JP2003145568A - Degassing method in process for thermoforming friction material - Google Patents

Degassing method in process for thermoforming friction material

Info

Publication number
JP2003145568A
JP2003145568A JP2001344466A JP2001344466A JP2003145568A JP 2003145568 A JP2003145568 A JP 2003145568A JP 2001344466 A JP2001344466 A JP 2001344466A JP 2001344466 A JP2001344466 A JP 2001344466A JP 2003145568 A JP2003145568 A JP 2003145568A
Authority
JP
Japan
Prior art keywords
friction material
die
mold
thermoforming
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001344466A
Other languages
Japanese (ja)
Inventor
Yosuke Sasaki
要助 佐々木
Katsuo Arai
勝男 新井
Satoshi Kusaka
聡 日下
Sei Kurihara
生 栗原
Koichi Miyagi
公一 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Akebono Research and Development Centre Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Akebono Research and Development Centre Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd, Akebono Research and Development Centre Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2001344466A priority Critical patent/JP2003145568A/en
Publication of JP2003145568A publication Critical patent/JP2003145568A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a degassing method for preventing the occurrence of defective molding such as cracks and blisters and a method for thermoforming a friction material which can obtain the friction material excellent in quality at a high temperature in a short time. SOLUTION: In a method for producing the friction material in which the preliminary molding of the friction material is thermoformed by using a mold for thermoforming the friction material comprising a press mold, a middle mold, and a pressurization mold, in a degassing method in a process for thermoforming the friction material, the middle parts of the press mold and the middle mold are manufactured from a material having heat conductivity higher than that of the other parts. During the thermoforming, the preliminary molding is heated so that a part to be finally cured is concentrated to the side contacting the middle mold, and gas generated from the preliminary molding by the thermoforming is discharged outside the mold from a position contacting the final curing part of the preliminary molding through a degassing passage opened to the inner surface of the middle mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、摩擦材の熱成形過
程のガス抜き方法に関するものであり、特に産業機械、
鉄道車両、荷物車両、乗用車などに用いられる摩擦材の
熱成形過程のガス抜き方法に関するものであり、より具
体的には前記の用途に使用されるブレーキパッド、ブレ
ーキライニング、クラッチフェーシング等の熱成形過程
のガス抜き方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a degassing method in a thermoforming process of friction materials, and particularly to industrial machinery,
The present invention relates to a degassing method in the thermoforming process of friction materials used in railway vehicles, luggage vehicles, passenger cars, etc., and more specifically to thermoforming of brake pads, brake linings, clutch facings, etc. used for the above-mentioned applications. It relates to a degassing method in the process.

【0002】[0002]

【従来の技術】従来、自動車、鉄道車両、産業機械等の
主としてブレーキなどに用いられる摩擦材は、その配合
成分としては、一般に各種充填材、補強のための各種繊
維、研削材、黒鉛、金属粉等の摩擦調整材と共に、これ
らの材料を結合するための結合材として各種樹脂が配合
されている。従来知られている摩擦材の製造方法の1例
であるディスクブレーキ用ブレーキパッドの製造工程に
おいては、板金プレスにより所定の形状に成形され、脱
脂処理及びプライマー処理が施され、そして接着剤が塗
布されたプレッシャープレートと、耐熱性有機繊維や無
機繊維、金属繊維等の繊維基材と、無機・有機充填材、
摩擦調整材及び結合材(フェノール樹脂等の熱硬化性樹
脂等)等の粉末原料とを配合し、攪拌により十分に均質
化した原材料を常温にて所定の圧力で成形(予備成形)
して作製した予備成形体とを、熱成形工程において所定
の温度及び圧力で熱成形して両部材を一体に固着し、ア
フタキュアを行い、最終的に仕上げ処理を施す工程から
なる。
2. Description of the Related Art Conventionally, friction materials mainly used for brakes of automobiles, railway vehicles, industrial machines, etc., generally include various fillers, various fibers for reinforcement, abrasives, graphite and metals. Various resins are blended with a friction adjusting material such as powder as a binding material for binding these materials. In the manufacturing process of a brake pad for a disc brake, which is one example of a conventionally known method for manufacturing a friction material, it is molded into a predetermined shape by a sheet metal press, subjected to degreasing treatment and primer treatment, and then coated with an adhesive. Pressure plate, heat-resistant organic fiber, inorganic fiber, fiber base material such as metal fiber, inorganic / organic filler,
Mixing powder materials such as friction modifiers and binders (thermosetting resins such as phenolic resins), and thoroughly homogenizing the raw materials by stirring and molding at room temperature at a predetermined pressure (preforming)
In the thermoforming step, the preformed body produced in this way is thermoformed at a predetermined temperature and pressure so that both members are integrally fixed, aftercured, and finally finished.

【0003】一般に、摩擦材の製造方法においては、製
造コストの削減等の目的から、熱成形の時間はできるだ
け短い方が良い。成形時間短縮には、成形温度を高温に
して有機結合材の硬化反応を促進するのが最も効果的で
ある。ところで、上記従来の熱成形工程においては、図
6に示すように、上記プレッシャープレート(P/P)
1と摩擦材原料の予備成形体2とを、金属製の中型3、
押え型である上型4及び加圧型である下型(パンチ)5
の上、中及び下型で形成される空間に挿入充填し、前記
材料予備成形体2をP/P1と共に上型4と下型5で加
圧するものであるが、この際同時に上型4及び下型5に
設けた熱板7により加熱して、P/P1と合わせて予備
成形体2を加熱するように構成されている。
Generally, in the method of manufacturing a friction material, it is preferable that the time of thermoforming is as short as possible in order to reduce the manufacturing cost. To shorten the molding time, it is most effective to raise the molding temperature to accelerate the curing reaction of the organic binder. By the way, in the conventional thermoforming process, as shown in FIG. 6, the pressure plate (P / P) is used.
1 and the preform 2 of the friction material raw material, the metal middle mold 3,
Upper die 4 which is a pressing die and lower die (punch) 5 which is a pressure die
The space between the upper, middle and lower molds is inserted and filled, and the material preform 2 is pressed by the upper mold 4 and the lower mold 5 together with P / P1. The heating plate 7 provided on the lower die 5 is used to heat the preform 2 together with P / P1.

【0004】[0004]

【発明が解決しようとする課題】この摩擦材原料の予備
成形体2の熱成形過程では、摩擦材原料中の有機結合材
(熱硬化性樹脂)の熱硬化反応に伴い、ガスが発生す
る。そして、この発生したガスが熱成形された摩擦材内
部に閉じ込められると、プレス圧の除圧時に摩擦材内部
に閉じこめられた高いガス圧を有する発生ガスが一気に
開放され、ヒビやフクレを生じる原因となる。しかしな
がら、従来の図6に示す熱成形型では、特に熱伝導率に
配慮することなく、同質の材料で作製されているため、
中型3や下型5から熱が伝わりやすく、その結果、中型
3に接する摩擦材のP/P1に接する面と下型5に接す
る摩擦面とが速く硬化してしまうために、ガスが摩擦材
内部に閉じ込められ、上記のヒビやフクレを生じるとい
う問題点があった。
In the thermoforming process of the preform 2 of the friction material raw material, gas is generated along with the thermosetting reaction of the organic binder (thermosetting resin) in the friction material raw material. Then, when the generated gas is confined inside the thermoformed friction material, the generated gas with a high gas pressure trapped inside the friction material is released at a dash during depressurization of the press pressure, causing cracks and blisters. Becomes However, in the conventional thermoforming die shown in FIG. 6, since it is made of the same material without paying particular attention to the thermal conductivity,
Heat is easily transferred from the middle mold 3 and the lower mold 5, and as a result, the surface of the friction material in contact with the middle mold 3 that contacts P / P1 and the friction surface that contacts the lower mold 5 are rapidly hardened, so that the gas is used as a friction material. There is a problem that it is trapped inside and causes the cracks and blisters mentioned above.

【0005】すなわち、従来の成形方法で成形温度を高
くすると、硬化反応が促進されてガスが集中発生し、成
形不良が多発してしまう。上記問題が解決できていない
ために、従来の成形方法では成形温度を低く、成形時間
を長くしている。従って、摩擦材内部に溜まるガスを速
やかに排出できるガス抜き方法があれば、成形不良を防
止でき高温・短時間での成形が可能になる。
That is, when the molding temperature is raised by the conventional molding method, the curing reaction is promoted, gas is concentrated, and molding defects frequently occur. Since the above problems have not been solved, the conventional molding method has a low molding temperature and a long molding time. Therefore, if there is a degassing method capable of quickly discharging the gas accumulated inside the friction material, molding defects can be prevented and molding at high temperature and in a short time becomes possible.

【0006】本発明は、このような従来の課題に鑑みて
なされたものであり、ヒビやフクレなどの成形不良の発
生を防止するガス抜き方法、及び品質の優れた摩擦材を
高温・短時間で得る摩擦材の熱成形方法を提供すること
を課題とする。
The present invention has been made in view of the above-mentioned conventional problems, and a method of degassing for preventing the occurrence of molding defects such as cracks and blisters, and a friction material excellent in quality at high temperature for a short time. An object of the present invention is to provide a thermoforming method for a friction material obtained in 1.

【0007】[0007]

【課題を解決するための手段】本発明者らは、ヒビやフ
クレなどの成形不良を生じない熱成形用型及び成形方法
について種々検討を重ね、摩擦材の熱成形過程におけ
る、摩擦材原料中の結合材である熱硬化性樹脂の硬化反
応等により発生するガスの、ガス抜きが円滑に行われな
いことが、ヒビやフクレの主な発生原因であることを知
見した。そして、本発明者らは、上記の知見に基づいて
本発明を完成するに至った。
[Means for Solving the Problems] The inventors of the present invention have made various studies on a thermoforming mold and a molding method that do not cause molding defects such as cracks and blisters, and have found that in the friction material raw material during the thermoforming process of the friction material. It was found that the gas generated by the curing reaction of the thermosetting resin, which is the binder, is not smoothly degassed, which is the main cause of cracks and blisters. Then, the present inventors have completed the present invention based on the above findings.

【0008】すなわち、本発明は、下記の構成により前
記の課題を解決した。 (1)押え型、中型及び加圧型からなる摩擦材の熱成形
用型を用いて摩擦材の予備成形体を熱成形する摩擦材の
製造方法において、押え型と加圧型の中央部分を他の部
分よりも熱伝導率の高い素材で作製し、熱成形時に予備
成形体が最後に硬化する部分を中型に接する側面に集中
するように加熱し、熱成形により予備成形体から発生す
るガスを、予備成形体の最終硬化部に接する位置から、
中型内面に開口するガス抜き路を通して熱成形用型外部
へ排出するように構成したことを特徴とする摩擦材熱成
形過程のガス抜き方法。
That is, the present invention has solved the above problems by the following constitution. (1) In a method of manufacturing a friction material in which a preform of a friction material is thermoformed using a thermoforming die for a friction material, which includes a pressing die, a medium die, and a pressure die, It is made of a material with higher thermal conductivity than the part, and the preform is heated so that the part that cures last during thermoforming is concentrated on the side that contacts the middle mold, and the gas generated from the preform by thermoforming is From the position in contact with the final cured part of the preform,
A method for degassing a friction material thermoforming process, characterized in that the material is discharged to the outside of the thermoforming mold through a degassing passage opening to the inner surface of the middle mold.

【0009】(2)押え型と加圧型の中央部分を分割金
型とし、前記分割金型がベリリウム銅合金で作製され、
他の金型本体部分が熱間工具鋼で作製されていることを
特徴とする前記(1)記載の摩擦材熱成形過程のガス抜
き方法。 (3)前記中央部分の分割金型内にヒータを内蔵したこ
とを特徴とする前記(1)又は(2)記載の摩擦材熱成
形過程のガス抜き方法。 (4)中型にガス抜き路を形成する部材を組み込み、こ
の部材を熱伝導率が予備成形体の熱伝導率より小さい素
材で作製したことを特徴とする前記(1)〜(3)のい
ずれか1項記載の摩擦材熱成形過程のガス抜き方法。
(2) The pressing die and the pressure die have a central portion as a split die, and the split die is made of beryllium copper alloy.
The degassing method in the friction material thermoforming process according to (1) above, wherein the other die body portion is made of hot work tool steel. (3) The degassing method in the friction material thermoforming process according to (1) or (2), characterized in that a heater is built in the split mold of the central portion. (4) Any of the above (1) to (3), characterized in that a member for forming a gas vent passage is incorporated in the middle mold, and this member is made of a material having a thermal conductivity smaller than that of the preform. 2. A method of degassing a friction material thermoforming process according to item 1.

【0010】すなわち、本発明の骨子は、摩擦材の製造
方法において、最終硬化部の位置を制御してガスを集め
る手段と、最終硬化部に集めたガスを抜く手段の両手段
を併せ持つ熱成形金型を用いて、摩擦材の予備成形体を
熱成形することにある。
That is, the essence of the present invention is that in the method of manufacturing a friction material, thermoforming having both means for controlling the position of the final hardened portion to collect gas and means for removing the gas collected in the final hardened portion. It is to thermoform a preform of the friction material using a die.

【0011】通常の熱成形過程では、摩擦材の温度分布
は図6に示すように外周が高く、内部が低い。通常、摩
擦材はプレッシャープレート(P/P)と呼ばれる鉄板
と一体に成形される。P/Pは成形型からの熱を吸収
し、摩擦材への熱伝導を遅らせる。そのため、最も低温
の部分は摩擦材の中心からやや上型側寄りになってい
る。最も低温の部分は、有機結合材が最後に硬化するた
めに空隙が多い。従って、ガスは「有機結合材が最後に
硬化する部分」(以下、「最終硬化部」という)に移動
して集まる。この状態でプレス圧力が除圧されると最終
硬化部の高圧のガスが膨張する。その結果、周囲の硬化
部が破壊されてヒビが発生し成形不良となる。通常の熱
成形では図6に示すような温度分布となるため、ヒビは
摩擦材の厚さ約2/3の部分に発生する。以上のことか
ら、最終硬化部から速やかにガスを抜けば成形不良を防
止できることがわかる。
In the normal thermoforming process, the temperature distribution of the friction material is high at the outer periphery and low at the inner portion as shown in FIG. Usually, the friction material is integrally formed with an iron plate called a pressure plate (P / P). P / P absorbs heat from the mold and delays heat conduction to the friction material. Therefore, the lowest temperature part is slightly closer to the upper mold side from the center of the friction material. The coldest parts are voided because the organic binder is the last to cure. Therefore, the gas moves and collects in the “part where the organic binder is finally cured” (hereinafter, referred to as “final curing part”). When the press pressure is released in this state, the high-pressure gas in the final hardening portion expands. As a result, the surrounding hardened part is destroyed and cracks occur, resulting in defective molding. Since the temperature distribution shown in FIG. 6 is obtained in normal thermoforming, cracks are generated in a portion having a thickness of about 2/3 of the friction material. From the above, it is understood that defective gas can be prevented by promptly releasing the gas from the final cured part.

【0012】そこで本発明では、「熱成形過程で発生す
るガスは最終硬化部に集まる」という原理を利用する。
すなわち、本発明は「最終硬化部の位置を制御し、ガス
を集めて抜く」ことで構成される熱成形方法におけるガ
ス抜き方法を発明のポイントとする。端的にいうと、本
発明は以下に記す2つの手段を用いる。 1)最終硬化部の位置を制御してガスを集める手段。 2)最終硬化部に集めたガスを抜く手段。
Therefore, in the present invention, the principle that "gas generated in the thermoforming process is collected in the final hardening portion" is utilized.
That is, the point of the present invention is a degassing method in a thermoforming method that is configured by "controlling the position of the final cured portion and collecting and degassing gas." In short, the present invention uses the following two means. 1) A means for collecting the gas by controlling the position of the final curing part. 2) A means for removing the gas collected in the final curing section.

【0013】[0013]

【発明の実施の形態】本発明の摩擦材の熱成形過程のガ
ス抜き方法を、図1〜5を参照して詳細に説明する。な
お、図6で示した構成要素と同一機能を有する構成要素
は、同一符号を用いて示す。以下に、上記した2手段の
それぞれの手段について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The degassing method in the thermoforming process of the friction material of the present invention will be described in detail with reference to FIGS. The components having the same functions as those shown in FIG. 6 are designated by the same reference numerals. Each of the above-mentioned two means will be described in detail below.

【0014】1)最終硬化部の位置を制御してガスを集
める手段 成形型から摩擦材に与える熱量に差を付けて、ガスを集
める場所を最も低温にする。摩擦材の温度分布を図1に
示すように制御すると、最終硬化部を摩擦材の側面にす
ることができる。ガスは摩擦材側面に集まるので、中型
内側面にガス抜き機構を設けてガスを抜く。図1に示す
ような温度分布にするためには、以下のような方法を組
み合わせて用いればよい。 ・押え型(上型)4の温度と加圧型(下型)5の温度を
高温にして、中型3の温度は低温にする。 ・上型4と下型5に熱伝導率の高い材質を用い、中型3
に熱伝導率の小さい材質を用いる。 ・中型3に多孔質材料を用いて摩擦材2との接触面積を
減らし、熱伝導を小さくする。 ・上型4と下型5の摩擦材2中央に当たる部分を分割型
8とし、分割型8に熱伝導率の大きい材質を用いる。 ・分割型8にヒータ9を内蔵して分割型8の温度を分割
型8以外の部分の温度よりも10〜100℃高くする。
1) Means for collecting gas by controlling the position of the final hardened part The amount of heat given from the mold to the friction material is made different so that the gas is collected at the lowest temperature. By controlling the temperature distribution of the friction material as shown in FIG. 1, the final hardened portion can be located on the side surface of the friction material. Since the gas collects on the side surface of the friction material, a gas venting mechanism is provided on the inner surface of the middle die to vent the gas. In order to obtain the temperature distribution as shown in FIG. 1, the following methods may be combined and used. The temperature of the pressing die (upper die) 4 and the temperature of the pressure die (lower die) 5 are set high, and the temperature of the middle die 3 is set low.・ The upper mold 4 and the lower mold 5 are made of a material having high thermal conductivity, and the middle mold 3 is used.
Use a material with low thermal conductivity. -A porous material is used for the middle mold 3 to reduce the contact area with the friction material 2 and reduce heat conduction. The portion of the upper die 4 and the lower die 5 that is in contact with the center of the friction material 2 is the split die 8, and the split die 8 is made of a material having a high thermal conductivity. A heater 9 is built in the split mold 8 to raise the temperature of the split mold 8 to 10 to 100 ° C. higher than the temperature of the parts other than the split mold 8.

【0015】2)最終硬化部からガスを抜く手段 上記手段によりガスを摩擦材2側面に集め、中型3内側
面にガス抜き機構11を設けてガスを抜く。すなわち、
中型3内側面にガス抜き孔やガス抜き溝10A等のガス
抜き路10を設けて成形型外にガスを排出する。加え
て、ガス抜き機構11に減圧吸引装置を接続して、発生
するガスを強制的に抜いても良い。ガス抜き機構11の
構造の例を図2〜4に示す。図2は中型3内側面に横溝
状のガス抜き溝10Aを設けそれを型外に連通するガス
抜き路10につないだものであり、図3はジグザグ溝状
のガス抜き溝10Bを設けそれを型外に連通するガス抜
き路10につないだものであり、図4はガス抜き孔10
のみを中型内に数カ所設けた説明図であり、(a)は中
型の水平断面図であり、(b)は成形用型の縦断面図で
ある。
2) Means for degassing from the final hardened part The gas is collected on the side surface of the friction material 2 by the above means, and the degassing mechanism 11 is provided on the inner side surface of the middle mold 3 to degas the gas. That is,
A gas vent passage 10 such as a gas vent hole or a gas vent groove 10A is provided on the inner surface of the middle die 3 to exhaust gas to the outside of the molding die. In addition, a decompression suction device may be connected to the gas venting mechanism 11 to forcibly vent the generated gas. Examples of the structure of the degassing mechanism 11 are shown in FIGS. FIG. 2 shows a gas vent groove 10A in the shape of a lateral groove provided on the inner surface of the middle mold 3 and is connected to a gas vent path 10 communicating with the outside of the mold. FIG. 3 shows a gas vent groove 10B in the shape of a zigzag groove. It is connected to the gas vent passage 10 communicating with the outside of the mold.
It is explanatory drawing which provided only several places in the inside mold, (a) is a horizontal sectional view of a middle mold, (b) is a longitudinal sectional view of a shaping die.

【0016】ここで、ガス抜き機構の熱伝導率は、摩擦
材と同等かそれ以下にしなければならない。なぜなら
ば、ガス抜き機構11の熱伝導率が摩擦材2の熱伝導率
より高いと、ガス抜き機構11周辺の有機結合材から先
に硬化する。その結果、ガス抜き機構11周辺が緻密に
なりガス抜きが妨げられる。ガス抜き機構11の熱伝導
率を摩擦材2と同等かそれ以下にすると、ガス抜き機構
11周辺の有機結合材の硬化が最後に起こる。すると、
熱成形過程でガス抜き機構11周辺に空隙が確保でき、
ガスを抜けやすくできる。
Here, the thermal conductivity of the degassing mechanism must be equal to or less than that of the friction material. This is because when the thermal conductivity of the degassing mechanism 11 is higher than that of the friction material 2, the organic binder around the degassing mechanism 11 is hardened first. As a result, the periphery of the gas venting mechanism 11 becomes dense and gas venting is hindered. When the thermal conductivity of the degassing mechanism 11 is made equal to or lower than that of the friction material 2, the organic binder around the degassing mechanism 11 is cured last. Then,
A void can be secured around the degassing mechanism 11 in the thermoforming process,
Can easily escape gas.

【0017】[0017]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。ただし、本発明はこの実施例のみに限定されるも
のではない。
Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to this embodiment.

【0018】実施例1〜2、比較例1〜10 図5に実施例で用いた成形型の構成を示す。その成形型
の特徴を以下に記す。(成形型) ・上型と下型の摩擦材中央に当たる部分を分割型とし
た。 分割型の材料にベリリウム銅合金(熱伝導率:174W
/mK)を用いた。分割型内部にはヒータを埋め込ん
だ。 ・中型内側面にジグザグ形状のガス抜き溝を設けた。 ・分割型とガス抜き溝以外の部材は、熱間工具鋼(SK
D61、熱伝導率:74W/mK)を用いた。
Examples 1 and 2 and Comparative Examples 1 to 10 FIG. 5 shows the structure of the mold used in the examples. The features of the mold are described below. (Molding die) ・ The part of the upper die and the lower die that hits the center of the friction material is a split die. Beryllium copper alloy (thermal conductivity: 174W
/ MK) was used. A heater was embedded inside the split mold. -A zigzag-shaped gas vent groove was provided on the inner surface of the middle mold.・ For members other than the split mold and the gas vent groove, hot tool steel (SK
D61, thermal conductivity: 74 W / mK) was used.

【0019】(中型)種々の材質を用いてガス抜き機構
の熱伝導率が異なる中型を作製した。実施例では、ガス
抜き機構の材質を繊維強化プラスチック(FRP)で作
製した。 プラスチック:ポリイミド樹脂。 強化繊維:カーボンファイバー、ガラスファイバー。 フィラー:硫酸バリウム、炭酸カルシウム、マグネシ
ア。 プラスチックに配合するフィラーや強化繊維の種類・量
を変えて熱伝導率の異なるガス抜き溝を作製した。 ・実施例1は、ガス抜き機構に熱伝導率が1W/mKの
FRPからなるガス抜き路構成部材を用いた。 ・実施例2は、ガス抜き機構に熱伝導率が5W/mKの
FRPからなるガス抜き路構成部材を用いた。 ・比較例1は、ガス抜き機構をセミメタリック摩擦材
(熱伝導率:12W/mK)よりも熱伝導率の大きいS
US304(熱伝導率:15W/mK)からなるガス抜
き路構成部材で作製した。 ・比較例2は、ガス抜き機構を設けない従来の中型を使
用した。 この中型を、前記工程で作製した上型・下型、及び従来
の上型・下型(分割型を有しないもの)と組み合わせて
使用した。
(Medium-sized) Medium-sized having different thermal conductivity of the degassing mechanism was manufactured by using various materials. In the examples, the material of the degassing mechanism was made of fiber reinforced plastic (FRP). Plastic: Polyimide resin. Reinforcing fibers: carbon fiber, glass fiber. Filler: barium sulfate, calcium carbonate, magnesia. Venting grooves with different thermal conductivity were prepared by changing the type and amount of filler and reinforcing fiber mixed in plastic. -In Example 1, the gas venting mechanism used was a gas venting channel constituent member made of FRP having a thermal conductivity of 1 W / mK. -In Example 2, the gas venting mechanism was made of FRP having a thermal conductivity of 5 W / mK. -Comparative example 1 has a gas venting mechanism with S having a larger thermal conductivity than a semi-metallic friction material (thermal conductivity: 12 W / mK).
It was made of a gas vent passage constituent member made of US304 (heat conductivity: 15 W / mK). -Comparative example 2 used a conventional medium type without a degassing mechanism. This middle mold was used in combination with the upper mold / lower mold prepared in the above process and the conventional upper mold / lower mold (having no split mold).

【0020】(摩擦材)第1表に用いた摩擦材の配合を
記す。
(Friction Material) Table 1 shows the composition of the friction material used.

【0021】[0021]

【表1】 [Table 1]

【0022】摩擦材攪拌物を予備成形型に投入し、常温
で40MPaの圧力で加圧成形して予備成形体を作製し
た。予備成形体を熱成形型に投入して熱成形を行った。
成形条件を以下に記す2条件に設定した。 (カッコ内はセミメタリック配合の成形時間) (1)従来の成形条件:上型温度155℃、下型温度1
55℃、成形時間420秒(410秒)。 (2)高温・短時間の成形条件:上型温度175℃、
(分割金型の温度:210℃)、下型温度175℃、成
形時間90秒(75秒)。 ・比較例3〜6は、前記の中型と従来の上型・下型と組
み合わせ、成形条件(2)で熱成形した例。 ・比較例7〜10は、前記の中型と従来の上型・下型と
組み合わせ、成形条件(1)で熱成形した例。
The friction material agitated product was placed in a preforming mold and pressure-molded at room temperature under a pressure of 40 MPa to prepare a preform. The preform was placed in a thermoforming mold to perform thermoforming.
The molding conditions were set to the two conditions described below. (Figures in parentheses are molding time for semi-metallic compound) (1) Conventional molding conditions: upper mold temperature 155 ° C, lower mold temperature 1
55 ° C, molding time 420 seconds (410 seconds). (2) High temperature and short time molding conditions: Upper mold temperature 175 ° C,
(Temperature of split mold: 210 ° C.), lower mold temperature 175 ° C., molding time 90 seconds (75 seconds). -Comparative Examples 3 to 6 are examples in which the above-mentioned middle mold and the conventional upper mold and lower mold are combined and thermoformed under the molding condition (2). -Comparative examples 7 to 10 are examples in which the above-mentioned middle mold and the conventional upper mold and lower mold are combined and thermoformed under molding condition (1).

【0023】(成形物の検査結果)熱成形終了後に外観
検査と打音検査を行い、成形不良率を比較した。検査結
果を実験結果として第2表に示す。
(Inspection Result of Molded Product) After the thermoforming, an appearance inspection and a tapping sound inspection were performed to compare the defective molding rate. The test results are shown in Table 2 as experimental results.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】高温・短時間の成形条件で、分割型を設け
た成形型の方が成形不良は少なかった。なかでもガス抜
き機構を設けて、なおかつその熱伝導率が摩擦材よりも
小さい場合には、成形不良が発生しなかった。本発明に
より、成形時間を大幅に短縮して歩留り良く成形するこ
とが可能になった。
Under the molding conditions of high temperature and short time, the molding die provided with the split mold had less molding defects. In particular, when a gas venting mechanism was provided and the thermal conductivity thereof was smaller than that of the friction material, no molding failure occurred. According to the present invention, it becomes possible to significantly shorten the molding time and mold with a high yield.

【0027】[0027]

【発明の効果】本発明によれば、押え型と加圧型の中央
部分を他の部分よりも熱伝導率の高い素材で作製するな
どの手段を講じ、熱成形時の最終硬化部を中型に接する
側面に集中させることができた。その結果、熱成形体か
ら発生するガスを、最終硬化部から中型のガス抜き路を
通して外部へ排出でき、熱成形過程でガス抜きが不十分
なために発生するヒビ・フクレ等の成形不良を防止し、
製品の歩留りを向上できる。また、高温・短時間での成
形が可能になり、製造コストを低減できる。
According to the present invention, the central portion of the presser die and the pressurizing die is made of a material having a higher thermal conductivity than the other portions, and the final cured portion at the time of thermoforming is set to the middle die. I was able to concentrate on the side that touches. As a result, the gas generated from the thermoformed product can be discharged to the outside from the final curing section through the medium-sized gas vent passage, preventing defective molding such as cracks and blisters caused by insufficient degassing during the thermoforming process. Then
Product yield can be improved. Further, the molding can be performed at a high temperature in a short time, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の最終硬化部の位置制御方法を説明する
図であって、(a)は押え型の上面図、(b)はその縦
断面図、(c)は加圧型の平面図である。
1A and 1B are diagrams illustrating a position control method of a final curing portion according to the present invention, in which FIG. 1A is a top view of a presser die, FIG. 1B is a longitudinal sectional view thereof, and FIG. Is.

【図2】中型にガス抜き溝として横溝を設けた成形用型
の説明図であり、(a)は平面図であり、(b)は縦断
面説明図である。
2A and 2B are explanatory views of a molding die in which a horizontal groove is provided as a degassing groove in a middle die, FIG. 2A is a plan view, and FIG. 2B is a longitudinal sectional explanatory view.

【図3】中型にガス抜き溝としてジグザグ溝を設けた成
形用型の説明図であり、(a)は中型部分の平面図であ
り、(b)は縦断面説明図である。
3A and 3B are explanatory views of a molding die in which a zigzag groove is provided as a gas vent groove in the middle die, FIG. 3A is a plan view of a middle die portion, and FIG.

【図4】中型にガス抜き溝としてガス抜き孔を設けた成
形型の説明図であり、(a)は中型部分の平面図であ
り、(b)は縦断面説明図である。
4A and 4B are explanatory views of a molding die in which a gas vent hole is provided as a gas vent groove in a middle die, FIG. 4A is a plan view of a middle die portion, and FIG.

【図5】実施例に用いた成形用型の説明図であり、
(a)は上面図、(b)は縦断面図、(c)は上面図で
ある。
FIG. 5 is an explanatory view of a molding die used in Examples,
(A) is a top view, (b) is a longitudinal sectional view, and (c) is a top view.

【図6】従来の熱成形過程の摩擦材の温度分布を説明す
る縦断面図である。
FIG. 6 is a vertical cross-sectional view illustrating a temperature distribution of a friction material in a conventional thermoforming process.

【符号の説明】[Explanation of symbols]

1 プレッシャープレート(P/P) 2 摩擦材原料の予備成形体 3 中型 3A 中型(熱伝導率小、多孔質) 3B 中型(熱伝導率大) 4 押え型(上型) 5 加圧型(下型) 6 最終硬化部 7 熱板 8 分割型 9 ヒータ 10 ガス抜き路 10A ガス抜き溝 10B ジグザグ溝 11 ガス抜き路構成部材(ガス抜き機構) 12 ヒビ 1 Pressure plate (P / P) 2 Preform of friction material 3 medium 3A Medium size (low thermal conductivity, porous) 3B Medium size (high thermal conductivity) 4 Presser type (upper type) 5 Pressurized type (lower type) 6 Final curing part 7 hot plate 8 division type 9 heater 10 degassing path 10A degassing groove 10B Zigzag groove 11 Degassing path component (gas venting mechanism) 12 cracks

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 勝男 埼玉県羽生市東5丁目4番71号 株式会社 曙ブレーキ中央技術研究所内 (72)発明者 日下 聡 埼玉県羽生市東5丁目4番71号 株式会社 曙ブレーキ中央技術研究所内 (72)発明者 栗原 生 埼玉県羽生市東5丁目4番71号 株式会社 曙ブレーキ中央技術研究所内 (72)発明者 宮城 公一 東京都中央区日本橋小網町19番5号 曙ブ レーキ工業株式会社内 Fターム(参考) 3J058 BA61 FA01 FA11 FA21 FA31 FA35 GA20 GA28 GA33 GA37 GA55 GA64 GA87 GA92 GA93 4F202 AC03 AE08 AH81 AJ12 AK09 CA17 CB01 CK42 CN01 CN18 CP05 4F204 AA37 AB07 AB11 AB16 AE08 AH05 AH17 AJ02 AJ12 FA01 FB01 FF01 FN12 FN15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsuo Arai             Saitama Prefecture Hanyu City East 5-4-71 Co., Ltd.             Akebono Brake Central Technology Research Institute (72) Inventor Satoshi Kusaka             Saitama Prefecture Hanyu City East 5-4-71 Co., Ltd.             Akebono Brake Central Technology Research Institute (72) Inventor Kurihara             Saitama Prefecture Hanyu City East 5-4-71 Co., Ltd.             Akebono Brake Central Technology Research Institute (72) Inventor Koichi Miyagi             Akebonobu 19-5 Koamimachi, Nihonbashi, Chuo-ku, Tokyo             Rake Industry Co., Ltd. F term (reference) 3J058 BA61 FA01 FA11 FA21 FA31                       FA35 GA20 GA28 GA33 GA37                       GA55 GA64 GA87 GA92 GA93                 4F202 AC03 AE08 AH81 AJ12 AK09                       CA17 CB01 CK42 CN01 CN18                       CP05                 4F204 AA37 AB07 AB11 AB16 AE08                       AH05 AH17 AJ02 AJ12 FA01                       FB01 FF01 FN12 FN15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 押え型、中型及び加圧型からなる摩擦材
の熱成形用型を用いて摩擦材の予備成形体を熱成形する
摩擦材の製造方法において、押え型と加圧型の中央部分
を他の部分よりも熱伝導率の高い素材で作製し、熱成形
時に予備成形体が最後に硬化する部分を中型に接する側
面に集中するように加熱し、熱成形により予備成形体か
ら発生するガスを、予備成形体の最終硬化部に接する位
置から、中型内面に開口するガス抜き路を通して熱成形
用型外部へ排出するように構成したことを特徴とする摩
擦材熱成形過程のガス抜き方法。
1. A method of manufacturing a friction material in which a preform of a friction material is thermoformed using a die for thermoforming a friction material, which comprises a holding die, a medium die and a pressure die, and a center portion of the holding die and the pressure die is formed. It is made of a material with higher thermal conductivity than other parts, and the heat that the preform lastly hardens during thermoforming is concentrated so that it concentrates on the side that contacts the middle mold, and the gas generated from the preform by thermoforming Is discharged to the outside of the thermoforming mold from a position in contact with the final cured portion of the preform through a gas vent passage opening to the inner surface of the middle mold.
【請求項2】 押え型と加圧型の中央部分を分割金型と
し、前記分割金型がベリリウム銅合金で作製され、他の
金型本体部分が熱間工具鋼で作製されていることを特徴
とする請求項1記載の摩擦材熱成形過程のガス抜き方
法。
2. The pressing die and the pressurizing die have a central portion as a split die, the split die is made of beryllium copper alloy, and the other die main body is made of hot work tool steel. The degassing method in the friction material thermoforming process according to claim 1.
【請求項3】 前記中央部分の分割金型内にヒータを内
蔵したことを特徴とする請求項1又は請求項2記載の摩
擦材熱成形過程のガス抜き方法。
3. The degassing method in the friction material thermoforming process according to claim 1, wherein a heater is built in the split mold of the central portion.
【請求項4】 中型にガス抜き路を形成する部材を組み
込み、この部材を熱伝導率が予備成形体の熱伝導率より
小さい素材で作製したことを特徴とする請求項1〜3の
いずれか1項記載の摩擦材熱成形過程のガス抜き方法。
4. A member for forming a gas vent passage is incorporated in a middle mold, and this member is made of a material having a thermal conductivity smaller than that of the preform. A method of degassing a friction material thermoforming process according to item 1.
JP2001344466A 2001-11-09 2001-11-09 Degassing method in process for thermoforming friction material Pending JP2003145568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344466A JP2003145568A (en) 2001-11-09 2001-11-09 Degassing method in process for thermoforming friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344466A JP2003145568A (en) 2001-11-09 2001-11-09 Degassing method in process for thermoforming friction material

Publications (1)

Publication Number Publication Date
JP2003145568A true JP2003145568A (en) 2003-05-20

Family

ID=19157987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344466A Pending JP2003145568A (en) 2001-11-09 2001-11-09 Degassing method in process for thermoforming friction material

Country Status (1)

Country Link
JP (1) JP2003145568A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015125A (en) * 2005-07-05 2007-01-25 Nisshinbo Ind Inc Thermoforming method of friction material and thermoforming mold therefor
JP2007056959A (en) * 2005-08-23 2007-03-08 Nisshinbo Ind Inc Method for producing friction member
CN115076270A (en) * 2022-07-19 2022-09-20 杭州安耐特实业有限公司 Efficient low-energy-consumption brake pad production process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015125A (en) * 2005-07-05 2007-01-25 Nisshinbo Ind Inc Thermoforming method of friction material and thermoforming mold therefor
JP4685526B2 (en) * 2005-07-05 2011-05-18 日清紡ホールディングス株式会社 Friction material thermoforming method and thermoforming mold
JP2007056959A (en) * 2005-08-23 2007-03-08 Nisshinbo Ind Inc Method for producing friction member
CN115076270A (en) * 2022-07-19 2022-09-20 杭州安耐特实业有限公司 Efficient low-energy-consumption brake pad production process
CN115076270B (en) * 2022-07-19 2022-11-04 杭州安耐特实业有限公司 Efficient low-energy-consumption brake pad production process

Similar Documents

Publication Publication Date Title
EP0370476B1 (en) Clutch driven plates and method of producing the same
KR100694957B1 (en) Manufacturing method for a friction material
CN108698122B (en) Apparatus and method for forming metal matrix composite components
KR100776485B1 (en) Manufacturing method for friction material
JP2003145568A (en) Degassing method in process for thermoforming friction material
JP2003127155A (en) Method for degassing friction material in thermoforming process
JP2005212485A (en) Air-permeable mold for manufacturing composite material and molding method
KR20040104619A (en) Mehtod and device for the production of brake linings or clutch linings made of pressing materials that are bonded by means of a bonding agent
JP2002206578A (en) Structure and manufacturing method for brake pad of disc brake
KR20160061286A (en) Device and method for the production of friction linings and brake linings
JP2003211474A (en) Mold for thermally molding friction material and method for manufacturing friction material using mold
JP3224324B2 (en) Thermoforming method and thermoforming mold for friction material
JPH11322960A (en) Friction material
JP2904244B2 (en) Method of manufacturing friction pad for disc brake
US6245180B1 (en) Methods for bending brake lining material and for forming a lined brake shoe
JP5393435B2 (en) Disc brake pad
JP2003025356A (en) Thermoforming mold and method for manufacturing friction material
JP5154485B2 (en) Method for producing sintered alloy brake
JP4685526B2 (en) Friction material thermoforming method and thermoforming mold
JP2003145565A (en) Method for producing friction material
JPS5891935A (en) Manufacture of brake plastic material
JP2003001659A (en) Friction material manufacturing method and thermoforming mold therefor
JP2002295557A (en) Manufacturing method of friction material
JPH10277790A (en) Die for heating and compacting
KR100809803B1 (en) Manufacturing method of friction material