JP2003145164A - Electric deionized water production apparatus and deionized water production method - Google Patents

Electric deionized water production apparatus and deionized water production method

Info

Publication number
JP2003145164A
JP2003145164A JP2001351223A JP2001351223A JP2003145164A JP 2003145164 A JP2003145164 A JP 2003145164A JP 2001351223 A JP2001351223 A JP 2001351223A JP 2001351223 A JP2001351223 A JP 2001351223A JP 2003145164 A JP2003145164 A JP 2003145164A
Authority
JP
Japan
Prior art keywords
chamber
exchange membrane
water
anion
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001351223A
Other languages
Japanese (ja)
Other versions
JP3781352B2 (en
Inventor
Yuya Sato
祐也 佐藤
Masanari Hidaka
真生 日高
Osamu Kawaguchi
修 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2001351223A priority Critical patent/JP3781352B2/en
Publication of JP2003145164A publication Critical patent/JP2003145164A/en
Application granted granted Critical
Publication of JP3781352B2 publication Critical patent/JP3781352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric deionized water production apparatus and a deionized water production method wherein the scale is prevented from being generated in the concentration chamber during long continuous operation by solving a problem of scale generation from an aspect of the structure of a concentration chamber in the electric deionized water production apparatus. SOLUTION: In this deionized water production method, a desalting chamber is formed by filling ion exchange bodies into the desalting chamber partitioned by a cation exchange membrane disposed on one side and an anion exchange membrane disposed on the other side, concentration chambers are installed on both the sides of the desalting chamber through the cation exchange membrane and the anion exchange membrane, the desalting chambers and the concentration chamber are disposed between an anode chamber with an anode and a cathode chamber with a cathode, and water to be treated is made to flow into the desalting chamber while applying a voltage and concentrated water is made to flow into the concentration chamber, thereby removing impurity ions in the water to be treated to produce deionized water. The concentration chamber is formed by laminating and filling a reticulated cation conducting spacer and a reticulated anion conductive spacer alternately in the inlet and outlet direction of the concentrated water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造分野、
医薬製造分野、原子力や火力などの発電分野、食品工業
などの各種の産業又は研究所施設において使用されるス
ケール発生防止型電気式脱イオン水製造装置及び脱イオ
ン水の製造方法に関するものである。
The present invention relates to the field of semiconductor manufacturing,
The present invention relates to a scale generation prevention type electric deionized water manufacturing apparatus and a deionized water manufacturing method used in various fields such as pharmaceutical manufacturing, power generation fields such as nuclear power and thermal power, food industry and laboratory facilities.

【0002】[0002]

【従来の技術】脱イオン水を製造する方法として、従来
からイオン交換樹脂に被処理水を通して脱イオンを行う
方法が知られているが、この方法ではイオン交換樹脂が
イオンで飽和されたときに薬剤によって再生を行う必要
があり、このような処理操作上の不利な点を解消するた
め、薬剤による再生が全く不要な電気式脱イオン法によ
る脱イオン水製造方法が確立され、実用化に至ってい
る。
2. Description of the Related Art As a method for producing deionized water, a method of deionizing water by passing through water to be treated through an ion exchange resin has been conventionally known. In this method, when the ion exchange resin is saturated with ions, It is necessary to regenerate with chemicals, and in order to eliminate such disadvantages in processing operation, a method for producing deionized water by an electric deionization method, which does not require regeneration with chemicals, has been established and has been put to practical use. There is.

【0003】この電気式脱イオン水製造装置は、一側の
カチオン交換膜、他側のアニオン交換膜で区画される1
つの室にイオン交換体を充填して脱塩室を構成し、前記
カチオン交換膜、アニオン交換膜を介して脱塩室の両側
に濃縮室を設け、これらの脱塩室及び濃縮室を、陽極を
備えた陽極室と陰極を備えた陰極室の間に配置してなる
ものであり、電圧を印加しながら脱塩室に被処理水を流
入すると共に、濃縮室に濃縮水を流入して被処理水中の
不純物イオンを除去し、脱イオン水を得るものである。
This electric deionized water producing apparatus is divided into a cation exchange membrane on one side and an anion exchange membrane on the other side 1.
One chamber is filled with an ion exchanger to form a desalting chamber, and concentration chambers are provided on both sides of the desalting chamber through the cation exchange membrane and the anion exchange membrane. It is arranged between an anode chamber provided with a cathode and a cathode chamber provided with a cathode.The treated water flows into the desalting chamber while applying a voltage, and the concentrated water flows into the concentration chamber to receive the treated water. Impurity ions in the treated water are removed to obtain deionized water.

【0004】近年、カチオン交換膜及びアニオン交換膜
を離間して交互に配置し、カチオン交換膜とアニオン交
換膜で形成される空間内に一つおきにイオン交換体を充
填して脱塩室とする従前型の電気式脱イオン水製造装置
に代えて、その脱塩室の構造を抜本的に改造した省電力
型の電気式脱イオン水製造装置が開発されている。この
省電力型の電気式脱イオン水製造装置は、一側のカチオ
ン交換膜、他側のアニオン交換膜及び当該カチオン交換
膜と当該アニオン交換膜の間に位置する中間イオン交換
膜で区画される2つの小脱塩室にイオン交換体を充填し
て脱塩室を構成し、前記カチオン交換膜、アニオン交換
膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩
室及び濃縮室を陽極を備えた陽極室と陰極を備えた陰極
室の間に配置してなるものであり、電圧を印加しながら
一方の小脱塩室に被処理水を流入し、次いで、該小脱塩
室の流出水を他方の小脱塩室に流入すると共に、濃縮室
に濃縮水を流入して被処理水中の不純物イオンを除去
し、脱イオン水を得るものである。このような構造の電
気式脱イオン水製造装置によれば、2つの小脱塩室のう
ち、少なくとも1つの脱塩室に充填されるイオン交換体
を例えばアニオン交換体のみ、又はカチオン交換体のみ
等の単一イオン交換体もしくはアニオン交換体とカチオ
ン交換体の混合交換体とすることができ、イオン交換体
の種類毎に電気抵抗を低減し、且つ高い性能を得るため
の最適な厚さに設定することができる。
In recent years, cation exchange membranes and anion exchange membranes are alternately arranged apart from each other, and the space formed by the cation exchange membrane and the anion exchange membrane is filled with every other ion exchanger to form a desalting chamber. In place of the conventional type electric deionized water producing device, a power saving type electric deionized water producing device has been developed in which the structure of the desalting chamber is drastically modified. This power-saving type electric deionized water producing device is partitioned by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane. The two small desalting chambers are filled with an ion exchanger to form a desalting chamber. Concentration chambers are provided on both sides of the desalting chamber through the cation exchange membrane and the anion exchange membrane. The chamber is arranged between an anode chamber with an anode and a cathode chamber with a cathode.The water to be treated is introduced into one of the small desalination chambers while applying a voltage, and then the small desalination chamber is supplied. The outflow water of the salt chamber flows into the other small demineralization chamber, and the concentrated water flows into the concentration chamber to remove impurity ions in the water to be treated to obtain deionized water. According to the electric deionized water producing apparatus having such a structure, the ion exchanger filled in at least one of the two small desalting chambers is, for example, only the anion exchanger or only the cation exchanger. Can be used as a single ion exchanger or a mixed exchanger of anion exchanger and cation exchanger, and the electrical resistance can be reduced for each type of ion exchanger, and the optimum thickness for obtaining high performance can be obtained. Can be set.

【0005】一方、このような電気式脱イオン水製造装
置に流入する被処理水中の硬度が高い場合、電気式脱イ
オン水製造装置の濃縮室において炭酸カルシウムや水酸
化マグネシウム等のスケールが発生する。スケールが発
生すると、その部分での電気抵抗が上昇し、電流が流れ
にくくなる。すなわち、スケール発生が無い場合と同一
の電流値を流すためには電圧を上昇させる必要があり、
消費電力が増加する。また、スケールの付着場所次第で
は濃縮室内で電流密度が異なり、脱塩室内において電流
の不均一化が生じる。また、スケール付着量が更に増加
すると通水差圧の上昇が生じると共に、電圧が更に上昇
し、装置の最大電圧値を越えた場合は電流値が低下する
こととなる。この場合、イオン除去に必要な電流値が流
せなくなり、処理水質の低下を招く。更には、成長した
スケールがイオン交換膜内にまで侵食し、最終的にはイ
オン交換膜を破ってしまう。
On the other hand, when the hardness of the water to be treated flowing into such an electric deionized water producing apparatus is high, scales such as calcium carbonate and magnesium hydroxide are generated in the concentration chamber of the electric deionized water producing apparatus. . When the scale occurs, the electric resistance at that portion increases, and it becomes difficult for current to flow. That is, it is necessary to increase the voltage in order to pass the same current value as when there is no scale generation.
Power consumption increases. In addition, the current density in the concentrating chamber varies depending on the place where the scale is attached, and the current becomes nonuniform in the demineralizing chamber. Further, if the scale adhesion amount further increases, the water flow differential pressure also rises, the voltage further rises, and when the maximum voltage value of the device is exceeded, the current value decreases. In this case, the current value required for ion removal cannot be applied, resulting in deterioration of treated water quality. Furthermore, the grown scale erodes even into the ion exchange membrane and eventually breaks the ion exchange membrane.

【0006】[0006]

【発明が解決しようとする課題】このような問題を解決
する一つの対策として、硬度が低い被処理水を電気式脱
イオン水製造装置に流入させる方法がある。このような
硬度が低い被処理水では、濃縮室内は溶解度積に達しな
いため、スケールの発生は起こり得ない。しかし、実際
には、このような硬度が低い被処理水を通水処理した場
合においても、濃縮室において炭酸カルシウムや水酸化
マグネシウム等のスケールが発生することがあった。こ
の場合、前述と同様、深刻な問題が発生する。このよう
なスケールの発生は、従前型の電気式脱イオン水製造装
置においても、省電力型電気式脱イオン水製造装置にお
いても、同様に観察される深刻な問題である。一方、従
前型電気式脱イオン水製造装置のカチオン交換膜とアニ
オン交換膜で区画される濃縮室において、カチオン交換
膜側に網目状のカチオン伝導スペーサを、アニオン交換
膜側に網目状のアニオン伝導スペーサを充填する方法が
知られている。この方法によれば、濃縮室内の流路を確
保すると共に、低電圧化が可能である。しかし、スケー
ルの発生防止という点では十分とは言えず、依然とし
て、カチオン伝導スペーサ上、及びアニオン伝導スペー
サ上にスケールが発生するという深刻な問題は解決され
ていない。
As one of the measures for solving such a problem, there is a method of flowing water to be treated having low hardness into an electric deionized water producing apparatus. In the water to be treated having such a low hardness, the solubility product is not reached in the concentrating chamber, so that the scale cannot be generated. However, in practice, even when the water to be treated having such low hardness is passed through, scales such as calcium carbonate and magnesium hydroxide may be generated in the concentrating chamber. In this case, similar to the above, serious problems occur. The generation of such a scale is a serious problem that is similarly observed in the conventional electric deionized water manufacturing apparatus and the power-saving electric deionized water manufacturing apparatus. On the other hand, in a concentrating chamber defined by a cation exchange membrane and an anion exchange membrane of a conventional electric deionized water production system, a mesh-like cation conducting spacer is provided on the cation exchange membrane side and a mesh-like anion conducting membrane is provided on the anion exchange membrane side. Methods of filling spacers are known. According to this method, it is possible to secure the flow path in the concentrating chamber and reduce the voltage. However, it is not sufficient in terms of prevention of scale generation, and the serious problem of scale generation on the cation-conducting spacer and the anion-conducting spacer has not been solved yet.

【0007】従って、本発明の目的は、スケール発生の
問題を、被処理水からの対策ではなく、電気式脱イオン
水製造装置の濃縮室の構造面から解決し、長期間の連続
運転においても、濃縮室内にスケールが発生しない電気
式脱イオン水製造装置及び脱イオン水の製造方法を提供
することにある。
[0007] Therefore, the object of the present invention is to solve the problem of scale generation from the structure of the concentrating chamber of the electric deionized water producing apparatus, not from the measures to be taken from the water to be treated, and even in long-term continuous operation. An object of the present invention is to provide an electric deionized water producing apparatus and a deionized water producing method in which no scale is generated in the concentrating chamber.

【0008】[0008]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、電気式脱イオン水製
造装置の濃縮室に、濃縮水の流出入方向に対して、網目
状の陽イオン伝導スペーサと網目状の陰イオン伝導スペ
ーサを交互に積層充填すれば、該スペーサの網目形状に
よる乱流発生効果と、陽イオン伝導スペーサと陰イオン
伝導スペーサの濃縮水の流出入方向に対して交互に積層
された効果により、濃縮水中の炭酸イオンやカルシウム
イオンなどの濃度勾配を大きく低減でき、長期間の連続
運転においても、濃縮室内にスケールが発生しないこと
を見出し、本発明を完成するに至った。
Under such circumstances, the inventors of the present invention have made earnest studies, and as a result, as a result, a mesh-like structure was formed in the concentrating chamber of the electric deionized water manufacturing apparatus in the flowing direction of the concentrated water. If the cation-conducting spacers and the mesh-shaped anion-conducting spacers are alternately stacked and filled, the turbulent flow generation effect due to the mesh shape of the spacers and the inflow and outflow directions of the concentrated water of the cation-conducting spacers and the anion-conducting spacers The present invention has been completed by discovering that the concentration gradient of carbonate ions and calcium ions in concentrated water can be greatly reduced due to the effect of being alternately stacked, and that no scale is generated in the concentration chamber even during long-term continuous operation. Came to.

【0009】すなわち、本発明(1)は、一側のカチオ
ン交換膜、及び他側のアニオン交換膜で区画される室に
イオン交換体を充填して脱塩室を構成し、前記カチオン
交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室
を設け、これらの脱塩室及び濃縮室を陽極を備えた陽極
室と陰極を備えた陰極室の間に配置してなる電気式脱イ
オン水製造装置において、前記濃縮室は、網目状の陽イ
オン伝導スペーサと網目状の陰イオン伝導スペーサが濃
縮水の流出入方向に対して、交互に積層充填して形成さ
れる電気式脱イオンを提供するものである。かかる構成
を採ることにより、濃縮室の網目状のアニオン伝導スペ
ーサ領域ではアニオン交換膜を透過したアニオンは濃縮
水中に移動せず、導電性の高い該アニオン伝導スペーサ
を通り、カチオン交換膜まで移動し、ここで初めて濃縮
水中に移動する。同様に、網目状のカチオン伝導スペー
サ領域ではカチオン交換膜を透過したカチオンは濃縮水
中に移動せず、導電性の高い該カチオン伝導スペーサを
通り、アニオン交換膜まで移動し、ここで初めて濃縮水
中に移動する。このため、濃縮室において、例えば、液
中の炭酸イオンやカルシウムイオンなどの濃度勾配が大
きく低減すると共に、高濃度部分での衝突が避けられ
る。また、上記の如く、カチオン交換膜あるいはアニオ
ン交換膜に移動したイオンは、スペーサの網目形状によ
る乱流発生効果により十分に攪拌されるため、濃縮室内
でのスケールの蓄積が妨げられ、一層、炭酸カルシウム
などのスケールが発生し難くなる。
That is, according to the present invention (1), a desalting chamber is constructed by filling an ion exchanger into a chamber defined by the cation exchange membrane on one side and the anion exchange membrane on the other side. An electric deionization system is provided in which concentration chambers are provided on both sides of the deionization chamber through anion exchange membranes, and the deionization chamber and the concentration chamber are arranged between an anode chamber having an anode and a cathode chamber having a cathode. In the ionized water production apparatus, the concentration chamber is an electrical deionization device in which mesh-like cation-conducting spacers and mesh-like anion-conducting spacers are alternately stacked and filled in the concentrated water inflow and outflow directions. Is provided. By adopting such a configuration, in the mesh-shaped anion-conducting spacer region of the concentrating chamber, the anions that have permeated the anion-exchange membrane do not move into the concentrated water, but pass through the highly-conductive anion-conducting spacer and move to the cation-exchange membrane. , Move to concentrated water for the first time here. Similarly, in the mesh-shaped cation-conducting spacer region, the cations that have permeated the cation-exchange membrane do not move into the concentrated water, but pass through the cation-conducting spacer having high conductivity and move to the anion-exchange membrane, where it is first introduced into the concentrated water. Moving. Therefore, in the concentrating chamber, for example, the concentration gradient of carbonate ions, calcium ions, etc. in the liquid is greatly reduced, and collision in the high concentration portion is avoided. Further, as described above, the ions transferred to the cation exchange membrane or the anion exchange membrane are sufficiently agitated by the turbulent flow generation effect due to the network shape of the spacers, so that the accumulation of scale in the concentrating chamber is hindered and the carbon dioxide is further increased. Scales such as calcium are less likely to occur.

【0010】また、本発明(2)は、一側のカチオン交
換膜、他側のアニオン交換膜及び当該カチオン交換膜と
当該アニオン交換膜の間に位置する中間イオン交換膜で
区画される2つの小脱塩室にイオン交換体を充填して脱
塩室を構成し、前記カチオン交換膜、アニオン交換膜を
介して脱塩室の両側に濃縮室を設け、これらの脱塩室及
び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の
間に配置してなる電気式脱イオン水製造装置において、
前記濃縮室は、網目状の陽イオン伝導スペーサと網目状
の陰イオン伝導スペーサが濃縮水の流出入方向に対し
て、交互に積層充填して形成される電気式脱イオン水製
造装置を提供するものである。かかる構成を採ることに
より、省電力型の電気式脱イオン水製造装置において
も、前記発明と同様の効果を奏する。また、2つの小脱
塩室のうち、少なくとも1つの脱塩室に充填されるイオ
ン交換体を例えばアニオン交換体のみ、又はカチオン交
換体のみ等の単一イオン交換体もしくはアニオン交換体
とカチオン交換体の混合交換体とすることができ、イオ
ン交換体の種類毎に電気抵抗を低減し、且つ高性能を得
るための最適な厚さに設定することができる。また、濃
縮室はより導電性が高まり、脱塩室の入口側から出口側
の全体に渡り電流密度を均一化でき、消費電力を更に低
減できる。
In addition, the present invention (2) comprises two cation exchange membranes, one side cation exchange membrane, the other side anion exchange membrane, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane. A small desalting chamber is filled with an ion exchanger to form a desalting chamber. Concentration chambers are provided on both sides of the desalting chamber through the cation exchange membrane and the anion exchange membrane. In an electric deionized water producing apparatus arranged between an anode chamber having an anode and a cathode chamber having a cathode,
The concentrating chamber provides an electric deionized water manufacturing apparatus in which reticulated cation-conducting spacers and reticulated anionic-conducting spacers are alternately stacked and filled in the inflow / outflow direction of concentrated water. It is a thing. By adopting such a configuration, the same effect as that of the above invention can be obtained even in the power-saving type electric deionized water producing apparatus. Further, among the two small desalting chambers, at least one desalting chamber is filled with a single ion exchanger such as an anion exchanger alone or a cation exchanger alone or an anion exchanger and a cation exchange chamber. It can be used as a mixed exchanger of the body, and the electric resistance can be reduced for each type of ion exchanger, and the thickness can be set to an optimum thickness for obtaining high performance. Further, the concentrating chamber has higher conductivity, the current density can be made uniform throughout the inlet side to the outlet side of the desalting chamber, and the power consumption can be further reduced.

【0011】また、本発明(3)は、前記中間イオン交
換膜と前記他側のアニオン交換膜で区画される一方の小
脱塩室に充填されるイオン交換体は、アニオン交換体で
あり、前記一側のカチオン交換膜と前記中間イオン交換
膜で区画される他方の小脱塩室に充填されるイオン交換
体は、カチオン交換体とアニオン交換体の混合体である
前記(2)の電気式脱イオン水製造装置を提供するもの
である。かかる構成を採ることにより、前記発明と同様
の効果を奏する他、アニオン成分を多く含む被処理水、
特に、シリカ、炭酸等の弱酸性成分を多く含む被処理水
を十分に処理することができる。
Further, in the present invention (3), the ion exchanger filled in one of the small deionization chambers partitioned by the intermediate ion exchange membrane and the anion exchange membrane on the other side is an anion exchanger, The ion exchanger filled in the other small desalting chamber partitioned by the one side cation exchange membrane and the intermediate ion exchange membrane is a mixture of a cation exchanger and an anion exchanger, A deionized water producing apparatus is provided. By adopting such a configuration, in addition to exhibiting the same effect as the above-mentioned invention, water to be treated containing a large amount of anion component,
In particular, water to be treated containing a large amount of weakly acidic components such as silica and carbonic acid can be sufficiently treated.

【0012】また、本発明(4)は、前記濃縮室の厚さ
が、0.2〜8.0mmである前記(1)〜(3)記載の
電気式脱イオン水製造装置を提供するものである。かか
る構成を採ることにより、電気抵抗を低減すると共に、
スケールの発生を防止し、通水差圧を上昇させることの
無い最適な濃縮室厚さを決定することができる。
The present invention (4) provides the electric deionized water producing apparatus according to (1) to (3), wherein the concentration chamber has a thickness of 0.2 to 8.0 mm. Is. By adopting such a configuration, the electric resistance is reduced and
It is possible to prevent the generation of scale and to determine the optimum thickness of the concentration chamber without increasing the water differential pressure.

【0013】また、本発明(5)は、一側のカチオン交
換膜、及び他側のアニオン交換膜で区画される室にイオ
ン交換体を充填して脱塩室を構成し、前記カチオン交換
膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設
け、これらの脱塩室及び濃縮室を陽極を備えた陽極室と
陰極を備えた陰極室の間に配置し、電圧を印加しながら
脱塩室に被処理水を流入すると共に、濃縮室に濃縮水を
流入して被処理水中の不純物イオンを除去し、脱イオン
水を得る方法において、前記濃縮室は、網目状の陽イオ
ン伝導スペーサと網目状の陰イオン伝導スペーサが濃縮
水の流出入方向に対して、交互に積層充填して形成され
るものである脱イオン水の製造方法を提供するものであ
る。かかる構成を採ることにより、前記発明(1)と同
様の効果を奏する。
In the present invention (5), a deionization chamber is constructed by filling an ion exchanger in a chamber defined by the cation exchange membrane on one side and the anion exchange membrane on the other side. A concentration chamber is provided on both sides of the desalination chamber via an anion exchange membrane, and these desalination chamber and concentration chamber are arranged between an anode chamber having an anode and a cathode chamber having a cathode, and a voltage is applied. While injecting the water to be treated into the demineralizing chamber and flowing the concentrated water into the concentrating chamber to remove the impurity ions in the water to be treated to obtain deionized water, the concentrating chamber has a net-like cation. The present invention provides a method for producing deionized water, in which conductive spacers and mesh-like anion conductive spacers are formed by alternately stacking and filling them in the inflow and outflow directions of concentrated water. By adopting such a configuration, the same effect as that of the invention (1) can be obtained.

【0014】また、本発明(6)は、一側のカチオン交
換膜、他側のアニオン交換膜及び当該カチオン交換膜と
当該アニオン交換膜の間に位置する中間イオン交換膜で
区画される2つの小脱塩室にイオン交換体を充填して脱
塩室を構成し、前記カチオン交換膜、アニオン交換膜を
介して脱塩室の両側に濃縮室を設け、これらの脱塩室及
び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の
間に配置し、電圧を印加しながら一方の小脱塩室に被処
理水を流入し、次いで、該小脱塩室の流出水を他方の小
脱塩室に流入すると共に、濃縮室に濃縮水を流入して被
処理水中の不純物イオンを除去し、脱イオン水を得る方
法において、前記濃縮室は、網目状の陽イオン伝導スペ
ーサと網目状の陰イオン伝導スペーサが濃縮水の流出入
方向に対して、交互に積層充填して形成されるものであ
る脱イオン水の製造方法を提供するものである。かかる
構成を採ることにより、前記発明(2)と同様の効果を
奏する。
Further, the present invention (6) comprises two cation exchange membranes, one side cation exchange membrane and the other side anion exchange membrane, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane. A small desalting chamber is filled with an ion exchanger to form a desalting chamber. Concentration chambers are provided on both sides of the desalting chamber through the cation exchange membrane and the anion exchange membrane. It is arranged between an anode chamber provided with an anode and a cathode chamber provided with a cathode, and water to be treated is introduced into one of the small desalination chambers while applying a voltage, and then the outflow water of the small desalination chamber is supplied to the other. In the method for obtaining deionized water by flowing the concentrated water into the small demineralization chamber and flowing the concentrated water into the concentrating chamber to obtain deionized water, the concentrating chamber comprises a net-like cation-conducting spacer. The mesh-shaped anion conductive spacers are aligned with the flowing direction of concentrated water. There is provided a method for producing deionized water in which is stacked filled in. By adopting such a configuration, the same effect as that of the invention (2) can be obtained.

【0015】[0015]

【発明の実施の形態】本実施の形態における電気式脱イ
オン水製造装置について図1を参照して説明する。図1
は電気式脱イオン水製造装置の1例を示す模式図であ
る。図1に示すように、カチオン交換膜3、中間イオン
交換膜5及びアニオン交換膜4を離間して交互に配置
し、カチオン交換膜3と中間イオン交換膜5で形成され
る空間内にイオン交換体8を充填して第1小脱塩室
1 、d3 、d5 、d7 を形成し、中間イオン交換膜5
とアニオン交換膜4で形成される空間内にイオン交換体
8を充填して第2小脱塩室d2 、d4 、d6 、d8 を形
成し、第1小脱塩室d1 と第2小脱塩室d2 で脱塩室D
1 、第1小脱塩室d3 と第2小脱塩室d4 で脱塩室
2 、第1小脱塩室d5 と第2小脱塩室d6 で脱塩室D
3 、第1小脱塩室d7 と第2小脱塩室d8 で脱塩室D4
とする。また、脱塩室D2 、D3 のそれぞれ隣に位置す
るアニオン交換膜4とカチオン交換膜3で形成されるイ
オン交換体8aを充填した部分は濃縮水を流すための濃
縮室1とする。これを順次併設して図中、左より脱塩室
1 、濃縮室1、脱塩室D2 、濃縮室1、脱塩室D3
濃縮室1、脱塩室D4 を形成する。また、脱塩室D1
左にカチオン交換膜3を経て陰極室2aを、脱塩室D4
の右にアニオン交換膜4を経て陽極室2bをそれぞれ設
ける。また、中間イオン交換膜5を介して隣合う2つの
小脱塩室において、第2小脱塩室の処理水流出ライン1
2は第1小脱塩室の被処理水流入ライン13に連接され
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An electric deionized water producing apparatus according to this embodiment will be described with reference to FIG. Figure 1
FIG. 1 is a schematic diagram showing an example of an electric deionized water producing apparatus. As shown in FIG. 1, the cation exchange membranes 3, the intermediate ion exchange membranes 5 and the anion exchange membranes 4 are spaced apart from each other and alternately arranged, and ion exchange is performed in the space formed by the cation exchange membranes 3 and the intermediate ion exchange membranes 5. The body 8 is filled to form the first small desalting chambers d 1 , d 3 , d 5 and d 7 , and the intermediate ion exchange membrane 5
The space formed by the anion exchange membrane 4 is filled with the ion exchanger 8 to form the second small desalting chambers d 2 , d 4 , d 6 and d 8 , and the first small desalting chamber d 1 is formed. Demineralization chamber D in the second small desalination chamber d 2.
1 , a desalination chamber D 2 in the first small desalination chamber d 3 and the second small desalination chamber d 4 , and a desalination chamber D in the first small desalination chamber d 5 and the second small desalination chamber d 6.
3 , the first small desalination chamber d 7 and the second small desalination chamber d 8 in the desalination chamber D 4
And The portion filled with the ion exchanger 8a formed of the anion exchange membrane 4 and the cation exchange membrane 3 located adjacent to the desalting chambers D 2 and D 3 is the concentration chamber 1 for flowing the concentrated water. These are installed side by side and from the left in the figure, a desalting chamber D 1 , a concentrating chamber 1, a desalting chamber D 2 , a concentrating chamber 1, a desalting chamber D 3 ,
A concentrating chamber 1 and a desalting chamber D 4 are formed. Further, on the left side of the desalting chamber D 1 , the cathode chamber 2a is passed through the cation exchange membrane 3 and the desalting chamber D 4 is
Anode chambers 2b are provided on the right side of the above through the anion exchange membrane 4. In the two small desalination chambers adjacent to each other via the intermediate ion exchange membrane 5, the treated water outflow line 1 of the second small desalination chamber 1
2 is connected to the untreated water inflow line 13 of the first small desalination chamber.

【0016】このような脱塩室は、図3に示すように、
2つの枠体21、22と3つのイオン交換膜3、5、4
によって形成される脱イオンモジュール20からなる。
すなわち、第1枠体21の一側の面にカチオン交換膜3
を封着し、第1枠体21の内部空間にイオン交換体を充
填し、次いで、第1枠体21の他方の面に中間イオン交
換膜5を封着して第1小脱塩室を形成する。次に中間イ
オン交換膜5を挟み込むように第2枠体22を封着し、
第2枠体22の内部空間にイオン交換体を充填し、次い
で、第2枠体22の他方の面にアニオン交換膜4を封着
して第2小脱塩室を形成する。第1脱塩室及び第2小脱
塩室に充填されるイオン交換体としては、特に制限され
ないが、被処理水が最初に流入する第2小脱塩室にはア
ニオン交換体を充填し、次いで、第2小脱塩室の流出水
が流入する第1小脱塩室にはアニオン交換体とカチオン
交換体の混合イオン交換体を充填することが、アニオン
成分を多く含む被処理水、特に、シリカ、炭酸等の弱酸
性成分を多く含む被処理水を十分に処理することができ
る点で好ましい。符号23は枠体補強用のリブである。
Such a desalting chamber is, as shown in FIG.
Two frame bodies 21, 22 and three ion exchange membranes 3, 5, 4
A deionization module 20 formed by
That is, the cation exchange membrane 3 is formed on one surface of the first frame 21.
To seal the inner space of the first frame 21 with an ion exchanger, and then seal the intermediate ion exchange membrane 5 to the other surface of the first frame 21 to form the first small desalting chamber. Form. Next, the second frame body 22 is sealed so as to sandwich the intermediate ion exchange membrane 5,
The inner space of the second frame 22 is filled with an ion exchanger, and then the anion exchange membrane 4 is sealed on the other surface of the second frame 22 to form a second small desalting chamber. The ion exchanger filled in the first desalting chamber and the second small desalting chamber is not particularly limited, but the second small desalting chamber into which the water to be treated first flows is filled with an anion exchanger, Then, the first small desalting chamber into which the outflow water of the second small desalting chamber flows is filled with a mixed ion exchanger of an anion exchanger and a cation exchanger so that treated water containing a large amount of anion components, particularly It is preferable in that the water to be treated containing a large amount of weakly acidic components such as silica and carbonic acid can be sufficiently treated. Reference numeral 23 is a rib for reinforcing the frame.

【0017】また、濃縮室1は、網目状の陽イオン伝導
スペーサと網目状の陰イオン伝導スペーサが濃縮水の流
出入方向に対して、交互に積層充填される。これら網目
状のイオン伝導スペーサの積層方法としては、特に制限
されず、陰イオン伝導スペーサと陽イオン伝導スペーサ
の2床、陰イオン伝導スペーサと陽イオン伝導スペーサ
が交互に複数積層される複床のいずれであってもよい。
また、濃縮室に充填される網目状のイオン伝導スペーサ
としては、特に制限されず、2次元又は3次元の網目構
造を有し、濃縮室に充填された場合、通水差圧を許容範
囲内に保ちつつ、濃縮水に乱流を与えるもので、且つイ
オン交換基を有するものであればよく、例えば、ポリオ
レフィン系高分子を金型により斜交網状(メッシュ状)
に成型し、この斜交網の表面に、イオン交換基を有する
か、又はイオン交換基に転換可能な重合性単量体を、グ
ラフト重合することにより得られるものが挙げられる。
In the concentrating chamber 1, mesh-like cation-conducting spacers and mesh-like anion-conducting spacers are alternately stacked and filled in the inflow / outflow direction of the concentrated water. The method for laminating these mesh-shaped ion-conducting spacers is not particularly limited, and includes two beds of an anion-conducting spacer and a cation-conducting spacer, and a compound bed of a plurality of anion-conducting spacers and cation-conducting spacers alternately laminated. Either may be used.
The mesh-shaped ion-conducting spacer to be filled in the concentrating chamber is not particularly limited and has a two-dimensional or three-dimensional mesh structure, and when filled in the concentrating chamber, the water flow differential pressure is within the allowable range. The turbulent flow can be applied to the concentrated water while maintaining the above, and it has an ion-exchange group.
And a graft-polymerizable monomer which has an ion-exchange group or can be converted into an ion-exchange group on the surface of the cross-linking network.

【0018】ポリオレフィン系高分子の斜交網を使用す
るイオン伝導スペーサにおいて、ポリオレフィン系高分
子としては、特に制限されず、ポリプロピレン、ポリエ
チレン、ポエチレンテレフタレートなどが挙げられる。
斜交網の形状としては、図2に示されるように、無数の
線材が間隔mで配向する表側線材31と無数の線材が間
隔nで配向する裏側線材32が各交点で図の如く交差し
一体成型される平織りの斜交網30が例示される。表側
線材同士の間隔mと、裏側線材同士の間隔nとは、同一
であっても異なっていてもよいが、通常、同一である。
また、斜交網30の厚みwは、これを1枚濃縮室に充填
する場合、濃縮室の厚みとほぼ一致する。斜交網30の
表面にグラフト重合させる重合性単量体は、イオン交換
基を有するか、又はイオン交換基に転換可能な重合性単
量体の中から選択できるが、例えば、カチオン交換基と
しては、スルホン基、カルボキシル基などが挙げられ、
アニオン交換基としては、四級アンモニウム基、三級ア
ミン基などが挙げられる。イオン交換基が導入された斜
交網の目開きとしては、特に制限されないが、10〜9
0%、好ましくは30〜70%である。目開きが大きす
ぎると、当該濃縮室を区画する両側のイオン交換膜同士
の電気的導通が得られず、イオンの移動がなく、濃縮水
中のイオン濃度勾配を低減することはできない。一方、
目開きが小さ過ぎると、濃縮水の通水差圧が許容以上に
上昇してしまう点で好ましくない。イオン交換基が導入
された斜交網は、濃縮室内に網目を両側のイオン交換膜
に向けて充填されるが、その充填量は1枚であっても、
複数枚を重ね合わせる充填のいずれであってもよい。ま
た、斜交網は、図2のものの他、綾織状であってもよ
く、また、網目の形状は、菱形、四角形、円形、楕円形
などが使用できる。網目形状が四角形の平織りの斜交網
の場合、該四角形の一辺が約0.5〜5.0mm、好まし
くは1.0〜3.0mm程度のものである。
In the ion conductive spacer using a cross-linking network of polyolefin type polymers, the polyolefin type polymer is not particularly limited, and examples thereof include polypropylene, polyethylene and polyethylene terephthalate.
As shown in FIG. 2, the shape of the oblique mesh is such that an infinite number of wire rods are oriented at an interval m and a front side wire rod 32 in which an innumerable number of wires are oriented at an interval n intersect at each intersection as shown in the figure. A plain weave diagonal mesh 30 integrally formed is exemplified. The distance m between the front-side wires and the distance n between the back-side wires may be the same or different, but they are usually the same.
Further, the thickness w of the oblique net 30 is substantially the same as the thickness of the concentrating chamber when one is filled in the concentrating chamber. The polymerizable monomer to be graft-polymerized on the surface of the cross network 30 can be selected from polymerizable monomers having an ion exchange group or convertible to an ion exchange group. Include sulfone groups, carboxyl groups, etc.,
Examples of the anion exchange group include a quaternary ammonium group and a tertiary amine group. Although there is no particular limitation on the mesh size of the crossed net having the ion exchange group introduced,
It is 0%, preferably 30 to 70%. If the openings are too large, electrical conduction cannot be obtained between the ion exchange membranes on both sides that partition the concentration chamber, ions do not move, and the ion concentration gradient in the concentrated water cannot be reduced. on the other hand,
If the mesh size is too small, the water flow differential pressure of the concentrated water is undesirably increased. The oblique net with the ion-exchange groups introduced is packed in the concentrating chamber with the mesh facing the ion-exchange membranes on both sides. Even if the packing amount is one,
Any of the filling in which a plurality of sheets are stacked may be used. Further, the diagonal mesh may be twill weave in addition to the mesh shown in FIG. 2, and the mesh shape may be a rhombus, a quadrangle, a circle, an ellipse, or the like. In the case of a plain weave diagonal net having a square mesh shape, one side of the square is about 0.5 to 5.0 mm, preferably about 1.0 to 3.0 mm.

【0019】濃縮室1は、例えば、図3に示すように、
1側のアニオン交換膜4と、他側のカチオン交換膜3
で、定型寸法に切断された網目状のイオン伝導スペーサ
81、82を挟み込んで作製される。図3では、網目状
のイオン伝導スペーサは、上側の陰イオン伝導スペーサ
81と下側の陽イオン伝導スペーサ82の2床の積層床
8aからなる。すなわち、平板積層型の電気式脱イオン
水製造装置の濃縮室内に、1枚の陽イオン伝導スペーサ
81と陽イオン伝導スペーサ81と同じ大きさの1枚の
陰イオン伝導スペーサ82の2床を積層充填する場合、
2床で形成されるイオン伝導スペーサの縦横寸法は略両
側のイオン交換膜3、4と同じであり、厚み寸法wが濃
縮室内の厚みとなる。濃縮室1において、濃縮水の流出
入方向に対して積層充填されるイオン伝導スペーサの順
序としては、特に制限されず、濃縮水入口側から網目状
の陽イオン伝導スペーサ、網目状の陰イオン伝導スペー
サの順序でも、網目状の陰イオン伝導スペーサ、網目状
の陽イオン伝導スペーサの順序でも、いずれでもよい。
また、異なるイオン伝導スペーサ同士の端面部分は、大
きな隙間が生じない限りは、特に制限されず、端面同士
が当接あるいは近接させて、積層充填される。このよう
に、網目状の陽イオン伝導スペーサ及び陰イオン伝導ス
ペーサを両イオン交換膜で区画される濃縮室内に、均質
に積層充填すれば、当該濃縮室を区画する両側のイオン
交換膜同士の電気的導通が得られ、イオンの移動が行わ
れ、濃縮水中のイオン濃度勾配を低減することができ
る。また、このイオン濃度の低減効果は、スペーサの網
目形状に起因する乱流発生効果により、更に高められ
る。一方、濃縮室の厚さは、0.2〜8.0mm、好まし
くは、0.5〜5.0mm、更に好ましくは0.8〜2.
5mmである。濃縮室の厚さが0.2mm未満であると、例
え、網目状の陽イオン伝導スペーサと網目状の陰イオン
伝導スペーサを濃縮水の流出入方向に対して、交互に積
層充填しても、スケール発生防止効果が得られ難くな
り、通水差圧も発生し易い。また、8.0mmを越える
と、電気抵抗が高くなり消費電力が増大する。
The concentration chamber 1 is, for example, as shown in FIG.
Anion exchange membrane 4 on one side and cation exchange membrane 3 on the other side
Then, it is manufactured by sandwiching the mesh-shaped ion-conducting spacers 81 and 82 cut into a standard size. In FIG. 3, the mesh-shaped ion-conducting spacer is composed of two laminated floors 8 a including an anion-conducting spacer 81 on the upper side and a cation-conducting spacer 82 on the lower side. That is, two beds of one cation-conducting spacer 81 and one anion-conducting spacer 82 of the same size as the cation-conducting spacer 81 are laminated in the concentrating chamber of the flat plate-type electric deionized water manufacturing apparatus. When filling,
The vertical and horizontal dimensions of the ion-conducting spacer formed of two beds are the same as those of the ion exchange membranes 3 and 4 on both sides, and the thickness dimension w is the thickness in the concentration chamber. In the concentrating chamber 1, the order of the ion-conducting spacers stacked and filled in the inflow / outflow direction of the concentrated water is not particularly limited, and the reticulated cation-conducting spacers and the reticulated anion-conducting spacers are arranged from the concentrated water inlet side. The spacers may be ordered, or the mesh-shaped anion conductive spacers and the mesh-shaped cation conductive spacers may be sequentially arranged.
Further, the end face portions of the different ion conductive spacers are not particularly limited as long as a large gap is not formed, and the end faces are brought into contact with or brought close to each other to be stacked and filled. Thus, if the mesh-shaped cation-conducting spacers and anion-conducting spacers are uniformly stacked and packed in the concentrating chamber defined by both ion-exchange membranes, the electrical conductivity between the ion-exchange membranes on both sides of the concentrating chamber is defined. It is possible to obtain electrical continuity, transfer ions, and reduce the ion concentration gradient in the concentrated water. Further, the effect of reducing the ion concentration is further enhanced by the effect of generating turbulence due to the mesh shape of the spacer. On the other hand, the thickness of the concentrating chamber is 0.2 to 8.0 mm, preferably 0.5 to 5.0 mm, more preferably 0.8 to 2.
It is 5 mm. If the thickness of the concentrating chamber is less than 0.2 mm, even if the mesh-shaped cation-conducting spacers and the mesh-shaped anion-conducting spacers are alternately stacked and filled in the concentrated water inflow / outflow direction, It becomes difficult to obtain the effect of preventing scale generation, and water flow differential pressure tends to occur. On the other hand, if it exceeds 8.0 mm, the electric resistance increases and the power consumption increases.

【0020】前記電気式脱イオン水製造装置は、通常、
以下のように運転される。すなわち、陰極6と陽極7間
に直流電流を通じ、また被処理水流入ライン11から被
処理水が流入すると共に、濃縮水流入ライン15から濃
縮水が流入し、かつ陰極水流入ライン17a、陽極水流
入ライン17bからそれぞれ陰極水、陽極水が流入す
る。被処理水流入ライン11から流入した被処理水は第
2小脱塩室d2 、d4 、d6 、d8 を流下し、イオン交
換体8の充填層を通過する際に不純物イオンが除去され
る。更に、第2小脱塩室の処理水流出ライン12を通っ
た流出水は、第1小脱塩室の被処理水流入ライン13を
通って第1小脱塩室d1 、d3 、d5 、d 7 を流下し、
ここでもイオン交換体8の充填層を通過する際に不純物
イオンが除去され脱イオン水が脱イオン水流出ライン1
4から得られる。また、濃縮水流入ライン15から流入
した濃縮水は各濃縮室1を上昇し、カチオン交換膜3及
びアニオン交換膜4を介して移動してくる不純物イオ
ン、更には後述するように、濃縮室内のイオン伝導スペ
ーサを介して移動してくる不純物イオンを受け取り、不
純物イオンを濃縮した濃縮水として濃縮室流出ライン1
6から流出され、さらに陰極水流入ライン17aから流
入した陰極水は陰極水流出ライン18aから流出され、
陽極水流入ライン17bから流入した陽極水は、陽極水
流出ライン18bから流出される。上述の操作によっ
て、被処理水中の不純物イオンは電気的に除去される。
The electric deionized water producing apparatus is usually
It is operated as follows. That is, between the cathode 6 and the anode 7
To the treated water inflow line 11
As the treated water flows in, it is concentrated from the concentrated water inflow line 15.
Condensed water flows in, and cathode water inflow line 17a, anode water flow
Cathode water and anode water respectively flow in from the inlet line 17b.
It The treated water flowing in from the treated water inflow line 11 is
2 small desalination chamber d2, DFour, D6, D8Flow down, ion exchange
Impurity ions are removed when passing through the packed bed of the replacement body 8.
It Further, through the treated water outflow line 12 of the second small desalination chamber.
The effluent discharged from the treated water inflow line 13 of the first small desalination chamber
Through the first small desalination chamber d1, D3, DFive, D 7Downflow,
Here, too, impurities are generated when passing through the packed bed of the ion exchanger 8.
Ion is removed and deionized water is deionized water outflow line 1
Obtained from 4. In addition, inflow from the concentrated water inflow line 15
The concentrated water that has risen rises in each concentrating chamber 1, and the cation exchange membrane 3 and
And impurity ions that move through the anion exchange membrane 4
The ion conduction space inside the concentrating chamber, as described below.
The impurity ions moving through the sensor are received and
Concentration chamber outflow line 1 as concentrated water with concentrated pure ions
6 and then from the cathode water inflow line 17a.
The entered cathode water flows out from the cathode water outflow line 18a,
The anode water flowing in from the anode water inflow line 17b is the anode water.
It flows out from the outflow line 18b. By the above operation
Thus, the impurity ions in the water to be treated are electrically removed.

【0021】次に、本発明の電気式脱イオン水製造装置
の濃縮室におけるスケール発生防止作用を図4〜図6を
参照して説明する。図4は図1の電気式脱イオン水製造
装置を更に簡略的に示した図、図5及び図6は図4の電
気式脱イオン水製造装置の濃縮室における不純物イオン
の移動を説明する図をそれぞれ示す。図4において、被
処理水が最初に流入する第2小脱塩室d2 、d4 、d6
にはアニオン交換体(A)を充填し、第2小脱塩室の流
出水が流入する第1小脱塩室d1 、d3 、d5にはカチ
オン交換体とアニオン交換体の混合イオン交換体(M)
を充填し、4つの濃縮室1には脱塩室の通水方向に沿っ
て順に、網目状のアニオン伝導スペーサ単床(A)と網
目状のカチオン伝導スペーサ単床(C)を交互に4床充
填してある。
Next, the action of preventing scale generation in the concentrating chamber of the electric deionized water producing apparatus of the present invention will be described with reference to FIGS. FIG. 4 is a diagram more simply showing the electric deionized water production apparatus of FIG. 1, and FIGS. 5 and 6 are diagrams for explaining movement of impurity ions in the concentration chamber of the electric deionized water production apparatus of FIG. Are shown respectively. In FIG. 4, the second small desalting chambers d 2 , d 4 , d 6 into which the water to be treated first flows
Is filled with anion exchanger (A), and the first small desalting chambers d 1 , d 3 and d 5 into which the outflow water of the second small desalting chamber flows are mixed ions of a cation exchanger and an anion exchanger. Exchanger (M)
The four concentrating chambers 1 are alternately filled with a mesh-shaped anion-conducting spacer single bed (A) and a mesh-shaped cation-conducting spacer single bed (C) in order along the water flow direction of the desalting chamber. Floor-filled.

【0022】図5において、濃縮室1の網目状アニオン
伝導スペーサ単床領域1aではアニオン交換膜aを透過
した炭酸イオンなどのアニオンは濃縮水中に移動せず、
導電性の高いアニオン伝導スペーサAを通り、カチオン
交換膜cまで移動し、アニオン伝導スペーサAとカチオ
ン膜cの当接部分101において初めて濃縮水中に移動
する(図5中、右向き矢印)。このため、炭酸イオンな
どのアニオンはカチオン交換膜cに電気的に引き寄せら
れた状態で、濃縮室1から排出される。すなわち、アニ
オン伝導スペーサ単床領域1aにおける炭酸イオンなど
のアニオンについて、濃縮水中の濃度勾配は図6の記号
Xのように分布する。一方、アニオン伝導スペーサ単床
領域1aにおいて、カチオン交換膜cを透過したカルシ
ウムイオンなどのカチオンは濃縮水中を移動する。この
ため、カルシウムイオンの濃度が最も高くなる部分にお
いて、スケールを形成する対イオンである炭酸イオンは
アニオン伝導スペーサ単床部分を移動するためスケール
を発生し難い。
In FIG. 5, in the single bed region 1a of the reticulated anion conducting spacer of the concentrating chamber 1, anions such as carbonate ions permeating the anion exchange membrane a do not move into the concentrated water,
It moves to the cation exchange membrane c through the anion-conducting spacer A having high conductivity, and moves to the concentrated water for the first time at the contact portion 101 between the anion-conducting spacer A and the cation membrane c (arrow pointing right in FIG. 5). Therefore, anions such as carbonate ions are discharged from the concentration chamber 1 while being electrically attracted to the cation exchange membrane c. That is, with respect to anions such as carbonate ions in the anion-conducting spacer single-bed region 1a, the concentration gradient in the concentrated water is distributed as indicated by the symbol X in FIG. On the other hand, in the single bed region 1a of the anion conductive spacer, cations such as calcium ions that have permeated the cation exchange membrane c move in the concentrated water. Therefore, at the portion where the concentration of calcium ions is the highest, the carbonate ion, which is a counter ion that forms the scale, moves in the single-bed portion of the anion-conducting spacer, so that scale is difficult to generate.

【0023】同様に、濃縮室1のカチオン伝導スペーサ
単床領域1bではカチオン交換膜cを透過したカルシウ
ムイオンなどのカチオンは濃縮水中に移動せず、導電性
の高いカチオン伝導スペーサCを通り、アニオン交換膜
aまで移動し、カチオン伝導スペーサCとアニオン膜a
の当接部分102において初めて濃縮水中に移動する
(図5中、左向き矢印)。このため、カルシウムイオン
などのカチオンはアニオン交換膜aに電気的に引き寄せ
られた状態で、濃縮室1から排出される。すなわち、カ
チオン伝導スペーサ単床領域1bにおけるカルシウムイ
オンなどのカチオンについて、濃縮水中の濃度勾配は図
6の記号Yのように分布する。一方、アニオン交換膜a
を透過した炭酸イオンなどのアニオンは濃縮水中を移動
する。このため、炭酸イオンの濃度が最も高くなる部分
において、スケールを形成する対イオンであるカルシウ
ムイオンはカチオン伝導スペーサ単床部分を移動するた
めスケールを発生し難い。更に、濃縮室内に充填してい
るイオン伝導スペーサは、網目状形状であるため、濃縮
水の流れが乱流となり易く、炭酸イオンやカルシウムイ
オンなどの濃度勾配をより大きく低減できると共に、イ
オン交換膜面に付着しようとするスケール成分をかきと
る効果を有するため、スケールの発生をより抑制する。
このようなイオン移動は、マグネシウムイオン、水素イ
オン、水酸化物イオンにおいても同様である。また、濃
縮室内部にアニオン伝導スペーサ単床領域1aとカチオ
ン伝導スペーサ単床領域1bを積層することによって、
カチオン伝導スペーサが充填された部分に移動してきた
アニオンは導電性の低い濃縮水を移動するよりも、導電
性の高いアニオン交換膜を伝わり、アニオン伝導スペー
サ単床領域1aまで達し、ここで導電性の高いアニオン
交換体を移動する。このイオンの移動形態はカチオンに
ついても同様である。すなわち、濃縮水中を通って対面
のイオン交換膜付近に移動するイオンはほとんどなく、
ほとんどのイオンはカチオン伝導スペーサ、アニオン伝
導スペーサを通って対面のイオン交換膜付近まで移動す
る。なお、図5及び図6中、濃縮室1において、カチオ
ン交換膜a及びアニオン交換膜cと、網目状の陽イオン
伝導スペーサ単床領域1a又は網目状の陰イオン伝導ス
ペーサ単床領域1bとの間に隙間が形成されているが、
これはイオン伝導スペーサの積層充填状態を判りやすく
するため設けたものであり、実際は、密着状態であり、
このような隙間は存在しない。
Similarly, in the cation-conducting spacer single bed region 1b of the concentrating chamber 1, cations such as calcium ions having permeated through the cation-exchange membrane c do not move into the concentrated water, pass through the cation-conducting spacer C having high conductivity, and pass through the anion. The cation-conducting spacer C and the anion membrane a move to the exchange membrane a.
The contact portion 102 moves to the concentrated water for the first time (in FIG. 5, leftward arrow). Therefore, cations such as calcium ions are discharged from the concentration chamber 1 while being electrically attracted to the anion exchange membrane a. That is, for the cations such as calcium ions in the single bed region 1b of the cation conductive spacer, the concentration gradient in the concentrated water is distributed as indicated by the symbol Y in FIG. On the other hand, anion exchange membrane a
Anions such as carbonate ions that permeate through the solution migrate in concentrated water. For this reason, in the portion where the concentration of carbonate ions is highest, the calcium ion, which is a counter ion forming the scale, moves in the single-bed portion of the cation-conducting spacer, so that scale is difficult to generate. Furthermore, since the ion-conducting spacer filled in the concentrating chamber has a mesh-like shape, the flow of the concentrated water is likely to be turbulent, and the concentration gradient of carbonate ions, calcium ions, etc. can be greatly reduced, and the ion-exchange membrane can be used. Since it has the effect of scraping off the scale component that tends to adhere to the surface, the generation of scale is further suppressed.
Such ion transfer is the same for magnesium ions, hydrogen ions, and hydroxide ions. Further, by stacking the anion conductive spacer single bed region 1a and the cation conductive spacer single bed region 1b inside the concentration chamber,
The anions that have moved to the portion filled with the cation-conducting spacer are transmitted through the anion-exchange membrane having high conductivity and reach the single-bed region 1a of the anion-conducting spacer, rather than moving in the concentrated water having low conductivity, where the conductivity is increased. High anion exchanger. This ion movement mode is the same for cations. That is, almost no ions move through the concentrated water to the vicinity of the facing ion exchange membrane,
Most of the ions move through the cation conducting spacer and the anion conducting spacer to the vicinity of the facing ion exchange membrane. 5 and 6, in the concentrating chamber 1, a cation exchange membrane a and an anion exchange membrane c, and a net-like cation-conducting spacer single bed area 1a or a net-like anion-conducting spacer single bed area 1b. There is a gap between them,
This is provided to make it easier to understand the stacked state of the ion conductive spacers, and in reality, it is in a close contact state,
There is no such gap.

【0024】従来の電気式脱イオン水製造装置では、イ
オン交換体を再生する目的で印加している電流が水の電
気分解を促進し、イオン伝導性を示さない網目状スペー
サを充填した濃縮室のイオン交換膜表面でpHシフトを
引き起こし、アニオン交換膜近傍ではpHが高く、カチ
オン交換膜近傍ではpHが低くなり、且つ図7に示すよ
うに炭酸イオンとカルシウムイオンが共に、高い濃度勾
配で接することから、濃縮室側のアニオン交換膜表面で
スケールが発生し易くなっていた。しかしながら、本例
では、前述の如く、濃縮水中のカチオン濃度が最も高い
と思われるアニオン交換膜a表面近傍の濃縮水中には、
高い濃度の炭酸イオンなどのアニオンが存在しないか
ら、濃縮室内において、炭酸イオンとカルシウムイオン
が結合して炭酸カルシウムを生成することがない(図6
参照)。従って、本例の電気式脱イオン水製造装置を長
時間連続運転しても、濃縮室にスケールが発生すること
はない。
In the conventional electric deionized water production apparatus, the current applied for the purpose of regenerating the ion exchanger promotes the electrolysis of water, and the concentration chamber filled with the network spacer which does not show the ion conductivity. Causes a pH shift on the surface of the ion exchange membrane, the pH is high in the vicinity of the anion exchange membrane, the pH is low in the vicinity of the cation exchange membrane, and as shown in FIG. 7, both carbonate ions and calcium ions are in contact with each other with a high concentration gradient. Therefore, scale was likely to be generated on the surface of the anion exchange membrane on the concentration chamber side. However, in this example, as described above, in the concentrated water near the surface of the anion exchange membrane a where the cation concentration in the concentrated water seems to be the highest,
Since there is no high concentration of anion such as carbonate ion, there is no case where the carbonate ion and the calcium ion are combined to produce calcium carbonate in the concentrating chamber (Fig. 6).
reference). Therefore, even if the electric deionized water producing apparatus of this example is continuously operated for a long time, no scale is generated in the concentrating chamber.

【0025】また、濃縮室1はイオン伝導スペーサ8a
の均質で密着した充填により両側に位置するカチオン交
換膜3とアニオン交換膜4を電気的に導通するため、導
電性が高まり、脱塩室の入口側から出口側の全体に渡り
電流密度を均一化でき、消費電力を低減できる。
Further, the concentrating chamber 1 has an ion conducting spacer 8a.
Since the cation exchange membranes 3 and the anion exchange membranes 4 located on both sides are electrically conducted by the homogeneous and close packing, the conductivity is enhanced, and the current density is uniform over the entire inlet side to the outlet side of the desalting chamber. And can reduce power consumption.

【0026】本発明において、被処理水の第1小脱塩室
及び第2小脱塩室での流れ方向は、特に制限されず、上
記実施の形態の他、第1小脱塩室と第2小脱塩室での流
れ方向が異なっていてもよい。また、被処理水が流入す
る小脱塩室は、上記実施の形態例の他、先ず、被処理水
を第1小脱塩室に流入させ、流下した後、第1小脱塩室
の流出水を第2小脱塩室に流入させてもよい。また、濃
縮水の流れ方向も適宜決定される。
In the present invention, the flow directions of the water to be treated in the first small desalting chamber and the second small desalting chamber are not particularly limited, and in addition to the above embodiment, the first small desalting chamber and The flow directions in the two small desalting chambers may be different. The small desalination chamber into which the water to be treated flows is, in addition to the above-described embodiment, first, the water to be treated is caused to flow into the first small desalination chamber, and after flowing down, the outflow of the first small desalination chamber. Water may be allowed to flow into the second small desalting chamber. Also, the flow direction of the concentrated water is appropriately determined.

【0027】本発明の実施の形態における他の電気式脱
イオン水製造装置を図8を参照して説明する。図8の電
気式脱イオン水製造装置100は、図1に示される省電
力型電気式脱イオン水製造装置10における中間イオン
交換膜を省略した形態であり、脱塩室内における被処理
水の流れが1パスである。すなわち、電気式脱イオン水
製造装置100において、一側のカチオン交換膜10
1、及び他側のアニオン交換膜102で区画される室に
イオン交換体103を充填して脱塩室104を構成し、
カチオン交換膜101、アニオン交換膜102を介して
脱塩室104の両側に濃縮室105を設け、これらの脱
塩室104及び濃縮室105を陽極110を備えた陽極
室と陰極109を備えた陰極室の間に配置し、電圧を印
加しながら脱塩室104に被処理水を流入すると共に、
濃縮室105に濃縮水を流入して被処理水中の不純物イ
オンを除去し、脱イオン水を得る方法において、濃縮室
105は、上記実施の形態例と同様の構成を採ることに
より、同様の作用効果を奏する。なお、符号111は被
処理水流入ライン、114は脱イオン水流出ライン、1
15は濃縮水流入ライン、116は濃縮水流出ライン、
117は電極水流入ライン、118は電極水流出ライン
をそれぞれ示す。また、本発明の電気式脱イオン水製造
装置の形態としては、特に制限されず、スパイラル型、
同心円型及び平板積層型などのものが挙げられる。
Another electric deionized water producing apparatus according to the embodiment of the present invention will be described with reference to FIG. The electric deionized water production apparatus 100 of FIG. 8 is a form in which the intermediate ion exchange membrane in the power-saving electric deionized water production apparatus 10 shown in FIG. Is one pass. That is, in the electric deionized water producing apparatus 100, the cation exchange membrane 10 on one side is
A desalting chamber 104 is formed by filling a chamber defined by the anion exchange membranes 102 on the first and other sides with an ion exchanger 103.
Concentration chambers 105 are provided on both sides of the desalination chamber 104 via the cation exchange membrane 101 and the anion exchange membrane 102, and the desalination chamber 104 and the concentration chamber 105 are provided with an anode chamber having an anode 110 and a cathode having a cathode 109. It is arranged between the chambers, and while water is applied to the desalination chamber 104 while applying voltage,
In the method of flowing the concentrated water into the concentrating chamber 105 to remove the impurity ions in the water to be treated to obtain the deionized water, the concentrating chamber 105 adopts the same configuration as that of the above-described embodiment, and thus has the same function. Produce an effect. In addition, reference numeral 111 is a treated water inflow line, 114 is a deionized water outflow line, 1
15 is a concentrated water inflow line, 116 is a concentrated water outflow line,
Reference numeral 117 represents an electrode water inflow line, and 118 represents an electrode water outflow line. Further, the form of the electric deionized water producing apparatus of the present invention is not particularly limited, spiral type,
Examples include concentric circle type and flat plate type.

【0028】本発明の脱イオン水製造方法に用いる被処
理水としては、特に制限されず、例えば、井水、水道
水、下水、工業用水、河川水、半導体製造工場の半導体
デバイスなどの洗浄排水又は濃縮室からの回収水などを
逆浸透膜処理した透過水、また、半導体製造工場等のユ
ースポイントで使用された回収水であって、逆浸透膜処
理がされていない水が挙げられる。このようにして供給
される被処理水の一部を濃縮水としても使用する場合、
脱塩室に供給される被処理水及び濃縮室に供給される濃
縮水を軟化後、使用することがスケール発生を更に抑制
できる点で好ましい。軟化の方法は、特に限定されない
が、ナトリウム形のイオン交換樹脂等を用いた軟化器が
好適である。
The water to be treated used in the method for producing deionized water of the present invention is not particularly limited, and examples thereof include well water, tap water, sewage, industrial water, river water, and cleaning drainage of semiconductor devices in semiconductor manufacturing plants. Alternatively, there may be mentioned permeated water obtained by performing reverse osmosis membrane treatment of water recovered from the concentrating chamber, or water that has been used at points of use such as semiconductor manufacturing plants and has not been subjected to reverse osmosis membrane treatment. When using a part of the treated water supplied in this way as concentrated water,
It is preferable to use the water to be treated supplied to the desalting chamber and the concentrated water to be supplied to the concentrating chamber after softening them, since the scale generation can be further suppressed. The softening method is not particularly limited, but a softener using a sodium-type ion exchange resin or the like is preferable.

【0029】[0029]

【実施例】実施例1 下記装置仕様及び運転条件において、図8と同様の構成
で6個の脱イオンモジュールを並設して構成される電気
式脱イオン水製造装置を使用した。被処理水は、工業用
水の逆浸透膜透過水を用い、その硬度は、200μgCaC
O3/l であった。また、被処理水の一部を濃縮水及び電
極水として使用した。運転時間は4000時間であり、
4000時間後の濃縮室内のスケール発生の有無を観察
した。また、同時間における抵抗率17.9MΩ-cm の
処理水を得るための運転条件を表1に示す。
EXAMPLES Example 1 An electric deionized water producing apparatus having the same configuration as that shown in FIG. 8 and having six deionization modules arranged in parallel was used under the following apparatus specifications and operating conditions. The water to be treated is permeated water of reverse osmosis membrane for industrial use, and its hardness is 200 μgCaC.
It was O 3 / l. Further, a part of the water to be treated was used as concentrated water and electrode water. Driving time is 4000 hours,
The presence or absence of scale generation in the concentration chamber after 4000 hours was observed. Table 1 shows the operating conditions for obtaining treated water having a resistivity of 17.9 MΩ-cm 2 at the same time.

【0030】(運転の条件) ・電気式脱イオン水製造装置;試作EDI ・脱塩室;幅300mm、高さ600mm、厚さ3mm ・脱塩室に充填したイオン交換樹脂;アニオン交換樹脂
(A)とカチオン 交換樹脂(K)の混合イオン交換樹脂(混合比は体積比
でA:K=1:1) ・濃縮室;幅300mm、高さ600mm、厚さ1mm ・濃縮室充填イオン伝導スペーサ;網目状のカチオン伝
導スペーサ単床と網目のアニオン伝導スペーサ単床を濃
縮水の流出入方向に沿って交互に積層した4床 ・装置全体の流量;1m3 /h
(Operating conditions) -Electric deionized water production device; trial EDI-Demineralization chamber; width 300 mm, height 600 mm, thickness 3 mm-ion exchange resin filled in the deionization chamber; anion exchange resin (A ) And cation exchange resin (K) mixed ion exchange resin (mixing ratio by volume ratio is A: K = 1: 1) -concentration chamber; width 300 mm, height 600 mm, thickness 1 mm-concentration chamber-filled ion conductive spacer; 4 beds in which mesh-shaped cation-conducting spacer single beds and mesh-shaped anion-conducting spacer single beds are alternately laminated along the inflow / outflow direction of concentrated water ・ Flow rate of the whole device; 1 m 3 / h

【0031】実施例2 下記装置仕様及び運転条件において、図1と同様の構成
で3個の脱イオンモジュール(6個の小脱塩室)を並設
して構成される電気式脱イオン水製造装置を使用した。
被処理水は、工業用水の逆浸透膜透過水を用い、その硬
度は、200μgCaCO3/l であった。また、被処理水の
一部を濃縮水及び電極水として使用した。運転時間は4
000時間であり、4000時間後の濃縮室内のスケー
ル発生の有無を観察した。また、同時間における抵抗率
17.9MΩ-cm の処理水を得るための運転条件を表1
に示す。
Example 2 Under the following equipment specifications and operating conditions, an electric deionized water production system was constructed in which three deionization modules (six small deionization chambers) were arranged in parallel with the same construction as in FIG. The equipment was used.
Industrial water reverse osmosis membrane permeate was used as the water to be treated, and its hardness was 200 μg CaCO 3 / l. Further, a part of the water to be treated was used as concentrated water and electrode water. Driving time is 4
It was 000 hours, and the presence or absence of scale generation in the concentrating chamber after 4000 hours was observed. Table 1 shows the operating conditions for obtaining treated water with a resistivity of 17.9 MΩ-cm at the same time.
Shown in.

【0032】(運転の条件) ・電気式脱イオン水製造装置;試作EDI ・中間イオン交換膜;アニオン交換膜 ・第1小脱塩室;幅300mm、高さ600mm、厚さ3mm ・第1小脱塩室に充填したイオン交換樹脂;アニオン交
換樹脂(A)とカチオン交換樹脂(K)の混合イオン交
換樹脂(混合比は体積比でA:K=1:1) ・第2小脱塩室;幅300mm、高さ600mm、厚さ8mm ・第2小脱塩室充填イオン交換樹脂;アニオン交換樹脂 ・濃縮室;幅300mm、高さ600mm、厚さ1mm ・濃縮室充填イオン伝導スペーサ;網目状のカチオン伝
導スペーサ単床と網目状のアニオン伝導スペーサ単床を
濃縮水の流出入方向に沿って交互に積層した4床・装置
全体の流量;1m3 /h
(Operating conditions) -Electric deionized water production device; trial EDI-intermediate ion exchange membrane; anion exchange membrane-first small desalting chamber; width 300 mm, height 600 mm, thickness 3 mm-first small Ion exchange resin filled in the desalting chamber; mixed ion exchange resin of anion exchange resin (A) and cation exchange resin (K) (mixing ratio is A: K = 1: 1 by volume ratio) ・ Second small desalting chamber Width 300 mm, height 600 mm, thickness 8 mm-Second small desalting chamber filled ion exchange resin; anion exchange resin-concentration chamber; width 300 mm, height 600 mm, thickness 1 mm-concentration chamber filled ion conductive spacer; mesh-like Cation-conducting spacer single beds and mesh-like anion-conducting spacer single beds were alternately laminated along the inflow / outflow direction of concentrated water. Flow rate of the entire device: 1 m 3 / h

【0033】比較例1 網目状のイオン伝導スペーサの代わりに、イオン伝導性
のない網目状スペーサを濃縮室に充填した以外は、実施
例1と同様の方法で行った。運転時間は4000時間で
あり、4000時間後の濃縮室内のスケール発生の有無
を観察した。また、同時間における抵抗率17.9MΩ
-cm の処理水を得るための運転条件を表1に示す。イオ
ン伝導性のない網目状スペーサは、実施例1で使用した
網目状のイオン伝導スペーサの製作過程で得られるイオ
ン交換基導入前のものである。
Comparative Example 1 The same procedure as in Example 1 was carried out except that instead of the mesh-shaped ion conductive spacer, a mesh spacer having no ion conductivity was filled in the concentration chamber. The operation time was 4000 hours, and the presence or absence of scale generation in the concentrating chamber after 4000 hours was observed. In addition, the resistivity at the same time is 17.9 MΩ
Table 1 shows the operating conditions for obtaining -cm 2 of treated water. The mesh spacer having no ion conductivity is the one before introduction of the ion exchange group, which is obtained in the manufacturing process of the mesh ion conductive spacer used in Example 1.

【0034】比較例2 網目状のイオン伝導スペーサの代わりに、イオン伝導性
のない網目状スペーサを濃縮室に充填した以外は、実施
例2と同様の方法で行った。運転時間は4000時間で
あり、4000時間後の濃縮室内のスケール発生の有無
を観察した。また、同時間における抵抗率17.9MΩ
-cm の処理水を得るための運転条件を表1に示す。イオ
ン伝導性のない網目状スペーサは、実施例1で使用した
網目状のイオン伝導スペーサの製作過程で得られるイオ
ン交換基導入前のものである。
Comparative Example 2 The same procedure as in Example 2 was carried out except that the concentration chamber was filled with a mesh spacer having no ion conductivity instead of the mesh ion conductive spacer. The operation time was 4000 hours, and the presence or absence of scale generation in the concentrating chamber after 4000 hours was observed. In addition, the resistivity at the same time is 17.9 MΩ
Table 1 shows the operating conditions for obtaining -cm 2 of treated water. The mesh spacer having no ion conductivity is the one before introduction of the ion exchange group, which is obtained in the manufacturing process of the mesh ion conductive spacer used in Example 1.

【0035】[0035]

【表1】 ──────────────────────────────────── 実施例1 実施例2 比較例1 比較例2 ──────────────────────────────────── 平均印加電圧 100 80 150 130 (V) 電流(A) 2 2 2 2 4000時間後のスケ 無し 無し 有り 有り ール発生の様子 ────────────────────────────────────[Table 1] ────────────────────────────────────                    Example 1 Example 2 Comparative Example 1 Comparative Example 2 ────────────────────────────────────  Average applied voltage 100 80 150 130  (V)  Current (A) 2 2 2 2 2  No scale after 4000 hours No Yes Yes Yes  Situation ────────────────────────────────────

【0036】[0036]

【発明の効果】本発明によれば、スケール発生の問題
を、被処理水からの対策ではなく、電気式脱イオン水製
造装置の濃縮室の構造面から解決でき、長期間の連続運
転においても、濃縮室内にスケール発生を認めることな
く、安定した運転ができる。また、濃縮室内の導電性が
高まり、脱塩室の入口側から出口側の全体に渡り電流密
度を均一化でき、消費電力を低減できる。
EFFECTS OF THE INVENTION According to the present invention, the problem of scale generation can be solved from the structural aspect of the concentrating chamber of the electric deionized water manufacturing apparatus, not even from the measures to be taken from the water to be treated, and even in long-term continuous operation. , Stable operation can be performed without the occurrence of scale in the concentrating chamber. In addition, the conductivity in the concentration chamber is increased, the current density can be made uniform over the entire inlet side to the outlet side of the desalting chamber, and the power consumption can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における電気式脱イオン水
製造装置の模式図である。
FIG. 1 is a schematic diagram of an electric deionized water production apparatus according to an embodiment of the present invention.

【図2】斜交網の形状を説明する図である。FIG. 2 is a diagram illustrating the shape of a diagonal network.

【図3】脱塩室モジュール及び濃縮室の構造を説明する
図である。
FIG. 3 is a diagram illustrating the structures of a desalination chamber module and a concentration chamber.

【図4】図1の電気式脱イオン水製造装置を簡略的に示
した図である。
FIG. 4 is a schematic view of the electric deionized water producing apparatus of FIG. 1.

【図5】濃縮室における不純物イオンの移動を説明する
図である。
FIG. 5 is a diagram for explaining movement of impurity ions in the concentrating chamber.

【図6】濃縮室における不純物イオンの濃度勾配を示す
図である。
FIG. 6 is a diagram showing a concentration gradient of impurity ions in a concentrating chamber.

【図7】イオン伝導性のない網目状スペーサを充填した
濃縮室(従来型)における不純物イオンの濃度勾配を示
す図である。
FIG. 7 is a diagram showing a concentration gradient of impurity ions in a concentrating chamber (conventional type) filled with a mesh spacer having no ion conductivity.

【図8】本発明の他の実施の形態における電気式脱イオ
ン水製造装置の模式図である。
FIG. 8 is a schematic diagram of an electric deionized water producing apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

D、D1 〜D4 、104 脱塩室 d1 、d3 、d5 、d7 第1小脱塩室 d2 、d4 、d6 、d8 第2小脱塩室 1、105 濃縮室 2 電極室 3、101 カチオン膜 4、102 アニオン膜 5 中間イオン交換膜 6、109 陰極 7、110 陽極 8、103 イオン交換体 8a カチオン伝導スペーサ単床とアニ
オン伝導スペーサ単床の積層床 10、100 電気式脱イオン水製造装置 11、111 被処理水流入ライン 12 第2小脱塩室の処理水流出ライ
ン 13 第1小脱塩室の被処理水流入ラ
イン 14、114 脱イオン水流出ライン 15、115 濃縮水流入ライン 16、116 濃縮水流出ライン 17a、17b、117 電極水流入ライン 18a、18b、118 電極水流出ライン 20 脱イオンモジュール 30 斜交網 101 炭酸イオンが濃縮水中に初めて
移動する点 102 カルシウムイオンが濃縮水中に
初めて移動する点
D, D 1 ~D 4, 104 desalting d 1, d 3, d 5 , d 7 first small depletion chambers d 2, d 4, d 6 , d 8 second small depletion chamber 1,105 concentrated Chamber 2 Electrode chamber 3, 101 Cation membrane 4, 102 Anion membrane 5 Intermediate ion exchange membrane 6, 109 Cathode 7, 110 Anode 8, 103 Ion exchanger 8a Laminated floor 10 of single cation conductive spacer and single anionic conductive spacer, 100 Electric Deionized Water Production Equipment 11, 111 Treated Water Inflow Line 12 Treated Water Outflow Line 13 of Second Small Desalination Chamber 13 Treated Water Inflow Line 14, 114 Deionized Water Outflow Line 15 , 115 Concentrated water inflow line 16, 116 Concentrated water outflow line 17a, 17b, 117 Electrode water inflow line 18a, 18b, 118 Electrode water outflow line 20 Deionization module 30 Diagonal net 101 Carbonate ion is first in concentrated water Point 102 calcium ions that move Te is first moved to the concentrate water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 修 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D006 GA17 HA42 JA04A JA04Z JA30Z JA43B JA44Z KA26 KA31 KB11 MA03 MA13 MA14 PA01 PB02 PC01 PC11 PC31 PC32 PC33 PC42 4D061 DA01 DB13 EA02 EA09 EB01 EB04 EB13 EB19 FA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Osamu Kawaguchi             Olga 1-2-8 Shinsuna, Koto-ku, Tokyo             Within the corporation F-term (reference) 4D006 GA17 HA42 JA04A JA04Z                       JA30Z JA43B JA44Z KA26                       KA31 KB11 MA03 MA13 MA14                       PA01 PB02 PC01 PC11 PC31                       PC32 PC33 PC42                 4D061 DA01 DB13 EA02 EA09 EB01                       EB04 EB13 EB19 FA08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一側のカチオン交換膜、及び他側のアニ
オン交換膜で区画される室にイオン交換体を充填して脱
塩室を構成し、前記カチオン交換膜、アニオン交換膜を
介して脱塩室の両側に濃縮室を設け、これらの脱塩室及
び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の
間に配置してなる電気式脱イオン水製造装置において、
前記濃縮室は、網目状の陽イオン伝導スペーサと網目状
の陰イオン伝導スペーサが濃縮水の流出入方向に対し
て、交互に積層充填して形成されることを特徴とする電
気式脱イオン水製造装置。
1. A desalting chamber is formed by filling a chamber defined by a cation exchange membrane on one side and an anion exchange membrane on the other side with an ion exchanger, and a desalting chamber is formed through the cation exchange membrane and the anion exchange membrane. In the electric deionized water manufacturing apparatus, which is provided with a concentrating chamber on both sides of the demineralizing chamber, the demineralizing chamber and the concentrating chamber are arranged between an anode chamber equipped with an anode and a cathode chamber equipped with a cathode.
The concentrating chamber is formed by alternately filling the mesh-shaped cation-conducting spacers and the mesh-shaped anion-conducting spacers in a stack in the inflow and outflow directions of the concentrated water. Manufacturing equipment.
【請求項2】 一側のカチオン交換膜、他側のアニオン
交換膜及び当該カチオン交換膜と当該アニオン交換膜の
間に位置する中間イオン交換膜で区画される2つの小脱
塩室にイオン交換体を充填して脱塩室を構成し、前記カ
チオン交換膜、アニオン交換膜を介して脱塩室の両側に
濃縮室を設け、これらの脱塩室及び濃縮室を陽極を備え
た陽極室と陰極を備えた陰極室の間に配置してなる電気
式脱イオン水製造装置において、前記濃縮室は、網目状
の陽イオン伝導スペーサと網目状の陰イオン伝導スペー
サが濃縮水の流出入方向に対して、交互に積層充填して
形成されることを特徴とする電気式脱イオン水製造装
置。
2. Ion exchange into two small desalting chambers defined by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane. A desalting chamber is formed by filling the body, and a concentrating chamber is provided on both sides of the desalting chamber through the cation exchange membrane and the anion exchange membrane, and the desalting chamber and the concentrating chamber serve as an anode chamber equipped with an anode. In the electric deionized water producing apparatus arranged between the cathode chambers provided with a cathode, the concentrating chamber has a net-like cation-conducting spacer and a net-like anion-conducting spacer in the inflow and outflow directions of the concentrated water. On the other hand, an electric deionized water manufacturing apparatus characterized by being formed by alternately stacking and filling.
【請求項3】 前記中間イオン交換膜と前記他側のアニ
オン交換膜で区画される一方の小脱塩室に充填されるイ
オン交換体は、アニオン交換体であり、前記一側のカチ
オン交換膜と前記中間イオン交換膜で区画される他方の
小脱塩室に充填されるイオン交換体は、カチオン交換体
とアニオン交換体の混合体であることを特徴とする請求
項2記載の電気式脱イオン水製造装置。
3. The ion exchanger filled in one of the small desalting chambers defined by the intermediate ion exchange membrane and the anion exchange membrane on the other side is an anion exchanger, and the cation exchange membrane on the one side. 3. The electrical deionizer according to claim 2, wherein the ion exchanger filled in the other small desalting chamber partitioned by the intermediate ion exchange membrane is a mixture of a cation exchanger and an anion exchanger. Ion water production equipment.
【請求項4】 前記濃縮室の厚さが、0.2〜8.0mm
であることを特徴とする請求項1〜3のいずれか1項記
載の電気式脱イオン水製造装置。
4. The concentration chamber has a thickness of 0.2 to 8.0 mm.
The electric deionized water production apparatus according to claim 1, wherein
【請求項5】 一側のカチオン交換膜、及び他側のアニ
オン交換膜で区画される室にイオン交換体を充填して脱
塩室を構成し、前記カチオン交換膜、アニオン交換膜を
介して脱塩室の両側に濃縮室を設け、これらの脱塩室及
び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の
間に配置し、電圧を印加しながら脱塩室に被処理水を流
入すると共に、濃縮室に濃縮水を流入して被処理水中の
不純物イオンを除去し、脱イオン水を得る方法におい
て、前記濃縮室は、網目状の陽イオン伝導スペーサと網
目状の陰イオン伝導スペーサが濃縮水の流出入方向に対
して、交互に積層充填して形成されるものであることを
特徴とする脱イオン水の製造方法。
5. A desalting chamber is constituted by filling a chamber defined by the cation exchange membrane on one side and the anion exchange membrane on the other side with an ion exchanger, and the desalting chamber is formed through the cation exchange membrane and the anion exchange membrane. Concentration chambers are provided on both sides of the deionization chamber, and these deionization chamber and concentration chamber are arranged between an anode chamber equipped with an anode and a cathode chamber equipped with a cathode, and the desalination chamber is treated while voltage is applied. In the method of flowing deionized water by injecting concentrated water into the concentrating chamber by flowing water into the concentrating chamber to obtain deionized water, the concentrating chamber comprises a net-like cation conducting spacer and a net-like anion. A method for producing deionized water, characterized in that the ion-conducting spacers are formed by alternately stacking and filling them in the inflow / outflow direction of the concentrated water.
【請求項6】 一側のカチオン交換膜、他側のアニオン
交換膜及び当該カチオン交換膜と当該アニオン交換膜の
間に位置する中間イオン交換膜で区画される2つの小脱
塩室にイオン交換体を充填して脱塩室を構成し、前記カ
チオン交換膜、アニオン交換膜を介して脱塩室の両側に
濃縮室を設け、これらの脱塩室及び濃縮室を陽極を備え
た陽極室と陰極を備えた陰極室の間に配置し、電圧を印
加しながら一方の小脱塩室に被処理水を流入し、次い
で、該小脱塩室の流出水を他方の小脱塩室に流入すると
共に、濃縮室に濃縮水を流入して被処理水中の不純物イ
オンを除去し、脱イオン水を得る方法において、前記濃
縮室は、網目状の陽イオン伝導スペーサと網目状の陰イ
オン伝導スペーサが濃縮水の流出入方向に対して、交互
に積層充填して形成されるものであることを特徴とする
脱イオン水の製造方法。
6. Ion exchange into two small desalting chambers defined by a cation exchange membrane on one side, an anion exchange membrane on the other side and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane. A desalting chamber is formed by filling the body, and a concentrating chamber is provided on both sides of the desalting chamber through the cation exchange membrane and the anion exchange membrane, and the desalting chamber and the concentrating chamber serve as an anode chamber equipped with an anode. It is placed between cathode chambers equipped with a cathode, and the water to be treated flows into one small desalination chamber while applying a voltage, and then the outflow water of the small desalination chamber flows into the other small desalination chamber. At the same time, the concentrated water flows into the concentrating chamber to remove the impurity ions in the water to be treated to obtain deionized water. In the concentrating chamber, the reticulated cation conducting spacer and the reticulated anionic conducting spacer are used. Are formed by alternately stacking and filling the flow direction of concentrated water. What is claimed is: 1. A method for producing deionized water, comprising:
JP2001351223A 2001-11-16 2001-11-16 Electric deionized water production apparatus and deionized water production method Expired - Fee Related JP3781352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351223A JP3781352B2 (en) 2001-11-16 2001-11-16 Electric deionized water production apparatus and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351223A JP3781352B2 (en) 2001-11-16 2001-11-16 Electric deionized water production apparatus and deionized water production method

Publications (2)

Publication Number Publication Date
JP2003145164A true JP2003145164A (en) 2003-05-20
JP3781352B2 JP3781352B2 (en) 2006-05-31

Family

ID=19163557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351223A Expired - Fee Related JP3781352B2 (en) 2001-11-16 2001-11-16 Electric deionized water production apparatus and deionized water production method

Country Status (1)

Country Link
JP (1) JP3781352B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515228A (en) * 2003-04-25 2006-05-25 ユーエスフィルター・コーポレイション Injection-bonded article and its manufacturing method
KR100915272B1 (en) * 2002-02-08 2009-09-03 오르가노 가부시키가이샤 Electric deionized water-producing apparatus and method of producing deionized water using same
JP2011502030A (en) * 2006-09-22 2011-01-20 ゼネラル・エレクトリック・カンパニイ Arrangement of ion exchange material in electrodeionization equipment
JP2011093240A (en) * 2009-10-30 2011-05-12 Astom:Kk Streaming laminate sheet
JP2011224440A (en) * 2010-04-16 2011-11-10 Japan Organo Co Ltd Electrical apparatus for producing deionized water
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
ITPD20130065A1 (en) * 2013-03-15 2014-09-16 Idropan Dell Orto Depuratori S R L EQUIPMENT FOR THE PURIFICATION OF A FLUID AND A PURIFICATION METHOD OF A FLUID, IN PARTICULAR THROUGH THE ABOVE EQUIPMENT
EP3000789A1 (en) 2014-09-15 2016-03-30 Idropan Dell'orto Depuratori S.r.l. Apparatus and method for purifying a fluid
US9878927B2 (en) 2013-03-15 2018-01-30 Idropan Dell'orto Depuratori S.R.L Apparatus for purifying a fluid and method for purifying a fluid, in particular by means of the aforesaid apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915272B1 (en) * 2002-02-08 2009-09-03 오르가노 가부시키가이샤 Electric deionized water-producing apparatus and method of producing deionized water using same
JP2006515228A (en) * 2003-04-25 2006-05-25 ユーエスフィルター・コーポレイション Injection-bonded article and its manufacturing method
JP2011502030A (en) * 2006-09-22 2011-01-20 ゼネラル・エレクトリック・カンパニイ Arrangement of ion exchange material in electrodeionization equipment
JP2011093240A (en) * 2009-10-30 2011-05-12 Astom:Kk Streaming laminate sheet
JP2011224440A (en) * 2010-04-16 2011-11-10 Japan Organo Co Ltd Electrical apparatus for producing deionized water
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
ITPD20130065A1 (en) * 2013-03-15 2014-09-16 Idropan Dell Orto Depuratori S R L EQUIPMENT FOR THE PURIFICATION OF A FLUID AND A PURIFICATION METHOD OF A FLUID, IN PARTICULAR THROUGH THE ABOVE EQUIPMENT
EP2778140A1 (en) 2013-03-15 2014-09-17 Idropan Dell'orto Depuratori S.r.l. Apparatus for purifying a fluid and method for purifying a fluid, in particular by means of the aforesaid apparatus
US9878927B2 (en) 2013-03-15 2018-01-30 Idropan Dell'orto Depuratori S.R.L Apparatus for purifying a fluid and method for purifying a fluid, in particular by means of the aforesaid apparatus
US9932253B2 (en) 2013-03-15 2018-04-03 Idropan Dell'orto Depuratori S.R.L. Apparatus for purifying a fluid and method for purifying a fluid, in particular by means of the aforesaid apparatus
EP3000789A1 (en) 2014-09-15 2016-03-30 Idropan Dell'orto Depuratori S.r.l. Apparatus and method for purifying a fluid

Also Published As

Publication number Publication date
JP3781352B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
JP3781361B2 (en) Electric deionized water production equipment
JP3864891B2 (en) Electric deionizer
JP2751090B2 (en) Pure water production equipment
US6423205B1 (en) Electric deionization apparatus
JP2865389B2 (en) Electric deionized water production equipment and frame used for it
KR20000016223A (en) Process for producing deionized water by electrical deionization technique
JP4400218B2 (en) Electric deionization apparatus and deionization method
JP3305139B2 (en) Method for producing deionized water by electrodeionization method
JPH08150326A (en) Production of deionized water by electrolytic deionization method
JP2003145164A (en) Electric deionized water production apparatus and deionized water production method
WO1997046492A1 (en) Process for producing deionized water by electrical deionization technique
JP4609924B2 (en) Electric deionized water production equipment
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP3900666B2 (en) Deionized water production method
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
JP4721323B2 (en) Electric deionized liquid production apparatus and deionized liquid production method
JP7224994B2 (en) Electrodeionized water production device and deionized water production method
JP2001259646A (en) Electric deionized water producer
US8529759B2 (en) Electric deionized water production apparatus
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP3985494B2 (en) Electric deionization apparatus and deionization method
JP4497388B2 (en) Electric deionized water production apparatus and deionized water production method
JP3985497B2 (en) Electric deionizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees