the embedded resin itself. Since the acid anhydride curing agent having a viscosity of 170 mPa · s or less behaves as a Newtonian fluid unlike the embedding resin, the viscosity thereof does not greatly vary depending on the shear rate. Therefore, the viscosity may be measured at a shear rate different from the shear rate at the time of measuring the embedded resin (8.4 s −1 ).

【0011】また、硬化剤として極低粘度の物を用いる
ことで、埋め込み樹脂の硬化反応が多少進行しても尚、
低粘度のまま使用可能(つまり、可使時間が長い)であ
る。その結果、作業性の向上や埋め込み樹脂の充填時に
おける気泡の噛み込みを防止できる等の効果が得られ
る。また、硬化剤として低粘度の物を用いることで埋め
込み樹脂の粘度を下げることが出来るので、低粘度の硬
化剤を用いることが望ましい。
Further, by using an extremely low viscosity material as the curing agent, even if the curing reaction of the embedding resin proceeds to some extent,
Can be used with low viscosity (that is, long pot life). As a result, it is possible to obtain effects such as improvement in workability and prevention of air bubbles from being trapped when the filling resin is filled. Moreover, since it is possible to reduce the viscosity of the embedded resin by using a low-viscosity curing agent, it is desirable to use a low-viscosity curing agent.

【0012】酸無水物硬化剤としては、無水フタル酸系
のものがよい。特にメチルテトラハイドロ無水フタル酸
もしくはメチルヘキサヒドロ無水フタル酸は保存安定性
が高く好ましい。
The acid anhydride curing agent is preferably a phthalic anhydride type. In particular, methyltetrahydrophthalic anhydride or methylhexahydrophthalic anhydride is preferable because of its high storage stability.

【0013】本発明の埋め込み樹脂は、更にフィラーの
含有量を適正化することで、より効果的に充填性の向上
を図ることができる。フィラーの好ましい含有量として
は、51〜74質量%がよい。フィラーの配合割合が5
1質量%未満だと、コア基板やビルドアップ材となる材
料との熱膨張の差が大きくなり、ヒートサイクルをかけ
た際にクラックが発生する原因となる。また、フィラー
の含有量が74質量%を超えると、埋め込み樹脂の粘度
が高くなり、充填性が大幅に悪化して気泡を噛み込む原
因となる。
In the embedding resin of the present invention, by further optimizing the content of the filler, the filling property can be improved more effectively. The preferable content of the filler is 51 to 74% by mass. Mixing ratio of filler is 5
If the amount is less than 1% by mass, the difference in thermal expansion between the core substrate and the material to be the build-up material becomes large, which causes cracks when heat cycle is applied. On the other hand, if the content of the filler exceeds 74% by mass, the viscosity of the embedding resin will be high, and the filling property will be significantly deteriorated, causing bubbles to be trapped.

【0014】本発明の埋め込み樹脂は、樹脂成分に対し
て少なくとも一種類の無機フィラーを添加した埋め込み
樹脂とするとよい。無機フィラーを入れる理由は、熱膨
張係数の調整と、更には、無機フィラーが奏する骨材と
しての効果によって粗化処理後の埋め込み樹脂の形状が
必要以上に崩れるのを防止するためである。
The embedding resin of the present invention is preferably an embedding resin in which at least one kind of inorganic filler is added to the resin component. The reason for adding the inorganic filler is to prevent the shape of the embedding resin after the roughening treatment from being collapsed more than necessary due to the adjustment of the thermal expansion coefficient and further the effect of the inorganic filler as an aggregate.

【0015】無機フィラーとしては、特に制限はない
が、結晶性シリカ、溶融シリカ、アルミナ、窒化ケイ素
等がよい。埋め込み樹脂の熱膨張係数を効果的に下げる
ことができる。これにより、ヒートサイクルに対する信
頼性の向上が得られる。
The inorganic filler is not particularly limited, but crystalline silica, fused silica, alumina, silicon nitride and the like are preferable. The coefficient of thermal expansion of the embedded resin can be effectively reduced. As a result, the reliability of the heat cycle is improved.

【0016】無機フィラーのフィラー径は、埋め込み樹
脂が電子部品の電極間の隙間にも容易に流れ込む必要が
あるため、粒径50μm以下のフィラーを使用するとよ
い。50μmを越えると、電子部品の電極間の隙間にフ
ィラーが詰まりやすくなり、埋め込み樹脂の充填不良に
より局所的に熱膨張係数の極端に異なる部分が発生す
る。フィラー径の下限値としては、0.1μm以上がよ
い。これよりも細かいと、埋め込み樹脂の流動性が確保
しにくくなる。好ましくは0.3μm以上、更に好まし
くは0.5μm以上がよい。埋め込み樹脂の低粘度、高
充填化を達成するためには、粒度分布を広くするとよ
い。
Regarding the filler diameter of the inorganic filler, it is preferable to use a filler having a particle diameter of 50 μm or less because the embedded resin must easily flow into the gaps between the electrodes of the electronic component. If it exceeds 50 μm, the filler is likely to be clogged in the gap between the electrodes of the electronic component, and a portion having an extremely different coefficient of thermal expansion locally occurs due to defective filling of the embedded resin. The lower limit of the filler diameter is preferably 0.1 μm or more. If it is smaller than this, it becomes difficult to secure the fluidity of the embedded resin. The thickness is preferably 0.3 μm or more, more preferably 0.5 μm or more. In order to achieve low viscosity and high filling of the embedded resin, the particle size distribution may be widened.

【0017】無機フィラーの形状は、埋め込み樹脂の流
動性と充填率とを高くするために、略球状であるとよ
い。特にシリカ系の無機フィラーは、容易に球状のもの
が得られるためよい。
The shape of the inorganic filler is preferably substantially spherical in order to enhance the fluidity and filling rate of the embedded resin. In particular, the silica-based inorganic filler is preferable because spherical particles can be easily obtained.

【0018】無機フィラーの表面は、必要に応じてカッ
プリング剤にて表面処理するとよい。無機フィラーの樹
脂成分との濡れ性が良好になり、埋め込み樹脂の流動性
を良好にできるからである。カップリング剤の種類とし
ては、シラン系、チタネート系、アルミネート系等が用
いられる。
The surface of the inorganic filler may be surface-treated with a coupling agent if necessary. This is because the wettability of the inorganic filler with the resin component is improved, and the fluidity of the embedded resin can be improved. As the type of coupling agent, silane-based, titanate-based, aluminate-based, etc. are used.

【0019】本発明の埋め込み樹脂を用いて電子部品を
内蔵した配線基板は、電子部品が、絶縁基板に設けられ
た開口部内に配置されており、かつ、その開口部内の隙
間が上述した本発明の埋め込み樹脂で埋められているこ
とを特徴とする。ここにいう「電子部品を埋め込む」と
は、コア基板等の絶縁基板やビルドアップした絶縁層に
設けた開口部(貫通穴(例えば図1)やキャビティ等の
凹部(例えば図10)等)の中に電子部品を配置した
後、電子部品と開口部との間に生じた隙間に埋め込み樹
脂を充填することをいう。具体例を挙げると、図1や図
10に示すようなコンデンサ内蔵型のフリップチップパ
ッケージとすることができる。ここで例示したバンプグ
リッドアレイ型パッケージのみならず、ピングリッドア
レイ型パッケージとすることもできる。開口部は、基板
を打ち抜いて形成した貫通孔または多層化技術により形
成したキャビティ等を利用するとよい。本発明に用いる
基板としては、FR−4、FR−5、BT等のいわゆる
コア基板を用いるのがよいが、PTFE等の熱可塑性樹
脂シートに厚み35μm程度の厚手の銅箔を挟み込んで
コア基板としたものに開口部を形成したものを用いても
よい。また、コア基板の少なくとも一面に、絶縁層及び
配線層を交互に積層したビルドアップ層を形成するとと
もに、開口部をコア基板及びビルドアップ層の少なくと
も一方を貫通するように形成したものを用いることがで
きる。この場合、図11に示すようなコンデンサ内蔵型
の多層配線基板であっても、いわゆるガラス−エポキシ
複合材料(絶縁基板)の厚みを400μm程度と、通常
品の800μmの半分にまで薄くして低背化を図ること
ができる利点がある。尚、前記電子部品には、チップコ
ンデンサ、チップインダクタ、チップ抵抗、フィルタ等
の受動電子部品、トランジスタ、半導体素子、FET、
ローノイズアンプ(LNA)等の能動電子部品、あるいは
SAWフィルタ、LCフィルタ、アンテナスイッチモジ
ュール、カプラ、ダイプレクサ等の電子部品が含まれ
る。
In the wiring board in which the electronic component is embedded by using the embedded resin of the present invention, the electronic component is arranged in the opening provided in the insulating substrate, and the gap in the opening is described above. It is characterized in that it is filled with the embedded resin. As used herein, "embedding an electronic component" means an opening (a through hole (eg, FIG. 1) or a recess such as a cavity (eg, FIG. 10) provided in an insulating substrate such as a core substrate or a built-up insulating layer. After arranging the electronic component therein, it means filling the gap created between the electronic component and the opening with the embedding resin. As a specific example, a capacitor built-in flip chip package as shown in FIGS. 1 and 10 can be formed. Not only the bump grid array type package illustrated here, but also a pin grid array type package can be used. The opening may be a through hole formed by punching a substrate or a cavity formed by a multi-layering technique. The substrate used in the present invention is preferably a so-called core substrate such as FR-4, FR-5, BT, etc., but a core substrate is formed by sandwiching a thick copper foil of about 35 μm in a thermoplastic resin sheet such as PTFE. You may use what formed the opening part in what was said. Further, a build-up layer in which insulating layers and wiring layers are alternately laminated is formed on at least one surface of the core substrate, and an opening is formed so as to penetrate at least one of the core substrate and the build-up layer. You can In this case, even in a multilayer wiring board with a built-in capacitor as shown in FIG. 11, the so-called glass-epoxy composite material (insulating board) has a thickness of about 400 μm, which is as thin as half of 800 μm of a normal product. There is an advantage that the height can be reduced. Note that the electronic parts include passive electronic parts such as chip capacitors, chip inductors, chip resistors, and filters, transistors, semiconductor elements, FETs,
It includes active electronic components such as a low noise amplifier (LNA), or electronic components such as a SAW filter, an LC filter, an antenna switch module, a coupler and a diplexer.

【0020】常温での可使時間を十分に確保し、かつ低
粘度な埋め込み樹脂用いることで、電子部品の電極間の
微細な隙間にも埋め込み樹脂が十分に回り込ませること
ができる。そのため、本発明の配線基板は、ヒートサイ
クルに対して信頼性の高い電子部品内蔵型の配線基板と
することができる。
By ensuring a sufficient pot life at room temperature and using a low-viscosity embedding resin, the embedding resin can sufficiently sneak into the minute gaps between the electrodes of the electronic component. Therefore, the wiring board of the present invention can be a wiring board with a built-in electronic component that is highly reliable against heat cycles.

【0021】コア基板の少なくとも一面に、絶縁層及び
配線層を交互に積層したビルドアップ層を形成するとと
もに、開口部をコア基板及びビルドアップ層を貫通する
ように形成した基板を用いた多層配線基板は、例えば以
下のように製造するとよい(図11〜図25)。
On at least one surface of the core substrate, a build-up layer in which insulating layers and wiring layers are alternately laminated is formed, and multilayer wiring using a substrate in which an opening is formed so as to penetrate the core substrate and the build-up layer. The substrate may be manufactured, for example, as follows (FIGS. 11 to 25).

【0022】[0022]

【発明の実施の形態】ここでは、図11に示すいわゆる
「FC−PGA」構造の配線基板を用いて以下に説明す
る。図12に示すような、厚み0.4mmの絶縁基板
(100)に厚み18μmの銅箔(200)を貼り付け
たFR−5製両面銅張りコア基板を用意する。ここで用
いるコア基板の特性は、TMAによるTg(ガラス転移
点)が175℃、基板面方向のCTE(熱膨張係数)が
16ppm/℃、基板面垂直方向のCTE(熱膨張係
数)が50ppm/℃、1MHzにおける誘電率εが
4.7、1MHzにおけるtanδが0.018であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A wiring board having a so-called "FC-PGA" structure shown in FIG. 11 will be described below. As shown in FIG. 12, an FR-5 double-sided copper-clad core substrate prepared by adhering a copper foil (200) having a thickness of 18 μm to an insulating substrate (100) having a thickness of 0.4 mm is prepared. The characteristics of the core substrate used here are Tg (glass transition point) by TMA of 175 ° C., CTE (thermal expansion coefficient) of the substrate surface direction of 16 ppm / ° C., and CTE (thermal expansion coefficient) of the substrate surface vertical direction of 50 ppm / The dielectric constant ε at 4.7 ° C. and 1 MHz is 4.7, and the tan δ at 1 MHz is 0.018.

【0023】コア基板上にフォトレジストフィルムを貼
り付けて露光現像を行い、直径600μmの開口部及び
所定の配線形状に対応する開口部(図示せず)を設け
る。フォトレジストフィルムの開口部に露出した銅箔を
亜硫酸ナトリウムと硫酸を含むエッチング液を用いてエ
ッチング除去する。フォトレジストフィルムを剥離除去
して、図13に示すような露出部(300)及び所定の
配線形状に対応する露出部(図示せず)が形成されたコ
ア基板を得る。
A photoresist film is attached on the core substrate and exposed and developed to form an opening having a diameter of 600 μm and an opening (not shown) corresponding to a predetermined wiring shape. The copper foil exposed in the opening of the photoresist film is removed by etching using an etching solution containing sodium sulfite and sulfuric acid. The photoresist film is peeled and removed to obtain a core substrate having an exposed portion (300) as shown in FIG. 13 and an exposed portion (not shown) corresponding to a predetermined wiring shape.

【0024】市販のエッチング処理装置(メック社製
CZ処理装置)によってエッチング処理を施して銅箔の
表面粗化をした後、エポキシ樹脂を主体とする厚み35
μmの絶縁フィルムをコア基板の両面に貼り付ける。そ
して、170℃×1.5時間の条件にてキュアして絶縁
層を形成する。このキュア後の絶縁層の特性は、TMA
によるTg(ガラス転移点)が155℃、DMAによる
Tg(ガラス転移点)が204℃、CTE(熱膨張係
数)が66ppm/℃、1MHzにおける誘電率εが
3.7、1MHzにおけるtanδが0.033、30
0℃での重量減が−0.1%、吸水率が0.8%、吸湿
率が1%、ヤング率が3GHz、引っ張り強度が63M
Pa、伸び率が4.6%である。
Commercially available etching equipment (made by MEC)
CZ treatment device) is used to perform an etching treatment to roughen the surface of the copper foil, and then a thickness 35 mainly composed of epoxy resin
A μm insulating film is attached to both sides of the core substrate. Then, the insulating layer is formed by curing at 170 ° C. for 1.5 hours. The characteristics of the insulating layer after this curing are TMA.
Tg (glass transition point) by 155 ° C., Tg (glass transition point) by DMA is 204 ° C., CTE (coefficient of thermal expansion) 66 ppm / ° C., permittivity ε at 1 MHz is 3.7, and tan δ at 1 MHz is 0. 033, 30
Weight loss at 0 ° C is -0.1%, water absorption is 0.8%, moisture absorption is 1%, Young's modulus is 3 GHz, and tensile strength is 63M.
Pa and elongation is 4.6%.

【0025】図14に示すように、炭酸ガスレーザを用
いて絶縁層(400)に層間接続用のビアホール(50
0)を形成する。ビアホールの形態は、表層部の直径は
120μm、底部の直径は60μmのすりばち状であ
る。更に炭酸ガスレーザの出力を上げて、絶縁層とコア
基板を貫通するように直径300μmのスルーホール
(600)を形成する。スルーホールの内壁面はレーザ
加工に特有のうねり(図示せず)を有する。そして、基
板を塩化パラジウムを含む触媒活性化液に浸漬した後、
全面に無電解銅メッキを施す(図示せず)。
As shown in FIG. 14, a via hole (50) for interlayer connection is formed in the insulating layer (400) by using a carbon dioxide laser.
0) is formed. The form of the via hole is a serpentine shape having a surface layer diameter of 120 μm and a bottom diameter of 60 μm. Further, the output of the carbon dioxide laser is increased to form a through hole (600) having a diameter of 300 μm so as to penetrate the insulating layer and the core substrate. The inner wall surface of the through hole has a waviness (not shown) peculiar to laser processing. Then, after immersing the substrate in a catalyst activating liquid containing palladium chloride,
Electroless copper plating is applied to the entire surface (not shown).

【0026】次いで、基板の全面に厚み18μmの銅パ
ネルメッキ(700)をかける。ここで、ビアホール
(500)には、層間を電気的に接続するビアホール導
体(800)が形成される。またスルーホール(60
0)には、基板の表裏面を電気的に接続するスルーホー
ル導体(900)が形成される。市販のエッチング処理
装置(メック社製 CZ処理装置)によってエッチング
処理を施して銅メッキの表面粗化する。その後、同社の
防錆剤によって防錆処理(商標名:CZ処理)を施して
疎水化面を形成して、疎水化処理を完了する。疎水化処
理を施した導体層表面の水に対する接触角2θを、接触
角測定器(商品名:CA−A、協和科学製)により液適
法で測定したところ、接触角2θは101度であった。
Then, a copper panel plating (700) having a thickness of 18 μm is applied to the entire surface of the substrate. Here, a via hole conductor (800) that electrically connects the layers is formed in the via hole (500). Through hole (60
At 0), through-hole conductors (900) for electrically connecting the front and back surfaces of the substrate are formed. An etching treatment is performed by a commercially available etching treatment device (CZ treatment device manufactured by MEC Co., Ltd.) to roughen the surface of the copper plating. Then, a rust preventive agent (trade name: CZ treatment) is applied by the rust preventive agent of the same company to form a hydrophobic surface, and the hydrophobic treatment is completed. The contact angle 2θ of water on the surface of the conductor layer subjected to the hydrophobization treatment was measured by a liquid-property method with a contact angle measuring instrument (trade name: CA-A, manufactured by Kyowa Kagaku Co., Ltd.), and the contact angle 2θ was 101 degrees. .

【0027】真空吸引装置の付いた台座の上に不繊紙を
設置し、上記基板を、台座の上に配置する。その上にス
ルーホールの位置に対応するように貫通孔を有するステ
ンレス製の穴埋めマスクを設置する。次いで、銅フィラ
ーを含むスルーホール充填用ペーストを載せ、ローラー
式スキージを加圧しながら穴埋め充填を行う。
The non-woven paper is placed on a pedestal equipped with a vacuum suction device, and the substrate is placed on the pedestal. A stainless mask for filling holes having through holes corresponding to the positions of the through holes is placed thereon. Next, a through-hole filling paste containing a copper filler is placed, and the roller-type squeegee is pressed to fill the holes.

【0028】図15に示すように、スルーホール(60
0)内に充填したスルーホール充填用ペースト(100
0)を、120℃×20分の条件下で仮キュアさせる。
次いで、図16に示すように、ベルトサンダーを用いて
基板の表面を研磨(粗研磨)した後、バフ研磨(仕上げ
研磨)して平坦化し、150℃×5時間の条件下でキュ
アさせて、穴埋め工程を完了する。尚、この穴埋め工程
を完了した基板の一部は、穴埋め性の評価試験に用い
る。
As shown in FIG. 15, through holes (60
0) through hole filling paste (100)
0) is temporarily cured under the condition of 120 ° C. for 20 minutes.
Then, as shown in FIG. 16, after polishing (coarse polishing) the surface of the substrate using a belt sander, buffing (finish polishing) to flatten the surface, and cure at 150 ° C. for 5 hours. Complete the hole filling process. A part of the substrate that has completed this hole filling step is used for the hole filling evaluation test.

【0029】図17に示すように、金型(図示せず)を
用いて□8mmの貫通孔(開口部:110)を形成す
る。図18に示すように、基板の一面にマスキングテー
プ(120)を貼り付ける。そして、図19に示すよう
に、貫通孔(110)に露出したマスキングテープ上
に、積層チップコンデンサ(130)を、チップマウン
タを用いて8個配置する。この積層チップコンデンサ
は、1.2mm×0.6mm×0.4mmの積層体(1
50)からなり、電極(140)が積層体から70μm
突き出している。
As shown in FIG. 17, a through hole (opening: 110) of □ 8 mm is formed by using a mold (not shown). As shown in FIG. 18, a masking tape (120) is attached to one surface of the substrate. Then, as shown in FIG. 19, eight multilayer chip capacitors (130) are arranged on the masking tape exposed in the through holes (110) using a chip mounter. This multilayer chip capacitor has a laminated body (1 mm x 0.6 mm x 0.4 mm (1
50), and the electrode (140) is 70 μm from the laminate.
It is sticking out.

【0030】図20に示すように、積層チップコンデン
サ(130)を配置した貫通孔(110)の中に、本発
明の埋め込み樹脂(160)をディスペンサ(図示せ
ず)を用いて充填する。埋め込み樹脂を、1次加熱工程
を80℃×3時間、2次加熱工程を170℃×6時間の
条件により脱泡および熱硬化する。
As shown in FIG. 20, the embedded resin (160) of the present invention is filled in the through hole (110) in which the multilayer chip capacitor (130) is arranged by using a dispenser (not shown). The embedded resin is defoamed and heat-cured under the conditions of a primary heating step of 80 ° C. for 3 hours and a secondary heating step of 170 ° C. for 6 hours.

【0031】図21に示すように、硬化した埋め込み樹
脂(160)の表面を、ベルトサンダーを用いて粗研磨
した後、ラップ研磨にて仕上げ研磨する。研磨面には、
チップコンデンサ(130)の電極(140)の端面が
露出している。次いで、仮キュアした埋め込み樹脂(1
60)を150℃×5時間の条件下で硬化させる。
As shown in FIG. 21, the surface of the hardened embedded resin (160) is roughly ground using a belt sander and then finished by lapping. On the polishing surface,
The end surface of the electrode (140) of the chip capacitor (130) is exposed. Then, the temporarily cured embedded resin (1
60) is cured at 150 ° C. for 5 hours.

【0032】その後、膨潤液とKMnO4溶液を用い
て、埋め込み樹脂(160)の研磨面を粗化する。粗化
面をPd触媒活性化した後、無電解メッキ、電解メッキ
の順番で銅メッキを施す。図22に示すように、埋め込
み樹脂(160)の上に形成されたメッキ層(170)
は、チップコンデンサ(130)の電極(140)の端
面と電気的に接続されている。メッキ面の上にレジスト
(図示せず)を形成し、所定の配線パターンをパターニ
ングする。不要な銅をNa228/濃硫酸を用いてエ
ッチング除去する。レジストを剥離して、図23に示す
ように、配線の形成を完了する。市販のエッチング処理
装置(メック社製 CZ処理装置)によってエッチング
処理を施して配線の銅メッキの表面粗化する。
After that, the swelling liquid and the KMnO 4 solution are used to roughen the polished surface of the embedded resin (160). After activating the Pd catalyst on the roughened surface, copper plating is performed in the order of electroless plating and electrolytic plating. As shown in FIG. 22, a plating layer (170) formed on the embedded resin (160).
Are electrically connected to the end faces of the electrodes (140) of the chip capacitor (130). A resist (not shown) is formed on the plated surface, and a predetermined wiring pattern is patterned. Unnecessary copper is etched away using Na 2 S 2 O 8 / concentrated sulfuric acid. The resist is peeled off, and the formation of the wiring is completed as shown in FIG. The surface of copper plating of the wiring is roughened by performing an etching treatment with a commercially available etching treatment device (CZ treatment device manufactured by MEC Co., Ltd.).

【0033】その上に絶縁層となるフィルム(190)
をラミネートして熱硬化した後、炭酸ガスレーザーを照
射して層間接続用のビアホールを形成する。絶縁層の表
面を上記と同じ酸化剤を用いて粗化し、同様の手法で所
定の配線(201)を形成する。配線基板の最表面にソ
ルダーレジスト層となるドライフィルムをラミネートし
て、半導体素子の実装パターンを露光、現像して形成し
て、ソルダーレジスト層(210)の形成を完了する。
実装用のピン付けを行う裏面側についても同様の方法に
より、所定の配線(230)とソルダーレジスト層(2
40)を形成して、図24に示すように、ピン付け前の
多層プリント配線基板を得る。
A film (190) serving as an insulating layer thereon
After being laminated and thermally cured, a carbon dioxide laser is irradiated to form a via hole for interlayer connection. The surface of the insulating layer is roughened using the same oxidizing agent as described above, and a predetermined wiring (201) is formed by the same method. A dry film to be a solder resist layer is laminated on the outermost surface of the wiring board, and the mounting pattern of the semiconductor element is exposed and developed to form the solder resist layer (210).
The same method is applied to the back side where the mounting pins are attached, and the predetermined wiring (230) and the solder resist layer (2
40) is formed to obtain a multilayer printed wiring board before pinning, as shown in FIG.

【0034】半導体素子を実装する端子電極(201)
には、Niメッキ、Auメッキの順番でメッキを施す
(図示せず)。その上に低融点ハンダからなるハンダペ
ーストを印刷した後、ハンダリフロー炉を通して半導体
素子を実装するためのハンダバンプ(220)を形成す
る。
Terminal electrodes (201) for mounting semiconductor elements
Is plated in the order of Ni plating and Au plating (not shown). After printing a solder paste made of low melting point solder on it, a solder bump (220) for mounting a semiconductor element is formed through a solder reflow furnace.

【0035】一方、半導体素子実装面の反対側には、高
融点ハンダからなるハンダペーストを印刷した後、ハン
ダリフロー炉を通してピン付けするためのハンダバンプ
(260)を形成する。治具(図示せず)にピン(25
0)をセットした上に基板を配置した状態で、ハンダリ
フロー炉を通してピン付けを行い(図示せず)、図25
に示すように、半導体素子を実装する前のFC−PGA
型の多層プリント配線基板を得る。投影機を用いて埋め
込み樹脂(160)で埋め込んだ開口部(110)に対
応する領域に付けられたピン(250)の先端の所定位
置からの位置ずれ量を測定したところ、0.1mm以下
と良好な結果が得られた。
On the other hand, on the side opposite to the semiconductor element mounting surface, after printing a solder paste made of high melting point solder, solder bumps (260) for pinning are formed through a solder reflow furnace. Pin (25) to a jig (not shown)
0) is set and the substrate is placed, and pins are attached through a solder reflow furnace (not shown).
As shown in, FC-PGA before mounting the semiconductor element
A mold multilayer printed wiring board is obtained. Using a projector, the amount of displacement from the predetermined position of the tip of the pin (250) attached to the region corresponding to the opening (110) embedded with the embedded resin (160) was measured and found to be 0.1 mm or less. Good results have been obtained.

【0036】半導体素子実装面上に半導体素子(27
0)を実装可能な位置に配置して、低融点ハンダ(22
0)のみが溶解する温度条件にてハンダリフロー炉を通
して、半導体素子を実装する。実装部にアンダーフィル
材(300)をディスペンサーで充填した後、熱硬化し
て、図11に示すような半導体素子を表面に実装したF
C−PGA型の多層プリント配線基板を用いた半導体装
置を得る。
A semiconductor element (27
0) is placed at a mountable position, and low melting point solder (22
A semiconductor element is mounted through a solder reflow furnace under a temperature condition in which only 0) is melted. After the underfill material (300) is filled in the mounting portion with a dispenser, it is heat-cured to mount a semiconductor element as shown in FIG.
A semiconductor device using a C-PGA type multilayer printed wiring board is obtained.

【0037】以下では、本発明の異なる配線基板の製造
方法の一実施形態を説明する。ここでは、図1に示す配
線基板を例にする。図2に示すように、このコア基板
(1)に金型を用いて所定の大きさの貫通孔(2)を設
け、このコア基板の一面にバックテープ(3)を貼り付
けた後、バックテープを貼り付けた面を下側にして置
く。
In the following, an embodiment of a method for manufacturing a different wiring board according to the present invention will be described. Here, the wiring board shown in FIG. 1 is taken as an example. As shown in FIG. 2, a through hole (2) having a predetermined size is provided in the core substrate (1) by using a mold, a back tape (3) is attached to one surface of the core substrate, and then the back substrate (1) is formed. Place the side with the tape attached on the bottom.

【0038】図3に示すように、他方の面から貫通孔
(開口部:2)内のパックテープ(3)の粘着面上の所
定の位置に、チップコンデンサ(4)をチップマウンタ
を用いて配置する。ここで用いるチップコンデンサとし
ては、埋め込み樹脂の回り込みが良いように、コンデン
サ本体から突出した電極(5)を有するものを用いるの
がよい。図4に示すように、開口部(2)内に配置され
たチップコンデンサ(4)と開口部内の隙間に本発明の
埋め込み樹脂(6)をディスペンサを用いて流し込む。
As shown in FIG. 3, the chip capacitor (4) is attached from the other surface to a predetermined position on the adhesive surface of the pack tape (3) in the through hole (opening: 2) using a chip mounter. Deploy. As the chip capacitor used here, it is preferable to use one having an electrode (5) protruding from the capacitor body so that the embedded resin can easily flow around. As shown in FIG. 4, the embedded resin (6) of the present invention is poured into the gap between the chip capacitor (4) arranged in the opening (2) and the opening using a dispenser.

【0039】埋め込み樹脂(6)を、100℃×80分
→120℃×60分→160℃×10分の条件により脱
泡および熱硬化する。硬化した埋め込み樹脂の表面を、
ベルトサンダーを用いて粗研磨した後、ラップ研磨にて
仕上げ研磨する。研磨後における埋め込み樹脂(6)の
表面(60)を図5に示す。次いで、図6に示すよう
に、炭酸ガスレーザーを用いてビアホール(7)を穴あ
け加工して、チップコンデンサ(4)の電極(5)を露
出させる。
The embedded resin (6) is defoamed and thermoset under the conditions of 100 ° C. × 80 minutes → 120 ° C. × 60 minutes → 160 ° C. × 10 minutes. The surface of the cured resin is
After rough polishing using a belt sander, final polishing is performed by lapping. The surface (60) of the embedded resin (6) after polishing is shown in FIG. Then, as shown in FIG. 6, a via hole (7) is drilled using a carbon dioxide laser to expose the electrode (5) of the chip capacitor (4).

【0040】その後、膨潤液とKMnO4溶液を用い
て、埋め込み樹脂(6)の露出面(61)を粗化する。
粗化面をPd触媒活性化した後、無電解メッキ、電解メ
ッキの順番で銅メッキ(8,9)を施す。銅メッキ後の
状態を図7に示す。メッキ面の上にレジスト(図示せ
ず)を形成し、所定の配線パターンをパターニングす
る。不要な銅をNa228/濃硫酸を用いてエッチン
グ除去する。レジストを剥離して、配線(90)の形成
を完了する。配線形成後の状態を図8に示す。
Then, the exposed surface (61) of the embedded resin (6) is roughened using a swelling solution and a KMnO 4 solution.
After activating the Pd catalyst on the roughened surface, copper plating (8, 9) is performed in the order of electroless plating and electrolytic plating. The state after copper plating is shown in FIG. A resist (not shown) is formed on the plated surface, and a predetermined wiring pattern is patterned. Unnecessary copper is etched away using Na 2 S 2 O 8 / concentrated sulfuric acid. The resist is peeled off to complete the formation of the wiring (90). The state after the wiring is formed is shown in FIG.

【0041】その上に絶縁層となるフィルム(14,1
5)をラミネートして熱硬化した後、レーザーを照射し
て層間接続用のビアホールを形成する。絶縁層の表面を
同じ酸化剤を用いて粗化し、同様の手法で所定の配線パ
ターンを形成する。配線基板の最表面にソルダーレジス
ト層となるドライフィルムをラミネートして、半導体素
子の実装パターンを露光、現像して形成して、ソルダー
レジスト層(12)を形成する。その状態を図9に示
す。半導体素子を実装する端子電極(13)には、Ni
メッキ、Auメッキの順番でメッキを施す。その後、ハ
ンダリフロー炉を通して半導体素子(18)を実装す
る。基板実装を行う電極には、低融点ハンダを用いてハ
ンダボール(17)を形成する。実装部にアンダーフィ
ル材(21)をディスペンサーで充填した後、熱硬化し
て、図1に示すような、目的とする配線基板の作製を完
了する。
A film (14, 1) which will serve as an insulating layer is formed thereon.
After 5) is laminated and heat-cured, a laser is irradiated to form a via hole for interlayer connection. The surface of the insulating layer is roughened using the same oxidizing agent, and a predetermined wiring pattern is formed by the same method. A dry film to be a solder resist layer is laminated on the outermost surface of the wiring board, and a mounting pattern of a semiconductor element is exposed and developed to form a solder resist layer (12). The state is shown in FIG. Ni is used for the terminal electrode (13) for mounting the semiconductor element.
Plating is performed in the order of plating and Au plating. Then, the semiconductor element (18) is mounted through a solder reflow furnace. Solder balls (17) are formed on the electrodes to be mounted on the substrate by using low melting point solder. After filling the mounting portion with the underfill material (21) with a dispenser, it is heat-cured to complete the production of the intended wiring board as shown in FIG.

【0042】[0042]

【実施例】本発明の配線基板が奏する作用効果を評価サ
ンプルを用いた実施例により以下に説明する。埋め込み
樹脂は、表1に示す組成になるように各成分を秤量、混
合し、3本ロールミルにて混練して作製する。ここで、
表1中の記載事項の詳細は以下のようである。
EXAMPLES The operational effects of the wiring board of the present invention will be described below with reference to examples using evaluation samples. The embedded resin is prepared by weighing and mixing the components so that the composition shown in Table 1 is obtained and then kneading with a three-roll mill. here,
Details of the items described in Table 1 are as follows.

【0043】エポキシ樹脂 ・「HP−4032D」:高純度ナフタレン型エポキシ
樹脂(大日本インキ製)硬化剤 ・「QH−200」(40mPa・s):酸無水物系硬
化剤(日本ゼオン製) ・「B−570」(40mPa・s):酸無水物系硬化
剤(DIC製) ・「B−650」(65mPa・s):酸無水物系硬化
剤(DIC製) ・「YH−307」(200mPa・s):酸無水物系
硬化剤(油化シェルエポキシ製) ・「YH−306」(120mPa・s):酸無水物系
硬化剤(油化シェルエポキシ製) ・「YH−300」(40mPa・s):酸無水物系硬
化剤(油化シェルエポキシ製) ・「KAYAHARD MCD」(250mPa・s): 酸無水物
系硬化剤(日本化薬製)
Epoxy resin- "HP-4032D": High-purity naphthalene type epoxy resin (manufactured by Dainippon Ink) Hardener "QH-200" (40 mPas): Acid anhydride-based hardener (manufactured by Zeon Corporation)- “B-570” (40 mPa · s): Acid anhydride-based curing agent (manufactured by DIC) · “B-650” (65 mPa · s): Acid anhydride-based curing agent (manufactured by DIC) · “YH-307” ( 200 mPa · s): Acid anhydride type curing agent (made by oiled shell epoxy) “YH-306” (120 mPa · s): Acid anhydride type curing agent (made by oiled shell epoxy) · “YH-300” ( 40 mPa · s): Acid anhydride curing agent (made by Yuka Shell Epoxy) · “KAYAHARD MCD” (250 mPa · s): Acid anhydride curing agent (made by Nippon Kayaku)

【0044】促進剤(硬化促進剤) ・「2P4MHZ」:イミダゾール系硬化剤(四国化成
工業製)
Accelerator (Curing accelerator) "2P4MHZ": Imidazole type curing agent (manufactured by Shikoku Chemicals)

【0045】無機フィラー ・「TSS−6 」:シランカップリング処理済(龍森
製:粒度分布による最大粒子径24μm)
Inorganic Filler "TSS-6": Silane Coupling Treated (Tatsumori: Maximum Particle Diameter 24 μm According to Particle Size Distribution)

【0046】「フィラー含有率」、「カーボン含有率」
は、エポキシ+硬化剤+フィラーを100%としたとき
の値である。「促進剤」は、エポキシ+硬化剤+フィラ
ーを100%としたとき0.2%とする。エポキシ樹脂
と硬化剤の割合は、官能基比で100/95とする。こ
れらの組成物に対して以下の評価を行う。
"Filler content", "carbon content"
Is the value when the epoxy + curing agent + filler is 100%. The “accelerator” is 0.2% when the epoxy + curing agent + filler is 100%. The ratio of the epoxy resin and the curing agent is 100/95 in terms of functional group ratio. The following evaluations are performed on these compositions.

【0047】(信頼性評価)コア基板は、厚み0.8m
mのBT基板を用いる。このコア基板に金型を用いて所
定の大きさの貫通孔を設ける。コア基板の一面にバック
テープを貼り付けた後、バックテープを貼り付けた面を
下側にして置く。他方の面から開口部内のパックテープ
の粘着面上の所定の位置に、チップコンデンサをチップ
マウンタを用いて配置する。開口部内に配置されたチッ
プコンデンサと開口部内の隙間に表1に示す埋め込み樹
脂をディスペンサを用いて流し込む。
(Reliability Evaluation) The core substrate has a thickness of 0.8 m.
m BT substrate is used. A through hole having a predetermined size is provided in the core substrate by using a mold. After the back tape is attached to one surface of the core substrate, the surface on which the back tape is attached is placed downward. A chip capacitor is arranged using a chip mounter at a predetermined position on the adhesive surface of the pack tape in the opening from the other surface. The embedded resin shown in Table 1 is poured into the gap between the chip capacitor arranged in the opening and the opening using a dispenser.

【0048】埋め込み樹脂を、100℃×80分→12
0℃×60分→160℃×10分の条件により脱泡およ
び熱硬化する。硬化した埋め込み樹脂の表面を、ベルト
サンダーを用いて粗研磨した後、ラップ研磨にて仕上げ
研磨する。次いで、炭酸ガスレーザーを用いてビアホー
ルを穴あけ加工して、チップコンデンサーの電極を露出
させる。
Embedding resin, 100 ° C. × 80 minutes → 12
Defoam and heat cure under conditions of 0 ° C. × 60 minutes → 160 ° C. × 10 minutes. The surface of the hardened embedded resin is roughly polished by using a belt sander and then finished by lap polishing. Then, a via hole is drilled using a carbon dioxide laser to expose the electrodes of the chip capacitor.

【0049】その後、膨潤液とKMnO4溶液を用い
て、埋め込み樹脂の露出面を粗化する。粗化面をPd触
媒活性化した後、無電解メッキ、電解メッキの順番で銅
メッキを施す。メッキ面にレジストを形成し、所定の配
線パターンをパターニングする。不要な銅をNa22
8/濃硫酸を用いてエッチング除去する。レジストを剥
離して、配線の形成を完了する。
After that, the exposed surface of the embedded resin is roughened using a swelling solution and a KMnO 4 solution. After activating the Pd catalyst on the roughened surface, copper plating is performed in the order of electroless plating and electrolytic plating. A resist is formed on the plated surface and a predetermined wiring pattern is patterned. Remove unnecessary copper from Na 2 S 2 O
8 / Etch off with concentrated sulfuric acid. The resist is removed to complete the wiring formation.

【0050】その上に絶縁層となるフィルムをラミネー
トして熱硬化した後、レーザーを照射して層間接続用の
ビアホールを形成する。絶縁層の表面を同じ酸化剤を用
いて粗化し、同様の手法で所定の配線パターンを形成し
て、評価用サンプルの作製を完了する。
After laminating a film to be an insulating layer thereon and thermally curing it, a laser is irradiated to form a via hole for interlayer connection. The surface of the insulating layer is roughened using the same oxidizing agent, a predetermined wiring pattern is formed by the same method, and the production of the evaluation sample is completed.

【0051】この際、埋め込み樹脂として試料番号1〜
9についてそれぞれ、調合後4時間、6時間、8時間、
24時間、48時間経過後の埋め込み樹脂を用意し、そ
れぞれの埋め込み樹脂を用いたサンプルを作成し、埋め
込み性の評価を行う。合否判定基準は、拡大鏡による外
観検査において気泡を噛まなかったキャビティーが95
%以上あったものを合格とする。必要に応じて、埋め込
み樹脂にダメージを与えないようにビルドアップ層を研
磨除去した上で埋め込み樹脂の状態を観察していもよ
い。表2において、合格は○、不合格は×で示す。
At this time, sample numbers 1 to 1 were used as the embedding resin.
For 9 respectively, 4 hours, 6 hours, 8 hours after preparation,
The embedding resins after 24 hours and 48 hours have been prepared, samples using the respective embedding resins are prepared, and the embedding property is evaluated. The pass / fail criterion is 95% for cavities that did not entrap air bubbles in visual inspection with a magnifying glass.
If there is more than%, it is accepted. If necessary, the buildup layer may be polished and removed so as not to damage the embedded resin, and then the state of the embedded resin may be observed. In Table 2, pass is indicated by ◯, and fail is indicated by x.

【0052】また、試料番号10〜15の埋め込み樹脂
に関しては、熱衝撃試験(試験条件は、−55℃〜12
5℃×300サイクル(2サイクル/1時間)で行い耐
熱衝撃性の評価を行う。合否判定基準は、拡大鏡による
外観検査においてクラック発生率が5%以下の合格であ
ったものを耐熱衝撃性について合格とする。必要に応じ
て、埋め込み樹脂にダメージを与えないようにビルドア
ップ層を研磨除去した上で埋め込み樹脂の状態を観察し
ていもよい。表2,3において、合格は○、不合格は×
で示す。
Regarding the embedded resins of sample numbers 10 to 15, a thermal shock test (test conditions: -55 ° C to 12 ° C) was conducted.
The thermal shock resistance is evaluated at 5 ° C. for 300 cycles (2 cycles / 1 hour). As a pass / fail criterion, a cracking rate of 5% or less in the visual inspection with a magnifying glass is passed, and the thermal shock resistance is passed. If necessary, the buildup layer may be polished and removed so as not to damage the embedded resin, and then the state of the embedded resin may be observed. In Tables 2 and 3, pass is good and fail is bad.
Indicate.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】結果より、本発明の埋め込み樹脂を用いた
実施例のサンプルにおいては良好な結果が得られること
がわかる。一方、硬化剤の粘度が170mPa・sを超
える比較例である試料番号4、5、7及び9では、48
時間放置以降は粘度が85mPa・sを超えてしまい、
充填性に劣る結果となった。
From the results, it can be seen that good results are obtained in the samples of the examples using the embedding resin of the present invention. On the other hand, in the case of sample numbers 4, 5, 7 and 9 which are comparative examples in which the viscosity of the curing agent exceeds 170 mPa · s, 48
After leaving for a while, the viscosity exceeds 85 mPa · s,
The result was inferior filling property.

【0057】[0057]

【発明の効果】本発明によれば、埋め込み性が良好で、
かつ長時間の常温下での使用にも耐え得る埋め込み樹脂
及びそれを用いた配線基板が得られることがわかる。あ
らかじめ、埋め込み樹脂を所定値よりも低粘度にするこ
とで、埋め込み性等を良好にできる。酸無水物硬化剤の
種類を所定値よりも粘度の低いタイプの物を用いること
で、容易に低粘度化を図ることができる。
According to the present invention, the embedding property is good,
It can be seen that an embedded resin and a wiring board using the embedded resin that can withstand use at room temperature for a long time can be obtained. By previously setting the viscosity of the embedding resin to be lower than a predetermined value, the embedding property and the like can be improved. By using a type of acid anhydride curing agent having a viscosity lower than a predetermined value, it is possible to easily reduce the viscosity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の埋め込み樹脂を用いた配線基板をBG
A基板に適用した例を示す説明図である。
FIG. 1 shows a wiring board using the embedded resin of the present invention as a BG.
It is explanatory drawing which shows the example applied to the A board.

【図2】本発明の埋め込み樹脂を用いた配線基板の製造
方法の一態様を示す説明図である。
FIG. 2 is an explanatory view showing one aspect of a method for manufacturing a wiring board using the embedded resin of the present invention.

【図3】本発明の埋め込み樹脂を用いた配線基板の製造
方法の一態様を示す説明図である。
FIG. 3 is an explanatory diagram showing one embodiment of a method of manufacturing a wiring board using the embedded resin of the present invention.

【図4】本発明の埋め込み樹脂を用いた配線基板の製造
方法の一態様を示す説明図である。
FIG. 4 is an explanatory view showing one embodiment of a method of manufacturing a wiring board using the embedded resin of the present invention.

【図5】本発明の埋め込み樹脂を用いた配線基板の製造
方法の一態様を示す説明図である。
FIG. 5 is an explanatory view showing one embodiment of a method for manufacturing a wiring board using the embedded resin of the present invention.

【図6】本発明の埋め込み樹脂を用いた配線基板の製造
方法の一態様を示す説明図である。
FIG. 6 is an explanatory view showing one embodiment of a method for manufacturing a wiring board using the embedded resin of the present invention.

【図7】本発明の埋め込み樹脂を用いた配線基板の製造
方法の一態様を示す説明図である。
FIG. 7 is an explanatory view showing one aspect of a method for manufacturing a wiring board using the embedded resin of the present invention.

【図8】本発明の埋め込み樹脂を用いた配線基板の製造
方法の一態様を示す説明図である。
FIG. 8 is an explanatory view showing one embodiment of a method for manufacturing a wiring board using the embedded resin of the present invention.

【図9】本発明の埋め込み樹脂を用いた配線基板の製造
方法の一態様を示す説明図である。
FIG. 9 is an explanatory view showing one embodiment of a method for manufacturing a wiring board using the embedded resin of the present invention.

【図10】本発明の埋め込み樹脂を用いた配線基板をB
GA基板に適用した例を示す説明図である。
FIG. 10 is a wiring board B using the embedded resin of the present invention.
It is an explanatory view showing an example applied to a GA substrate.

【図11】本発明の一態様であるFC−PGA型の多層
プリント配線基板を用いた半導体装置の説明図。
FIG. 11 is an explanatory diagram of a semiconductor device using an FC-PGA type multilayer printed wiring board according to one embodiment of the present invention.

【図12】厚み400μmの銅張りコア基板の概略図。FIG. 12 is a schematic view of a copper-clad core substrate having a thickness of 400 μm.

【図13】厚み400μmの銅張りコア基板のパターニ
ング後の状態を示す説明図。
FIG. 13 is an explanatory diagram showing a state after patterning of a copper-clad core substrate having a thickness of 400 μm.

【図14】コア基板の両面に絶縁層を形成した基板にビ
アホールとスルーホールを形成した状態を示す説明図。
FIG. 14 is an explanatory diagram showing a state where via holes and through holes are formed in a substrate in which insulating layers are formed on both surfaces of a core substrate.

【図15】コア基板の両面に絶縁層を形成した基板にパ
ネルメッキをかけた後の状態を示す説明図。
FIG. 15 is an explanatory diagram showing a state after panel plating is applied to a substrate in which insulating layers are formed on both surfaces of a core substrate.

【図16】スルーホールを穴埋め充填した基板の説明
図。
FIG. 16 is an explanatory diagram of a substrate in which through holes are filled up.

【図17】貫通孔を打ち抜き形成した基板を示す説明
図。
FIG. 17 is an explanatory view showing a substrate having a through hole punched out.

【図18】貫通孔を打ち抜き形成した基板の一面にマス
キングテープを貼り付けた状態を示す説明図。
FIG. 18 is an explanatory diagram showing a state in which a masking tape is attached to one surface of a substrate having a through hole punched out.

【図19】貫通孔内に露出したマスキングテープ上に積
層チップコンデンサを配置した状態を示す説明図。
FIG. 19 is an explanatory view showing a state in which the multilayer chip capacitor is arranged on the masking tape exposed in the through hole.

【図20】貫通孔内に埋め込み樹脂を充填した状態を示
す説明図。
FIG. 20 is an explanatory view showing a state in which a through hole is filled with an embedded resin.

【図21】基板面を研磨して平坦化した状態を示す説明
図。
FIG. 21 is an explanatory view showing a state where the substrate surface is polished and flattened.

【図22】基板の研磨面にパネルメッキをかけた状態を
示す説明図。
FIG. 22 is an explanatory view showing a state where the polished surface of the substrate is subjected to panel plating.

【図23】配線をパターニングした状態を示す説明図。FIG. 23 is an explanatory diagram showing a state in which wiring is patterned.

【図24】基板上にビルドアップ層及びソルダーレジス
ト層を形成した状態を示す説明図。
FIG. 24 is an explanatory diagram showing a state in which a buildup layer and a solder resist layer are formed on a substrate.

【図25】本発明の一態様であるFC−PGA型の多層
プリント配線基板の説明図。
FIG. 25 is an explanatory diagram of an FC-PGA type multilayer printed wiring board that is one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 コア基板 2 貫通孔(開口部) 3 バックテープ 4 電子部品 5 電子部品の電極 6 埋め込み樹脂 60 平坦化面 61 粗化面 1 core substrate 2 Through hole (opening) 3 back tape 4 electronic components Electrode of 5 electronic parts 6 Embedded resin 60 flattened surface 61 roughened surface

フロントページの続き (72)発明者 大林 和重 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)発明者 加島 壽人 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 Fターム(参考) 4J036 AA01 DA04 DB15 DC41 FA05 FA13 HA12 HA13 JA07 JA08 JA10 5E314 AA25 FF05 FF19 FF21 GG01 GG14 GG24 5E346 AA60 CC09 CC32 DD12 EE09 FF18 FF45 GG15 HH31 Continued front page    (72) Inventor Kazushige Obayashi             14-18 Takatsuji-cho, Mizuho-ku, Nagoya City, Aichi Prefecture             Inside this special ceramics company (72) Inventor Toshito Kajima             14-18 Takatsuji-cho, Mizuho-ku, Nagoya City, Aichi Prefecture             Inside this special ceramics company F term (reference) 4J036 AA01 DA04 DB15 DC41 FA05                       FA13 HA12 HA13 JA07 JA08                       JA10                 5E314 AA25 FF05 FF19 FF21 GG01                       GG14 GG24                 5E346 AA60 CC09 CC32 DD12 EE09                       FF18 FF45 GG15 HH31

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂、酸無水物硬化剤、硬化促
進剤及びフィラーを含む埋め込み樹脂であって、25℃
±1℃にて24時間放置後の粘度が、剪断速度で8.4
―1において85Pa・s以下に保つことができるこ
とを特徴とする埋め込み樹脂。
1. An embedded resin containing a thermosetting resin, an acid anhydride curing agent, a curing accelerator and a filler at 25 ° C.
The viscosity after standing for 24 hours at ± 1 ° C is 8.4 at shear rate.
An embedding resin characterized in that it can be maintained at 85 Pa · s or less at s- 1 .
【請求項2】 前記酸無水物硬化剤として、25℃±1
℃における粘度が170mPa・s以下の硬化剤を用い
ることを特徴とする請求項1に記載の埋め込み樹脂。
2. The acid anhydride curing agent as 25 ° C. ± 1
The embedding resin according to claim 1, wherein a curing agent having a viscosity at 170C of 170 mPa · s or less is used.
【請求項3】 前記フィラーの配合割合が51質量%〜
74質量%であることを特徴とする請求項1又は請求項
2に記載の埋め込み樹脂。
3. The blending ratio of the filler is 51% by mass to
It is 74 mass%, The embedded resin of Claim 1 or Claim 2 characterized by the above-mentioned.
【請求項4】 前記フィラーとして無機フィラーを少な
くとも一種類以上含むことを特徴とする請求項1乃至請
求項3のいずれかに記載の埋め込み樹脂。
4. The embedded resin according to claim 1, wherein the filler contains at least one kind of inorganic filler.
【請求項5】 絶縁基板に設けた開口部内に配置した電
子部品を、請求項1乃至請求項4のいずれかに記載の埋
め込み樹脂を用いて埋め込んだことを特徴とする配線基
板。
5. A wiring board characterized in that an electronic component arranged in an opening provided in an insulating substrate is embedded using the embedding resin according to any one of claims 1 to 4.
【請求項6】 コア基板の少なくとも一面に、絶縁層及
び配線層を交互に積層したビルドアップ層を形成し、該
コア基板及び該ビルドアップ層の少なくとも一方を貫通
するように開口部を形成した基板を用いるとともに、該
開口部内に配置した電子部品を、請求項1乃至請求項5
のいずれかに記載の埋め込み樹脂を用いて埋め込んだこ
とを特徴とする配線基板。
6. A buildup layer in which insulating layers and wiring layers are alternately laminated is formed on at least one surface of a core substrate, and an opening is formed so as to penetrate at least one of the core substrate and the buildup layer. An electronic component that uses a substrate and that is arranged in the opening is provided.
A wiring board, wherein the wiring board is embedded using the embedding resin described in any one of 1.
JP2001352478A 2000-12-28 2001-11-19 Wiring board Expired - Lifetime JP3895156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352478A JP3895156B2 (en) 2000-12-28 2001-11-19 Wiring board

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000401931 2000-12-28
JP2000-401931 2000-12-28
JP2001255781 2001-08-27
JP2001-255781 2001-08-27
JP2001352478A JP3895156B2 (en) 2000-12-28 2001-11-19 Wiring board

Publications (2)

Publication Number Publication Date
JP2003147049A true JP2003147049A (en) 2003-05-21
JP3895156B2 JP3895156B2 (en) 2007-03-22

Family

ID=27345624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352478A Expired - Lifetime JP3895156B2 (en) 2000-12-28 2001-11-19 Wiring board

Country Status (1)

Country Link
JP (1) JP3895156B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736635B1 (en) 2006-02-09 2007-07-06 삼성전기주식회사 Bare chip embedded pcb and method of the same
WO2014208737A1 (en) * 2013-06-28 2014-12-31 太陽インキ製造株式会社 Heat-curable composition, dry film, and printed wiring board
JP2016089096A (en) * 2014-11-07 2016-05-23 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, and semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736635B1 (en) 2006-02-09 2007-07-06 삼성전기주식회사 Bare chip embedded pcb and method of the same
US8184448B2 (en) 2006-02-09 2012-05-22 Samsung Electro-Mechanics Co., Ltd. Bare chip embedded PCB
US8929091B2 (en) 2006-02-09 2015-01-06 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing a printed circuit board (PCB)
WO2014208737A1 (en) * 2013-06-28 2014-12-31 太陽インキ製造株式会社 Heat-curable composition, dry film, and printed wiring board
US9796810B2 (en) 2013-06-28 2017-10-24 Taiyo Ink Mfg. Co., Ltd. Heat-curable composition, dry film, and printed wiring board
JP2016089096A (en) * 2014-11-07 2016-05-23 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, and semiconductor device

Also Published As

Publication number Publication date
JP3895156B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US6876091B2 (en) Wiring board
US6740411B2 (en) Embedding resin, wiring substrate using same and process for producing wiring substrate using same
US6770965B2 (en) Wiring substrate using embedding resin
JP4092890B2 (en) Multi-chip module
JP3926141B2 (en) Wiring board
US7294587B2 (en) Component built-in module and method for producing the same
JP4012375B2 (en) Wiring board and manufacturing method thereof
EP1137332B1 (en) Printed wiring board and method of producing the same and capacitor to be contained in printed wiring board
US20020033378A1 (en) Printed wiring substrate and method for fabricating the same
US6822170B2 (en) Embedding resin and wiring substrate using the same
US20020185303A1 (en) Wiring circuit board and method for producing same
JP4038363B2 (en) Wiring board
JP2002158450A (en) Wiring board
JP3959261B2 (en) Wiring board
JP4885366B2 (en) Wiring board manufacturing method
JP4599121B2 (en) Electrical relay plate
JP2003069229A (en) Multilayer printed wiring board
JP3895156B2 (en) Wiring board
JP4326710B2 (en) Wiring board using embedded resin
JP4840245B2 (en) Multi-chip module
JP4695289B2 (en) Wiring board manufacturing method
US20020147263A1 (en) Embedding resin
JP2004027185A (en) Embedding resin composition and wiring board using it
JP3920048B2 (en) Through-hole filling paste
JP2004027186A (en) Embedding resin composition and wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Ref document number: 3895156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term